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The double Cayley Grassmannian

Laurent Manivel

We study the smooth projective symmetric variety of Picard num-
ber one that compactifies the exceptional complex Lie group G2,
by describing it in terms of vector bundles on the spinor variety of
Spin14. We call it the double Cayley Grassmannian because quite
remarkably, it exhibits very similar properties to those of the Cay-
ley Grassmannian (the other symmetric variety of type G2), but
doubled in a certain sense. We deduce among other things that all
smooth projective symmetric varieties of Picard number one are
infinitesimally rigid.

1. Introduction

Symmetric spaces have been of constant interest since their classification
by Elie Cartan in 1926. In complex algebraic geometry, projective symmet-
ric varieties of Picard number one have been classified by Alessandro Ruzzi
in 2011 [18]. Some of them are in fact homogeneous under their full auto-
morphism group. Some others are just hyperplane sections of homogeneous
spaces.

The two remaining ones are more mysterious, among other things be-
cause of their connections with the exceptional group G2. These connections
prompted us to call the first of them the Cayley Grassmannian, and denote
it CG; its geometry and its cohomology (including its small quantum coho-
mology) were studied in [5, 16]. The second one is the subject of the present
paper; we will call it the double Cayley Grassmannian, and denote it DG.

This terminology is supported by the observation that many important
properties of CG are also observed for DG, but doubled in a certain way.
Let us give an overview of a few of them, first for the Cayley Grassmannian:

1) CG compactifies G2/SL2 × SL2, acted on by G2,

2) CG parametrizes four dimensional subalgebras of the complex octo-
nion algebra O,
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3) CG can be described as the zero locus of a general section of a rank
4 homogeneous vector bundle on the Grassmannian G(4, V7), where
V7 ≃ ImO is the natural representation of G2,

4) its linear span in the Plücker embedding is P(C⊕ S2V7),

5) itsG2-equivariant Hilbert series is (1− t)−1(1− tV2ω1
)−1(1− t2V2ω2

)−1,

6) its topological Euler characteristic is χtop(CG) =
(

6
2

)

,

7) CG admits three orbits under the action of G2, the complement of
the open one being a hyperplane section, and the closed one being the
quadric Q5,

8) if we blowup the closed orbit, we obtain the wonderful compactification
of G2/SL2 × SL2, with the two exceptional divisors

E ≃ P(Sym2C)→ Q5 and F ≃ P(Sym2N)→Xad(G2),

where Q5 ≃ G2/P1 and Xad(G2) ≃ G2/P2 are the two generalized
Grassmannians of G2, with their G2-homogeneous rank two vector
bundles: the Cayley bundle C over Q5 and the null bundle N over
Xad(G2).

We find it quite remarkable that the double Cayley Grassmannian DG ex-
hibits the very same properties, in the following ”double” form:

1) DG compactifies G2, acted on by G2 ×G2,

2) DG parametrizes eight dimensional subalgebras of the complex bioc-
tonion algebra O⊗ C,

3) DG can be described as the zero locus of a general section of a rank 7
homogeneous vector bundle on the spinor variety S14 = Spin14/P7,

4) its linear span in the spinorial embedding is P(C⊕ V7 ⊗ V ′
7), where V7

and V ′
7 are the natural representations of the two copies of G2,

5) its equivariant Hilbert series is (1−t)−1(1−tVω1+ω′

1
)−1(1− t2Vω2+ω′

2
)−1,

6) its topological Euler characteristic is χtop(DG) = 62,

7) DG admits three orbits under the action of G2 ×G2, the complement
of the open one being a hyperplane section, and the closed one being
Q5 ×Q5,
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8) if we blowup the closed orbit, we obtain the wonderful compactification
of G2, with the two exceptional divisors

E ≃ P(C ⊠ C ′)→ Q5 ×Q5 and F ≃ P(N ⊠N ′)→Xad(G2)×Xad(G2).

The main body of the paper will be devoted to the proof of these properties.
In a sense, the whole story is hidden in the observation, already found in [19,
Proposition 40], that Spin14 acts almost transitively on the projectivization
of its half-spin representations, with generic stabilizer G2 ×G2. An impor-
tant consequence is the multiplicative double-point property used in [1] in
order to obtain a remarkable matrix factorization of the octic invariant of
these representations. We will use this property in an essential way in order
to understand the geometry of DG.

We have not been able to describe its cohomology, partly because the
number of classes is too big. In principle one should be able to deduce it
from the cohomology of its blowup along the closed orbit, which should be
accessible using [7, 9, 20]. What we have been able to check is that DG is
infinitesimally rigid, a question motivated by a longstanding interest for the
rigidity properties of homogeneous and quasi-homogeneous spaces (see for
example [4, 11, 12]). This concludes the proof of the following statement:

Proposition. Every smooth projective symmetric variety of Picard number

one is infinitesimally rigid.

Along the way, when discussing the geometry ofDG, we will meet two va-
rieties, admitting an action of G2 ×G2, which are Fano manifolds of Picard
number one, and as such would deserve special consideration (see Proposi-
tions 16 and 18). This illustrates, once again, the amazing wealth of beautiful
geometric objects related to the exceptional Lie groups.

2. Geometric description

2.1. Fano symmetric varieties of Picard number one

Ruzzi proved in [18] that there exist exactly six smooth projective symmetric
varieties of Picard number one which are not homogeneous. One of them is
a completion of G2, considered as the symmetric space (G2 ×G2)/G2. From
[18] we can extract the following information.

1) The symmetric space G2 admits a unique smooth equivariant comple-
tion with Picard number one, that we denote DG.
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2) The connected automorphism group of DG is G2 ×G2; it has index
two inside the full automorphism group.

3) Under the action of G2 ×G2, the variety DG has exactly three orbits:
the open one, a codimension one orbit O1, and a closed orbit O4 ≃
Q5 ×Q5. The closure D of O1 is singular along O4.

4) The blow up of DG along its closed orbit is the wonderful compactifi-
cation of G2.

5) Consider the spinor variety S14 ⊂ P∆, the closed Spin14-orbit inside
a projectivized half-spin representation; then DG can be realized as a
linear section of S14 by a linear subspace of codimension 14.

The last statement provides a geometric realization of DG which is not so
useful, since the linear subspace is highly non transverse (note that S14 has
dimension 21). Our first observation is that a more satisfactory description
can be given in terms of vector bundles.

2.2. Octonionic factorization

We will need some extra information on half-spin representations. Let V14 be
a fourteen dimensional complex vector space endowed with a non degenerate
quadratic form. Let ∆ be one of the half-spin representations of Spin14. Its
dimension is 64, and the action of the 91-dimensional group Spin14 on P∆
is prehomogeneous.

Recall that if we fix a maximal isotropic subspace E of V14, we can iden-
tify the half-spin representation ∆ with the even part ∧+E of the exterior
algebra ∧•E. For e1, . . . , e7 a basis of E, let us denote eij = ei ∧ ej , and so
on. A general element of ∆ is then

z = 1 + e1237 + e4567 + e123456.

The stabilizer of z in Spin14 is locally isomorphic to G2 ×G2 (see [19, Propo-
sition 40] or [1, Proposition 2.1.1]). The following statement was proved in
[1].

Proposition 1. A general element z of ∆ determines an orthogonal de-

composition V14 = V7 ⊕ V ′
7. This yields a factorization of ∆ as ∆8 ⊗∆′

8, for

∆8 and ∆′
8 the spin representations of Spin(V7) and Spin(V ′

7), such that

z = δ ⊗ δ′ for some general δ ∈ ∆8 and δ′ ∈ ∆′
8.
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Explicitely, for z = 1 + e1237 + e4567 + e123456 we get an orthogonal de-
composition of V14 as the direct sum of the two spaces

V7 = ⟨e1, e2, e3, f1, f2, f3, e7 − f7⟩, V ′
7 = ⟨e4, e5, e6, f4, f5, f6, e7 + f7⟩,

such that each copy of G2 acts naturally on one of them, and trivially on
the other one. Moreover δ = 1 + e123 and δ′ = 1 + e456. The stabilizer of δ
(resp. δ′) in Spin(V7) (resp. Spin(V

′
7)) is the corresponding G2.

Let us analyze how ∆ decomposes as a G2 ×G2-module. As a Spin7 ×
Spin7-module, we have just mentionned that ∆ is a tensor product ∆8 ⊗∆′

8

of eight-dimensional spin representations. Moreover we can identify ∆8 with
∧•A and ∆′

8 with ∧•A′, where A = ⟨e1, e2, e3⟩ and A′ = ⟨e4, e5, e6⟩. Now, the
restriction of ∆7 to G2 decomposes as C⊕ V7, so that finally

∆ ≃ V7 ⊗ V ′
7 ⊕ V7 ⊕ V ′

7 ⊕ C.

The result of [18] is that DG is the (highly non transverse) intersection of
S14 with PDz, where Dz = V7 ⊗ V ′

7 ⊕ C ⊂ ∆.
The orthogonal to Dz can be described as follows. The Clifford multipli-

cation yields a morphism V14 ⊗∆ → ∆∨. The image of V14 ⊗ z is a subspace
Lz of ∆∨, of dimension 14, which must be stable under G2 ×G2. In particu-
lar it must coincide with the orthogonal of Dz. We can explicitely determine
this subspace by computing a basis:

e1.z = e1 + e14567, f1.z = e237 + e23456,
e2.z = e2 + e24567, f2.z = −e137 − e13456,
e3.z = e3 + e34567, f3.z = e127 + e12456,
e4.z = e4 − e12347, f4.z = e567 − e12356,
e5.z = e5 − e12357, f5.z = −e467 + e12346,
e6.z = e6 − e12367, f6.z = e457 − e12345,
e7.z = e7 + e1234567, f7.z = −e123 − e456.

2.3. Spinorial interpretation

Let us denote by L the very ample line bundle that defines the embedding of
the spinor variety S14 ⊂ P∆. Recall that ∆ is one of the half-spin representa-
tions of Spin14, and its dimension is 64. The spinor variety S14 parametrizes
one of the two families of maximal isotropic spaces in V14, and the square
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L2 defines the Plücker embedding

S14 →֒ G(7, V14) ⊂ P(∧7V14).

The tautological bundle on G(7, V14) restricts to a rank seven vector bun-
dle U on S14, such that det(U) = L−2. Moreover, U ⊗ L is an irreducible
homogeneous vector bundle, and by the Borel-Weil theorem,

H0(S14,L) = ∆∨ and H0(S14,U ⊗ L) = ∆.

Since U ⊗ L is irreducible and admits non zero sections, it is automatically
globally generated. So a general section vanishes along a codimension seven
subvariety of S14. Note that this family of zero loci is isotrivial, since Spin14
acts on P∆with an open orbit (whose complement is a degree 7 hypersurface,
see [1] for more details).

Proposition 2. The zero locus of a general section of the vector bundle

U ⊗ L on S14 is projectively isomorphic to DG.

Proof. Let z be a general element of ∆, and sz the associated section of
U ⊗ L. Let y be a pure spinor; in other words, [y] is a point of S14. Then
sz([y]) is a linear homomorphism from L∨

[y] = Cy to U[y]. The latter is the
subspace of V14 characterized as

U[y] = {v ∈ V14, v.y = 0},

where v.y ∈ ∆∨ denotes the Clifford product of the vector v by the spinor y
(recall that the fact that U[y] is maximal isotropic is equivalent to y being a
pure spinor [10]). We claim that sz([y]) is defined by the following formula:

sz([y])(u) = ⟨z, u.y⟩, u ∈ V14.

Note that the right hand side is a linear form in u ∈ V14 that certainly van-
ishes on U[y]. Since it is maximal isotropic, U[y] ≃ U⊥

[y]. So the right hand side

really defines an element of U[y], depending linearly on y ∈ [y], as required.
We have therefore defined a non trivial equivariant morphism from ∆ to

H0(S14,U ⊗ L). By the Schur Lemma, it must be an isomorphism, and the
same one up to scalar as the one provided by the Borel-Weil theorem.
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So the zero-locus of sz is the set of points [y] ∈ S14 such that

⟨z, u.y⟩ = ⟨u.z, y⟩ = 0 ∀u ∈ V14.

In other words, set theoretically it is the intersection of S14 with the orthog-
onal to the fourteen dimension subspace V14.z ⊂ ∆∨. This is exactly Ruzzi’s
description, and we are done. □

Corollary 3. DG is a prime Fano manifold of dimension 14 and index 7.

Proof. That DG has Picard number one follows from [18]. The spinor vari-
ety S14 has index 12, while det(U ⊗ L) = det(U)⊗ L7 = L5. Of course the
restriction of L cannot be divisible since by Kobayashi-Ochiai it cannot be
bigger that 15, and DG would be a quadric if it was equal to 14. □

Recall that the Chow ring of S14 has an integral basis of Schubert classes
τµ indexed by strict partitions µ = (µ1 > · · · > µm > 0), with µ1 ≤ 6. In
particular τ1 is the hyperplane class, and the Pieri formula states that

τµτ1 =
∑

ν

τν ,

where the sum is over all strict partitions ν obtained by adding one to some
part of µ (or adding a part equal to one). There is a more general version
for the product of a Schubert class by a special class τk, with multiplicities
given by certain powers of two [6]. A consequence is that the Chow ring of
S14 is generated, over the rationals, by the three special classes τ1, τ3, τ5.

Corollary 4. The fundamental class of DG in the Chow ring of S14 is

[DG] = c7(U ⊗ L) = τ61 + τ52 + τ43 + τ421 = 2τ1τ
2
3 + 2τ21 τ5 − 6τ41 τ3 + 3τ71 .

Proof. By the Thom-Porteous formula [DG] = c7(U ⊗ L). Since

c7(U ⊗ L) =
7

∑

i=0

ci(U)c1(L)7−i,

a repeated application of the Pieri formula yields the result. □

Another direct application is to rigidity questions, which attracted strong
interests for homogeneous spaces and their subvarieties [4, 11].
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Proposition 5. DG is infinitesimally rigid.

Proof. Since DG is Fano, its deformations are non obstructed and we just
need to prove that H1(TDG) = 0. Then the usual computations with the
Koszul complex and the Borel-Weil-Bott theorem yield the result. Indeed,
the Koszul complex takes the form

0−→L−5−→U ⊗ L−4−→· · ·−→U∨ ⊗ L−1−→OS14
−→ODG−→0.

First step. We first prove that H1(TS14|DG) = 0 by tensoring the Koszul
complex with TS14 = ∧2U∨, and then by checking that for any integer k,
with 0 ≤ k ≤ 7, the cohomology group

Hk+1(S14,∧2U∨ ⊗ ∧kU∨ ⊗ L−k) = 0.

For k = 0 we just get the irreducible bundle ∧2U∨, which is globally gen-
erated and has no higher cohomology by the Bott-Borel-Weil theorem. For
k > 0, the tensor product ∧2U∨ ⊗ ∧kU∨ is the direct sum of at most three
irreducible homogeneous bundles, of respective weights λk = ϵ1 + · · ·+ ϵk+2

(for k ≤ 5), µk = 2ϵ1 + ϵ2 + · · ·+ ϵk+1 (for 1 ≤ k ≤ 6) and νk = 2ϵ1 + 2ϵ2 +
ϵ3 + · · ·+ ϵk (for k ≥ 2). Here we made the usual choice of positive roots
ϵi ± ϵj for 1 ≤ i < j ≤ 7, where (ϵ1, . . . , ϵ7) is an orthonormal basis. Follow-
ing the Bott-Borel-Weil theorem, these bundles twisted by L−k are acyclic
if we can find roots φk, χk, ψk such that

⟨λk − kω7 + ρ, φk⟩ = ⟨µk − kω7 + ρ, χk⟩ = ⟨νk − kω7 + ρ, ψk⟩ = 0,

where ρ denotes the sum of the fundamental weights, and ω7 =
1
2(ϵ1 + · · ·+

ϵ7). We will look for a root of the form φk = ϵi + ϵj , with 1 ≤ i < j ≤
7, so that we always have ⟨ω6, φk⟩ = 1. Then the vanishing condition be-
comes i+ j + k = 14 + δ, with δ = 2 for j ≤ k + 2, δ = 1 for i ≤ k + 2 < j,
and δ = 0 for k + 2 < i. Solutions do exist for any k = 1, . . . , 5: take re-
spectively (i, j) = (6, 7), (5, 7), (5, 7), (4, 7), (5, 6). Similarly we can choose
the root χk, for k = 1, . . . , 6, to be again of the form ϵi + ϵj with (i, j) =
(6, 7), (5, 7), (5, 6), (4, 7), (3, 7), (3, 7). Finally for the root ψk we can choose
ϵi + ϵj with (i, j) = (5, 7), (5, 6), (4, 7), (3, 7), (4, 6), (3, 6) for k = 2, . . . , 7.

Second step. Then we need to compute H0(U ⊗ L|DG). Using the same tech-
niques as in the previous step, we check that the restriction morphism

H0(U ⊗ L)−→H0(U ⊗ L|DG)



✐

✐

“6-Manivel” — 2022/8/16 — 19:45 — page 1773 — #9
✐

✐

✐

✐

✐

✐

The double Cayley Grassmannian 1773

is surjective, with kernel generated by the section that defines DG. In other
words, H0(U ⊗ L|DG) ≃ ∆/Cz.

Third step. We conclude the proof by checking that the morphism

H0(TS14|DG)−→H0(U ⊗ L|DG)

is surjective. For this we simply observe that it factorizes the morphism
from H0(TS14) ≃ spin14 to ∆/Cz given by X 7→ Xz mod Cz. Finally, the
surjectivity of the latter morphism is equivalent to the fact that the orbit of
[z] is open in P(∆). □

As we already mentionned in the introduction, this implies that all the
smooth projective symmetric varieties of Picard number one are infinitesi-
mally rigid (see [12]).

Question. Is DG globally rigid? There are very nice examples of linear sec-
tions (of codimension two and three) of the ten dimensional spinor variety
S10, which are defined by the generic point of a representation with an open
orbit, and turn out for this reason to be locally rigid. However, they are not
globally rigid because the generic points of some smaller orbits still define
smooth sections, but of a different type [4, 13]. In our case, what does hap-
pen if we replace the general point z of ∆ by a general point of its invariant
octic divisor? Since this divisor is the projective dual of the spinor variety in
the dual representation, the zero-locus of a section defined by such a point
should contain a special P6; is it its singular locus? An explicit representative
is

z1 = 1 + e1237 + e1587 + e2467 + e123456.

In the case of the Cayley Grassmannian CG, when one passes to a section
defined by a point of the exceptional divisor, the zero-locus immediately
becomes singular (more precisely it becomes singular along a P3), so there
is no immediate obstruction to global rigidity. Up to our knowledge the
question of the global rigidity of CG remains open.

3. Octonionic interpretations

Consider the real algebra C⊗R OR, with the obvious product. This is called
the algebra of complex octonions, or bioctonions. Of course it is no longer
a division algebra, but it is still what is called a structurable algebra [2].
We will consider this algebra with complex coefficients: in other words, we
complexify once more.
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Proposition 6. The double Cayley Grassmannian DG parametrizes the

eight-dimensional isotropic subalgebras of the complexified bioctonions.

The main point is that complexifying the complex numbers, we just
get the algebra C⊕ C. Indeed, if we denote by i and I the roots of −1 in
our two copies of C, then E = (1 + iI)/2 and F = (1− iI)/2 are such that
E + F = 1, EF = FE = 0, and E2 = E and F 2 = F . Hence an isomorphism

C⊗R C⊗R OR ≃ O⊕O.

An eight dimensional subspace of O⊕O, which is transverse to this de-
composition, can be written as the graph Γg of some g ∈ GL(O) ≃ GL8.
Moreover, it contains the unit element if and only if g(1) = 1. And it is a sub-
algebra if and only if g verifies g(xy) = g(x)g(y)∀x, y ∈ O, which means that
g belongs to G2. It is then generated by the unit element, and its intersec-
tion Lg with V14 = ImO⊕ ImO. Note that Γg (respectively Lg) is isotropic
with respect to the difference of the octonionic norms on the two copies of
O (respectively ImO). This yields an embedding of G2 inside Spin14, whose
closure is exactly DG.

So DG parametrizes a certain family of subspaces of the bioctonions.
These spaces must be isotropic subalgebras, since this condition is closed. So
let us consider such a subalgebra A, and suppose it defines a point ofDG, not
on the open orbit. Let K,K ′ denote the kernels of the projections to the two
copies of O. They must be positive dimensional subspaces of ImO, totally
isotropic, and such thatKK ⊂ K andK ′K ′ ⊂ K ′. In particular C1 +K and
C1 +K ′ are subalgebras of O. Let k = dimK and k′ = dimK ′. These are
invariants of the Spin14-action, and since this group has only three orbits
on DG, there are at most two possibilities for the pair (k, k′), apart from
the generic case (k, k′) = (0, 0).

First case: (k, k′) = (3, 3). Then C1 +K and C1 +K ′ are four dimensional
subalgebras of O. By [16, Proposition 2.7], the isotropic four dimensional
subalgebras of O are parametrized by the quadric Q5 = G2/P1. Explicitly,
if ℓ is an isotropic line in ImO, then Kℓ = ℓO ∩ ImO is such a subalgebra,
and they are all of this type.

When K and K ′ are given, then K ⊕K ′ is isotropic of dimension six, so
it is contained in exactly two maximal isotropic subspaces of V14, one in each
family. In particular there is exactly one in S14. This defines an embedding of
Q5 ×Q5 inside S14. Since this is the unique G2 ×G2-equivariant embedding
of Q5 ×Q5 in P∆, it must factor through DG.
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Second case: (k, k′) = (2, 2). We will show how to construct examples of
this type. Since we know there is only one orbit which is neither closed nor
open, this will necessarily provide us with representatives of this intermedi-
ate orbit O1. We start with two null-planes N and N ′. Recall that C1⊕N⊥

is a six dimensional subalgebra of O, a copy of the sextonion subalgebra
[15]. Moreover it contains H, a copy of the quaternion algebra transverse to
N . (Over the complex numbers, the quaternion algebra is just an algebra
of rank two matrices, and N is isomorphic to its two-dimensional simple
module.) Let us also choose H ′ in C1⊕N ′⊥, transverse to N ′. Consider

A = (N, 0)⊕ (0, N ′)⊕∆h,

where ∆h is the graph of some morphism h from H to H ′. Then A is an
isotropic subalgebra of the bioctonions if and only if h is an algebra isomor-
phism.

We claim that A belongs to DG. Because of the G2 ×G2-equivariance, it
is enough to exhibit just one such A that does belong to DG. To do this we
shall start from an explicit null plane in ImO. Let u1, . . . , u7 be an orthonor-
mal basis of ImO, whose multiplication rule is encoded in a Fano plane,
as in [16]. Then for example, N = ⟨u1 + iu2, u4 − iu5⟩ is a null-plane. It is
convenient to reindex this basis by letting u1 = v−1, u2 = v2, u3 = v−3, u4 =
v1, u5 = v−2, u6 = v3, u7 = v0. Then we may suppose that the transformation
rule between the basis v−3, v−2, v−1, v0, v1, v2, v3 and e1, e2, e3, f1, f2, f3, e7 −
f7 is given by

vk =
1√
2
(ek + fk), v−k =

i√
2
(ek − fk), v0 =

i√
2
(e7 − f7).

After this change of basis, our null-plane of V7 becomes N = ⟨e1 + e2, f1 −
f2⟩. Similarly, N ′ = ⟨e4 + e5, f4 − f5⟩ is a null-plane in V ′

7 .

Remark. Note the connection with the null triples of [3].

Proposition 6 now follows. Indeed we have observed that DG parame-
trizes some isotropic subalgebras of the complexified bioctonions. By the
previous discussion there are three orbits of those. Since DG contains pre-
cisely three orbits, the claim follows. □

Lemma 7. The three dimensional projective space P(N ⊗N ′) is contained
in DG. Moreover a spinor x ∈ N ⊗N ′ is of type (3, 3) if its tensor rank is

one, and of type (2, 2) if its tensor rank is two.
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Proof. We have the following correspondance between vectors in N ⊗N ′

and in ∆:

(e1 + e2)⊗ (e4 + e5) 7→ y1 = (e1 + e2)(e4 + e5),
(e1 + e2)⊗ (f4 − f5) 7→ y2 = (e1 + e2)(e4 + e5)e6e7,
(f1 − f2)⊗ (e4 + e5) 7→ y3 = (e1 + e2)(e4 + e5)e3e7,
(e1 + e2)⊗ (e4 + e5) 7→ y4 = (e1 + e2)(e4 + e5)e3e6.

This allows to check that N ⊗N ′ is orthogonal to Lz. So its projectivization
will be contained in DG as soon as it only consists of pure spinors. Consider
y = t1y1 + t2y2 + t3y3 + t4y4. A straightforward computation shows that y
is annihilated by

Py = ⟨e1 + e2, f1 − f2, e4 + e5, f4 − f5, p3, p6, p7⟩,

where p3 = t4e6+t3e7−t1f3, p6 = t4e3−t2e7+t1f6, p7 = t3e3+t2e6+t1f7. In
particular y is the pure spinor associated (up to scalar) to the maximal
isotropic space Py. Note moreover that the intersection of Py with ⟨f1, . . . , f7⟩
has dimension equal to two plus the corank of a size three skew-symmetric
matrix; in particular this dimension is always odd, which means that y is a
positive pure spinor. In other words, it is a point of DG. □

Recall that we denoted by D the closure of the codimension one orbit
in DG. Necessarily, D must be the intersection of DG with the hyperplane
P(V7 ⊗ V ′

7). Moreover, by the previous lemma D contains the union of the
projective spaces P(N ⊗N ′), for N and N ′ null-planes in V7 and V ′

7 . Since
this union is obviously G2 ×G2-invariant, it has to coincide with D. (This
describes D as the image of a projectivized Kempf collapsing). Moreover,
for the very same reason the closed orbit O4 must be the union of the rank
one elements PN × PN ′ ⊂ P(N ⊗N ′). Since the intersection of two different
tensor products N1 ⊗N ′

1 and N2 ⊗N ′
2 can only contain elements of rank one

(or zero), we deduce the following statement.

Proposition 8. Suppose that x belongs to O1. Then there exists a unique

null-plane Nx in V7, and a unique null-plane N ′
x in V ′

7, such that x is con-

tained in P(Nx ⊗N ′
x). Moreover, x has full rank in P(Nx ⊗N ′

x).

Geometrically, this means that O1 fibers over a product of adjoint va-
rieties Xad(G2)×Xad(G2), with fiber the complement of a smooth quadric
in P3.
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4. Postulation

Recall that the vertices of the Dynkin diagram D7 are in bijective correspon-
dence with the fundamental weights ωi, or the fundamental representations
Vωi

of Spin14, for 1 ≤ i ≤ 7. We use the following indexation:

◦ ◦ ◦ ◦ ◦�
�

❅❅◦

◦
Vω1

= V14
Vω6

= ∆

Vω7
= ∆∨

One way to compute the cohomology groups on DG of L and its powers, is
again to use the Koszul complex

(1) 0−→∧7 E∨−→· · ·−→E∨−→OS14
−→ODG−→0,

where E = U ⊗ L. For any k ≥ 0 and i ≥ 0, the bundle ∧iE∨ ⊗ Lk = ∧iU∨ ⊗
Lk−i is irreducible, with highest weight θi given by θi = (k − i)ω7 + ωi for
0 ≤ i ≤ 5 (and ω0 = 0 by convention), while θ6 = (k − 5)ω7 + ω6 and θ7 =
(k − 5)ω7. One easily checks that these weights are either dominant or sin-
gular. By the Bott-Borel-Weil theorem this implies that Lk has no higher
cohomology. Moreover we can compute the dimension of its space of global
sections as the alternate sum of modules whose dimensions are given by the
Weyl dimension formula, as follows:

dimVkω7
= (k+1)(k+2)(k+3)2(k+4)2(k+5)3(k+6)3(k+7)3(k+8)2(k+9)2(k+10)(k+11)

1×2×32×42×53×63×73×82×92×10×11
,

dimV(k−1)ω7+ω1
= k(k+1)(k+2)2(k+3)2(k+4)3(k+5)2(k+6)3(k+7)2(k+8)2(k+9)(k+10)(k+11)

32×42×53×62×72×82×92×10×11×12
,

dimV(k−2)ω7+ω2
= (k−1)k(k+1)2(k+2)2(k+3)2(k+4)2(k+5)3(k+6)2(k+7)2(k+8)2(k+9)(k+11)

2×32×42×52×62×72×82×92×102×11
,

dimV(k−3)ω7+ω3
= (k−2)(k−1)k2(k+1)(k+2)2(k+3)2(k+4)3(k+5)3(k+6)2(k+7)(k+8)(k+9)(k+10)

2×32×52×62×72×83×92×10×11×12
,

dimV(k−4)ω7+ω4
= (k−3)(k−2)(k−1)k(k+1)2(k+2)3(k+3)3(k+4)2(k+5)2(k+6)(k+7)2(k+8)(k+9)

2×3×4×52×63×72×82×92×10×11×12
,

dimV(k−5)ω7+ω5
= (k−4)(k−2)(k−1)2k

2(k+1)2(k+2)3(k+3)2(k+4)2(k+5)2(k+6)2(k+7)(k+8)

2×3×4×52×62×72×82×92×102×11×12
,

dimV(k−5)ω7+ω6
= (k−4)(k−3)(k−2)(k−1)2k

2(k+1)3(k+2)2(k+3)3(k+4)2(k+5)2(k+6)(k+7)

2×3×42×52×63×72×8×92×102×11×12
,

dimV(k−5)ω7=
(k−4)(k−3)(k−2)2(k−1)2k

3(k+1)3(k+2)3(k+3)2(k+4)2(k+5)(k+6)

1×2×32×42×53×63×73×82×92×10×11
.
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Proposition 9. For any k ≥ 0 and i > 0, H i(DG,Lk) = 0. Moreover,

h0(DG,Lk) =
(k + 1)(k + 2)(k + 3)2(k + 4)2(k + 5)(k + 6)

21035527211
P (k),

P (k) = 186k6 + 3906k5 + 34441k4 + 163184k3

+ 438545k2 + 634858k + 388080.

Corollary 10. The degree of DG ⊂ P49 is 4836 = 22 × 3× 13× 31.

This could also have been deduced from the fundamental class of DG,
by applying repeatedly the product formula by the hyperplane class.

Since DG is spherical, it is multiplicity free. As in [16], we can obtain the
G2 ×G2-module structure of H0(DG,Lk) by restricting to the hyperplane
divisor D. Using the projecting bundle structure of its resolution, we get

H0(D,Lk
D) = H0(Xad(G2)×X ′

ad(G2), Sym
k(N ⊗N ′)∨).

By the Cauchy formula,

Symk(N ⊗N ′) =
⊕

i+2j=k

SymiN ⊗ (detN)j ⊗ SymiN ′ ⊗ (detN ′)j .

Since SymiN∨ is irreducible of highest weight iω1, and detN∨ of weight ω2,
the Borel-Weil theorem yields

H0(D,Lk
D) =

⊕

i+2j=k

Viω1+jω2
⊗ V ′

iω1+jω2
.

We finally get (to be compared with Proposition 3.6 of [16]):

Proposition 11. The equivariant Hilbert series of the double Cayley Grass-

mannian is

HG2×G2

DG (t) = (1− t)−1(1− tVω1+ω′

1
)−1(1− t2Vω2+ω′

2
)−1.

Here we use formally the Cartan multiplication of representations, ac-
cording to the rule VµVν = Vµ+ν . Moreover we use it for G2 ×G2, so that
Vµ+ν′ is the tensor product of the representation Vµ of the first copy of G2,
by the representation Vν of the second copy.
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5. The wonderful compactification of G2

Recall that the Cayley Grassmannian CG ⊂ G(4, V7) has a very similar
G2-orbits structure: a closed orbit O3 ≃ Q5, a codimension one orbit O1

whose closure is a hyperplane section H of CG, and an open orbit O0 ≃
G2/SL2 × SL2. Moreover, if we blow-up O3 ⊂ CG, we get the wonderful
compactification of the symmetric space O0. Since we are in rank two, the
proper orbit closures of this wonderful compactification CG are the two di-
visors F (the proper transform of H), E (the exceptional divisor), and their
transverse intersection E ∩ F . The two divisors support smooth projective
fibrations:

E ≃ P(Sym2C)→Q5, F ≃ P(Sym2N)→Xad(G2),

where C denotes the so-called Cayley bundle over Q5, and N is the null-
plane bundle over the adjoint variety Xad(G2). Both are rank two irreducible
homogeneous bundles. The latter is the restriction of the tautological bundle
for the embedding of Xad(G2) into G(2, V7). The former is defined by the
conditions that H0(C) = 0 and H0(C(1)) = g2; its first Chern class is the
hyperplane class [17].

Observe that in particular, E and F both contain a conic fibration,
preserved by G2, which must therefore coincide with the closed orbit E ∩ F .
In fact, this closed orbit is nothing else than the full flag variety of G2.

We have the following diagram:

CG

E

��

- 

;;

F

��

3 S

ee

G2/B
+ �

99

1 Q

cc

%%||
Q5 Xad(G2)

The picture is strickingly similar for the double Cayley Grassmannian.
Blowing-up the closed orbit O4 ≃ Q5 ×Q5, we get an exceptional divisor E,
which is the projectivization of the normal bundle.

Lemma 12. The normal bundle to the closed orbit in DG is C ⊗ C ′.
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Moreover the strict transform F of D is the total space of the projec-
tivisation of N ⊗N ′ over Xad(g2)×Xad(G2). Again each of these divisors
contains a quadric surface bundle, which must coincide with the closed orbit
E ∩ F . In fact this closed orbit is nothing else than the product of two copies
of the flag variety of G2. We get the following diagram:

DG

E

��

) 	

66

F

��

7 W

jj

G2/B ×G2/B
′

' �

55

5 U

hh

))ww
Q5 ×Q5 Xad(G2)×Xad(G2)

Proof. For a quick check of the Lemma we can argue as follows. The normal
bundle N on Q5 ×Q5 we are looking for has rank four, and is by construc-
tion homogeneous under G2 ×G2, and symmetric with respect to the two
quadrics. In particular it must be constructed from homogeneous bundles
of rank at most two on the two quadrics. Since there are no non trivial ex-
tensions between line bundles on Q5, this quadric admits only two, up to
twists, G2-homogeneous bundles of rank at most two: the trivial line bundle
and the Cayley bundle.

A possibility would be that N = C(a, b)⊕ C ′(b, a), where we denote by
C and C ′ the two Cayley bundles induced from the two quadrics. But then
we would get det(N) = (2a+ 2b− 1, 2a+ 2b− 1), while a computation with
tangent bundles yields det(N) = (2, 2). So N must be a twist of C ⊗ C ′, and
since this has the correct determinant, the twist must be trivial. □

Remark. Exactly as in the case of CG, there also exists another contraction
of DG to another variety, contracting the divisor D. But the result of this
contraction is singular.

6. Betti numbers

In this section we compute the Betti numbers of DG. We would like to be
able to compute its cohomology ring.
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6.1. Torus action

Let T be a maximal torus of G2 ×G2.

Proposition 13. The torus T acts on DG with exactly 36 fixed points, all

contained in the closed orbit Q5 ×Q5.

Proof. Recall that the linear span of DG is the projectivization of V7 ⊗ V ′
7 .

Moreover, G2 acts on V7 with weights 0,±α1,±α2,±α3 with α1 + α2 +
α3 = 0. The weights of the action of G2 ×G2 on V7 ⊗ V ′

7 ⊕ C are thus
±αi,±α′

j ,±αi ± α′
j , all with multiplicity one, and 0 with multiplicity two.

Let W0 be the two-dimensional zero weight space. To ensure that T acts on
DG with finitely many fixed points, the only thing we need to check is that
the projective line PW0 is not contained in DG. But this is clear, since this
line contains [z], which is not contained in S14 and a fortiori not in DG.

We claim, more precisely, that:

1) every T -fixed point with non zero weight is contained in DG,

2) DG ∩ PW0 is empty.

The first statement is clear, since ∆ being minuscule, each fixed point in P∆
of a maximal torus of Spin14 is contained in S14. Since T is a subtorus of
a maximal torus T+ of Spin14, this remains true for all the T -fixed points
with non zero weight, just because they are also T+-fixed points.

To check the second statement, we may suppose that e1, e2, e3, f1, f2,
f3, e7 − f7 are T -eigenvectors in V7, with weights α1, α2, α3,−α1,−α2,−α3, 0;
and similarly for V ′

7 . Then the T -invariants in Lz are e7.z and f7.z. From
that we deduce that

W0 = ⟨1 + e123456, e1237 + e4567⟩.

We need to check that W0 contains no pure spinor. Observe that if an
element of ∆ of the form 1 + ω2 + ω4 + ω6 is a pure spinor, then ω4 must be
proportional to ω2 ∧ ω2 and ω6 must be proportional to ω2 ∧ ω2 ∧ ω2. This
already rules out all the points ofW0 except the multiples x0 = e1237 + e4567.
But recall that a spinor x is pure when the space of elements v ∈ V14 such
that vx = 0 is seven dimensional. A straightforward check shows that x0 is
only killed by (multiples of) e7, hence is not pure. □

An immediate consequence is:
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Corollary 14. The Chow ring of DG is free of rank 36.

Explicitly, the T -fixed points correspond to the weight vectors in ∆ of
type eij , eii′j7, eijj′7, eii′jj′ where 1 ≤ i, i′ ≤ 3 and 4 ≤ j, j′ ≤ 6. Note that
two fixed points eij (respectively eijkl) and eabcd are connected by a T -stable
line if and only if {i, j} ⊂ {a, b, c, d} (respectively {a, b, c, d} and {i, j, k, l}
have three elements in common).

6.2. Schubert varieties

Since the maximal torus T of G2 ×G2 acts on DG with finitely many fixed
points, the Bialynicki-Birula decomposition yields, for any choice of a gen-
eral rank one subtorus, a stratification of DG into affine spaces, which is
uniquely defined up to conjugation. The closures of those affine spaces will
be called Schubert varieties. Their classes in the (equivariant) Chow ring,
called the (equivariant) Schubert classes, form a basis. A priori, we should
be able to describe these equivariant Schubert classes by localization, and
then their multiplication rule. A more modest goal would be to compute a
Pieri formula in the classical Chow ring. This would allow to get the degrees
of the Schubert varieties, which would give lots of informations on the re-
striction map from the spinor variety. In the case of CG, the restriction map
from the ambient Grassmannian is surjective, so the multiplicative structure
of the Chow ring of CG can be deduced.

In the case of a wonderful compactification Ḡ of an adjoint semisimple
group G, the Schubert classes are indexed byW ×W and the Betti numbers
are given by the following formula:

b2i(Ḡ) = #{(u, v) ∈W ×W, ℓ(u) + ℓ(v) +m(v) = i},

where ℓ is the classical length function, and m is the simple length function,
defined as the number of simple roots that are sent to negative roots [7].
Recall that the Weyl group of G2 is isomorphic to the dihedral group D6,
and in particular has 12 elements: two elements in each length from 1 to
5, and one element of length 0 and 6. All have simple length 1, except the
maximal one (whose simple length are 0 and 2). This yields the even Betti
numbers of Ḡ2:

b2•(Ḡ2) = 1, 2, 4, 8, 12, 16, 19, 20, 19, 16, 12, 8, 4, 2, 1.
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In order to deduce the Betti numbers of DG, we just need to recall that Ḡ2

can be obtained by blowing-up Q5 ×Q5 inDG. This modifies the Betti num-
bers by the Betti numbers of a (P2 − P0)-bundle over Q5 ×Q5. We readily
deduce:

Proposition 15. The Poincaré polynomial of the variety DG is

PDG(t) =
1− t12

1− t2
(1 + t6 + t8 + t10 + t12 + t18).

In other words the odd Betti nubers of DG are zero, and the even ones
are

b2•(DG) = 1, 1, 1, 2, 3, 4, 4, 4, 4, 4, 3, 2, 1, 1, 1.

Note that, as a consequence, the restriction map on cohomology from
S14 cannot be surjective in degree four. In fact there is an obvious special
cohomology class of degree four, that of the closed orbit Q5 ×Q5. Its degree
is 4

(

10
5

)

= 1008, while the degrees of the restrictions to DG of the degree
four Schubert classes can be computed to be

∫

DG

τ4h
10 = 1260,

∫

DG

τ31h
10 = 1780.

So the class of Q5 ×Q5 is certainly not an integral combination of the re-
strictions of τ4 and τ31, and probably not a combination at all.

Question. By pull-back, the Chow ring of DG embeds inside the Chow ring
of DG. Moreover, DG being the wonderful compactification of G2, its equiv-
ariant cohomology ring can be extracted from [20] or [9]. Can we deduce that
of DG? The Bialynicki-Birula decomposition of the wonderful compactifica-
tion has been studied in [7]. Can one extract a Pieri formula, and push it
down to DG?

7. Some incidences

7.1. Incidences for the Cayley Grassmannian

Let us briefly consider the Cayley Grassmannian CG ⊂ G(4, V7), defined by
the general three-form ω. The latter also defines a global section of Q∨(1) on
G(2, V7), whose zero locus is the adjoint variety of G2. Consider the incidence
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diagram

CI10
p

||

q

$$
CG G(5, V7)

where CI10 parametrizes the pairs (U4 ⊂ U5) such that U4 belongs to CG.
In particular CI10 is a P2-bundle over CG. For U5 ⊂ V7, the restriction of ω
to U5 is dual to a skew-symmetric degree two tensor which can be of rank
two or four. In the latter case, the support of this tensor is a hyperplane
U4 ⊂ U5 on which ω vanishes, and it is the only such hyperplane; this implies
that q is birational. The former case occurs over a locus X7 of codimension
three, and the corresponding fibers of q are projective planes. We conclude
that q is just the blowup of X7 ≃ OG(2, V7).

There is a slightly different incidence diagram

CI11
r

||

s

((
CG Xad(G2) ⊂ G(2, V7)

where the fibers of s are del Pezzo fourfolds of degree five, and the fibers of
r are conics in Xad(G2). As observed by Kuznetsov, this allows to interprete
the Cayley Grassmannian CG as the Hilbert scheme of conics on the adjoint
variety of G2.

7.2. Incidences with DG

What are the analogs of those incidences when we switch to DG? Recall
that DG is defined by a general element of ∆, which defines a global section
of the irreducible homogeneous vector bundle Eω6

= U ⊗ L over S14. Over
each flag variety F of Spin14, there is an irreducible homogeneous vector
bundle EF

ω6
whose space of sections is ∆.

Consider for example the flag variety OF = OF (k, 7, V14) for k ≤ 5,
parametrizing flags of isotropic spaces of dimensions k and 7, with its two
projections to S14 and OG = OG(k, V14). The ranks of EOF

ω6
and EOG

ω6
can be

read on the following weighted Dynkin diagram (where k = 3):
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◦ ◦ ◦ ◦ ◦• ��

❅❅◦

•

ω6

The flag variety OF is defined by the two marked vertices. When we
suppress those two vertices, the connected component of the remaining dia-
gram containing the vertex associated to ω6 has type A6−k. So EOF

ω6
, which

corresponds to the natural representation, has rank 7− k. In more concrete
terms, note that OF has two tautological bundles Uk and U , of rank k and
7, respectively; then EOF

ω6
= (U/Uk)⊗ L, where L denotes the pull-back of

the spinor line bundle from S14.
Similarly, the orthogonal Grassmannian OG is defined by the rightmost

of the two marked vertices. When we suppress this vertex, the connected
component of the remaining diagram containing the vertex associated to ω6

has type D7−k. So EOG
ω6

, which corresponds to a half-spin representation, has
rank 26−k.

Our general element z ∈ ∆ defines a general section sz of the bundle EOF
ω6

,
whose zero locus we denote by OFz. The fibers of the projection to S14 are
GrassmanniansG(k, 7), and the restriction of EOF

ω6
to each fiber is isomorphic

to the quotient tautological bundle. In particular, if the restriction of sz to
such a fiber is non identically zero, it vanishes on a copy of G(k − 1, 6). So
the general fiber of the projection from OFz to S14 is G(k − 1, 6), and the
special fiber is G(k, 7) over DG.

Similarly the projection of OF to OG is a spin manifold S14−2k, and the
restriction of EOF

ω6
to each fiber is isomorphic to a spinor bundle. The zero-

locus of sz to such a fiber depends on its type as an element of the half-spin
representation of Spin14−2k. In fact this representation has finitely many
orbits, so there is an induced stratification of OG by orbital degeneracy loci
of sz, and the type of the fiber of the projection from OFz to OG depends
on the strata. Let us discuss two cases a little further.

7.3. Incidence with 4-planes

The case where k = 4 is special because Spin6 = SL4, and in this case the
bundle EOG

ω6
is just a rank four bundle defined by a natural representation

of SL4, as can be read from the weighted diagram
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◦ ◦ ◦ ◦ ◦• ��

❅❅◦

•

ω6

Similarly EOF
ω6

is defined by a natural representation of SL3, so on each
fiber of the projection from OFz to OG, the section sz vanishes either at
one point, or everywhere. We thus get a diagram

OFz

p

yy

q

''
DG ⊂ S14 OG(4, V14) ⊃ SG

where q is the blowup of a codimension four subvariety SG ⊂ OG(4, V14),
while p is a G(3, 6)-fibration over the complement of DG in S14, with special
fibers G(4, 7) over DG. The weights of the rank four bundle EOG

ω6
are ω6,

s6(ω6) = ω5 − ω6, s5s6(ω6) = ω4 − ω5 + ω7 and s7s5s6(ω6) = ω4 − ω7, hence
det(EOG

ω6
) = O(2).

We can then compute the Poincaré polynomial of OFz in two ways: first
in terms of those of DG, G(3, 6) and G(3, 7), that we already know; second,
in terms of those of S14 and SG. The latter can thus be computed and we
get:

Proposition 16. The variety SG is a Fano manifold of dimension 26,
Picard number 1, and index 7, admitting an action of G2 ×G2. Its Poincaré

polynomial is

PSG(t) =
1− t10

1− t2
(1 + t6)2

(1− t16

1− t4
(1 + t8 + t10 + t12 + t20) + t16

)

.

This means the odd Betti numbers of SG are zero, and the even ones
are

b2•(SG) =1,1,2,4,6,8,12,16,20,25,29,33,35,36,35,33,29,25,20,16,12,8,6,4,2,1,1.

The topological Euler characteristic is 420. It would be interesting to know
if the action of G2 ×G2 is quasi-homogeneous.

7.4. Incidence with 2-planes

Over the orthogonal Grassmannian OG(2, 14), the bundle F = EOG
ω6

has rank
16 and is induced from a half-spin representation of Spin10. Since OG(2, 14)
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has dimension 21, the general section of EOG
ω6

defined by z must vanish in
dimension 5 (or possibly, nowhere), and its zero locus Zz must be stable
under the action of G2 ×G2.

Proposition 17. Zz is the disjoint union of two copies of Xad(G2).

Proof. Recall that our general element z of ∆ determined an orthogonal
decomposition V14 = V7 ⊕ V ′

7 and a tensor decomposition ∆ = ∆7 ⊗∆′
7 such

that z = δ ⊗ δ′ for some general elements δ and δ′ of ∆7 and ∆′
7.

Given an isotropic plane P , consider the Plücker line ∧2P . The image
of the Clifford multiplication map

∧2P ⊗∆ ⊂ ∧2V14 ⊗∆−→∆

is a sixteen dimensional space GP ⊂ ∆, and we can identify G with F∨ (recall
that ∆ is self-dual). This implies that P belongs to Zz if and only if GP ⊂ z⊥.

Now suppose that P ⊂ V7. The Clifford action of P on ∆ = ∆7 ⊗∆′
7

is just given by its action of ∆7, so we deduce that P belongs to Zz if and
only if ∧2P.∆7 ⊂ δ⊥. This is a codimension two condition on OG(2, V7), that
defines the adjoint variety Xad(G2).

We conclude that Zz contains the disjoint union ofXad(G2) andX
′
ad(G2),

the adjoint varieties of our two copies of G2. In order to prove equality, we
just need to check that Zz has at most two connected components. For
this we can use the Koszul resolution of the structure sheaf of Zz. A di-
rect computation shows that the only non zero cohomology groups of the
wedge powers of the dual of EOG

ω6
are H0(∧0(EOG

ω6
)∨) = H4(∧4(EOG

ω6
)∨) = C.

We readily deduce that h0(OZz
) = 2, and this concludes the proof. □

Taking the incidence between DG and Zz we get the following diagram:

DI13
2:1

}}

t

((
DG D_?oo Xad(G2)⨿X ′

ad(G2)

where the fibers of t are codimension two linear sections of S10.

8. Linear subspaces

SinceDG has dimension 14 and index 7, the expected dimension of the space
of lines on DG is 14 + 7− 3 = 18. The expected dimension of the space of
lines through a general point is 5.
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Proposition 18. The variety F1(DG) of lines on DG is a smooth Fano

manifold of dimension 18, Picard number one, and index 4.

Proof. By [14, Theorem 4.3], the variety of lines on S14 is the orthogonal
Grassmannian OG(5, 14), whose dimension is 30. The weights ω1, ω6, ω7 de-
fine irreducible homogeneous vector bundles of ranks 5, 2, 2 on OG(5, 14):
the first one is V∨, the dual of the tautological bundle, and we denote the
other ones by E6 and E7. Their determinant line bundles are all equal to
O(1), the restriction of the Plücker line bundle. Note moreover that

E6 ⊗ E7 ≃ (V⊥/V)(1).

Consider the incidence diagram, where OF (5, 7, 14) = D7/P5,7,

U ⊗ L

��

OF (5, 7, 14)
p

xx

q

''

F

��
DG � � // S14 OG(5, 14) F1(DG)_?

oo

Since DG is defined by a general section s of the bundle E = U ⊗ L on
S14, its variety of lines F1(DG) will be defined by a section of the bundle
F = q∗p

∗E on OG(5, 14). Obviously there is an exact sequence

0−→q∗V ⊗ p∗L−→p∗(U ⊗ L)−→(p∗U/q∗V)⊗ p∗L−→0

on OF (5, 7, 14). This pushes forward on OG(5, 14) to

0−→V ⊗ E6−→F−→E7−→0.

We deduce that F has rank 12, and that the space of its global sections
is again ∆. By construction F is globally generated, so F1(DG) is smooth
of dimension 30− 12 = 18, being the zero-locus of a general section. Since
moreover detF = O(4), we deduce that F1(DG) is Fano of index 4.

In order to check that F1(DG) has Picard number one, consider the
point-line incidence correspondence

I19
p

}}

q

$$
DG F1(DG).
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Of course q is just a P1-bundle. The fibers of p are of three different types,
over the three orbits in DG. A computation shows that the fiber over the
closed orbit is the union of two copies of P2 × P3 blown-up at one point, while
the other orbits are irreducible. We could in principle compute the Hodge
polynomials of the three fibers and deduce that of F1(DG), but the simple
fact that the fiber over the codimension one orbit O1 ⊂ DG is irreducible
already implies that the Picard number of F1(DG) is one, as claimed. □

The generic fiber of p is the variety of lines in DG through a general
point. It is isomorphic to its image in the tangent space, the variety of

minimal rational tangents (VMRT).

Proposition 19. The VMRT at a general point of DG is a copy of the

adjoint variety Xad(G2) ⊂ Pg2.

Proof. The general point x of DG has stabilizer G2, so the VMRT at x is
a five dimensional subvariety, stable under G2, and equivariantly embedded
inside PTxDG = P13. This VMRT must contain a closed G2-orbit, and it
contains no fixed point because the restriction of Dz = V7 ⊕ V ′

7 ⊕ C to the
diagonal G2 contains a unique stable plane, but the corresponding line, since
it contains [z], is not contained in DG. Since the minimal non trivial closed
G2-orbits are G2/P1 = Q5 and G2/P2 = Xad(G2), both of dimension five,
the VMRT must be one of these. Since it is equivariantly embedded inside
P13, it must be the second one. □

It was already observed in [8] that the VMRT at a general point of the
wonderful compactification of an adjoint simple algebraic group is a copy
of its adjoint variety (except in type A). The only special feature in our
situation is that the minimal rational curves are lines in the spinor variety.

Corollary 20. DG contains planes, but no higher dimensional linear spaces,

passing through the general point.

Proof. This follows from the fact that Xad(G2) contains no plane, since its
variety of lines through a given point is a cubic rational normal curve by
[14, Theorem 4.3]. □

In fact we have seen in Lemma 7 thatDG also contains a ten-dimensional
family of P3’s, parametrized by Xad(G2)×Xad(G2). But they only cover the
codimension one orbit closure (and there is exactly one of them through the
general point).
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9. Some numerology

Let us conclude this paper by a couple of slightly esoteric observations. The
Cayley Grassmannian and its double appear in two series of compactifica-
tions of symmetric spaces, as follows:

X = SL3/SO3 ⊂ P5, SO5/GL2 ⊂ Q3 ×Q3, G2/SO4 ⊂ CG,
Y = PSL3 ⊂ P8, SO5 ⊂ S10, G2 ⊂ DG.

Each of these compactifications contains a unique closed orbit, and blowing it
yields the wonderful compactification. Let a = 1, 2, 4 for the three members
of each series. The closed orbit Z in the first series has dimension a+ 1
and codimension 3. The closed orbit Z ′ in the second series is isomorphic to
Z × Z , so its dimension is 2a+ 2, while its codimension is 4. In fact each
Z in the series admits a homogeneous rank two vector bundle C such that
its normal bundle is isomorphic to Sym2C, while the normal bundle to Z ′

is isomorphic to C ⊠ C.
The Weyl group W has cardinality 2a+ 4. Recall that the Chow ring of

the wonderful compactification has a basis indexed by W ×W , so that the
Euler topological characteristic χtop(Ḡ) = (#W )2 = 4(a+ 2)2. A computa-
tion shows that the minimal compactification Y has Euler characteristic

χtop(Y ) =
1

4
χtop(Ḡ) = (a+ 2)2.

Does it admit a natural basis indexed by W̄ × W̄ , where W̄ =W/Z2?
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Institut de Mathématiques de Toulouse

UMR 5219, Université de Toulouse & CNRS
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