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We compute the universal sheaf of moduli spacesM of sheaves on a
surface S, as an operator Λ = {symmetric polynomials} → K(M),
thus generalizing the viewpoint of [4] to arbitrary rank and general
smooth surfaces.
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1. Introduction

Fix a natural number r. The moduli space Mf of rank r framed sheaves on
the plane is an algebro-geometric incarnation of the instanton moduli space
that gives rise to supersymmetric N = 2 U(r)–gauge theory on R4 in the
Ω–background. In [17], the partition function of this theory was expressed in
terms of equivariant integrals over Mf . The present note is concerned with
the deformation from cohomology to K–theory (over Q), which corresponds
to supersymmetric N = 1 U(r)–gauge theory on R4 × S1. In this setting, [4]
considered the universal sheaf:

U

��

Mf × A2

and its exterior powers U1 ⊗ ...⊗ Uk on Mf × A2k, where Ui denotes the
pull-back of U from the i–th factor of A2k = (A2)k. These exterior powers

1793
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yield operators:

(1.1) KT (M
f )

V
−→ ΛA2 =

∞⊕

k=0

KC∗×C∗×S(k)(A
2k)

(the action T ↷ Mf is explained in Subsection 2.14, the action C∗ × C∗ ↷

A2 is the usual scaling, and the symmetric group S(k) acts on A2k = (A2)k

by permutations) given by:

(1.2) V =

∞⊕

k=0

ρk∗

(

U1 ⊗ ...⊗ Uk ⊗ π∗
k

)

The maps in (1.2) are the natural projection maps:

(1.3) Mf × A2k

πk

yy

ρk

%%

Mf A2k

As shown in loc. cit., the operator W (m) : KT (M
f ) → KT (M

f ) that en-
codes the contribution of bifundamental matter to the gauge theory at hand
factors as:

(1.4) W (m) = V ∗ ·mdeg · V

(up to a renormalization that will not concern us in the present paper) where
deg : ΛA2 → ΛA2 is the operator which scales the k–th direct summand in
(1.1) by k.

In [4], from whom we borrowed both the main construction and the title of
the present paper, the authors compute the r = 1 case of V as follows: the
moduli space Mf |r=1 is isomorphic to the Hilbert scheme of points on A2,
and its K–theory is naturally identified with ΛA2 (see [2, 13]). Then [4] com-
putes V as an explicit exponential in the usual bosonic realization of ΛA2 ,
times the famous ∇ operator (see [1]). The resulting formula for V yields a
geometric incarnation of a combinatorial identity from [9], and implies the
formula for Φm computed in [5].

In the present paper, we take a somewhat different route toward computing
the operator V , for general r. We recall the actions of the elliptic Hall algebra
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A on the domain and target of the map (1.1), which were studied in [7] and
[8, 27]:

(1.5) ΛA2

Ψ
↶ A

Φ
↷ KT (M

f )

(we refer to [19] for an overview of our viewpoint on these actions). We will
recall the definition of the elliptic Hall algebra A in Subsection 2.6, and in
Subsection 2.8 we will introduce the subalgebra:

(1.6) A(r) ⊂ A

Intuitively, A(r) is half of A with respect to a certain triangular decomposi-
tion. Consider the following modification of the diagram (1.3):

Mf × {origin} �
� ι // Mf × A2k

πk

vv

ρk

%%

Mf A2k

from which it is easy to see that:

(1.7) ΓA2 =

∞⊕

k=0

ι∗
(

U1 ⊗ ...⊗ Uk ⊗ ρ∗k

)S(k)
: ΛA2 −→ KT (M

f )

is given by ΓA2 = V ∗ ◦ [(1− q1)(1− q2)]
deg. Thus, we will compute ΓA2 in-

stead of V .

Theorem 1.1. For any r, the operator ΓA2 commutes with the A(r)–action:

(1.8) ΛA2

Ψ(a)

��

Γ
A2

// KT (M
f )

Φ(a)
��

ΛA2

Γ
A2

// KT (M
f )

for all a ∈ A(r). Moreover, after localization to Frac(RepT ), the operator ΓA2

is uniquely determined by the commutativity of diagram (1.8).

The point of view in Theorem 1.1, namely of determining an operator
through its commutation with an algebra action rather than through ex-
plicit formulas, was used in [21, 24] to compute the operator (1.4). However,
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the strength of this approach is that it allows us to generalize from the local
situation of the moduli spaces Mf of framed sheaves on the affine plane to
the global case of moduli spaces of stable sheaves Ms on a general smooth
projective surface S. We will review the necessary setup in Section 3 (in-
cluding Assumptions A and S, subject to which we make all the following
claims), but the idea is to consider the operator:

(1.9) ΛS =

∞⊕

k=0

KS(k)(S
k)

ΓS−→ K(Ms)

explicitly given by:

(1.10) ΓS =

∞⊕

k=0

πk∗

(

U1 ⊗ ...⊗ Uk ⊗ ρ∗k

)S(k)

where the notions in the right-hand side of (1.10) are defined just like their
counterparts in (1.2) (Assumption A ensures that there exists a universal
sheaf U on Ms × S, and we fix such a sheaf throughout the present paper).
As for the analogues of the action (1.5) for a general surface, the former was
worked out in [25]:

(1.11) A
Φ
−→ Hom(K(Ms),K(Ms × S))

and provided a generalization of the classical Heisenberg algebra action on
the cohomology groups of Hilbert schemes ([12, 16]). We will also provide
an analogue:

(1.12) A
Ψ
−→ Hom(ΛS ,ΛS ×K(S))

of the second action from (1.5), where by a slight abuse of notation, we
write:

ΛS ×K(S) =

∞⊕

k=0

KS(k)(S
k × S)

(the symmetric group S(k) only acts on Sk). Then our main result for a
smooth surface S, subject to the assumptions in Subsection 3.1, is the fol-
lowing:
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Theorem 1.2. For any r, the operator (1.10) commutes with the A(r)–
action:

(1.13) ΛS

Ψ(a)

��

ΓS // K(Ms)

Φ(a)
��

ΛS ×K(S)
ΓS // K(Ms × S)

for all a ∈ A(r).

As an A(r)–module, KT (M
f ) is generated by a single element, namely the

fundamental class of the component parametrizing framed sheaves with
c2 = 0 (this plays an important role in the uniqueness statement of The-
orem 1.1). Meanwhile, we will show in Proposition 3.30 that K(Ms) has
countably many generators, namely the fundamental classes 1d of the com-
ponents Ms

d ⊂ Ms parametrizing stable sheaves with c2 = d. In our lan-
guage, we have ΓS(1) =

∏

d∈Z 1d, where 1 ∈ KS(0)(S
0) ∼= Q.

2. The case of the affine plane

2.1.

Even before dealing with A2, let us discuss the situation of S(k)–equivariant
coherent sheaves on a point ◦, which is just another word for finite-
dimensional S(k)–modules. We have the well-known Frobenius character
isomorphism:

(2.1) KS(k)(◦) ∼=
{

degree k symmetric polynomials in x1, x2, ...
}

given as a sum over partitions λ = (λ1 ≥ ... ≥ λt) of size k by the formula:

(2.2) M 7→
∑

|λ|=k

pλ
zλ

· TrM (ωλ)

where we let ωλ ∈ S(k) be any permutation of cycle type λ, and define:

(2.3) pλ = pλ1
. . . pλt
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with pn = xn1 + xn2 + ... being the power sum functions. In (2.2), we let zλ =
λ!
∏

i λi, where λ! is the product of factorials of the number of times each
integer appears in λ. It is useful to take the direct sum of (2.1) over all
k ∈ N ⊔ 0, and obtain:

(2.4) Λ :=

∞⊕

k=0

KS(k)(◦) ∼=
{

symmetric polynomials in x1, x2, ...
}

This is beneficial because Λ is manifestly a commutative ring, in fact the
polynomial ring generated by p1, p2, .... In terms of representations of S(k),
the operation of multiplication by power sum functions corresponds to
parabolic induction:

(2.5) KS(l)(◦)
pk

−→ KS(k+l)(◦), M 7→ Ind
S(k+l)
S(k)×S(l)(pk ⊠M)

However, the ring Λ is also endowed with a symmetric pairing, determined
by ⟨pλ, pµ⟩ = δµλzλ, or, in the language of finite-dimensional S(k)–modules:

(2.6) ⟨M,M ′⟩ = dim HomS(k)(M,M ′)

With this in mind, Frobenius reciprocity states that the adjoints of the
operators (2.5) are the parabolic restriction operators:

(2.7) KS(k+l)(◦)
p
†
k−→ KS(l)(◦), M 7→ HomS(k)

(

pk,Res
S(k+l)
S(k)×S(l)(M)

)

A reformulation of the main result of [10] is the following:

Theorem 2.2. The operators pk, p
†
k : Λ → Λ satisfy the relations:

[p†k, pl] = kδlk · Id

for all k, l ∈ N, as well as the obvious relations [pk, pl] = [p†k, p
†
l ] = 0.

2.3.

We will follow the presentation of [4] in the present Subsection, and we
will recycle the notation used in the previous Subsection. We will consider
A2 with the standard action of C∗ × C∗ that dilates the coordinate axes,
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and then the induced action of C∗ × C∗ on A2k = (A2)k commutes with the
action of S(k) that permutes the factors. Then we will consider the analogue
of (2.4):

ΛA2 =

∞⊕

k=0

KC∗×C∗×S(k)(A
2k)

If we let q1 and q2 denote the elementary characters of C∗ × C∗, then the
inclusion of the origin ◦ →֒ A2 induces a map:

Λ⊗Q Q[q±1
1 , q±1

2 ] → ΛA2

which sends a finite-dimensional S(k)–module to the same module sup-
ported at the origin ◦k →֒ A2k. With this in mind, we may consider the
following elements:

[pk ⊗O◦k ] ∈ KC∗×C∗×S(k)(A
2k)

(the skyscraper sheaf at the origin tensored with the S(k)–character pk)
which induce the following analogues of the operators (2.5) and (2.7):

(2.8) KC∗×C∗×S(l)(A
2l)

pk

−⇀↽−
p
†
k

KC∗×C∗×S(k+l)(A
2(k+l))

given by:

pk(M) = Ind
S(k+l)
S(k)×S(l)

(

[pk ⊗O◦k ]
︸ ︷︷ ︸

sheaf on A2k

⊠ M
︸︷︷︸

sheaf on A2l

)

(2.9)

p†k(M) = HomS(k)

(

pk,Res
S(l)
S(k)×S(l−k)(M)

∣
∣
∣
◦k×Al

)

(2.10)

It is easy to see that the operators (2.9) and (2.10) are adjoint with respect
to the pairing on ΛA2 given by formula (2.6), with the caveat that the symbol
“dim Hom” must be understood to mean the C∗ × C∗ character of the space
of S(k)–equivariant global homomorphisms over A2k. With respect to this
pairing, we have:

(2.11) ⟨pλ, pµ⟩A2 = δµλzλ

t∏

i=1

[

(1− qλi

1 )(1− qλi

2 )
]

for any λ = (λ1 ≥ ... ≥ λt). The natural analogue of Theorem 2.2 reads:
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Proposition 2.4. The operators pk, p
†
k : ΛA2 → ΛA2 satisfy the relations:

(2.12) [p†k, pl] = kδlk(1− qk1 )(1− qk2 ) · Id

for all k, l ∈ N, as well as the obvious relations [pk, pl] = [p†k, p
†
l ] = 0.

Proof. See [4], although the proof is analogous to that of Proposition 3.14.
□

2.5.

Two very important classes of symmetric polynomials are the elementary
and complete ones, whose generating series are given by:

∞∑

k=0

hk
zk

= exp

[
∞∑

k=1

pk
kzk

]

=

∞∏

i=1

(

1−
xi
z

)−1

∞∑

k=0

ek
(−z)k

= exp

[

−
∞∑

k=1

pk
kzk

]

=

∞∏

i=1

(

1−
xi
z

)

As elements of Λ and ΛA2 (i.e. as S(k)–modules or S(k)–modules supported
at the origin of A2k, respectively), the symmetric polynomials hk and ek cor-
respond to the trivial and sign one-dimensional representation, respectively.
Let:

h†k, e
†
k : ΛA2 → ΛA2

denote the adjoints, with respect to the pairing (2.11), of the operators of
multiplication by hk and ek (respectively). Clearly, we have:

∞∑

k=0

h†kz
k = exp

[
∞∑

k=1

p†kz
k

k

]

∞∑

k=0

e†k(−z)k = exp

[

−
∞∑

k=1

p†kz
k

k

]
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The following computations are simple consequences of (2.12):

exp

[

−
∞∑

k=1

p†kz
k

k

]

exp

[
∞∑

k=1

pkw
−k

k

]

(2.13)

= exp

[
∞∑

k=1

pkw
−k

k

]

exp

[

−
∞∑

k=1

p†kz
k

k

]

ζ
( z

w

)−1

exp

[
∞∑

k=1

p†kz
k

k

]

exp

[

−
∞∑

k=1

pkw
−k

kqk

]

(2.14)

= exp

[

−
∞∑

k=1

pkw
−k

kqk

]

exp

[
∞∑

k=1

p†kz
k

k

]

ζ
(w

z

)−1

where we let q = q1q2 and write:

(2.15) ζ(x) =
(1− xq1)(1− xq2)

(1− x)(1− xq)
= exp

[
∞∑

k=1

xk

k
· (1− qk1 )(1− qk2 )

]

Note that ζ(x) = ζ
(

1
xq

)

.

2.6.

Consider the following half planes in Z2:

Z2
+ = {(n,m) ∈ Z2 s.t. n > 0 or n = 0,m > 0}

Z2
− = {(n,m) ∈ Z2 s.t. n < 0 or n = 0,m < 0}

The following is a model for the Hall algebra of the category of coherent
sheaves over an elliptic curve, as defined in [3] (although we follow the nor-
malization of [21]).

Definition 2.7. Consider the algebra:

Aloc = Q(q1, q2)
〈

Pn,m, c±1
1 , c±1

2

〉

(n,m)∈Z2\(0,0)

/c1,c2 central, and

relations (2.16), (2.17)
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where we impose the following relations. The first of these is:

(2.16) [Pn,m, Pn′,m′ ] = δ0n+n′

d(1− qd1)(1− qd2)

q−d − 1

(
1− c−n

1 c−m
2

)

if nm′ = n′m and (n,m) ∈ Z2
+, with d = gcd(m,n). The second relation

states that whenever nm′ > n′m and the triangle with vertices (0, 0), (n,m),
(n+ n′,m+m′) contains no lattice points inside nor on one of the edges,
then we have the relation:

(2.17) [Pn,m, Pn′,m′ ] =
(1− qd1)(1− qd2)

q−1 − 1
Qn+n′,m+m′

·







cn1c
m
2 if (n,m) ∈ Z2

−, (n
′,m′) ∈ Z2

+, (n+ n′,m+m′) ∈ Z2
+

c−n′

1 c−m′

2 if (n,m) ∈ Z2
−, (n

′,m′) ∈ Z2
+, (n+ n′,m+m′) ∈ Z2

−

1 otherwise

where d = gcd(n,m) gcd(n′,m′) (by the assumption on the triangle, we note
that at most one of the pairs (n,m), (n′,m′), (n+ n′,m+m′) can fail to be
coprime), and:

(2.18)

∞∑

k=0

Qka,kb · x
k = exp

[
∞∑

k=1

Pka,kb

k
· xk

(

1− q−k
)
]

for all coprime integers a, b. Note that Q0,0 = 1.

2.8.

Let us consider Hn,m ∈ Aloc defined for all coprime integers a, b by:

(2.19)

∞∑

k=0

Hka,kb · x
k = exp

[
∞∑

k=1

Pka,kb

k
· xk

]

In other words, for every fixed pair of coprime integers a, b, the elements
Hka,kb will be to complete symmetric functions as the elements Pka,kb are to
power-sum functions. In the present paper, we will work with the subalgebra:

(2.20) Aloc ⊃ A = Z[q±1
1 , q±1

2 ]
〈

Hn,m, c±1
1 , c±1

2

〉

(n,m)∈Z2\(0,0)

We note a slight abuse in (2.20): the notation implies that the structure
constants of products of Hn,m’s lie in Z[q±1

1 , q±1
2 ], but this is not quite true.



✐

✐

“7-Negut” — 2022/8/12 — 1:51 — page 1803 — #11
✐

✐

✐

✐

✐

✐

The universal sheaf as an operator 1803

The reason is the presence of denominators in (2.16) and (2.17). However, in
(2.17), the denominator is canceled byQn,m, which is by definition a multiple
of 1− q−1. In (2.16), the denominator will be canceled by the numerator in
all representations in which:

(c1, c2) 7→ (qr, 1) or (1, q−1)

which will be the case throughout the present paper. However, for all r ∈ N,
the following subalgebra of A is unambiguously well-defined over Z[q±1

1 , q±1
2 ]:

A(r) = Z[q±1
1 , q±1

2 ]
〈

Hn,m

〉

m>−nr

The subalgebra A(r) is half of A with respect to a triangular decomposition.

2.9.

The following is obtained by combining the action of [7] with the explicit
formulas obtained in [18] (see Theorem 2.15 of [20] for the explicit formulas,
although the normalization of loc. cit. is somewhat different from that of
the present paper).

Theorem 2.10. There is an action A
Ψ
↷ ΛA2 given by:

(2.21) c1 7→ 1, c2 7→ q−1,

(2.22) P0,m 7→ pm, P0,−m 7→ −qm · p†m

while for all n > 0 and m ∈ Z, we have:

(2.23) Hn,m 7→

∫

|z1|≫...≫|zn|

∏n
i=1 z

⌊mi

n
⌋−⌊m(i−1)

n
⌋

i
∏n−1

i=1

(

1− zi+1q
zi

)
∏

i<j ζ
(
zj
zi

)

exp

[
∞∑

k=1

z−k
1 + ...+ z−k

n

k
· pk

]

exp

[

−
∞∑

k=1

zk1 + ...+ zkn
k

· p†k

]
n∏

a=1

dza
2πiza
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and:

(2.24) H−n,m 7→

∫

|z1|≪...≪|zn|

(−q)n
∏n

i=1 z
⌊mi

n
⌋−⌊m(i−1)

n
⌋

i
∏n−1

i=1

(

1− zi+1q
zi

)
∏

i<j ζ
(
zj
zi

)

exp

[

−
∞∑

k=1

z−k
1 + ...+ z−k

n

k · qk
· pk

]

exp

[
∞∑

k=1

zk1 + ...+ zkn
k

· p†k

]
n∏

a=1

dza
2πiza

The integrals go over concentric circles, contained inside each other in the
order depicted in the subscript of each integral, and far away from each
other relative to the size of the parameters q1 and q2 (which are assumed to
be complex numbers).

Proof. We will sketch the proof, in order to prepare for the analogous argu-
ment in Theorem 3.20. There is a well-known triangular decomposition:

A = A+ ⊗A0 ⊗A−

where A± are the subalgebras of A generated by H±n,m for (n,m) ∈ N× Z,
and A0 is generated by P0,±m and the central elements c1, c2. The main
result of [26] implies that, in order to show that formulas (2.21)–(2.24) yield
an action A ↷ ΛA2 , one needs to prove the following two things:

• Formulas (2.23) and (2.24) induce actions of the subalgebras A+ and A−

on ΛA2 .

• The particular cases of (2.16) and (2.17) when n, n′ ∈ {−1, 0, 1} hold, i.e.:

[

Ψ(P0,±m),Ψ(P0,±m′)
]

= 0(2.25)
[

Ψ(P0,m),Ψ(P0,−m′)
]

= δmm′m(1− qm1 )(1− qm2 )qm(2.26)
[

Ψ(H±1,k),Ψ(P0,±m)
]

= −(1− qm1 )(1− qm2 ) ·Ψ(H±1,k±m)(2.27)
[

Ψ(H±1,k),Ψ(P0,∓m)
]

= (1− qm1 )(1− qm2 )qmδ+± ·Ψ(H±1,k∓m)(2.28)



✐

✐

“7-Negut” — 2022/8/12 — 1:51 — page 1805 — #13
✐

✐

✐

✐

✐

✐

The universal sheaf as an operator 1805

[

Ψ(H1,k),Ψ(H−1,k′)
]

=
(1− q1)(1− q2)

q−1 − 1







Ψ(Ak+k′) if k + k′ > 0

1− qk if k + k′ = 0

−qkΨ(B−k−k′) if k + k′ < 0

(2.29)

for all m,m′ ∈ N and k, k′ ∈ Z, where in the last expression, we write:

∞∑

m=0

Am

xm
= exp

[
∞∑

m=1

pm
mxm

(1− q−m)

]

∞∑

m=0

Bm

xm
= exp

[
∞∑

m=1

p†m
mxm

(1− qm)

]

The second bullet is a consequence of straightforward computations using
Proposition 2.4, which we leave as exercises to the interested reader. As for
the first bullet, we note that formula (2.24) reads:

(2.30) Ψ(H−n,m) =

∫

|z1|≪...≪|zn|
rn,m(z1, ..., zn)X(z1, ..., zn)

where rn,m(z1, ..., zn) (resp. X(z1, ..., zn)) is the rational function (resp. the
expression) in z1, ..., zn on the first (resp. second) line of (2.24). If we as-
sume q1 and q2 to be complex numbers with absolute value greater than 1,
then one can move the contours in the integral of (2.30) to |z1| = ... = |zn|,
without picking up any new poles. Once one does this, because X(z1, ..., zn)
is symmetric in z1, ..., zn, then replacing rn,m with its symmetrization only
changes the value of the integral by an overall factor of n!. Explicitly, this
means that (2.30) is equivalent to:

(2.31) Ψ(H−n,m) =
1

n!

∫

|z1|=...=|zn|
Rn,m(z1, ..., zn)X(z1, ..., zn)

where Rn,m = Sym rn,m. An elementary application of (2.14) shows that:

X(z1, ..., zn)X(zn+1, ..., zn+n′) = X(z1, ..., zn+n′)

1≤i≤n∏

n+1≤j≤n+n′

ζ

(
zj
zi

)−1
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Therefore, by applying (2.31) twice, we obtain:

(2.32) Ψ(H−n,m)Ψ(H−n′,m′) =

=
1

(n+ n)!

∫

|z1|=...=|zn+n′ |
(Rn,m ∗Rn′,m′)(z1, ..., zn+n′)X(z1, ..., zn+n′)

where Rn,m ∗Rn′,m′ denotes the rational function in z1, ..., zn+n′ given by:

1

n!n′!
· Sym



Rn,m(z1, ..., zn)Rn′,m′(zn+1, ..., zn+n′)

1≤i≤n∏

n+1≤j≤n+n′

ζ

(
zi
zj

)




The operation ∗ gives rise to an associative product on the vector space S
of symmetric rational functions with certain poles ([7]), called the shuffle
product. It was shown in [18] that the operation:

(A−, ·) → (S, ∗) H−n,m 7→ Rn,m

induces an algebra homomorphism. As we have seen by comparing formulas
(2.31) and (2.32), the operation:

(S, ∗) → (End(ΛA2), ·) Rn,m 7→ RHS of (2.31)

is also an algebra homomorphism. Composing the aforementioned homo-
morphisms implies that formulas (2.31) give a well-defined action of A− on
ΛA2 . The fact that formulas (2.23) give rise to a well-defined action of A+

on ΛA2 is proved analogously. □

2.11.

We will use the symbol X to refer to the totality of the variables x1, x2, ...,
and thus we will denote the complete and elementary symmetric functions
by:

∞∑

k=0

hk
zk

= ∧•

(

−
X

z

)

(2.33)

∞∑

k=0

ek
(−z)k

= ∧•

(
X

z

)

(2.34)

where ∧• is a multiplicative symbol determined by the property that if a
vector space V has torus character χ, then ∧•(χ) denotes the torus character



✐

✐

“7-Negut” — 2022/8/12 — 1:51 — page 1807 — #15
✐

✐

✐

✐

✐

✐

The universal sheaf as an operator 1807

of the total exterior power ∧•(V ). Elements of ΛA2 will generally be denoted
by f [X]. We will adopt plethystic notation, according to which one defines:

(2.35) f [X ± (1− q1)(1− q2)z] ∈ ΛA2 [z]

to be the image of f [X] under the ring homomorphism ΛA2 → ΛA2 [z] that
sends:

(2.36) pn 7→ pn ± (1− qn1 )(1− qn2 )z
n

In other words, one computes the plethysm (2.35) by expanding f [X] in
the basis (2.3), and then replacing each pn therein according to (2.36). The
reader may find a description of plethysm in the language of equivariant
K–theory in Proposition 3.27. The following is a well-known and straight-
forward exercise:

Proposition 2.12. For any f [X] ∈ ΛA2 and any variable z, we have:

(2.37) f [X ± (1− q1) (1− q2) z] = exp

[

±
∞∑

k=1

p†kz
k

k

]

· f [X]

where p†k is the adjoint operator defined in Subsection 2.3.

2.13.

Using (2.33), (2.34) and (2.37), formulas (2.23)–(2.24) take the form:

(2.38)

Ψ(Hn,m)(f [X]) =

∫

0,X≺|zn|≺...≺|z1|≺∞

∏n
i=1 z

⌊mi

n
⌋−⌊m(i−1)

n
⌋

i
∏n−1

i=1

(

1− zi+1q
zi

)
∏

i<j ζ
(
zj
zi

)

∧•

(

−
X

z1

)

... ∧•

(

−
X

zn

)

· f

[

X − (1− q1) (1− q2)

n∑

i=1

zi

]
n∏

a=1

dza
2πiza

and:

Ψ(H−n,m)(f [X]) =

∫

0,X≺|z1|≺...≺|zn|≺∞

(−q)n
∏n

i=1 z
⌊mi

n
⌋−⌊m(i−1)

n
⌋

i
∏n−1

i=1

(

1− zi+1q
zi

)
∏

i<j ζ
(
zj
zi

)
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(2.39) ∧•

(
X

z1q

)

... ∧•

(
X

znq

)

· f

[

X + (1− q1) (1− q2)

n∑

i=1

zi

]
n∏

a=1

dza
2πiza

Above, the notation 0, X ≺ |zn| ≺ ... ≺ |z1| ≺ ∞ means that we integrate
the variables z1, ..., zn over concentric circles that go in the prescribed or-
der, and are contained between the poles at 0, x1, x2, ... and the pole at ∞.
Indeed, the variables zi must have absolute value larger than the variables
x1, x2, ..., in order for us to be able to replace the symbols pk in (2.23)–(2.24)
by xk1 + xk2 + ....

2.14.

We will work over an algebraically closed field of characteristic 0, henceforth
denoted by C. Fix a line ∞ ⊂ P2, and let us write A2 = P2\∞ for the com-
plement.

Definition 2.15. Fix r ∈ N. For any d ≥ 0, consider the moduli space:
(2.40)

Mf
d =

{

(F , ϕ), F a torsion free sheaf on P2,F|∞
φ
∼= O⊕r

∞ , c2(F) = d
}

It is a smooth quasiprojective algebraic variety of dimension 2rd.

An isomorphism ϕ as in (2.40) is called a framing of the torsion-free sheaf
F , and the pair (F , ϕ) is called a framed sheaf. We will write:

Mf =

∞⊔

d=0

Mf
d

(the rank r of our sheaves will be fixed throughout the present paper). The
torus:

T = C∗ × C∗ × (C∗)r

acts on Mf as follows: the first two factors C∗ × C∗ act on sheaves by their
underlying action on the standard coordinate directions of A2, while (C∗)r

acts by multiplication on the isomorphism ϕ in (2.40). Therefore, we may
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consider:

(2.41) KT (M
f ) =

∞∏

d=0

KT (M
f
d)

Let ◦ ∈ A2 denote the origin, and let us consider the derived restriction:

U◦

��

Mf

of the universal sheaf U on Mf × A2 to Mf × {◦} ∼= Mf .

2.16.

We will now define certain operators on KT (M), which were shown in [19]
to give rise to the elliptic Hall algebra action that was discovered earlier in
[8, 27].

Definition 2.17. The following moduli spaces are smooth quasiprojective
varieties:

Z1 =
{

(F ⊃◦ F
′)
}

Z•
2 =

{

(F ⊃◦ F
′ ⊃◦ F

′′)
}

where F ⊃◦ F
′ means that F ⊃ F ′ (as framed sheaves) and the quotient

F/F ′ is isomorphic to the length 1 coherent sheaf supported at ◦ ∈ A2. Con-
sider the maps:

Z1
p−

~~

p+

  

M M

(F ⊃◦ F
′)

zz $$
F F ′

Z•
2

π−

~~

π+

  

Z1 Z1

(F ⊃◦ F
′ ⊃◦ F

′′)

vv ((

(F ⊃◦ F
′) (F ′ ⊃◦ F

′′)
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and the line bundles:

L

��

Z1

F◦/F
′
◦

��

(F ⊃◦ F
′)

L1,L2

��

Z•
2

F ′
◦/F

′′
◦ ,F◦/F

′
◦

��

(F ⊃◦ F
′ ⊃◦ F

′′)

The smoothness of these moduli spaces is proved by analogy with the corre-
sponding statements in Definition 3.10. However, all we need at the moment
is the structure of Z1 and Z•

2 as dg schemes, which was developed in [19].
The following is the main result of loc. cit. (see also [25] for notation closer
to ours):

Theorem 2.18. There exists an action A
Φ
↷ KT (M

f ) given by:

(2.42) c1 7→ qr, c2 7→ 1,

P0,m 7→ tensoring with pm(U◦)(2.43)

P0,−m 7→ tensoring with − qm · pm(U∨
◦ )(2.44)

1 while for all n > 0 and m ∈ Z, we have:

(2.45) Hn,m 7→ p−∗

[

Ldn ⊗ π−∗π
∗
+

[

Ldn−1 ⊗ ...⊗ π−∗π
∗
+

[

Ld1 ⊗ p∗+

]

...
]]

and:

(2.46) H−n,m 7→

[
detU◦

(−q)r−1

]n

⊗ p+∗

[

Ld1−r ⊗ ...⊗ π+∗π
∗
−

[

Ldn−r ⊗ p∗−

]

...
]

where di =
⌊
mi
n

⌋
−
⌊
m(i−1)

n

⌋

.

1Above, pm(U) means the m–th power sum functor: if U◦ =
∑

i ±yi ∈ KT (M
f ),

then:
pm(U◦) =

∑

i

±ymi ∈ KT (M
f )
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2.19.

Recall the decomposition (2.41), and consider the class of the structure sheaf:

(2.47) 1d ∈ KT (M
f
d)

For any symmetric polynomial f [X] ∈ ΛA2 , we consider the so-called
universal class:

(2.48) f [U◦] ∈ KT (M
f
d)

by applying the symmetric polynomial f to the Chern roots of the universal
sheaf U◦ on Mf

d . It is well-known that KT (M
f
d) is spanned by universal

classes for every d ≥ 0, i.e. by (2.48) as f [X] ranges over ΛA2 (this fact holds
for all Nakajima quiver varieties, of which Mf

d is an example). Then for-

mulas (2.43) imply that KT (M
f
d) is generated by the operators P0,1, P0,2, ...

acting on the class (2.47), for every d ≥ 0. This also happens in the case of
general surfaces, as we will see in Section 3.

Proposition 2.20. ([23]) In terms of universal classes, (2.45)–(2.46) read:

(2.49)

Φ(Hn,m)(f [U◦]) =

∫

U◦≺|zn|≺...≺|z1|≺0,∞

∏n
i=1 z

⌊mi

n
⌋−⌊m(i−1)

n
⌋

i
∏n−1

i=1

(

1− zi+1q
zi

)
∏

i<j ζ
(
zj
zi

)

∧•

(

−
U◦

z1

)

... ∧•

(

−
U◦

zn

)

⊗ f

[

U◦ − (1− q1)(1− q2)

n∑

i=1

zi

]
n∏

a=1

dza
2πiza

and:

(2.50)

Φ(H−n,m)(f [U◦]) =

∫

U◦≺|z1|≺...≺|zn|≺0,∞

(−q)n
∏n

i=1 z
⌊mi

n
⌋−⌊m(i−1)

n
⌋

i
∏n−1

i=1

(

1− zi+1q
zi

)
∏

i<j ζ
(
zj
zi

)

∧•

(
U◦

z1q

)

... ∧•

(
U◦

znq

)

⊗ f

[

U◦ + (1− q1)(1− q2)

n∑

i=1

zi

]
n∏

a=1

dza
2πiza

where ∧•
(
U◦

z

)
=
∑∞

i=0(−z)−i[∧i(U◦)].
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Recall from the last paragraph of Subsection 2.13 that the notation U ≺
|zn| ≺ ... ≺ |z1| ≺ 0,∞ means that we integrate the variables z1, ..., zn over
concentric circles that go in the prescribed order, and are contained between
the Chern roots of the universal sheaf U◦ and the poles at 0 and ∞.

Proof. of Theorem 1.1: It is easy to see that the operator ΓA2 of (1.7) is
given by:

ΓA2(f [X]) = f [U◦]

in the notations of Subsections 2.11 and 2.19, respectively. The fact that
ΓA2 commutes with P0,m for any m > 0 is an immediate consequence of
comparing (2.22) and (2.43). As for the fact that Γ intertwines Ψ(H±n,m)
with Φ(H±n,m) for all n > 0 and m > ∓nr, this follows by comparing for-
mulas (2.38)–(2.39) with (2.49)–(2.50): either of these formulas involve one
and the same integrand, the distinction between them being the location of
the contours. Specifically, the contours in (2.38)–(2.39) differ from the ones
in (2.49)–(2.50) only in which side of the contour the pole at 0 lies. The
integrals are equal because the integrands are regular at 0 in each variable
among z1,...,zn, which is easily seen to be the case for (2.49)–(2.50) when
m > ∓nr.

Concerning the uniqueness statement, let us show that there exists at most
a unique:

(2.51) Γ =

∞∏

d=0

Γd with Γd : ΛA2,loc → KT (M
f
d)loc

where:

ΛA2,loc = ΛA2

⊗

Z[q±1
1 ,q±1

2 ]

Q(q1, q2)

KT (M
f
d)loc = KT (M

f
d)
⊗

KT (◦)

Frac(KT (◦))

such that Γ is determined by the facts that Γ0(1) = 10 and that Γ commutes
with the action of A(r), in the sense of diagram (1.8). The commutativity
with the operators P0,m for m > 0 uniquely determine Γ0. Meanwhile, we
have the following.
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Claim 2.21. Any class γ ∈ KT (M
f
d)loc is uniquely determined by the col-

lection:
{

Φ(H1,m1
...H1,md

)(γ) ∈ KT (M
f
0)loc

}

as m1, ...,md range over the integers > −r.

The commutativity of diagram (1.8) implies that:

Φ(H1,m1
...H1,md

)(Γd(f)) = Γ0(Ψ(H1,m1
...H1,md

)(f))

for all f ∈ ΛA2,loc. Since we have already seen that Γ0 is uniquely deter-
mined, then Claim 2.21 implies that Γd(f) is uniquely determined, for all
d ≥ 0 and all f .

Proof. of Claim 2.21: Let F = Frac(KT (◦)) = KT (M
f
0)loc, where the last

equality is due to the fact that Mf
0 is a point. The Thomason equivariant

localization theorem gives us the following isomorphism of F–vector spaces:

(2.52) KT (M
f
d)loc

∼=
⊕

λ of size d

F · |λ⟩

where |λ⟩ denotes the (renormalized) skyscraper sheaf at the T–fixed point
of Mf

d indexed by an r–partition λ of size d (i.e. an r–tuple of partitions of
total size d, we refer to [19, 21] for a discussion of the connection between
fixed points and r–partitions). The classes |λ⟩ form an orthogonal basis of
(2.52), with respect to the equivariant Euler characteristic pairing. Since the
adjoint of H1,m with respect to this pairing is a multiple of H−1,m+r, the
claim is equivalent to proving that:

{

Φ(H−1,m1
...H−1,md

)(KT (M
f
0)loc)

}

mi>0
span KT (M

f
d)loc

We may prove this claim by induction on d, and it suffices to establish that:

(2.53)
{

Φ(H−1,m)(KT (M
f
d−1)loc)

}

m>0
span KT (M

f
d)loc

To prove the claim above, let’s consider an r–partition µ of size d− 1. We
have:

(2.54) Φ(H−1,m)|µ⟩ =
∑

λ=µ+■

χm
■
· τλµ |λ⟩
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where the right-hand side goes over all r–partitions obtained by adding a
single box ■ to µ, and if this box is located at coordinates (x, y) in the i–th
constituent partition of µ, its weight is defined by χ■ = uiq

x
1q

y
2 (see [19, 21]

for the aforementioned notions and formulas for the coefficients τλµ that
appear in (2.54), but we remark that they do not depend on m). Since there
are only finitely many ways to add a single box to the r–partition µ, and all
of these boxes have different weights, it is clear that there exists a F–linear
combination H of the operators H−1,1, H−1,2, ... such that Φ(H)|µ⟩ = |λ⟩
for any fixed λ. This completes the proof of (2.53). □

□

3. The case of general surfaces

3.1.

Consider a smooth projective surface S with an ample divisor H, and also fix
(r, c1) ∈ N×H2(S,Z). Consider the moduli space Ms of H–stable sheaves
on the surface S with the numerical invariants r, c1 and any c2. We make
the following:

Assumption A: gcd(r, c1 ·H) = 1, and(3.1)

Assumption S: either

{

KS
∼= OS or

c1(KS) ·H < 0
(3.2)

Assumption A implies that Ms is representable, i.e. there exists a universal
sheaf:

U

��

Ms × S

We fix a choice of U throughout this paper. If we let Ms
d ⊂ Ms denote the

subspace of sheaves with c2 = d, then we have a disconnected union:

Ms =

∞⊔

d=⌈ r−1

2r
c21⌉

Ms
d
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where the fact that d is bounded below is a consequence of Bogomolov’s
inequality. Each Ms

d is projective (by Assumption A) and smooth (by As-
sumption S). In the present paper, we will work with the K–theory groups:

K(Ms) =

∞∏

d=⌈ r−1

2r
c21⌉

K(Ms
d)

We refer the reader to [22, 25] for an introduction to basic facts on the mod-
uli space of stable sheaves, as pertains to the present paper.

3.2.

Since K(Ms × S) ̸∼= K(Ms), as opposed from the case S = A2 studied pre-
viously, we must take care what we mean by “algebras acting on K–theory
groups”. In Definitions 3.3 and 3.5, we let X be any smooth quasiprojective
algebraic variety.

Definition 3.3. A weak action A
Φ
↷S K(X) is an abelian group homomor-

phism:

(3.3) A
Φ
−→ Hom(K(X),K(X × S))

such that:

• Φ(1) is the standard pull-back map;

• for all a ∈ A and f ∈ Z[q±1
1 , q±1

2 ]Sym, we require Φ(f · a) to equal the com-
position:

(3.4) K(X)
Φ(a)
−−−→ K(X × S)

IdX⊠f(q1,q2)
−−−−−−−−→ K(X × S)

where q1, q2 are identified with the Chern roots of [Ω1
S ] ∈ K(S);

• for all a, b ∈ A, we require Φ(ab) to equal the composition:

(3.5) K(X)
Φ(b)
−−→ K(X × S)

Φ(a)⊠IdS

−−−−−−→ K(X × S × S)
IdX⊠∆∗

−−−−−→ K(X × S)
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(where ∆ : S →֒ S × S is the diagonal).

We will apply the definition above when X = Ms or X =
⊔∞

k=0 S
k.

3.4.

Note that in the definition of a weak action, the composition of operators
Φ(a) and Φ(b) only records what happens on the diagonal of S × S. To un-
derstand the behavior off the diagonal, we introduce the following stronger
notion.

Definition 3.5. A weak action as in Definition 3.3 is called strong if, for
all a, b ∈ A, we have the following equality of operators K(X) → K(X ×
S × S):

(3.6) [Φ(a),Φ(b)] = (IdX ⊠∆)∗

[

Φ

(
[a, b]

(1− q1)(1− q2)

)]

where the left-hand side of (3.6) denotes the difference of the compositions:

K(X)
Φ(2)(b)
−−−−→ K(X × S2)

Φ(1)(a)⊠IdS2−−−−−−−−→ K(X × S1 × S2)(3.7)

K(X)
Φ(1)(a)
−−−−→ K(X × S1)

Φ(2)(b)⊠IdS1−−−−−−−−→ K(X × S1 × S2)(3.8)

(we write Si instead of S and K(X)
Φ(i)(a)
−−−−→ K(X × Si) instead of Φ(a),

∀i ∈ {1, 2}, in order to better illustrate the two factors of S involved in (3.7)–
(3.8)).

The right-hand side of (3.6) is well-defined, because (see [23]) the commuta-
tor of any two elements of A is a multiple of (1− q1)(1− q2). The following
operators:

(3.9) [Φ(a),Φ(b)]red = Φ

(
[a, b]

(1− q1)(1− q2)

)

which act betweenK(X)→K(X×S), will be called the reduced commutators.
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Remark 3.6. Consider any α, β, γ : K(X) → K(X × S), and any f ∈
Z[q±1

1 , q±1
2 ]Sym. Let us define the operators:

fα, αβ : K(X) → K(X × S)

and:

[α, β] : K(X) → K(X × S × S)

by replacing Φ(a) and Φ(b) in (3.4), (3.5), (3.7), (3.8) with α and β. Then
we have the following associativity properties:

(3.10) (fα)β = f(αβ), (αβ)γ = α(βγ)

Moreover, assume that the commutator of any two of α, β, γ is supported
on the diagonal ∆ ⊂ S × S, i.e. we have the following equality K(X) →
K(X × S × S):

(3.11) [α, β] = (IdX ⊠∆)∗([α, β]red)

for some operator [α, β]red : K(X) → K(X × S), and the analogous formulas
for the pairs (β, γ) and (α, γ). 2 Then the following Leibniz rule holds:

(3.12) [αβ, γ]red = α[β, γ]red + [α, γ]redβ

and the following Jacobi identity holds:

(3.13)
∑

cyclic

[α, [β, γ]red]red = 0

The claims (3.10), (3.12) and (3.13) are straightforward exercises.

3.7.

Let us apply Definitions 3.3 and 3.5 to the case X = Mf , S = A2 and that
of T–equivariant K–theory. In this case, composing the action map:

A
Φ
−→ Hom(KT (M

f ),KT (M
f × A2))

2If (3.11) holds for some operator [α, β]red, then this operator is unique, due to
the fact that the map (IdX ⊠∆)∗ has a left inverse given by (IdX ⊠ proj1)∗
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1818 Andrei Negut,

with the restriction to the origin ◦ ∈ A2 (which is an isomorphism), we
obtain:

A
Φ′

−→ End(KT (M
f ))

Property (3.4) states that q1 and q2 are the equivariant Chern roots of [Ω1
A2 ],

property (3.5) states that Φ′(ab) = Φ′(a)Φ′(b), while property (3.6) states
that:

[Φ′(a),Φ′(b)] = Φ′([a, b])

the reason being that ∆∗∆∗ = (1− q1)(1− q2) if ∆ : A2 →֒ A2 × A2 is the
diagonal. The conclusion is that Φ′ yields an honest action of A on KT (M

f ).

Remark 3.8. Definitions 3.3 and 3.5 are inspired by the Heisenberg algebra
action on the cohomology groups of Hilbert schemes that was developed by
Grojnowski ([12]) and Nakajima ([16]). This construction can be interpreted
as “operators on the cohomology groups of Hilbert schemes of points on a
surface S, indexed by a cohomology class on S”. Indeed, if:

(3.14) Φ(a)(γ) : K(Ms) → K(Ms)

denotes the composition:

K(Ms)
Φ(a)
−−−→ K(Ms × S)

IdMs⊠γ
−−−−−→ K(Ms × S)

π∗−→ K(Ms)

for any γ ∈ K(S) (where π : Ms × S → Ms is the projection), then (3.6)
reads:

[

Φ(a)(γ),Φ(b)(δ)
]

= Φ

(
[a, b]

(1− q1)(1− q2)

)(γδ)

for any γ, δ ∈ K(S). The particular case of the formula above when a = Pn,0

and b = Pn′,0 yields precisely a Heisenberg algebra action in the sense of loc.
cit. However, since in K–theory one does not have a Künneth decomposi-
tion, the datum of the homomorphism Φ(a) is stronger than the totality of
the endomorphisms (3.14).

3.9.

Let us present the analogues of the correspondences of Subsection 2.16 with
(Mf ,A2) replaced by (Ms, S), and use them to construct an action A ↷S

K(Ms).
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Definition 3.10. The following moduli spaces are smooth projective vari-
eties:

Z1 =
{

(F ⊃x F ′) for some x ∈ S
}

Z•
2 =

{

(F ⊃x F ′ ⊃x F ′′) for some x ∈ S
}

Consider the maps:

Z1
p−

~~

pS

��

p+

  

M S M

(F ⊃x F ′)

zz �� $$
F x F ′

Z•
2

π−

~~

π+

  

Z1 Z1

(F ⊃x F ′ ⊃x F ′′)

vv ((

(F ⊃x F ′) (F ′ ⊃x F ′′)

and the line bundles:

L

��

Z1

Fx/F
′
x

��

(F ⊃x F ′)

L1,L2

��

Z•
2

F ′
x/F

′′
x ,Fx/F

′
x

��

(F ⊃x F ′ ⊃x F ′′)

We refer the reader to [22] for the statements pertaining to Z1 (although
they were known for a long time, see [6]) and to [23] for the statements
pertaining to Z•

2.

3.11.

The following analogue of Theorem 2.18 was proved in [25].
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Theorem 3.12. There exists a strong action A
Φ
↷S K(Ms) given by:

(3.15) c1 7→ qr, c2 7→ 1,

(recall from Definition 3.3 that q1, q2 are identified with the Chern roots of
[Ω1

S ], hence q = q1q2 is identified with the canonical line bundle [KS ]) and:

P0,m 7→

[

K(Ms)
pull-back
−−−−−→ K(Ms × S)

⊗pm(U)
−−−−−→ K(Ms × S)

]
(3.16)

P0,−m 7→

[

K(Ms)
pull-back
−−−−−→ K(Ms × S)

⊗(−qmpm(U∨))
−−−−−−−−−−→ K(Ms × S)

]
(3.17)

while for all n > 0 and m ∈ Z, we have:

(3.18) Hn,m 7→ (p− × pS)∗

[

Ldn

n ⊗ π−∗π
∗
+

[

Ldn−1

n−1 ⊗ ...π−∗π
∗
+

[

Ld1

1 ⊗ p∗+

]

...
]]

and:
(3.19)

H−n,m 7→

[
detU

(−q)r−1

]n

⊗ (p+ × pS)∗

[

Ld1−r
1 ⊗ ...⊗ π+∗π

∗
−

[

Ldn−r
n ⊗ p∗−

]

...
]

where di =
⌊
mi
n

⌋
−
⌊
m(i−1)

n

⌋

.

3.13.

The analogue of the ring of symmetric functions for an arbitrary surface is:

ΛS =

∞⊕

k=0

KS(k)(S
k)

where S(k) permutes the factors of Sk. We will (slightly abusively) write:

ΛS ×K(S) =

∞⊕

k=0

KS(k)(S
k × S)

ΛS ×K(S × S) =

∞⊕

k=0

KS(k)(S
k × S × S)
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where S(k) does not act on the last factor of S or S × S. There exist ana-
logues of the operators (2.8) of parabolic induction and restriction, respec-
tively:

(3.20) pk, p
†
k : ΛS −→ ΛS ×K(S)

which take the form:

KS(l)(S
l)

pk

−→ KS(k+l)(S
k+l × S)(3.21)

KS(k+l)(S
k+l)

p
†
k−→ KS(l)(S

l × S)(3.22)

and are explicitly given by:

pk(M) = Ind
S(k+l)
S(k)×S(l)

(

[pk ⊗O∆1...k•
]

︸ ︷︷ ︸

sheaf on Sk×S

⊠ M
︸︷︷︸

sheaf on Sl

)

(3.23)

p†k(M) = HomS(k)

(

pk,Res
S(k+l)
S(k)×S(l)(M)

∣
∣
∣
∆1...k•×Sl

)

(3.24)

where ∆1...k• ⊂ Sk × S is the small diagonal. In the right-hand side of (3.24),
we implicitly pull-back M from Sk+l to Sk+l × S, and then restrict it to the
diagonal obtained by identifying the first k and the last factor, thus obtain-
ing a sheaf on Sl × S.

Proposition 3.14. The operators pk, p
†
k give rise to a strong action (in

the sense of Definitions 3.3 and 3.5) of the infinite-dimensional Heisenberg
algebra, i.e.:

(3.25) [p†k, pl] = (IdΛS
⊠∆)∗

(

ρ∗
[

δlkk
(1− qk1 )(1− qk2 )

(1− q1)(1− q2)

]

⊗ π∗

)

as well as [pk, pl] = [p†k, p
†
l ] = 0, as homomorphisms ΛS → ΛS ×K(S × S),

where:
⊔∞

n=0S
n × S

π

ww

ρ

$$⊔∞
n=0S

n S

are the standard projections. In the left-hand side of (3.25), the operator p†k
(respectively pl) acts only on the first (respectively second) factor of S × S.
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Remark 3.15. Proposition 3.14 actually holds for an arbitrary smooth va-
riety S, although we will only need the surface case. If S has dimension d,
then the constant in the square brackets in the right-hand side of (3.25) must
be replaced by:

δlkk
(1− qk1 )(1− qk2 )...(1− qkd)

(1− q1)(1− q2)...(1− qd)

where q1+q2+...+qd = [Ω1
S ] ∈ K(S). The proof below applies to arbitrary d.

Proof. Recall that elements of K(Sn) represent vector bundles M on Sn.
Given any permutation σ = {1, ..., n} → {a1, ..., an}, we will use the notation
Ma1...an

for the vector bundle σ∗(M) on Sn and the associated K–theory
class. Similarly, elements of KS(n)(S

n) represent S(n)–equivariant vector
bundles, i.e. vector bundles M on Sn endowed with isomorphisms M ∼=
σ∗(M) for all σ ∈ S(n) that respect the product of permutations. In this
language, formula (3.23) reads:

(3.26) pl(M) =

(l,n)
⊕

shuffles

[pl ⊗O∆a1...al•
]⊠Mb1....bn

where the right-hand side is a vector bundle on Sn+l × S (the index • repre-
sents the last factor of S) with the action of S(n+ l) given by permutation
of the indices. The term “(l, n)–shuffles” above and henceforth refers to the
set of all partitions:

(3.27) {a1 < ... < al} ⊔ {b1 < ... < bn} = {1, ..., n+ l}

Iterating (3.26) twice implies that:

(3.28) pkpl(M) =

(k,l,n)
⊕

shuffles

[pk ⊗O∆a1...ak◦
]⊗ [pl ⊗O∆b1...bl•

]⊠Mc1....cn

where (k, l, n)–shuffles are partitions of {1, ..., n+ k + l} into three sets, of
sizes k, l and n, respectively. The right-hand side of (3.28) is a vector bun-
dle on Sn+k+l × S × S, where the latter two factors of S are indexed by the
symbols ◦ and •, respectively. It is clear that the right-hand side of (3.28)
is symmetric under permuting k ↔ l, if we also permute ◦ ↔ •. This im-
plies [pk, pl] = 0, and the statement that [p†k, p

†
l ] = 0 is analogous. As for the
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commutator (3.25), we note that (3.24) implies:
(3.29)

p†kpl(M) = HomS(k)



pk,

(l,n)
⊕

shuffles

[pl ⊗O∆a1...al•
]⊠Mb1....bn

∣
∣
∣
∆1...k◦×Sn+l−k





as a vector bundle on Sn+l−k × S × S (the indices • and ◦ represent the two
latter factors of S) with the action of S(n+ l − k) given by permutation of
the indices > k. As a virtual representation of S(l), the power sum pl has
the property that:

(3.30) pl

∣
∣
∣
S(i)×S(l−i)

= 0

for all i ∈ {1, ..., l − 1}. We will call any shuffle as in (3.27) of “type i” if:

{a1, ..., ai} ⊔ {b1, ..., bk−i} = {1, ..., k}

Because of (3.30), the only shuffles which contribute non-trivially to (3.29)
are those of type 0 and type l. The shuffles of type 0 correspond to the
case when {1, ..., k} ⊂ {b1, ..., bn}, and their contribution to (3.29) may be
identified with:

(3.31) plp
†
k(M) =

type 0
⊕

(l,n)–shuffles

[pl ⊗O∆a1...al•
]⊠

⊠HomS(k)

(

pk,Mb1....bn

∣
∣
∣
∆1...k◦×Sn−k

)

Therefore, the difference between (3.29) and (3.31) consists precisely of the
sum over type l shuffles, i.e. those such that {a1, ..., al} ⊂ {1, ..., k}. However,
if k > l, then the HomS(k)(pk, ...) space in (3.29) vanishes because of (3.30)
for k ↔ l. Therefore, the only shuffle which has a non-zero contribution to
the difference of (3.29) and (3.31) is the one corresponding to {a1, ..., al} =
{1, ..., k}. We thus conclude that:

(3.32) [p†k, pl](M) = M ⊠ δlkHomS(k)

(

pk, pk ⊗O∆1...k•

∣
∣
∣
∆1...k◦

)

In K–theory, the restriction of a regular subvariety (in the situation above,
the small diagonal ∆1...k : S →֒ Sk) to itself is equal to the exterior algebra
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of the conormal bundle to this subvariety. In the situation of (3.32), this
leads to:

(3.33) [p†k, pl](M) = M ⊠∆∗

[

δlkHomS(k)

(

pk, pk ⊗ ∧•(N∗
S|Sk)

)]

where ∆ →֒ S × S is the diagonal that identifies the points • and ◦. Recall
that:

HomS(k)(pk, V ) = TrV (ωk)

where ωk ∈ S(k) is a k–cycle. Therefore, (3.33) implies (3.25) because of the
well-known fact that Trpk

(ωk) = k and the claim below:

Claim 3.16. If NS|Sk denotes the normal bundle of the small diagonal in

Sk, then:

Tr∧•(N∗
S|Sk )

(ωk) =
(1− qk1 )(1− qk2 )

(1− q1)(1− q2)

where q1 + q2 = [Ω1
S ].

The normal bundle arises from the short exact sequence:

0 −→ TS
diag
−−→ (TS)⊕k −→ NS|Sk −→ 0

where the S(k)–action permutes the factors of TS. Therefore, we have:

∧•(N∗
S|Sk) =

∧•
(
(Ω1

S)
⊕k
)

∧•(Ω1
S)

Since the denominator of the expression above is a trivial S(k)–module with
K–theory class (1− q1)(1− q2), it remains to show that:

(3.34) Tr∧•((T ∗S)⊕k)(ωk) = (1− qk1 )(1− qk2 )

By the splitting principle, we can assume Ω1
S
∼= L1 ⊕ L2, where L1 and L2

are line bundles with K–theory classes q1 and q2. If we let la denote a
local section of the line bundle La, then a basis for the local sections of
∧•(L⊕k

1 ⊕ L⊕k
2 ) consists of:

(3.35) l
(i1)
1 ∧ l

(i2)
1 ∧ ... ∧ l

(ia)
1 ∧ l

(j1)
2 ∧ l

(j2)
2 ∧ ... ∧ l

(jb)
2

where l
(i)
a denotes the section la on the i–th copy of La inside L⊕k

a . The
cycle ωk acts on the basis (3.35) by increasing the indices ia, jb ∈ Z/nZ by
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1. Therefore, there are only 4 basis elements which are unchanged by ωk,
namely the cases (a, b) = (0, 0), (k, 0), (0, k), (k, k) of (3.35). These 4 basis
elements contribute precisely 1, −qk1 , −qk2 , q

k (respectively) to the trace,
thus implying (3.34). □

3.17.

By analogy with Subsection 2.5, we have:

∞∑

k=0

hk
zk

= exp

[
∞∑

k=1

pk
kzk

]
∣
∣
∣
∆

(3.36)

∞∑

k=0

ek
(−z)k

= exp

[

−
∞∑

k=1

pk
kzk

]
∣
∣
∣
∆

(3.37)

where hk, ek are operators defined by analogy with (3.23), specifically:

hk(M) = Ind
S(k+l)
S(k)×S(l)

(

[trivS(k) ⊗O∆1...k•
]⊠M

)

ek(M) = Ind
S(k+l)
S(k)×S(l)

(

[signS(k) ⊗O∆1...k•
]⊠M

)

for all M ∈ KS(l)(S
l). Moreover, we consider:

∞∑

k=0

h†kz
k = exp

[
∞∑

k=1

p†kz
k

k

]
∣
∣
∣
∆

(3.38)

∞∑

k=0

e†k(−z)k = exp

[

−
∞∑

k=1

p†kz
k

k

]
∣
∣
∣
∆

(3.39)

which by analogy with (3.24) satisfy:

h†k(M) = HomS(k)

(

trivS(k),Res
S(k+l)
S(k)×S(l)(M)

∣
∣
∣
∆1...k•×Sl

)

(3.40)

e†k(M) = HomS(k)

(

signS(k),Res
S(k+l)
S(k)×S(l)(M)

∣
∣
∣
∆1...k•×Sl

)

(3.41)

for all M ∈ KS(k+l)(S
k+l).

Remark 3.18. In [14], a similar result to (a categorification of) Proposi-
tion 3.14 was proved by using certain operators ΛS → ΛS indexed by classes
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γ ∈ K(S). While similar in overall shape with our:

e
(γ)
k : ΛS

ek−→ ΛS ×K(S)
IdΛS

⊠γ
−−−−−→ ΛS ×K(S)

π∗−→ ΛS

and their adjoints, the operators of loc. cit. are not linear in γ. Linearity
is necessary in order for operators indexed by γ ∈ K(S) to “glue” to an
operator:

ΛS → ΛS ×K(S)

which is required for the framework of Definitions 3.3 and 3.5.

3.19.

We have the following global analogue of the rational function (2.15):

(3.42) ζS(x) = ∧•(−x · O∆) ∈ K(S × S)(x)

whose restriction to the diagonal is precisely:

∧•
(

− x ·
(
[OS ]− [Ω1

S ] + [KS ]
) )

=
(1− xq1)(1− xq2)

(1− x)(1− xq)
= ζ(x)

where [Ω1
S ]=q1+q2∈K(S). We have the following analogue of Theorem 2.10:

Theorem 3.20. There is a strong action A
Ψ
↷S ΛS given by:

(3.43) c1 7→ 1, c2 7→ q−1,

(3.44) P0,m 7→ pm, P0,−m 7→ −mqm · p†m,

while for all n > 0 and m ∈ Z, we have:

Hn,m 7→

∫

|z1|≫...≫|zn|

∏n
i=1 z

⌊mi

n
⌋−⌊m(i−1)

n
⌋

i
∏n−1

i=1

(

1− zi+1q
zi

)
∏

i<j ζ
(
zj
zi

)

(3.45)

exp

[
∞∑

k=1

z−k
1 + ...+ z−k

n

k
· pk

]

exp

[

−
∞∑

k=1

zk1 + ...+ zkn
k

· p†k

]
∣
∣
∣
∆

n∏

a=1

dza
2πiza
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and:

H−n,m 7→

∫

|z1|≪...≪|zn|

(−q)n
∏n

i=1 z
⌊mi

n
⌋−⌊m(i−1)

n
⌋

i
∏n−1

i=1

(

1− zi+1q
zi

)
∏

i<j ζ
(
zj
zi

)

(3.46)

exp

[

−
∞∑

k=1

z−k
1 + ...+ z−k

n

k · qk
· pk

]

exp

[
∞∑

k=1

zk1 + ...+ zkn
k

· p†k

]
∣
∣
∣
∆

n∏

a=1

dza
2πiza

(see the last sentence of Theorem 2.10 for the meaning of the contours).

Proof. Let us first show that the assignments (3.43)–(3.46) give rise to a
weak action. As shown in [25], this can be achieved by establishing that the
two bullets in the proof of Theorem 2.10 hold. The first bullet is proved
almost word-for-word as in the aforementioned Theorem, with the minor
modification that the parameters q1 and q2 are now identified with the Chern
roots of Ω1

S . As for the second bullet, it is an immediate consequence of the
following analogues of (2.25)–(2.29):

[

Ψ(P0,±m),Ψ(P0,±m′)
]

= 0

(3.47)

[

Ψ(P0,m),Ψ(P0,−m′)
]

= ∆∗

(

ρ∗
[

δmm′m
(1− qm1 )(1− qm2 )

(1− q1)(1− q2)

]

π∗

)
(3.48)

[

Ψ(H±1,k),Ψ(P0,±m)
]

= ∆∗

(

−ρ∗
[
(1− qm1 )(1− qm2 )

(1− q1)(1− q2)

]

Ψ(H±1,k±m)

)
(3.49)

[

Ψ(H±1,k),Ψ(P0,∓m)
]

= ∆∗

(

ρ∗

[

(1− qm1 )(1− qm2 )qmδ+±

(1− q1)(1− q2)

]

Ψ(H±1,k∓m)

)
(3.50)

[

Ψ(H1,k),Ψ(H−1,k′)
]

= ∆∗






1

q−1 − 1







Ψ(Ak+k′) if k + k′ > 0

ρ∗(1− qk)π∗ if k + k′ = 0

−Ψ(qkB−k−k′) if k + k′ < 0






(3.51)

(in the context of a weak action, we only need the restriction of formulas
(3.47)–(3.51) to the diagonal ∆ ⊂ S × S) where π : Ms × S → Ms and ρ :
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Ms × S → S are the standard projections, and Am, Bm : ΛS → ΛS ×K(S)
are defined by:

∞∑

m=0

Am

xm
= exp

[
∞∑

m=1

pm
mxm

(1− q−m)

]
∣
∣
∣
∆

∞∑

m=0

Bm

xm
= exp

[
∞∑

m=1

p†m
mxm

(1− qm)

]
∣
∣
∣
∆

Formulas (3.47)–(3.51) are equalities of homomorphismsK(Ms) → K(Ms ×
S × S), which are straightforward consequences of Proposition 3.14 (in fact,
the first two of these formulas are trivial). Therefore, let us prove (3.51) as an
illustration, and leave the remaining formulas as exercises to the interested
reader. We have:

Ψ(H1,k) =

λ,µ partitions
∑

|λ|−|µ|=k

(−1)|µ|

zλzµ
pλp

†
µ

∣
∣
∣
∆

Ψ(H−1,k′) =

λ′,µ′ partitions
∑

|λ′|−|µ′|=k′

(−q)1−|λ′|

zλ′zµ′

pλ′p†µ′

∣
∣
∣
∆

Therefore, we have:

[Ψ(H1,k),Ψ(H−1,k′)]red

=

λ,µ,λ′,µ′ partitions
∑

|λ|−|µ|=k,|λ′|−|µ′|=k′

(−1)|µ|(−q)1−|λ′|

zλzµzλ′zµ′

[

pλp
†
µ

∣
∣
∣
∆
, pλ′p†µ′

∣
∣
∣
∆

]

red

Formula (3.12) allows us to compute the reduced commutator in the right-
hand side. Specifically, this reduced commutator picks up a contribution
from the pairing of any k ∈ λ (respectively l ∈ µ) and any k ∈ µ′ (respec-
tively l ∈ λ′), and this contribution is a scalar due to (3.25). Therefore, one
can write the right-hand side of the expression above as a linear combination
of expressions of the form:

pλ̃p
†
µ̃

∣
∣
∣
∆

whose coefficients are symmetric Laurent polynomials in q1 and q2. However,
the right-hand side of (3.51) is also a linear combination of expressions of
the same form. The fact that the two sides of (3.51) are equal in the case
of S = A2 (when q1, q2 are formal parameters) implies that they are equal
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in the case of an arbitrary surface (when q1, q2 are specialized to the Chern
roots of the cotangent bundle).

Now that we have showed that formulas (3.43)–(3.46) give rise to a weak
action A ↷ K(Ms), let us show that they in fact produce a strong action.
This entails proving (3.6) for all x, y ∈ A. Because of the Leibniz rule (3.12),
it suffices to consider the case when x, y range among the generators of A,
namely the Hn,m’s. For illustration, let us start with the case x = H−1,m

with y = H−1,m′ :

(3.52) Φ(H−1,m) =

∫

(−q) exp

[

−
pk

kzkqk

]

exp

[

p†kz
k

k

]
∣
∣
∣
∆

dz

2πiz

Below, we will consider two copies S1 = S2 = S of the surface, and write:

p
(i)
k , p

†,(i)
k ,Φ(i)(H−1,m) : ΛS → ΛS ×K(Si) and q(i) = [KSi

] ∈ K(Si)

for each i ∈ {1, 2}. By applying relation (3.52) twice, we have:

(

Φ(1)(H−1,m)⊠ IdS2

)

◦ Φ(2)(H−1,m′) =

∫

|z1|≪|z2|
q(1)q(2)zm1 zm

′

2(3.53)

exp

[

−
p
(1)
k

kzk1q
(1)k

]

exp

[

p
†,(1)
k zk1
k

]
∣
∣
∣
∆

exp

[

−
p
(2)
k

kzk2q
(2)k

]

exp

[

p
†,(2)
k zk2
k

]
∣
∣
∣
∆

dz1
2πiz1

dz2
2πiz2

As a consequence of (3.25), we have the following analogue of (2.14):

exp

[
∞∑

k=1

p
†,(1)
k zk1
k

]

exp

[

−
∞∑

k=1

p
(2)
k

kzk2q
(2)k

]

=

= exp

[

−
∞∑

k=1

p
(2)
k

kzk2q
(2)k

]

exp

[
∞∑

k=1

p
†,(1)
k zk1
k

]

ζS
(
z2
z1

)−1
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as an equality of operators Hom(ΛS ,ΛS ×K(S1 × S2)), where ζS is the ra-
tional function (3.42). Therefore, formula (3.53) may be rewritten as:

(

Φ(1)(H−1,m)⊠ IdS2

)

◦ Φ(2)(H−1,m′) =

∫

|z1|≪|z2|
q(1)q(2)zm1 zm

′

2 ζS
(
z2
z1

)−1

(3.54)

exp

[

−
∞∑

k=1

(

p
(1)
k

kzk1q
(1)k

+
p
(2)
k

kzk2q
(2)k

)]

exp

[
∞∑

k=1

(

p
†,(1)
k zk1
k

+
p
†,(2)
k zk2
k

)]

dz1
2πiz1

dz2
2πiz2

Similarly, we have:

(

Φ(2)(H−1,m′)⊠ IdS1

)

◦ Φ(1)(H−1,m) =

∫

|z1|≫|z2|
q(1)q(2)zm1 zm

′

2 ζS
(
z1
z2

)−1

(3.55)

exp

[

−
∞∑

k=1

(

p
(1)
k

kzk1q
(1)k

+
p
(2)
k

kzk2q
(2)k

)]

exp

[
∞∑

k=1

(

p
†,(1)
k zk1
k

+
p
†,(2)
k zk2
k

)]

dz1
2πiz1

dz2
2πiz2

However, Remark 3.17 of [22] gives us the following formula:

(3.56) ζS(x)−1 = 1− [O∆]⊗
x

(1− xq1)(1− xq2)

where q1 and q2 are the Chern roots of Ω1
S on the diagonal inside S × S.

Expanding formula (3.56) in either positive or negative powers of x shows
that it is always equal to 1 times a multiple of [O∆]. Therefore, the difference
of (3.54) and (3.55) is a multiple of [O∆], and we conclude that:

(3.57)
[

Φ(1)(H−1,m),Φ(2)(H−1,m′)
]

= (IdΛS
⊠∆)∗(A)
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where A is a certain difference of integrals of rational functions in q1 and q2,
times the symmetric expression:

exp

[

−
∞∑

k=1

(
pk

kzk1q
k
+

pk

kzk2q
k

)]

exp

[
∞∑

k=1

(

p†kz
k
1

k
+

p†kz
k
2

k

)]
∣
∣
∣
∆
: ΛS → ΛS ×K(S)

However, because of Theorem 2.10, we have:

(3.58) A = Φ

(
[H−1,m, H−1,m′ ]

(1− q1)(1− q2)

)

in the S = A2 case (when q1, q2 are formal parameters). Therefore, formula
(3.58) also holds in the situation at hand (when q1, q2 are the Chern roots
of Ω1

S). The generalization of the argument above to any x = Hn,m and
y = Hn′,m′ where n and n′ have the same sign is straightforward, and we
refer the interested reader to the proof of “Conjecture 5.7 subject to As-
sumption B” from [21].

Let us now show how to prove (3.6) for x = Hn,m and y = Hn′,m′ where
n and n′ have opposite signs, and we will do so by induction on |n|+ |n′|.
The base cases of the induction are precisely (3.47)–(3.51), so let us assume
without loss of generality that n ≥ 2. There exist u, u′, v, v′ with u+ u′ = n,
v + v′ = m, u, u′ > 0 such that:

[Hu,v, Hu′,v′ ] = (1− q1)(1− q2)
(

c ·Hn,m + ...
)

(see [3]) where the ellipsis denotes a sum of products ofHu′′,v′′ with 0 < u′′ <
n, and c is a product of expressions of the form 1 + q + ...+ qd−1. Since u
and u′ have the same sign, the argument in the previous paragraph implies
that:

Ψ(Hn,m) = c−1
[

Ψ(Hu,v),Ψ(Hu′,v′)
]

red
− c−1

(

Ψ(...)
∣
∣
∣
∆

)

(see (3.9) for the definition of the reduced commutator). We note that c is
invertible in K(S) because q − 1 is nilpotent. Therefore, the Leibniz rule
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(3.12) and the Jacobi identity (3.13) imply that:

[

Ψ(Hn,m),Ψ(Hn′,m′)
]

red
= c−1

[

Ψ(Hu,v),
[

Ψ(Hu′,v′),Ψ(Hn′,m′)
]

red

]

red
−

−c−1
[

Ψ(Hu′,v′),
[

Ψ(Hu,v),Ψ(Hn′,m′)
]

red

]

red
− c−1

[

Ψ(...)
∣
∣
∣
∆
,Ψ(Hn′,m′)

]

red

By the induction hypothesis, the right-hand side of the expression is equal
to:

c−1Ψ

(
[Hu,v, [Hu′,v′ , Hn′,m′ ]− [Hu′,v′ , [Hu,v, Hn′,m′ ]

(1− q1)2(1− q2)2
−

[..., Hn′,m′ ]

(1− q1)(1− q2)

)

The usual Leibniz rule and Jacobi identity in A show that the expression
above is

Ψ

(
[Hn,m, Hn′,m′ ]

(1− q1)(1− q2)

)

as required. □

3.21.

Akin with Subsection 2.11, we will denote elements of ΛS by f [X], and write:

(3.59)

∞∑

k=0

hk
zk

= ∧•

(

−
X

z

)

(3.60)

∞∑

k=0

ek
(−z)k

= ∧•

(
X

z

)

The following notion is analogous to Proposition 2.12:

Definition 3.22. For any f [X] ∈ ΛS and any variable z, define:

(3.61) f [X ±O∆z] = exp

[

±
∞∑

k=1

p†kz
k

k

]
∣
∣
∣
∆
· f [X]

as an element of ΛS ×K(S)[z].



✐

✐

“7-Negut” — 2022/8/12 — 1:51 — page 1833 — #41
✐

✐

✐

✐

✐

✐

The universal sheaf as an operator 1833

Using (3.59), (3.60), (3.61), we may rewrite formulas (3.45) and (3.46) as:

(3.62)

Ψ(Hn,m)(f [X]) =

∫

0,X≺|zn|≺...≺|z1|≺∞

∏n
i=1 z

⌊mi

n
⌋−⌊m(i−1)

n
⌋

i
∏n−1

i=1

(

1− zi+1q
zi

)
∏

i<j ζ
(
zj
zi

)

∧•

(

−
X

z1

)

... ∧•

(

−
X

zn

)

· f

[

X −O∆

n∑

i=1

zi

]
n∏

a=1

dza
2πiza

and:

(3.63)

Ψ(H−n,m)(f [X]) =

∫

0,X≺|z1|≺...≺|zn|≺∞

(−q)n
∏n

i=1 z
⌊mi

n
⌋−⌊m(i−1)

n
⌋

i
∏n−1

i=1

(

1− zi+1q
zi

)
∏

i<j ζ
(
zj
zi

)

∧•

(
X

z1q

)

... ∧•

(
X

znq

)

· f

[

X +O∆

n∑

i=1

zi

]
n∏

a=1

dza
2πiza

These formulas are proved by analogy with (2.38) and (2.39). The contours
of integration are explained in the last paragraph of Subsection 2.13.

3.23.

We will now bridge Theorems 3.12 and 3.20. To any element f [X] ∈
KS(k)(S

k) ⊂ ΛS , we may associate universal classes on Ms via the con-
struction (1.9):

(3.64) f [X]
ΓS
⇝ f [U ] := π∗

(

U1 ⊗ ...⊗ Uk ⊗ ρ∗(f [X])
)S(k)

where U is the universal sheaf on Ms × S, Ui denotes its pull-back to
Ms × Sk via the i–th projection map Sk → S, and π : Ms × Sk → Ms,
ρ : Ms × Sk → Sk are the projection maps. Just like in the case of A2, the
universal classes generate the K–theory groups of moduli spaces of stable
sheaves, as the following result shows.

Lemma 3.24. Any element of K(Ms
d) is of the form (3.64), for some

k ≫ d.
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Proof. Theorem 1 of [15] shows that the class of the diagonal:

∆Ms
d
→֒ Ms

d ×Ms
d

can be expressed as a Chern class of the virtual bundle:

E

��

∑2
i=0(−1)iExti(F ,F ′)

��

? _oo

Ms
d ×Ms

d (F ,F ′)? _oo

Although the result of loc. cit. is stated in cohomology, it holds at the level
of Chow groups A∗(Ms

d) with rational coefficients. Also, while this result is
stated for a surface with trivial canonical class (the top option in Assumption
S), an analogous argument works for a surface with negative canonical class
(the bottom option in Assumption S), as shown in [11] for Hilbert schemes.
Based on these facts, it is standard to show that any element of A∗(Ms

d)
can be written in the form:

π∗

(

ch(U1) · ... · ch(Uk) · ρ
∗(g)

)

∈ A∗(Ms
d)

for some k ≫ d and some g ∈ A∗(Sk). Since the Chern character K(Ms
d) →

A∗(Ms
d) is an isomorphism (over Q, as a consequence of Assumption S),

then a simple application of the Grothendieck-Hirzebruch-Riemann-Roch
theorem shows that any element of K(Ms

d) can be written as:

π∗

(

U1 ⊗ ...⊗ Uk ⊗ ρ∗(g)
)

for some g ∈ K(Sk). The formula above is equal to (3.64) for f [X] =
∑

σ∈S(k) σ
∗(g). □

Remark 3.25. It would be very interesting to prove Lemma 3.24 with-
out Assumption S (although in this case, one should rather work with a dg
scheme model of the moduli space of stable sheaves, instead of the singular
scheme Ms). However, the argument provided above requires Assumption S
in several crucial places.

3.26.

We will need a geometric incarnation on the plethysm operation (3.61):
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Proposition 3.27. For any f [X] ∈ KS(n)(S
n), we have the following iden-

tity:

(3.65) f [U ±O∆z] = π∗

[

(U1 ±O∆1•
z) ... (Uk ±O∆n•

z)⊗ f [X]
]S(n)

as elements of K(Ms × S)[z], where π : Ms × Sn × S → Ms × S is the pro-
jection map that forgets the middle n factors of S, and • indicates the sur-
viving factor of S.

Proof. Let us prove (3.65) in the case ± = +, as the case ± = − is analogous,
and so we leave it to the interested reader. The right-hand side of (3.65) is:

n∑

k=0

zk ·




∑

{a1,...,ak}⊂{1,...,n}

π∗




⊗

s∈{1,...,n}\{a1,...,an}

Us ⊗O∆a1...ak•
⊗ f [X]









S(n)

=

n∑

k=0

zk ·

(

π
(k)
∗

[

U1 ⊗ ...⊗ Un−k ⊗ f [X]
∣
∣
∣
Sn−k×∆n−k+1...n•

])S(n−k)×S(k)

where π(k) : Ms × Sn−k × S → Ms × S is the projection map that forgets
the middle n− k factors of S (the two rows above are equal because of
Frobenius reciprocity). By (3.40), the bottom row of the expression above
is equal to:

n∑

k=0

zk · π
(k)
∗

[

U1 ⊗ ...⊗ Un−k ⊗ h†k(f [X])
]S(n−k) (3.64)

=

=

n∑

k=0

zk · ΓS

(

h†k(f [X])
)

(3.36)
= ΓS

(

exp

[
∞∑

k=1

p†kz
k

k

]
∣
∣
∣
∆
· f [X]

)

= ΓS (f [X +O∆z])

which is equal to the left-hand side of (3.65). □

The following is Proposition 5.12 of [23] (see also Theorem 3.16 of [21] for
the S = A2 case). In loc. cit., the objects denoted by f [...] in formulas (3.66)
and (3.67) were actually understood to be the right-hand side of (3.65).
The fact they match our current notion of plethysm (3.61) is the content of
Proposition 3.27.
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Proposition 3.28. In terms of universal classes, (3.18)–(3.19) read:

(3.66) Φ(Hn,m)(f [U ]) =

∫

U≺|zn|≺...≺|z1|≺0,∞

∏n
i=1 z

⌊mi

n
⌋−⌊m(i−1)

n
⌋

i
∏n−1

i=1

(

1− zi+1q
zi

)
∏

i<j ζ
(
zj
zi

)

∧•

(

−
U

z1

)

... ∧•

(

−
U

zn

)

⊗ f

[

U −O∆

n∑

i=1

zi

]
n∏

a=1

dza
2πiza

and:

(3.67)

Φ(H−n,m)(f [U ]) =

∫

U≺|z1|≺...≺|zn|≺0,∞

(−q)n
∏n

i=1 z
⌊mi

n
⌋−⌊m(i−1)

n
⌋

i
∏n−1

i=1

(

1− zi+1q
zi

)
∏

i<j ζ
(
zj
zi

)

∧•

(
U

z1q

)

... ∧•

(
U

znq

)

⊗ f

[

U +O∆

n∑

i=1

zi

]
n∏

a=1

dza
2πiza

as elements of K(Ms × S), where q1 + q2 = [Ω1
S ] and q = q1q2 = [KS ].

Proof. of Theorem 1.2: Comparing formulas (3.62)–(3.63) with (3.66)–(3.67),
we observe that they are one and the same integral but over slightly differ-
ent contours. The difference is in which side of the z1, ..., zn contours the
pole at 0 lies. As we explained in the proof of Theorem 1.1, when m > ±nr,
the integrand is actually regular at 0, so formulas (3.62)–(3.63) produce the
same result as (3.66)–(3.67). □

3.29.

Consider a weak action A
Φ
↷S K(X). Given any element v ∈ K(X), the

submodule generated by v will refer to the subset A · v ⊂ K(X) consisting
of linear combinations of the following operators applied to v:

K(X)
Φ(ak)
−−−→ K(X × S)

Φ(ak−1)⊠IdS

−−−−−−−−→ ...

...
Φ(a1)⊠IdSk−1

−−−−−−−−−→ K(X × Sk)
IdX⊠γ
−−−−→ K(X × Sk)

π∗−→ K(X)

where k ∈ N, a1, ..., ak−1, ak ∈ A, γ ∈ K(Sk) are arbitrary, and π : X × Sk →
X denotes the projection. For the action of Theorem 3.12, we consider the
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submodules:

(3.68) A · 1d ⊂ K(Ms)

where 1d ∈ K(Ms
d) denotes the structure sheaf of the subvariety Ms

d ⊂ Ms.
Since the algebra A contains the operators (3.16) of tensor product with the
universal sheaf, then Lemma 3.24 implies that:

K(Ms
d) ⊂ A · 1d

for all d ≥
⌈
r−1
2r c21

⌉
. Therefore, we conclude the following:

Proposition 3.30. The A(r)–module K(Ms) is generated by {1d}d≥⌈ r−1

2r
c21⌉,

i.e.

(3.69) K(Ms) =

∞⋃

d=⌈ r−1

2r
c21⌉

A · 1d

Moreover, these submodules are contained inside each other, i.e.:

(3.70) A · 1d ⊃ A · 1d−1

for all d.

The final claim in Proposition 3.30 follows from:

(3.71) Φ(Hn,m)(◦) · 1d =

{

1d−n if m = 0

0 if m ∈ {−1, ...,−nr + 1}

for the skyscraper sheaf ◦ ∈ K(S) at any point on S. Formula (3.71) is an
immediate consequence of relation (3.66) for f = 1 (see also Proposition 4.15
of [19]).
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