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Almost positive Ricci curvature in Kato

sense — an extension of Myers’ theorem

Christian Rose

It is shown that if the Kato constant of the negative part of the
Ricci curvature below a positive level is small, then the volume
of the corresponding manifold can be bounded above in terms of
the Kato constant and the total Ricci curvature. Together with
the results from [5] and [6], this yields a generalization of the fa-
mous Bonnet-Myers theorem. Connections to some earlier gener-
alizations are discussed.

1. Introduction

The famous Bonnet-Myers theorem states that manifolds with uniformly
positive Ricci curvature are compact and have finite fundamental group. In
particular, an explicit upper bound on the diameter can be given. Finding
versions of this result assuming weaker curvature assumptions is an active
topic in Riemannian geometry. One possibility to relax the uniform lower
bound on the Ricci curvature relies on some integral conditions on the Ricci
curvature along geodesics to control the index form. Another is imposing
some uniform lower Ricci curvature bound and additional other assump-
tions on the Laplacian of the distance function or the heat kernel to con-
clude compactness. For a non-complete overview, see, e.g., [7, 11, 20] and the
references therein. In contrast to the above mentioned possiblities of gener-
alization, of particular interest for us are [9] and [1], where the size of the set
where the Ricci curvature fails to be uniformly bounded below by a positive
constant is controlled by integral conditions on subsets of positive measure.
In [1] the author proves that the volume of a manifold is always bounded
from above in terms of the Lp-mean of the Ricci curvature below a positive
threshold once the latter is finite for some p > n/2. Moreover, if it is small
enough, then the conclusions of the Bonnet-Myers theorem hold with an ex-
plicit diameter bound. In [9], it is shown that lower bounded Ricci curvature
and uniform stochastic positivity of the Ricci curvature imply finite volume.
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This together with asymptotically non-negative Ricci curvature yields com-
pactness by [6]. Later, it was asked in [10] whether spectrally positive Ricci
curvature implies compactness, a condition which is weaker than stochastic
positivity of the Ricci curvature. This cannot be true in general since this
condition can be satisfied by the hyperbolic space. Additional assumptions
have to be imposed in order to keep the influence of the Laplacian on the
Ricci curvature small enough.

As a generalization of Lp-Ricci curvature assumptions for p > n/2, Kato-
type conditions on the negative part of the Ricci curvature have been used
to study geometric and analytic properties of manifolds, see [4, 5, 12–15].
Note that the Kato condition on the negative part of the Ricci curvature
below a positive threshold implies spectrally positive Ricci curvature. An
example of geometrically important features of such Kato conditions is that
along the Kähler–Ricci flow, it is not known whether Lp-norms of the Ricci
curvature are controllable for p > 4, while the Kato condition is [18].

This short note is dedicated to the study of compactness theorems when
the negative part of the Ricci curvature is in the Kato class.

If the manifold is assumed to be compact, diameter bounds depending
on the Kato condition have been derived in [5], but the compactness follow-
ing from Kato-type curvature conditions was missing. We will prove some
compactness results in the next section under some extra hypotheses that
prevent the manifold from volume collapsing at infinity.

The first step is to show that smallness of the Kato constant of the
negative part of the Ricci curvature below a positive threshold implies finite
volume. This is achieved from some perturbation theoretic arguments and
an old idea of Bakry [2]. The latter was already used in [9] under the above
mentioned much stronger hypotheses. In contrast to their result, we do not
need the lower bound on the Ricci curvature and derive an explicit upper
bound on the volume. On the other hand, finiteness of the Kato constant
is not sufficient to conclude an upper bound on the volume similarly to
[1], since the perturbation theoretic methods we use here would not work.
However, our volume bound is interesting since it depends on the Kato
constant of the negative part of the Ricci curvature, which is weaker than
Lp for p > n/2, and the total Ricci curvature. However, Aubry’s volume
estimate does not follow from our result, but a good ultracontractive bound
on the heat semigroup for small times in conjunction with finiteness of the
Lp-mean of the negative part of the Ricci curvature implies our volume
bound by estimating the Kato constant as in [13]. Smallness of an Lp-mean of
the negative part of the Ricci curvature p > n/2 implies the Kato condition
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if the manifold is compact [5, 13]. This is unknown assuming completeness
only.

Once the finite volume property is proven, the announced compactness
results follow from curvature conditions yielding a lower bound on the vol-
ume growth of all sufficiently large balls centered at some point, such as
non-negative or even asymptotically non-negative Ricci curvature [6, 21].
On the other hand, non-collapsing of the volume of all balls of a fixed radius
is sufficient as well, which can be satisfied by several analytic assumptions on
the manifold. The bounds on the diameter and finiteness of the fundamental
group follow a posteriori from [5].

2. Results

M = (Mn, g) always denotes a complete Riemannian manifold of dimension
n ∈ N without boundary and with Ricci tensor Ric. We let

ρ(x) := min specRicx, x ∈ M,

where Ric is interpreted as a pointwise endomorphism on the cotangent bun-
dle T ∗

xM at x ∈ M . Abbreviating x− := max{0,−x} and x+ := max{0, x}
for x ∈ R, we assume throughout this article that ρ+ ∈ L1

loc(M). The op-
erator ∆ ≥ 0 is the non-negative Laplace–Beltrami operator and (Pt)t≥0

denotes the heat semigroup, i.e., Pt := e−t∆, t ≥ 0.
For K ≥ 0, we say that M = (Mn, g) satisfies the Kato condition if there

is some T > 0 such that

κT ((ρ−K)−) :=

∥

∥

∥

∥

∫ T

0
Pt(ρ−K)−dt

∥

∥

∥

∥

∞

< 1.

Theorem 2.1. Let K,T > 0 and assume that

κT ((ρ−K)−) < 1− e−KT .

Then we have

Vol(M) ≤ 1

K

1− e−KT

1− e−KT − κT ((ρ−K)−)

∫

M

ρ dvol.

Proof. By assumption, κT := κT ((ρ−K)−) < 1. Thus, we infer from [19]

∥e−t(∆−(ρ−K)
−
)∥∞,∞ ≤

(

1

1− κT

)1+ t

T

, t > 0.
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The Trotter-Kato product formula implies

∥e−t(∆+ρ)∥∞,∞ ≤ e−Kt∥e−t(∆−(ρ−K)
−
)∥∞,∞ ≤ e−Kt

(

1

1− κT

)1+ t

T

, t > 0.

Denote by ∆1 ≥ 0 the Hodge–Laplacian acting on one–forms. Since ρ− is a
Kato potential, we infer from [8] the following semigroup domination prin-
ciple:

∥e−t∆1∥∞,∞ ≤ ∥e−t(∆+ρ)∥∞,∞ ≤ e−Kt

(

1

1− κT

)1+ t

T

, t > 0.

By assumption we have

K − 1

T
ln

(

1

1− κT

)

> 0.

Hence

∫ ∞

0
∥e−t∆1∥∞,∞dt ≤

∫ ∞

0
e−Kt

(

1

1− κT

)1+ t

T

dt

=
1

1− κT

∫ ∞

0
exp

(

−t

(

K − 1

T
ln

(

1

1− κT

)))

dt

=
1

1− κT

(

K − 1

T
ln

(

1

1− κT

))−1

.(2.1)

We follow [2] to prove finite volume by contradiction. Assume Vol(M) = ∞
and let f, g ∈ C∞

c (M). Then, we must have Ptf → 0 for t → ∞. Furthermore,

∫

M

g(f − Ptf) dvol = −
∫

M

g

∫ T

0
g∂tPtf dt dvol =

∫ T

0

∫

M

g∆Ptf dvol dt

=

∫ T

0

∫

M

∇g∇Ptf dvol dt ≤
∫ T

0

∫

M

|∇g||∇Ptf | dvol dt

≤
∫ T

0
∥∇Ptf∥∞dt ∥∇g∥1 =

∫ T

0
∥e−t∆1

df∥∞ dt ∥∇g∥1

≤
∫ ∞

0
∥e−t∆1∥∞,∞ dt ∥df∥∞∥∇g∥1.
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Thus, (2.1) yields

∫

M

g(f − Ptf) dvol ≤
1

1− κT

(

K − 1

T
ln

(

1

1− κT

))−1

∥df∥∞∥∇g∥1.

(2.2)

Consider a sequence of cut-off functions (fn)n∈N with 0 ≤ fn ≤ 1 and
∥dfn∥∞ ≤ 1/n which exists by completeness. Then, (2.2) implies for all n ∈ N

and g ∈ C∞
c (M)

∫

M

g(Ptfn − fn)dvol ≤ C/n∥∇g∥1.

Letting t → ∞ and n → ∞ implies

∫

M

g dvol ≥ 0,

contradicting that g ∈ C∞
c (M) was arbitrary. Hence, M has finite volume.

We infer from [8, 17]

(ρ−K)− ≤ κT
1− e−KT

(∆ +K)(2.3)

in quadratic form sense. This yields in particular

κT
1− e−KT

∆+ ρ ≥ K

(

1− κT
1− e−KT

)

(2.4)

in quadratic form sense, and the right-hand side is strictly positive by as-
sumption. Since Vol(M) < ∞, we have 0 ∈ spec(∆) and so the constant
function 1 is in the quadratic form domain of ∆. Since (ρ−K)− is a Kato
potential, the form domain of (ρ−K)− contains the quadratic form domain
of ∆, and thus 1 is in the form domain of ∆ + ρ. Hence, (2.4) yields

∫

M

ρ dvol ≥ K

(

1− κT
1− e−KT

)

Vol(M)

and the claim follows. Note that Eq. (2.3) the same reasoning also yields an
interesting bound on the mean of (ρ−K)−. □

Let x0 ∈ M , r0(x) be the distance function emanating from x0. A mani-
fold is called asymptotically non-negatively Ricci-curved if there are x0 and
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r0 > 0 such that we have

ρ(x) ≥ − n

n− 1

1

r0(x)2
, x ∈ M, r ≥ r0.

Asymptotically non-negative Ricci curvature yields at least logarithmic vol-
ume growth of balls around x0, [6].

Corollary 2.2. Let T,K, r0 > 0, n ≥ 2, ε0 := min
{

4
n+3 , 1− e−KT

}

, and

ε ∈ [0, ε0). Any complete Riemannian manifold M of dimension n satisfying

κT ((ρ−K)−) ≤ ε

and either

(i) M is asymptotically non-negatively Ricci curved for r0 or

(ii) v := infx∈M Vol(B(x, r0)) > 0

is compact and

diamM ≤ C(n, 1− ε)
π√
K

.

Here

C(n, 1− ε) =

√

1− εn−1
n

1− εn+3
4

(

1 +
ε

n− 1

)

→ 1

as ε → 0. Moreover, the fundamental group of M is finite.

Remark 2.3. The condition v > 0 can be achieved as soon as one has a
Sobolev embedding or a uniform heat kernel bound for a certain time [3, 16].
Thus, our results somehow fit together with those from [7].

Proof of Corollary 2.2. By Theorem 2.1 we have Vol(M) < ∞. Assume that
M is not compact. For the first part, we infer from [6, Theorem 4.9(ii)] that
an asymptotically non-negatively Ricci-curved non-compact manifold has at
least logarithmic volume growth at the center point and hence must have
infinite volume, so that we have a contradiction. For the second part, note
that the assumption and finite volume implies volume doubling and hence
at least linear volume growth [21], contradicting finite volume as well. The
diameter bounds and the finiteness of the fundamental group follow from
[5, Corollary 2.4, Theorem 2.8] by setting k2 = K

2(n−1) in the notation of the
cited paper. □
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Remark 2.4. The proof works for any curvature condition giving finite
volume and, assuming a non-compact M , the existence of p ∈ M , r0, and
f : (r0,∞) → (0,∞) non-decreasing with f(t) → ∞ as t → ∞ such that
Vol(B(p, r)) ≥ f(r), r ≥ r0.
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