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Fourier uncertainty principles, scale space

theory and the smoothest average

Stefan Steinerberger

Let f ∈ L2(Rn) and suppose we are interested in computing its
average at a fixed scale. This is easy: we pick the density u of
a probability distribution with mean 0 and some moment at the
desired scale and compute the convolution u ∗ f . Is there a par-
ticularly natural choice for u? The Gaussian is a popular answer.
We were interested whether a canonical choice for u can arise from
a new axiom: having fixed a scale, the average should oscillate as
little as possible, i.e.

u = argmin
u

sup
f∈L2(Rn)

∥∇(u ∗ f)∥L2(Rn)

∥f∥L2(Rn)
.

This optimal function turns out to be a minimizer of an uncertainty
principle: for α > 0 and β > n/2, there exists cα,β,n > 0 such that
for all u ∈ L1(Rn)

∥|ξ|β · û∥αL∞(Rn) · ∥|x|
α · u∥βL1(Rn) ≥ cα,β,n∥u∥

α+β
L1(Rn).

For β = 1, any nonnegative extremizer of the inequality serves
as the best averaging function in the sense above, β ̸= 1 corre-
sponds to other derivatives. For (n, β) = (1, 1) we use the Shannon-
Whittaker formula to prove that the characteristic function u(x) =
χ[−1/2,1/2] is a local minimizer among functions defined on
[−1/2, 1/2] for α ∈ {2, 3, 4, 5, 6}. We provide a sufficient condition
for general α in terms of a sign pattern for the hypergeometric
function 1F2.

1. Introduction and motivation

What is the best way to partition a cake into two pieces for two different
people? This question, even when properly quantified, will not have a clear
universal answer. However, it is conceivable to pose a number of axioms
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that one wishes a cake-division rule to satisfy and study the set of all cake-
subdivision rules satisfying these axioms. This axiomatic method has been
very effectively used in cooperative game theory and economics (see e.g.
[33, 38, 46, 49]). A nice by-product of the axiomatic approach is that it moves
the discussion from ‘what should we do?’ to ‘what are desirable properties?’
which often leads to more insight. In the same manner, we ask a question
that was the original motivation of this paper.

Question. Let f : Rn → R. What is the ‘best’ way to average f
over a given scale? What are natural desirable properties that one
could require of such an averaging procedure and which averaging
procedures are characterized by these properties?

In the spirit of the axiomatic method, we will pose a number of desirable
properties and then investigate what these properties imply. The various
symmetries of Rn should be reflected in the averaging method: in particular,
we will focus on the special case where

average of f in a point x =

∫

Rn

f(x+ y)u(y)dy,

where u : Rn → R is a nonnegative, radial function with L1−norm
∥u∥L1(Rn) = 1. Moreover, we will assume that the averaging is supposed to
happen at a fixed scale, we will do so by imposing a condition that a certain
moment is fixed, i.e. ∫

Rn

|x|αu(x)dx = fixed.

However, even with all these restrictions, there are still a large number of
functions u that could conceivably be used. This question has been actively
studied in scale-space theory (see [4, 41, 42, 54]), a theoretical branch of
image processing concerned with the same question: how should one properly
smooth an image? In this field, the Gaussian is the canonical choice:

“A notable coincidence between the different scale-space formu-
lations that have been stated is that the Gaussian kernel arises
as a unique choice for a large number of different combinations of
underlying assumptions (scale-space axioms).” (Lindeberg [41],
1997)

We were motivated by trying to understand the implications of a new
axiom: ‘a convolution at a certain scale should be as smooth as possible’.
Obviously, this can be interpreted in many ways – a very natural way is
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to look for the function u satisfying all the constraints above for which the
constant cu in the inequality

∀ f ∈ L2(Rn) ∥∇(u ∗ f)∥L2(Rn) ≤ cu∥f∥L2(Rn)

is as small as possible. Using the Fourier-Transform, we see that, up to a
universal constant cn,

∥∇(u ∗ f)∥2L2(Rn) = cn

∫

Rn

|ξ|2|û(ξ)|2|f̂(ξ)|2dξ ≤ cn∥ξ · û(ξ)∥
2
L∞(Rn)∥f∥

2
L2(Rn).

It is not too difficult to see that this constant is sharp (since û(ξ) is con-
tinuous, we can construct a function f concentrating its L2−mass close to
a point where ξ · û(ξ) assumes its extremum). So the question is simply:
which function minimizes ∥ξ · û(ξ)∥L∞ among all radial functions with nor-
malized L1−mass and a normalized moment (controlling the scale)? This is
the question that we address in this paper. However, we emphasize are many
other interesting questions in the vicinity. There are other ways of studying
oscillation of a function than ∥∇sf∥ and other function spaces than L2 in
which one could measure the size of a function and its derivative. Finally,
we note one particularly interesting problem that arises in n = 1 dimen-
sions when one demands u to be supported in [−∞, 0]. This question is of
particular importance for time-series: how would one compute the average
score of a function when one cannot look into the future? This case is much
less understood: there are arguments in favor of the exponential distribution
[47, 50], Gaussian constructions [42] and intermediate constructions [51]. It
would be very interesting to have a better understanding of this case, also
from the perspective taken in this paper.

2. The results

2.1. An uncertainty principle

We present the most general form of the statement; the case most of interest
to us throughout the rest of the paper is (n, β) = (1, 1). The case β ̸= 1
corresponds to either higher derivatives (if β ∈ N) or fractional derivatives
(if β /∈ N). We know very little about these cases.

Theorem 1 (Uncertainty Principle). For any α > 0 and β > n/2, there
exists cα,β,n > 0 such that for all u ∈ L1(Rn)

∥|ξ|β · û∥αL∞(Rn) · ∥|x|
α · u∥βL1(Rn) ≥ cα,β,n∥u∥

α+β
L1(Rn).
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This inequality shows that fixing the L1−mass to be ∥u∥L1(Rn) = 1 and

fixing any moment leads to a universal lower bound on how small ∥|ξ|β ·
û(ξ)∥L∞(Rn) can be. This shows that our axiom for the averaging operation is
meaningful: for any averaging function u (having fixed scale and L1−norm)
there is indeed a frequency ξ such that u ∗ exp(iξx) is not all that small.
Somewhat to our surprise, we were not able to locate this uncertainty prin-
ciple among the large number of results that have been obtained in this area
(see e.g. [1, 5–13, 15–20, 22, 24–32, 34–37, 44, 45, 52]). Indeed, it seems
that most uncertainty principles have the lower bound in L2. Two some-
what related inequalities are given by a special case of the Cowling-Price
uncertainty principle [16] stating that for any α > 0 and β > 1/2

∥|ξ|β · û∥
α+ 1

2

L∞(R) · ∥|x|
α · u∥

β− 1

2

L1(R) ≥ cα,β∥u∥
α+β
L2(R).

and an inequality of Laeng & Morpurgo [40]

∥ξ · û∥2L2(R) · ∥|x|
2 · u∥L1(R) ≥ c∥u∥L1(R)∥u∥

2
L2(R)

which has some resemblance to our inequality for (n, α, β) = (1, 2, 1)

∥ξ · û∥2L∞(R) · ∥|x|
2 · u∥L1(R) ≥ c∥u∥3L1(R).

2.2. The characteristic function

From now on, we will restrict ourselves to trying to understand the extrem-
izer in the case (n, β) = (1, 1) and use the following normalization of the
Fourier Transform

û(ξ) =

∫

R

u(x)e−2πiξxdx.

Other cases may be just as interesting. Considering the initial motiva-
tion of finding the ‘best’ kernel for the purpose of smoothing functions, an
interesting choice is given by the characteristic function of an interval that is
symmetric around the origin – using the dilation symmetry, we can restrict
ourselves to the case

u(x) = χ[−1/2,1/2].

This function does indeed lead to a very small constant in the uncertainty
principle: in particular, as soon as α ≥ 1.38, the characteristic function leads
to a smaller constant than the Gaussian. We prove that it is a local minimizer
among even functions u : [−1/2, 1/2] → R for some parameters.
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Theorem 2 (Characteristic Function as Local Minimizer). Let

(n, β) = (1, 1) and α ∈ {2, 3, 4, 5, 6}. The characteristic function u(x) =
χ[−1/2,1/2](x) is a local minimizer in the class of even, smooth functions

f : [−1/2, 1/2] → R.

The proof is based on the lucky confluence of several factors:

1) if u(x) = χ[−1/2,1/2], then ξ · û(ξ) assumes its extrema on Z+ 1/2.

2) u(x) is band-limited: it is compactly supported on [−1/2, 1/2].

3) the Shannon-Whittaker reconstruction formula allows us to recon-
struct such a band-limited function from equally spaced function values
as long as we can sample with density at least 1.

4) and all the arising computations can be carried out.

The proof of Theorem 2 requires a Lemma that may be interesting in
its own right. Let f : [−1/2, 1/2] → R be an even, smooth function. We
introduce the quantity

max(f̂) = max

{
sup
k∈N

(
2k +

1

2

)
f̂

(
2k +

1

2

)
,− inf

k∈N

(
2k +

3

2

)
f̂

(
2k +

3

2

)}
.

This quantity arises naturally in the stability analysis. As it turns out, we
have the following sharp inequality (equality is attained for constant func-
tions).

Lemma. Let α ∈ {2, 3, 4, 5, 6} and let f : [−1/2, 1/2] → R be smooth and

even. We have

max(f̂) ≥
α+ 1

απ

∫ 1/2

−1/2
(1− |2x|α) f(x)dx.

This seems to be quite a curious statement – it would be interesting to
understand it better; we can verify it in some special cases, α ∈ {2, 3, 4, 5, 6},
but it does seem like it should be a special instance of a more general prin-
ciple. It is quite conceivable that the Lemma holds for all integers α ≥ 2 or
possibly even for all real numbers α ≥ 2. A necessary condition is given in
the next section.
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2.3. A sign pattern in 1F2?

At this point, it is natural to wonder about the restriction α ∈ {2, 3, 4, 5, 6}.
As far as we can tell, any case α ∈ N can be decided by a finite procedure that
consists of analyzing the sign pattern of an explicit polynomial: this poses
no difficulty for α ∈ {2, 3, 4, 5, 6} and it does seem like it could be easily
done for individual larger values of α as well. However, we have not found a
common mechanism by which all of them can be established simultaneously
(or, put differently, a reason why they should have such a sign pattern). This
seems to hinge on an interesting sign pattern structure in a hypergeometric
function.

Proposition. Let α > 0. We define, for integers k ≥ 1, the sequence

ak = 1F2

(
1 + α

2
;
3

2
,
3 + α

2
;−

π2

16
(2k − 1)2

)
.

If ak ≥ 0 for odd values of k and ak ≤ 0 for even values of k, then for all

smooth, even functions f : [−1/2, 1/2] → R,

max(f̂) ≥
α+ 1

απ

∫ 1/2

−1/2
(1− |2x|α) f(x)dx.

Moreover, the characteristic function χ[−1/2,1/2](x) is a local minimizer

among smooth functions supported in [−1/2, 1/2] for that value of α and

β = 1.

For any α ∈ N, the hypergeometric function reduces to a trigonometric
polynomial that is not terribly difficult to analyze. However, we have not
found a uniform way of treating all values of the parameter α. It is also
conceivable that the result holds for all α ≥ 2. Numerically, it seems to fail
for α < 2 (though this becomes harder to check as α approaches 2). The
hypergeometric function is given by

1F2

(
1 + α

2
;
3

2
,
3 + α

2
;x

)
=

∞∑

n=0

(1+α
2 )n

(3+α
2 )n

1

(32)n

xn

n!
,

where an = a(a+ 1) . . . (a+ n− 1) is the rising Pochhammer symbol. It is
hard to see sign patterns from this form. We also have the identity (e.g. [14])

∫ x

0
J 1

2

(x)xα−
1

2dx = cα · xα+1
1F2

(
α+ 1

2
;
3

2
,
3 + α

2
;−

x2

4

)
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where J1/2 is the Bessel function of order 1/2 and cα > 0 is a constant. This
relates the problem to the oscillation behavior of a Bessel function. Askey
[2] remarks that for α = 1, there is no sign change. Other identities exist:
introducing a modified Bessel function

Jα(x) = 0F1

(
α+ 1;−

x2

4

)
= Γ(α+ 1)

(x
2

)−α
Jα(x),

we have the following identity (from a more general result in Cho & Yun
[14])

1F2

(
1 + α

2
;
3

2
,
3 + α

2
;−

x2

4

)

= J1/2

(x
2

)2
+

∞∑

n=1

2n+ 1

n+ 1

1

(3/2)2n

((1− α)/2)n
((3− α)/2)n

(x
4

)2n
J 2
n+ 1

2

(x
2

)
.

We also refer to Askey [3], Cho & Yun [14], Fields & Ismail [21] and
Gasper [23]. It seems that there are known criteria that can be used to prove
that such expressions do not change sign. In contrast, we are interested in
highly controlled sign changes.

2.4. Open problems

There are many open problems, we only list a few.

1) Does the uncertainty principle admit an extremizer? Is it compactly
supported? Is it possible to show that for some parameters n, α, β that
the maximizer u has Fourier decay |û(ξ)| ∼ |ξ|−β? This would mean
that the extremizer is not smooth.

2) Is the extremizer given by the characteristic function when β = 1 and
α ≥ 2? Or maybe for integer α ≥ 2? Is it a global extremizer among
functions u : [−1/2, 1/2] → R that do not vanish in [−1/2, 1/2]?

3) Is it true that for any α ≥ 2 (or maybe 2 ≤ α ∈ N?), the sequence

ak = 1F2

(
1 + α

2
;
3

2
,
3 + α

2
;−

π2

16
(2k − 1)2

)

alternates sign?
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4) What can be said about the case β ̸= 1? For ∥|ξ|β · û∥L∞ to be finite,
we require |û(ξ)| ≲ (1 + |ξ|β)−1 which guarantees improved regularity
for larger β. How does the regularity of the extremizer depend on β?

5) What can be said about the extremizer when n = 1 and we restrict u
to be supported on the half line [−∞, 0]? This is relevant when one
is unable to look into the future; for an example from economics, see
[51].

6) These questions are just as interesting in higher dimensions but it
is less clear what one could expect an extremizer to look like. It is
not clear whether the characteristic function of a disk plays a similar
role – its Fourier transform is connected to the Bessel function which
already arose here as well in connection with 1F2: are there other sign
identities attached to it or are these connections restricted to the one-
dimensional case? Is the alternating sign pattern observed for 1F2 a
special instance of a more general phenomenon in higher dimensions?

3. Proofs

3.1. Proof of Theorem 1

Uncertainty principles are often a consequence of some hidden form of com-
pactness; our proof is in a similar spirit. We first show that the inequality
is invariant under multiplication with scalars and dilation. This allows us to
assume without loss of generality that

∥u∥L1(Rn) = 1 and ∥|x|α · u∥L1(Rn) = 1

and it remains to show that ∥|ξ|βû∥L∞(Rn) is not too small. The inequality
is only interesting when the quantity is finite. Then we can use ∥û∥L∞(Rn) ≤

∥u∥L1(Rn) = 1 close to the origin and |û(ξ)| ≲ |ξ|−β away from the origin to
conclude that û ∈ L2(Rn) and thus u ∈ L2(Rn). The normalization

∥|x|α · u∥L1(Rn) = 1 = ∥u∥L1(Rn)

implies that a nontrivial amount of L1−mass is distance at most ∼α 1 from
the origin. This fact combined with the Cauchy-Schwarz inequality shows
that ∥u∥L2 ≳α 1. The condition |û(ξ)| ≲ |ξ|−β implies that the L2−mass
cannot be located at arbitrarily high frequencies (depending on α, β) since
|ξ|−2β is integrable when β > n/2. If some of the L2−mass is in a bounded
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region around the origin, then ∥|ξ|βû∥L∞ is not too small unless it is all
concentrated around the origin which is not possible because ∥û∥L∞(Rn) ≤
∥u∥L1(Rn) = 1 concluding the argument.

Proof of Theorem 1. We first note the behavior of the inequality under rescal-
ing by constants and dilations. If

v(x) = c · u(x/L) for some c, L > 0,

then

∥|ξ|β · v̂(ξ)∥αL∞ = ∥|ξ|β · (cLnû(Lξ)) ∥αL∞ = cα∥|ξ|βLβLn−βû(Lξ)∥αL∞

= cαL(n−β)α∥|Lξ|βû(Lξ)∥αL∞ = cαL(n−β)α∥ξ · û(ξ)∥αL∞

as well as

∥|x|α · v∥βL1(Rn) = cβ
(∫

Rn

∣∣∣|x|αu
(x
L

)∣∣∣ dx
)β

= cβ · Lαβ

(∫

Rn

∣∣∣
∣∣∣x
L

∣∣∣
α
u
(x
L

)∣∣∣ dx
)β

= cβ · Lαβ+nβ · ∥|x|α · u∥βL1(Rn)

and

∥v∥α+β
L1(Rn) = cα+βLn(α+β)∥u∥α+β

L1(Rn).

Thus, the inequality is invariant under multiplication with scalars and dila-
tion. We use these symmetries to assume without loss of generality that

∥u∥L1(Rn) = 1 and ∥|x|α · u∥L1(Rn) = 1.

These two identities combined imply with Markov’s inequality that for any
y > 0,

1 =

∫

Rn

|x|α|u(x)|dx ≥ yα
∫

|x|≥y
|u(x)|dx

implying that there is some mass around the origin

∫

|x|≤y
|u(x)|dx ≥ 1−

1

yα
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and, in particular, for Y = 101/α (depending only on α), we have

∫

|x|≤Y
|u(x)|dx ≥

9

10
.

We note that

|û(ξ)| ≤ min

{
1,

∥|ξ|β · û∥L∞(Rn)

|ξ|β

}
,

where the first inequality follows from ∥û∥L∞(Rn) ≤ ∥u∥L1(Rn) and the second
one is merely the definition of the L∞−norm. As soon as β > n/2, this shows
that

∫

Rn

|û(ξ)|2dξ ≲n 1 + ∥|ξ|β · û∥2L∞(Rn)

∫ ∞

1

1

|ξ|2β
|ξ|n−1dξ

≲β,n 1 + ∥|ξ|β · û∥2L∞(Rn),

where ≲a1,a2,... denotes the inequality up to a positive universal constant
depending only on the parameters a1, a2, . . . . We may assume that

∥|ξ|β · û∥2L∞(Rn) < ∞

since otherwise the inequality is trivially true. Then, however, û ∈ L2(Rn)
and thus u ∈ L2(Rn). Using Hölder’s inequality

9

10
≤

∫

|x|≤Y
|u(x)|dx ≲n |Y |n/2

(∫

|x|≤Y
u(x)2dx

)1/2

and thus

∫

Rn

|û(ξ)|2dξ =

∫

Rn

u(x)2dx ≥

∫

|x|≤Y
u(x)2dx ≳n

1

Y n
.

Our goal is to show that ∥|ξ|β · û∥L∞(Rn) cannot be arbitrarily small. If it

were the case that ∥|ξ|β · û∥L∞(Rn) ≥ 1, then we have achieved the goal. We

can therefore assume without loss of generality that ∥|ξ|β · û∥L∞(Rn) ≤ 1.
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Then

|û(ξ)| ≤ min

{
1,

1

|ξ|β

}

implies that not all the L2−mass can be far away from the origin: for any
c1 > 0, ∫

|ξ|≥c1

|û(ξ)|2 ≲n

∫ ∞

c1

|ξ|n−1

|ξ|2β
dξ ≲n,β

1

c2β−n
1

.

This can be made arbitrarily small by making c1 sufficiently large. Using

∫

|ξ|≤c1

|û(ξ)|2dξ =

∫

Rn

|û(ξ)|2dξ −

∫

|ξ|≥c1

|û(ξ)|2dξ

we see that for some constant c1 = c1(Y, β, n) depending only on Y (and
thus only on α), β and n,

∫

|ξ|≤c1

|û(ξ)|2dξ ≳n,β
1

Y n
.

Using |û(ξ)| ≤ ∥u∥L1(Rn) = 1 twice, we deduce that

∫

|ξ|≤c1

|û(ξ)|dξ ≥

∫

|ξ|≤c1

|û(ξ)|2dξ ≳n,β
1

Y n

and that for suitable 0 < c2 < c1 depending only on Y and n,

∫

c2<|ξ|≤c1

|û(ξ)|dξ ≳n,β
1

Y n
> 0.

This, in turn, shows that

1

Y n
≲n,β

∫

c2≤|ξ|≤c1

|û(ξ)|dξ ≤
1

cβ2

∫

c2≤|ξ|≤c1

|ξ|β |û(ξ)|dξ ≤
1

cβ2
∥|ξ|β · û(ξ)∥L∞ .

All the arising constants Y, c1, c2 depend only on α, β and n, the result
follows. □

4. Proof of Theorem 2

We first perform a local stability analysis to understand the type of state-
ment we need to prove. We will then state a slight reformulation of the
Shannon-Whittaker reconstruction formula and prove the desired stability



✐

✐

“9-Steinerberger” — 2022/8/26 — 15:56 — page 1862 — #12
✐

✐

✐

✐

✐

✐

1862 Stefan Steinerberger

result in the simplest possible case α = 2. Indeed, in this case all the com-
putations can be carried out in closed form. We will then give a proof of the
general case which will mimic the proof of the α = 2 case while bypassing
the evaluation of one of the integrals.

4.1. Local stability analysis

We first perform a local stability analysis of the uncertainty principle for
(n, α, β) = (1, α, 1) around the function

u(x) = χ[−1/2,1/2].

Since we are interested in sharp constant, we need to specify which normal-
ization of the Fourier transform we use: it will be

û(ξ) =

∫

R

u(x)e−2πiξxdx leading to û(ξ) =
sin (πξ)

πξ
.

Let f be an even function compactly supported in [−1/2, 1/2]. We analyze
the behavior of the inequality under replacing u by u+ εf as ε → 0. We
observe that ξ · û(ξ) assumes the extremal values ±π−1 and, more precisely,

ξ · û(ξ) =

{
π−1 if ξ = 2n+ 1

2

−π−1 if ξ = 2n+ 3
2 .

This allow us to determine that for any even, smooth function f : [−1/2, 1/2]
→ R, as ε → 0 and up to lower-order terms,

∥ξ · (û(ξ) + εf̂(ξ))∥L∞ =
1

π
+ εmax(f̂) + l.o.t.,

where max(f̂) is an abbreviation for

max(f̂) = max

{
sup
k∈N

(
2k +

1

2

)
f̂

(
2k +

1

2

)
,− inf

k∈N

(
2k +

3

2

)
f̂

(
2k +

3

2

)}
.

The other two terms are easy to analyze since f is smooth and thus

∥|x|α(u+ εf)∥L1 = ∥|x|α∥L1([−1/2,1/2]) + ε

∫ 1/2

−1/2
|x|αf(x)dx+ l.o.t.

and

∥u+ εf∥α+1
L1 = 1 + (α+ 1)ε

∫ 1/2

−1/2
f(x)dx+ l.o.t.
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Moreover, the constant c in the equation

∥ξ · û(ξ)∥αL∞ · ∥|x|α · u∥L∞ = c∥u∥α+1
L1

is easily computed to be

c = π−α ·

∫ 1/2

−1/2
|x|αdx =

1

(2π)α
1

α+ 1
.

This shows that local stability at order ε is equivalent to

1

α+ 1

1

2α
αε

πα−1
max(f̂) +

1

πα
ε

∫ 1/2

−1/2
|x|αf(x)dx ≥

ε

(2π)α

∫ 1/2

−1/2
f(x)dx.

This can be rewritten as

max(f̂) ≥
α+ 1

πα

∫ 1/2

−1/2
(1− |2x|α)f(x)dx.

4.2. The Shannon-Whittaker reconstruction/interpolation
formula

The Shannon-Whittaker reconstruction formula [48, 53], first formulated by
Kotelnikov [39] (see Lüke [43]), states that if f is compactly supported in
[−1/2, 1/2], then its Fourier transform is completely determined from its
values at the integers and

f̂(ξ) =
∑

k∈Z

f̂(k)
sin (π(ξ − k))

π(ξ − k)
.

We will use a shifted version

f̂(ξ) =
∑

k∈Z

f̂

(
k −

1

2

)
sin
(
π(ξ − k + 1

2

)
)

π
(
ξ − k + 1

2

) .

The shifted version follows easily from applying the original representation
formula to the function g(x) = eiπxf(x) and exploiting symmetries of the
Fourier transform.
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4.3. The case α = 2

The purpose of this section is to explain the argument in its simplest possible
setting. The case is particularly interesting because all of the arising quan-
tities can be computed in closed form allowing for a very explicit argument.
We will show that for smooth, even f : [−1/2, 1/2] → R

max(f̂) ≥
3

2π

∫ 1/2

−1/2
(1− 4x2)f(x)dx.

Proof. We use the Plancherel identity

∫

R

f(x)g(x)dx =

∫

R

f̂(ξ)ĝ(ξ)dξ

to write

∫ 1/2

−1/2
(1− 4x2)f(x)dx =

∫

R

2 sin (πξ)− 2πξ cos (πξ)

π3ξ3
f̂(ξ)dξ.

We use the Shannon-Whittaker reconstruction formula to decompose

f̂(ξ) =
∑

k∈Z

f̂

(
k −

1

2

)
sin (π

(
ξ − k + 1

2

)
)

π
(
ξ − k + 1

2

)

allowing us to write

∫ 1/2

−1/2
(1− 4x2)f(x)dx =

∑

k∈Z

akf̂

(
k −

1

2

)
,

where

ak =

∫

R

2 sin (πξ)− 2πξ cos (πξ)

π3ξ3
sinπ

(
ξ − k + 1

2

)

π
(
ξ − k + 1

2

) dξ.

We now evaluate ak. Abbreviating h(x) = max
{
1− 4x2, 0

}
, we can also

write

ak =

∫

R

ĥ(ξ)
sinπ

(
ξ − k + 1

2

)

π
(
ξ − k + 1

2

) dξ.
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We use the Shannon-Whittaker formula once more to express ĥ and obtain

ak =

∫

R

ĥ(ξ)
sinπ

(
ξ − k + 1

2

)

π
(
ξ − k + 1

2

) dξ

=

∫

R

(
∑

m∈Z

ĥ

(
m−

1

2

)
sin
(
π(ξ −m+ 1

2

)
)

π
(
ξ −m+ 1

2

)
)

sinπ
(
ξ − k + 1

2

)

π
(
ξ − k + 1

2

) dξ

= ĥ

(
k −

1

2

)
=

∫ 1/2

−1/2
(1− 4x2) cos

(
2π

(
k −

1

2

)
x

)
dx

=
16

π3

(−1)k+1

(2k − 1)3
.

This shows

∫ 1/2

−1/2
(1− 4x2)f(x)dx =

16

π3

∑

k∈Z

(−1)k+1

(2k − 1)3
f̂

(
k −

1

2

)
.

We also note that, since f is even and real-valued, f̂(x) = f̂(−x), and thus

f̂

(
k + 1−

1

2

)
= f̂

(
−k −

1

2

)

which allows us to group positive and negative integers into

16

π3

∑

k∈Z

(−1)k+1

(2k − 1)3
f̂

(
k −

1

2

)

=
16

π3

∞∑

k=1

f̂

(
k −

1

2

)(
(−1)k+1

(2k − 1)3
+

(−1)(−k+1)+1

(2(−k + 1)− 1)3

)

=
32

π3

∞∑

k=1

f̂

(
k −

1

2

)
(−1)k+1

(2k − 1)3
.

Let us now fix the variable max(f̂) via

max(f̂) = max

{
sup
k∈N

(
2k +

1

2

)
f̂

(
2k +

1

2

)
,− inf

k∈N

(
2k +

3

2

)
f̂

(
2k +

3

2

)}
.

This means that for all k ∈ N

f̂

(
2k +

1

2

)
≤

max(f̂)

2k + 1
2

and f̂

(
2k +

3

2

)
≥ −

max(f̂)

2k + 3
2

.
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We can now maximize the sum by estimating

32

π3

∞∑

k=1

f̂

(
k −

1

2

)
(−1)k+1

(2k − 1)3

=
32

π3

∞∑

k=1

k odd

f̂

(
k −

1

2

)
1

(2k − 1)3
−

32

π3

∞∑

k=1

k even

f̂

(
k −

1

2

)
1

(2k − 1)3

=
32

π3

∞∑

k=1

max(f̂)

k − 1
2

1

(2k − 1)3
.

This sum can be combined into one sum resulting in

32

π3

∞∑

k=1

f̂

(
k −

1

2

)
(−1)k+1

(2k − 1)3
≤

64max(f̂)

π3

∞∑

k=1

1

(2k − 1)4
.

We have the generalized zeta function identity

∞∑

k=1

1

(2k − 1)4
=

π4

96

and thus
∫ 1/2

−1/2
(1− 4x2)f(x)dx ≤

3π

2
max(f̂) as desired.

□

4.4. The general case

The general case requires an additional ingredient: an oscillating sign pattern
in the hypergeometric function 1F2.

Lemma. Let k ∈ N and consider the integral

∫ 1/2

−1/2
(1− |2x|α)e−2πi(k− 1

2
)xdx.

This integral has the same sign as

ak = 1F2

(
1 + α

2
;
3

2
,
3 + α

2
;−

π2

16
(2k − 1)2

)
.

If α ∈ {2, 3, 4, 5, 6}, then ak is positive for odd k and negative for even k.
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Proof. Since 1− |2x|α is even, it is easy to see that the imaginary part
vanishes. It remains to understand the sign of the integral

∫ 1/2

−1/2
(1− |2x|α) cos

(
2π

(
k −

1

2

)
x

)
dx.

Integration by parts leads to the integral

I =
2α+1α

2π(k − 1/2)

∫ 1/2

0
xα−1 sin

(
2π

(
k −

1

2

)
x

)
.

We conclude the first step of the argument by noting that the term in front
of the integral is positive and that the integral evaluates to

I =
α

α+ 1
1F2

(
1 + α

2
;
3

2
,
3 + α

2
;−

π2

16
(2k − 1)2

)
.

We now consider the special cases, If α = 2, then

∫ 1/2

0
xα−1 sin

(
2π

(
k −

1

2

)
x

)
=

(−1)k+1

π2(2k − 1)2
.

The terms that arise for α ∈ {3, 4} are

π(−1)k+1(2k − 1)− 2

(2k − 1)3π3
,
3

4

(−1)k+1(π2(2k − 1)2 − 8)

(2k − 1)4π4

and finally, for α ∈ {5, 6} with w = 2k − 1,

(−1)kπ(w2π3 − 48k + 24)− 48

2w5π5
,
5

16

(−1)k+1(384− 48w2π2 + w4π4)

π6w6
.

For all these explicit expressions, the claim is easily verified. □

Proof of Theorem 2. We now assume that α > 0 is a real number for which

ak =

∫ 1/2

−1/2
(1− |2x|α) cos

(
2π

(
k −

1

2

)
x

)
dx.

satisfies a2k+1 ≥ 0 and a2k+2 ≤ 0 for all k ≥ 0. Under these assumptions, we
will show that

max(f̂) ≥
α+ 1

απ

∫ 1/2

−1/2
(1− |2x|α)f(x)dx
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which, by the reasoning in §4.1, is equivalent to local stability of the mini-
mizer. Interpreting ak as the Fourier transform of h(x) = max {0, 1− |2x|α}
evaluated at Z+ 1/2, we use the Shannon-Whittaker reconstruction formula
to write the integral

I =

∫ 1/2

−1/2
(1− |2x|α)f(x)dx

as

I =

∫

R

ĥ(ξ)f̂(ξ)dξ

=

∫

R

(
∑

k∈Z

ak
sin
(
π(ξ − k + 1

2

)
)

π
(
ξ − k + 1

2

)
)(

∑

k∈Z

f̂

(
k −

1

2

)
sin
(
π(ξ − k + 1

2

)
)

π
(
ξ − k + 1

2

)
)
dξ.

Orthogonality leads to cancellation of off-diagonal terms and we obtain

∫ 1/2

−1/2
(1− |2x|α)f(x)dx =

∑

k∈Z

akf̂

(
k −

1

2

)
.

As above, we note that ak = a−k+1 and, since f : [−1/2, 1/2] → R is even,
we have f̂

(
k + 1− 1

2

)
= f̂

(
−k − 1

2

)
allowing us to write

∫ 1/2

−1/2
(1− |2x|α)f(x)dx = 2

∞∑

k=1

akf̂

(
k −

1

2

)
.

Introducing the variable max(f̂) and arguing as above, we can use the as-
sumption ak > 0 for odd k and ak < 0 for even k to write

∫ 1/2

−1/2
(1− |2x|α)f(x)dx ≤ max(f̂)4

∞∑

k=1

|ak|

2k − 1

= max(f̂)4

∞∑

k=1

ak(−1)k+1

2k − 1
.
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It remains to understand this infinite sum. Recalling that ak are defined as
Fourier coefficients of the function h(x) = max {0, 1− |2x|α}, we can write

4

∞∑

k=1

ak(−1)k+1

2k − 1
= 4

∞∑

k=1

(−1)k−1

2k + 1

∫ 1/2

−1/2
(1− |2x|α)e−2πi(k− 1

2
)xdx

= 4

∫ 1/2

−1/2
(1− |2x|α)

∞∑

k=1

(−1)k+1

2k − 1
e−2πi(k− 1

2
)xdx.

This infinite sum can be evaluated. Note that

∞∑

k=1

(−1)k+1

2k − 1
e−2πi(k− 1

2
)x = eiπx

∞∑

k=1

(−1)k+1

2k − 1
e−2πikx

= arctan (e−iπx)

=
i

2
log

(
i+ e−iπx

i− e−iπx

)
.

We have, for −1/2 < x < 1/2 that

arctan (e−iπx) =
π

4
+ odd and purely imaginary function.

which simplifies the sum to

4

∞∑

k=1

ak(−1)k+1

2k + 1
= π

∫ 1/2

−1/2
(1− |2x|α)dx

= π

(
1−

1

α+ 1

)
=

απ

α+ 1
.

Altogether, we have seen that

∫ 1/2

−1/2
(1− |2x|α)f(x)dx ≤ 4max(f̂)

∞∑

k=1

ak(−1)k+1

2k − 1
= max(f̂)

απ

α+ 1

which is the desired result. □
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