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The first two authors showed in [1] how the Conley-Zehnder in-
dex of any contractible periodic Reeb orbit of a non-degenerate
toric contact form on a good toric contact manifold with zero first
Chern class, i.e. a Gorenstein toric contact manifold, can be explic-
itly computed using moment map data. In this paper we show that
the same explicit method can be used to compute Conley-Zehnder
indices of non-contractible periodic Reeb orbits. Under appropri-
ate conditions, the (finite) number of such orbits in a given free
homotopy class and with a given index is a contact invariant of the
underlying contact manifold. We compute these invariants for two
sets of examples that satisfy these conditions: 5-dimensional con-
tact manifolds that arise as unit cosphere bundles of 3-dimensional
lens spaces, and 2n+ 1-dimensional Gorenstein contact lens spaces.
As applications, we will see that these invariants can be used to
show that diffeomorphic lens spaces might not be contactomorphic
and that there are homotopy classes of diffeomorphisms of some
lens spaces that do not contain any contactomorphism. Following
a suggestion by one referee, we will also see that this type of appli-
cations can be proved alternatively by looking at the total Chern
class of these canonical contact structures on lens spaces.
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1. Introduction

The first two authors showed in [1] how the Conley-Zehnder index of any
contractible periodic Reeb orbit of a non-degenerate toric contact form on
a good toric contact manifold with zero first Chern class, i.e. a Gorenstein
toric contact manifold, can be explicitly computed using moment map data.
In this paper we show that the same explicit method can be used to compute
Conley-Zehnder indices of non-contractible periodic Reeb orbits, discuss sev-
eral examples and give applications.

Recall that the contact homology degree, or Symplectic Field Theory
(SFT) degree, of a non-degenerate closed Reeb orbit is equal to the Conley-
Zehnder index plus n− 2, where throughout this paper contact manifolds
have dimension 2n+ 1. As shown in [1, 2], this degree is always even for the
closed Reeb orbits of any non-degenerate toric contact form. Hence, given a
non-degenerate toric contact form α on a Gorenstein toric contact manifold
(M, ξ), with corresponding Reeb vector field Rα, each contact Betti number
cbj(M,α), j ∈ Z, defined by

cbj(M,α) = number of closed Rα-orbits with contact homology degree j,

should be a contact invariant of (M, ξ), the rank of its degree j cylindrical
contact homology, Unfortunately, and despite recent foundational develop-
ments (e.g. [16, 17]), cylindrical contact homology has not been proved to
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Invariants of non-simply connected toric contact manifolds 3

be a well defined invariant in the presence of contractible closed Reeb orbits,
even in this restricted context of Gorenstein toric contact manifolds.

There are however at least two particular contexts that allow us to con-
clude that the contact Betti numbers are indeed contact invariants:

(i) Gorenstein toric contact manifolds that have crepant (i.e. with zero
first Chern class) toric symplectic fillings.

(ii) Gorenstein toric contact manifolds that have a non-degenerate toric
contact form with all of its closed contractible Reeb orbits having
Conley-Zehnder index strictly greater than 3− n, i.e. SFT degree
strictly greater than 1.

Indeed, in both of these contexts we can use positive equivariant symplectic
homology to conclude that the contact Betti numbers are contact invariants,
which will be denoted by cbj(M, ξ) or just cbj(M) when the contact structure
is clear from the context. For (i), one considers the positive equivariant sym-
plectic homology of the filling and recent work of McLean and Ritter [14],
which uses previous work of Kwon and van Koert [8] (see [2, Remark 1.4]
and [3, section 2]). For (ii), one considers the positive equivariant symplectic
homology of the symplectization and the work of Bourgeois and Oancea [5,
section 4.1.2]. In this case, we can also consider the decomposition of pos-
itive equivariant symplectic homology induced by homotopy classes [γ] in
the (cyclic) fundamental group of these Gorenstein toric manifolds to get
possibly finer invariants of the their (co-oriented) contact structures:

cb
[γ]
j (M, ξ) = number of closed Rα-orbits in [γ]

with contact homology degree j.

The examples discussed in this paper are all within context (ii) above,
with some being also within context (i).

The first set of examples consists of the 5-dimensional contact manifolds
that arise as unit cosphere bundles of 3-dimensional lens spaces. We will
show that they are Gorenstein toric contact manifolds, fit within context
(ii) and compute their contact Betti numbers, including the decomposition
induced by homotopy classes in the fundamental group. Note that since
any 5-dimensional Gorenstein toric contact manifold has a crepant toric
symplectic filling, these examples also fit within context (i).

The second set of examples consists of 2n+ 1-dimensional lens spaces

L2n+1
p (ℓ0, ℓ1, . . . , ℓn)
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with canonical contact structure, arising as the quotient of the standard con-
tact sphere S2n+1 ⊂ Cn+1 by the Zp-action with weights ℓ0, ℓ1, . . . , ℓn ∈ Z.
Such an action is free when the weights are coprime with p and the resulting
smooth contact lens space has zero first Chern class if and only if the sum
of the weights is zero mod p. Being finite quotients of the standard contact
sphere, all these Gorenstein toric contact lens spaces can easily be seen to
fit context (ii), although most of them do not fit context (i). We will give an
explicit method to compute their contact Betti numbers and their decompo-
sition by homotopy classes of the fundamental group (see Proposition 5.1),
and illustrate how these invariants can be used to prove the following type
of results.

Proposition 1.1. The diffeomorphic lens spaces

L13
5 (1, 1, 1, 1, 2,−2, 1) and L13

5 (1,−1,−1,−1,−2,−2, 1)

have inequivalent canonical contact structures, both with zero first Chern
class.

Proposition 1.2. The lens space L15
5 (1, 1, 1, 2,−2,−2,−2, 1) has an ho-

motopy class of orientation preserving diffeomorphisms that does not con-
tain any contactomorphism of its canonical contact structure. In fact, it
has an orientation preserving diffeomorphism that acts by multiplication by
2 ∈ (Z5)

∗ on its fundamental group Z5, while any contactomorphism of its
canonical contact structure acts by multiplication by ±1 ∈ (Z5)

∗.

Remark 1.3. Following a very relevant suggestion by one referee, it turns
out that this type of results can also be proved by looking at the total Chern
class of these canonical contact structures on lens spaces. In fact, we have
that

H2j(L2n+1
p (ℓ0, ℓ1, . . . , ℓn);Z) ∼= Zp , for j = 1, . . . , n ,

and the Chern classes of the canonical contact structure are given by (cf.
Proposition A.1 in appendix A)

cj = σj mod p , j = 1, . . . n ,

where σj = j-th elementary symmetric polynomial of ℓ0, ℓ1, . . . , ℓn. For ex-
ample,

c1 =

n∑

k=0

ℓk mod p and cn =

n+1∑

k=0

ℓ0 · · · · · ℓn
ℓk

mod p .
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In particular, this gives

c6(L
13
5 (1, 1, 1, 1, 2,−2, 1)) = 1 + 1 + 1 + 1− 2 + 2 + 1 = 5 = 0 mod 5

and

c6(L
13
5 (1,−1,−1,−1,−2,−2, 1))

= 1− 1− 1− 1 + 2 + 2 + 1 = 3 ̸= 0 mod 5 ,

which implies Proposition 1.1. Regarding Proposition 1.2, we have that

c7(L
15
5 (1, 1, 1, 2,−2,−2,−2, 1))

= −1− 1− 1 + 2− 2− 2− 2− 1 = 2 ̸= 0 mod 5 .

Moreover, if a diffeomorphism of a lens space acts by multiplication by
k ∈ Z∗

k on its fundamental group, then it acts by multiplication by kj ∈ Z∗
k on

its degree 2j cohomology. Hence, the orientation preserving diffeomorphism
considered in Proposition 1.2 does not fix c7(L

15
5 (1, 1, 1, 2,−2,−2,−2, 1)),

since it acts on it by multiplication by 27 = 128 ≡ 3 mod 5, which immedi-
ately implies that there is no contactomorphism in its homotopy class.

Although there are lens spaces with canonical contact structure having
total Chern class equal to zero, they do not provide relevant examples for
the type of results considered in Propositions 1.1 and 1.2. In fact, as we
will see in appendix A, at least for prime p there are no examples of lens
spaces where the type of results considered in Propositions 1.1 and 1.2 do
not follow from total Chern class considerations, the reason being that the
canonical contact structure of a lens space L2n+1

p (ℓ0, ℓ1, . . . , ℓn) is completely
determined by the diffeomorphism type of the lens space and the total Chern
class of the contact structure.

The paper is organized as follows.

• In section 2 we recall fundamental facts about Gorenstein toric con-
tact manifolds, including some (perhaps new) observations relating
their fundamental groups with combinatorial properties of their toric
diagrams. We will also present some examples, describing in detail the
ones mentioned above.

• Section 3 is the main technical section of the paper, where we show that
the explicit method developed in [1], to compute the Conley-Zehnder
index of any contractible periodic Reeb orbit of a non-degenerate toric
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contact form on a Gorenstein toric contact manifold, can also be used
for non-contractible periodic Reeb orbits.

• In section 4 we compute the contact Betti numbers of unit cosphere
bundles of 3-dimensional lens spaces, including their decomposition
induced by homotopy classes in the fundamental group.

• In section 5, we give an explicit method to compute the contact Betti
numbers of Gorenstein contact lens spaces and their decomposition by
homotopy class of the fundamental group (Proposition 5.1), illustrate
how it can be explicitly used in some examples, including Gorenstein
prequantizations of CPn (Example 5.5), and prove Propositions 1.1
and 1.2.

• Finally, appendix A is devoted to considerations regarding the total
Chern class of the canonical contact structure of a lens space and
results of the type considered in Propositions 1.1 and 1.2.

2. Gorenstein toric contact manifolds

In this section we recall fundamental facts about Gorenstein toric contact
manifolds that will be needed in the paper, including some (perhaps new)
observations relating their fundamental groups with combinatorial proper-
ties of their toric diagrams. We will also present some examples, describ-
ing in detail the ones that were already mentioned in the Introduction, i.e.
5-dimensional contact manifolds that arise as unit cosphere bundles of 3-
dimensional lens spaces and 2n+ 1-dimensional lens spaces.

2.1. Toric diagrams

In this subsection we closely follow the presentation in [2] to recall the 1-1
correspondence between Gorenstein toric contact manifolds, i.e. good toric
contact manifolds (in the sense of Lerman [9]) with zero first Chern class,
and toric diagrams (defined below).

Via symplectization, there is a 1-1 correspondence between co-oriented
contact manifolds and symplectic cones, i.e. triples (W,ω,X) where (W,ω)
is a connected symplectic manifold and X is a vector field, the Liouville
vector field, generating a proper R-action ρt :W →W , t ∈ R, such that
ρ∗t (ω) = etω. A closed symplectic cone is a symplectic cone (W,ω,X) for
which the corresponding contact manifold M =W/R is closed.
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A toric contact manifold is a contact manifold of dimension 2n+ 1
equipped with an effective Hamiltonian action of the standard torus of di-
mension n+ 1: Tn+1 = Rn+1/2πZn+1. Also via symplectization, toric con-
tact manifolds are in 1-1 correspondence with toric symplectic cones, i.e.
symplectic cones (W,ω,X) of dimension 2(n+ 1) equipped with an effective
X-preserving Hamiltonian Tn+1-action, with moment map µ :W → Rn+1

such that µ(ρt(w)) = etµ(w), for all w ∈W and t ∈ R. Its moment cone is
defined to be C := µ(W ) ∪ {0} ⊂ Rn+1.

A toric contact manifold is good if its toric symplectic cone has a moment
cone with the following properties.

Definition 2.1. A cone C ⊂ Rn+1 is good if it is strictly convex and there
exists a minimal set of primitive vectors ν1, . . . , νd ∈ Zn+1, with d ≥ n+ 1,
such that

(i) C =
⋂d

j=1{x ∈ Rn+1 | ℓj(x) := ⟨x, νj⟩ ≥ 0}.

(ii) Any codimension-k face of C, 1 ≤ k ≤ n, is the intersection of exactly
k facets whose set of normals can be completed to an integral basis of
Zn+1.

The primitive vectors ν1, . . . , νd ∈ Zn+1 are called the defining normals of
the good cone C ⊂ Rn+1.

The analogue for good toric contact manifolds of Delzant’s classification
theorem for closed toric symplectic manifolds is the following result (see [9]).

Theorem 2.2. For each good cone C ⊂ Rn+1 there exists a unique closed
toric symplectic cone (WC , ωC , XC , µC) with moment cone C.

The existence part of this theorem follows from an explicit symplectic
reduction of the standard euclidean symplectic cone (R2d \ {0}, ωst, Xst),
where d is the number of defining normals of the good cone C ⊂ Rn+1, with
respect to the action of a subgroup K ⊂ Td induced by the standard action
of Td on R2d \ {0} ∼= Cd \ {0}. More precisely,

(1) K :=



[y] ∈ Td |

d∑

j=1

yjνj ∈ 2πZn+1



 ,
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where ν1, . . . , νd ∈ Zn+1 are the defining normals of C, i.e.K := ker(β) where
β : Td → Tn+1 is represented by the matrix

(2) [ ν1 | · · · | νd ] .

Depending on the context, which will be clear in each case, we will also
denote by β the map from Zd to Zn+1 represented by this matrix.

The Chern classes of a co-oriented contact manifold can be canonically
identified with the Chern classes of the tangent bundle of the associated
symplectic cone. The following proposition gives a moment cone character-
ization of the vanishing of the first Chern class that is commonly used in
toric Algebraic Geometry (see, e.g., §4 of [4]).

Proposition 2.3. Let (WC , ωC , XC) be a good toric symplectic cone. Let
ν1, . . . , νd ∈ Zn+1 be the defining normals of the corresponding moment cone
C ⊂ Rn+1. Then c1(TWC) = 0 if and only if there exists ν∗ ∈ (Zn+1)∗ such
that

ν∗(νj) = 1 , ∀ j = 1, . . . , d .

By an appropriate change of basis of the torus Tn+1, i.e. an appropriate
SL(n+ 1,Z) transformation of Rn+1, this implies the following.

Corollary 2.4. Let (WC , ωC , XC) be a good toric symplectic cone with
c1(TWC) = 0. Then there exists an integral basis of Tn+1 for which the defin-
ing normals ν1, . . . , νd ∈ Zn+1 of the corresponding moment cone C ⊂ Rn+1

are of the form

νj = (vj , 1) , vj ∈ Zn , j = 1, . . . , d .

The next definition and theorem are then the natural analogues for
Gorenstein toric contact manifolds of Definition 2.1 and Theorem 2.2.

Definition 2.5. A toric diagram D ⊂ Rn is an integral simplicial poly-
tope with all of its facets Aff(n,Z)-equivalent to conv(e1, . . . , en), where
{e1, . . . , en} is the canonical basis of Rn.

Remark 2.6. The group Aff(n,Z) of integral affine transformations of Rn

can be naturally identified with the elements of SL(n+ 1,Z) that preserve
the hyperplane {(v, 1) | v ∈ Rn} ⊂ Rn+1.

Theorem 2.7. For each toric diagram D ⊂ Rn there exists a unique Goren-
stein toric contact manifold (MD, ξD) of dimension 2n+ 1.
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The Tn+1-action associates to every vector ν ∈ Rn+1 a contact vector
field Rν ∈ X (MD, ξD). We will say that a contact form αν ∈ Ω1(MD, ξD) is
toric if its Reeb vector field Rαν

satisfies

Rαν
= Rν for some ν ∈ Rn+1.

In this case we will say that ν ∈ Rn+1 is a toric Reeb vector and that Rν is
a toric Reeb vector field.

Definition 2.8. A normalized toric Reeb vector is a toric Reeb vector ν ∈
Rn+1 of the form

ν = (v, 1) with v ∈ Rn.

Proposition 2.9 ([12] or [2, Corollary 2.15]). The interior of a toric
diagram D ⊂ Rn parametrizes the set of normalized toric Reeb vectors on the
Gorenstein toric contact manifold (MD, ξD), i.e. ν = (v, 1) is a normalized
toric Reeb vector iff v ∈ int(D).

2.2. Fundamental group

Let WC be a good toric symplectic cone and ν1, . . . , νd ∈ Zn+1 the defining
normals of the corresponding moment cone C ⊂ Rn+1. By a result of Ler-
man [10], the fundamental group π1(WC) is isomorphic (canonically with
respect to base points) to Zn+1/N , where N is the Z-span of {ν1, . . . , νd}.
Any toric Reeb vector field Rν , ν ∈ Rn+1, has at least m simple closed orbits
γ1, . . . , γm, corresponding to the m edges E1, . . . , Em of the cone C, and we
will now determine how these simple closed orbits can be seen and related
as elements of π1(WC).

Consider an edge Eℓ of C obtained as the intersection of n facets with
normals νℓ1 , . . . , νℓn . We can complete νℓ1 , . . . , νℓn to a Zn+1-basis νℓ1 , . . . ,
νℓn , ηℓ. Given a toric Reeb vector field Rν , we can write ν ∈ Rn+1 uniquely
as

ν =

n∑

i=1

bℓiνℓi + bℓηℓ .

Then, the simple closed orbit γℓ of Rν corresponding to the edge Eℓ rep-
resents the element [sgn(bℓ)ηℓ] ∈ Zn+1/N in the fundamental group of WC .
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Consider the homomorphism ϕ : Z → Zn+1/N defined by ϕ(1) = [ηℓ]. Since

ηℓZ+N ⊇ ηℓZ+ νℓ1Z+ . . .+ νℓnZ = Zn+1 ,

the homomorphism ϕ is surjective. Thus Zn+1/N ∼= Z/ kerϕ = ZNℓ
where

Nℓ = min{k ∈ Z+ : kηℓ ∈ N} .

This shows that π1(WC) is cyclic and is generated by any of the simple
closed orbits γℓ of Rν . Moreover it follows that Nℓ = N is the same for each
edge Eℓ and is the order of the fundamental group ofWC . A way to compute
this order N is the following (see also [11]).

Proposition 2.10. The fundamental group ofWC is a cyclic group of order
N where

N = gcd





∣∣∣∣∣∣

| |
νi1 . . . νin+1

| |

∣∣∣∣∣∣
: 1 ≤ i1 < . . . < in+1 ≤ d



 .

In particular, if C is determined by a toric diagram D = conv(v1, . . . , vd)
(i.e. νj = (vj , 1)) then

N = gcd

{
1

n!
Vol(conv(vi1 , . . . , vin+1

)) : 1 ≤ i1 < . . . < in+1 ≤ d

}
.

Proof. Let

A =



| |
ν1 . . . νd
| |


 ,

which is a (n+ 1)× d matrix. By the Smith normal form we have

π1(WC) ∼= Zn+1/N = Zn+1/im(A) ∼= Zα1
⊕ . . .⊕ Zαn+1

,

where α1, . . . , αn+1 are the invariant factors of A given by

αi =
di(A)

di−1(A)
,

where di(A) is the greatest common divisor of all the i× i minors of A
(d0(A) is set to be 1). We claim that dn(A) = 1, from which follows that
α1 = . . . = αn = 1.
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Indeed let νℓ1 , . . . , νℓn be the normals corresponding to facets intersecting
at an edge Eℓ of C and let ηℓ ∈ Zn+1 be such that νℓ1 , . . . , νℓn , ηℓ is a basis
of Zn+1. Then ∣∣∣∣∣∣

| | |
νℓ1 . . . νℓn ηℓ
| | |

∣∣∣∣∣∣
= ±1 .

By the Laplace rule on the last column we get an integral combination of
the n× n minors of 


| |
νℓ1 . . . νℓn
| |




giving 1, hence their greatest common divisor is 1, showing that dn(A) = 1.
The result now follows since π1(WC) ∼= Zαn+1

and αn+1 = dn+1(A) =
N . □

If we now consider two different edges, say Eℓ and Ek, how can we
relate the corresponding simple closed Reeb orbits, γℓ and γk, as elements in
the fundamental group π1(WC)? Let νℓ1 , . . . , νℓn , ηℓ and νk1

, . . . , νkn
, ηk be

integral basis of Zn+1 corresponding to the edges Eℓ and Ek, respectively.
Consider the change of Z-basis

ηℓ =

n∑

j=1

bjνkj
+ bηk(3)

νℓi =

n∑

j=1

aijνkj
+ aiηk(4)

with bj , b, aij , a ∈ Z. Then

∣∣∣∣∣∣∣∣∣

b1 . . . bn b
a11 . . . a1n a1
...

...
...

an1 . . . ann an

∣∣∣∣∣∣∣∣∣

= ±1 .

If follows from (4) that aiηk ∈ N , and so we have that N |ai for i = 1, . . . , n.
Thus, the determinant being ±1 gives

b

∣∣∣∣∣∣∣

a11 . . . a1n
...

...
an1 . . . ann

∣∣∣∣∣∣∣
≡ ±1 mod N.
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Equation (3) gives [ηℓ] = b[ηk], that is, [ηk] = c[ηℓ] where

c ≡ b−1 ≡ ±

∣∣∣∣∣∣∣

a11 . . . a1n
...

...
an1 . . . ann

∣∣∣∣∣∣∣
mod N .

Moreover, this is still valid if aij satisfy the equations

νℓi ≡
n∑

j=1

aijνkj
mod N ,

which allows the computation of c without determining ηℓ, ηk.

2.3. Examples

2.3.1. Prequantizations. One source for examples of good toric contact
manifolds is the prequantization construction over integral closed toric sym-
plectic manifolds, i.e. (M, ξ) withM given by the S1-bundle over (B,ω) with
Euler class −[ω]/2π and ξ being the horizontal distribution of a connection
with curvature ω. The corresponding good cones have the form

C := {z(x, 1) ∈ Rn × R | x ∈ P , z ≥ 0} ⊂ Rn+1

where P ⊂ Rn is a Delzant polytope with vertices in the integer lattice
Zn ⊂ Rn. Note that if

P =

d⋂

j=1

{x ∈ Rn | ⟨x, vj⟩+ λj ≥ 0} ,

with integral λ1, . . . , λd ∈ Z and primitive v1, . . . , vd ∈ Zn, then the defining
normals of C ⊂ Rn+1 are

νj = (vj , λj) , j = 1, . . . , d .

When λ1 = · · ·λd = 1 we have that c1(TB, ω) = [ω]/2π and the prequan-
tization is a Gorenstein toric contact manifold with toric diagram D :=
conv(v1, . . . , vd) ⊂ Rn.

2.3.2. 3-dimensional lens spaces and their unit cosphere bundles.
A 3-dimensional lens space L3

p(q) := L3
p(1, q), where p, q ∈ N are coprime, is
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the quotient of S3 ⊂ C2 \ {0} by the free action of Zp generated by

[1].(z0, z1) =
(
e

2πi

p z0, e
2πiq

p z1

)
.

Recall that the unit cosphere bundle S∗N of any smooth (oriented) mani-
fold N has a canonical (co-oriented) contact structure with symplectization
T ∗N \ {0-section} with its canonical symplectic structure. We will now show
that any S∗L3

p(q) is a Gorenstein toric contact manifold with toric diagram
given by a parallelogram in R2.

Let us start by characterizing the smooth 5-manifolds that can be ob-
tained from parallelograms in R2.

Proposition 2.11. Let D = conv((0, 0), (1, 0), (q, p), (q + 1, p)) be a toric
diagram where p, q ∈ N are coprime. Then the corresponding manifold M =
MD is diffeomorphic to S∗L ∼= L× S2 where L = L3

p(q).

Remark 2.12. Note that any parallelogram is Aff(2,Z)-equivalent to one of
the diagrams considered in the theorem, so this shows that any toric diagram
which is a parallelogram corresponds to S∗L for some lens space L. The order
p of the fundamental group p is given by the area of the toric diagram.

Proof. The symplectizationW ofM is the toric symplectic cone determined
by the good moment cone C ⊂ R3 with normals

ν1 = (q + 1, p, 1) , ν2 = (0, 0, 1) , ν3 = (1, 0, 1) and ν4 = (q, p, 1) .

More precisely, it is the symplectic reduction of (C4 \ {0}, ωst, Xst) with
respect to the naturally induced action of K ⊂ T4, with K := kerβ where
β : T4 → T3 is represented by the matrix (cf. (2))



q + 1 0 1 q
p 0 0 p
1 1 1 1


 .

Hence we have that

K ∼=
{(
eit, eit+

2πi(q−1)k

p , e−it− 2πiqk

p , e−it+ 2πik

p

)
: t ∈ R, k ∈ Z

}
= S1 × ⟨ξ⟩

where ξ =
(
1, e

2πi(q−1)

p , e−
2πiq

p , e
2πi

p

)
(notice that ⟨ξ⟩ ∼= Zp). This means that

W = {(z1, z2, z3, z4) ∈ C4 \ {0} : |z1|
2 + |z2|

2 − |z3|
2 − |z4|

2 = 0}/(S1 × ⟨ξ⟩)
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and M = (S3 × S3)/(S1 × ⟨ξ⟩) where

S3 × S3 = {(z1, z2, z3, z4) ∈ C4 : |z1|
2 + |z2|

2 = |z3|
2 + |z4|

2 = 1} ⊂ C4

and

S1 = {
(
eit, eit, e−it, e−it

)
: t ∈ R}

acts naturally on S3 × S3 ⊂ C2 × C2. By identifying C2 with the quaternions
H via (z1, z2) → z1 + jz2 we can also look at S3 as the unit quaternions,
giving S3 a Lie group structure. Notice that the maps (z1, z2, z3, z4) → (z1 :
z2) ∈ CP 1 ∼= S2 and

(z1, z2, z3, z4) → (z1 + jz2)(z3 + z4j)

= (z1z3 − z2z4) + (z1z4 + z2z3)j ∈ S3 ⊆ H

are both invariant under the action of S1.

Lemma 2.13. The map ψ : S3 × S3 → S3 × CP 1 ∼= S3 × S2 defined by

(z1, z2, z3, z4) → ((z1z3 − z2z4, z1z4 + z2z3), (z1 : z2))

induces a diffeomorphism (S3 × S3)/S1 ∼= S3 × CP 1.

Proof. It suffices to show that ψ is surjective with S1-orbits as fibers.
Surjectivity. Let (x, z) ∈ S3 × CP 1. If we choose z1, z2 such that |z1|

2 +
|z2|

2 = 1 and z1/z2 = z and define z3, z4 by z3 + z4j = (z1 + jz2)
−1x we get

ψ(z1, z2, z3, z4) = (x, z).
Fibers. Suppose that ψ(z) = ψ(z′). From z1/z2 = z′1/z

′
2 follows that there is

t ∈ R such that z′1 = eitz1 and z′2 = eitz2. Moreover,

(z1 + jz2) (z3 + z4j) =
(
z′1 + jz′2

) (
z′3 + z′4j

)
= (z1 + jz2)

(
eitz′3 + eitz′4j

)
.

Thus z3 = eitz′3 and z4 = eitz′4; that is,

(z′1, z
′
2, z

′
3, z

′
4) = (eitz1, e

itz2, e
−itz3, e

−itz4),

so z and z′ are in the same S1-orbit. □

One can easily see that the ⟨ξ⟩-action on S3 × S3 descends via ψ to a ⟨ξ̃⟩-
action on S3 × CP 1 with

ξ̃ · (z1, z2, z) =
(
e−

2πiq

p z1, e
2πi

p z2, e
− 2πi(q−1)

p z
)

for (z1, z2) ∈ S3 and z ∈ CP 1.
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Since S3 is a Lie group, the unit sphere bundle SS3 admits a trivi-
alization φ : SS3 → S3 × S2 and S3 × S2 can be identified with S3 × CP 1

via idS3 × st, where st : S2 → CP 1 is the standard identification between
S2 ∼= R2 ∪ {∞} and CP 1 ∼= C ∪ {∞}. We will show that, under these iden-
tifications, the ⟨ξ̃⟩-action on S3 × CP 1 can be seen as a ⟨dg⟩-action on SS3,
where dg is the natural lift to SS3 of the ⟨g⟩-action on S3 determined by

g · (z1, z2) =
(
e−

2πiq

p z1, e
2πi

p z2

)
.

More precisely, we will prove that the diagram

S3 × CP 1 S3 × CP 1

S3 × S2 S3 × S2

SS3 SS3

ξ̃

g×r2α

id×st id×st

dg

φ φ

commutes, where r2α is a certain rotation of S2 with angle 2α (see below).
It will then follow that

M = (S3 × S2)/⟨ξ̃⟩ ∼= SS3/⟨dg⟩ ∼= S
(
S3/⟨g⟩

)
∼= SL3

p(q)
∼= L3

p(q)× S2

as desired.
To show that the diagram commutes, consider again S3 ⊂ H as the unit

quaternions. Since

e−
2πiq

p z1 + e
2πi

p z2j = e−
πi(q−1)

p (z1 + z2j)e
−πi(q+1)

p

the ⟨g⟩-action on S3 can be written as

g · x = eiαxeiβ , x ∈ S3 ⊂ H ,

where α = −π(q−1)
p , β = −π(q+1)

p . We can now think of the tangent space

SxS
3 at x as the set of unit quaternions v ∈ H perpendicular to x. Thus

SS3 consists of pairs of orthogonal quaternions (x, v) ∈ H×H such that
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|x| = |v| = 1. We have a trivialization

(5) φ : SS3 → S3 × SeS
3 ∼= S3 × S2 given by φ(x, v) = (x, vx−1) .

Here SeS
3 is the unit sphere bundle at the identity of S3, that is,

SeS
3 = {ai+ bj + ck : a2 + b2 + c2 = 1} ∼= S2.

For (x, v) ∈ SS3 we have that

φ((dg) · (x, v)) = φ
(
eiαxeiβ , eiαveiβ

)

=
(
eiαxeiβ , eiαvx−1e−iα

)
=
(
g · x, r2α(vx

−1)
)
,

where r2α(w) = eiαwe−iα is the rotation of S2 = SeS
3 with angle 2α about

the i-axis. This shows that the down square of the diagram commutes.
Consider now the ⟨ξ̃⟩-action on S3 × S2. It is clear that on the first

coordinate ξ̃ acts as g. If we give spherical coordinates (θ, ϕ) to S2 with
respect to the i-axis, then the stereographic projection st : S2 → CP 1 from
i is given by st(θ, ϕ) = cot(θ/2)eiϕ and the rotation around the i-axis with
angle 2α is given by r2α(θ, ϕ) = (θ, ϕ+ 2α). Therefore

e2iα · st(θ, ϕ) = cot(θ/2)ei(ϕ+2α) = st(θ, ϕ+ 2α) = st(r2α(θ, ϕ)).

From this we can conclude that the top square commutes. □

We will now prove that the toric contact structures on L3
p(q)× S2 are in-

deed the standard contact structures on the unit cosphere bundles S∗L3
p(q).

Let us start with the case p = 1 and q = 0, i.e. when the toric diagram is

D = conv((0, 0), (1, 0), (0, 1), (1, 1)) .

The corresponding moment cone in R3 has normals

ν1 = (1, 1, 1) , ν2 = (0, 0, 1) , ν3 = (1, 0, 1) and ν4 = (0, 1, 1) .

Via the SL(3,Z) transformation




1 1 −1
−1 1 0
0 −1 1


 ,
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this cone is equivalent to the one with normals

ν̃1 = (1, 0, 0) , ν̃2 = (−1, 0, 1) , ν̃3 = (0,−1, 1) and ν̃4 = (0, 1, 0) ,

which is the cone over the Delzant polytope [0, 1]× [0, 1]. This means that
(MD, ξD) is the prequantization of (B = S2 × S2, ω = σ1 + σ2), where σi =
π∗i (σ) with πi : S

2 × S2 → S2, i = 1, 2, the factor projections and
∫
S2 σ = 2π.

This prequantization is well known to be contactomorphic to S∗S3 with its
canonical contact structure, but we present here a proof for completeness.

Proposition 2.14. The prequantization of (S2 × S2, σ1 + σ2) is S
∗S3 with

its canonical contact structure.

Proof. We can use the bi-invariant metric ⟨·, ·⟩ on S3 to identify S∗S3 with
SS3. This provides SS3 with a contact form α which is given by α(x,v)(U) =
⟨pr∗U, v⟩x for (x, v) ∈ SS3 and U ∈ T(x,v)SS

3 where pr : SS3 → S3 is the
canonical projection. The Reeb flow for this contact form is the geodesic
flow on SS3.

Consider the diffeomorphism φ : SS3 → S3 × S2 defined by (5). Since
the usual Riemannian metric of S3 is bi-invariant for the Lie group structure
on S3, under this diffeomorphism the geodesic flow is given by (t, (x,w)) 7→
(x exp(tw), w); note that t 7→ exp(tw) has period 2π for every w ∈ S2, so the
geodesic flow gives a S1-action on SS3. We can check that this action gives
a principal S1-bundle π : SS3 → S2 × S2 where π is defined by π(x, v) =
(vx−1, x−1v).

We want to show that the curvature form ω ∈ Ω2(S2 × S2) of this bundle
for the connection determined by the contact form α is σ1 + σ2; recall that
ω is determined by the formula dα = π∗ω.

We begin by showing that ω is invariant for the SO(3)× SO(3)-action
on S2 × S2. First, we note that S3 × S3 acts on SS3 via left and right
multiplication, that is,

(g1, g2) · (x, v) = (dLg1)(dRg2)
−1(x, v) = (g1xg

−1
2 , g1vg

−1
2 ) .

Moreover, it acts on S2 × S2 via conjugation on both coordinates:

(g1, g2) · (w1, w2) = (g1w1g
−1
1 , g2w2g

−1
2 ) .

We can easily check that π : SS3 → S2 × S2 is equivariant with respect to
these actions. Thus, if we show that α is invariant with respect to the S3 × S3

action on SS3 it follows that ω is invariant with respect to the S3 × S3 action
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on S2 × S2 which descends to the usual SO(3)× SO(3)-action by rotations
on each component. Indeed, we have:

[(dLg1)
∗α](x,v)(U) = α(g1x,g1v)((dLg1)∗U) = ⟨g1v, pr∗(dLg1)∗U⟩g1x

= ⟨g1v, g1pr∗U⟩g1x = ⟨v, pr∗U⟩x = α(x,v)(U) .

Hence (dLg1)
∗α = α. Note that we used that pr ◦ dLg1 = Lg1 ◦ pr and that

the metric ⟨·, ·⟩ is left-invariant. Similarly (dRg1)
∗α = α, so the claim follows.

Now, since the SO(3)× SO(3)-action is transitive, it is clear that this
action preserves ω if and only if ω has the form λ1σ1 + λ2σ2 for some λ1, λ2 ∈
R. We compute λ1 by computing the integral of ω on the sphere S2 × {i}.
We can check that π maps the disk

D = {(x, xi) ∈ SS3 : x = a+ bj + ck with a2 + b2 + c2 = 1, a ≥ 0} ⊆ SS3

onto S2 × {i} and is injective in D \ ∂D (and collapses the boundary to the
point (−i, i)). Hence

λ1 =
1

2π

∫

S2×{i}
ω =

1

2π

∫

D
π∗ω =

1

2π

∫

∂D
α

by Stokes’ theorem and π∗ω = dα. But ∂D is the closed orbit of the Reeb
flow (since it is mapped by π to a point) and the closed orbits of the Reeb
flow have period 2π, hence λ1 =

1
2π

∫
∂D α = 1. Similarly λ2 = 1 and thus

ω = σ1 + σ2. □

Now we prove that in general the contact structure on MD
∼= SL is the

canonical one. The inclusion kerβD ⊆ kerβQ induces a projection

S3 × S2 ∼=MQ →MD
∼= S3 × S2/⟨ξ̃⟩

which by naturality of the Delzant construction is a contact transformation
(and it is also a local diffeomorphism). This projection fits in the following
commutative diagram:

SS3 SL3
p(q)

MQ MD

φ

dp

φ

where p : S3 → L3
p(q) is the quotient projection. We already showed that

φ is a contactomorphism, dp is also a contact transformation and a local



✐

✐

“1-Abreu” — 2022/8/29 — 1:27 — page 19 — #19
✐

✐

✐

✐

✐

✐

Invariants of non-simply connected toric contact manifolds 19

diffeomorphism. Hence it follows that φ is a contactomorphism. That is, we
just showed the following:

Theorem 2.15. The contact manifold S∗L3
p(q) is a Gorenstein toric con-

tact manifold with corresponding toric diagram

conv((0, 0), (1, 0), (q, p), (q + 1, p)).

Moreover, we can understand the action of T 3 on S∗L3
p(q). For L

3
1(0) =

S3, this action is the action of T 3 = T 2 × S1 where S1 acts on S∗S3 by the
geodesic flow and the action of T 2 is the lift of the usual action of T 2 on
S2 × S2 via π : S∗S3 → S2 × S2. But the later is easily seen to be induced
by the action of T 2 on S3 (the same giving S3 a toric structure). Explicitly,
identifying S∗S3 with S3 × S2 as before, the action is given by

(
eiα, eiβ , eiγ

)
· (x,w) =

(
eiβeγwxeiα, eiβwe−iβ

)
.

In general, we have an action of T̃ 2 × S1 on S∗L3
p(q) where T̃

2 = T 2/(Zp)
still comes from the usual toric structure on L3

p(q) and S
1 still is the geodesic

flow. Note that when p > 1 the geodesic flow action is no longer free.

Remark 2.16. The contact manifold S∗Sn+1, or more generally S∗Ln+1,
is not toric when n > 2. In fact, H2(S∗Sn+1,R) = 0 for n > 2 and, by [10],
this implies that if S∗Sn+1 was toric then its moment cone C ⊂ Rn+1 would
have d = n+ 1 facets. Any such moment cone gives rise to a toric con-
tact manifold diffeomorphic to S2n+1/ kerβ, where kerβ is a finite group
(cf. (2)). Since S∗Sn+1 is simply connected, this would be possible only if
S∗Sn+1 was diffeomorphic to S2n+1, which clearly is not the case since they
have different cohomology types.

2.3.3. Higher dimensional lens spaces. We will now consider higher
dimensional lens spaces, i.e. quotients of odd dimensional spheres by cyclic
groups. More concretely, regarding S2n+1 as a subset of Cn+1 \ {0} we have
an action of Zp generated by

[1].(z0, . . . , zn) =
(
e

2πiℓ0
p z0, e

2πiℓ1
p z1, . . . , e

2πiℓn
p zn

)

where ℓ0, . . . , ℓn are integers called the weights of the action. Such an action
is free when the weights are coprime with p and in that case we have a lens
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space obtained as the quotient of S2n+1 by the action of Zp. We denote such
a lens space by

L2n+1
p (ℓ0, ℓ1, . . . , ℓn) .

Note that different sequences of weights might produce diffeomorphic lens
spaces, for instance by permuting the weights, multiplying every weight by
some k coprime with p and changing the sign of some weights. Moreover these
are the only possibilities leading to diffeomorphic lens spaces (see section 12
of [15]).

Suppose now that L2n+1 is a lens space admitting a toric contact struc-
ture. We have that H2(L,R) = 0, since H2(L;Z) ∼= Zp, which again implies
that the moment cone of L has d = n+ 1 facets (see Remark 2.16). Re-
stricting ourselves to Gorenstein lens spaces, Proposition 2.3 implies that
the moment cone of the symplectization of L must be SL(n+ 1,Z) equiva-
lent to a cone C ⊂ Rn+1 with defining normals

ν0 =




0
0
...
0
0
1




, νj =




0
...
1
0
...
1




for j = 1, . . . , n− 1,

νn =




α1

α2
...

αn−1

p
1




, α1, . . . , αn−1 ∈ Z , p ∈ N .

The system β(x) = 0, with β given by (2), can be written as





x1 + α1xn = 0
...

xn−1 + αn−1xn = 0

pxn = 0
∑n

i=0 xi = 0
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which has p solutions in Tn+1, generated by

(
α0

p
,−

α1

p
, . . . ,−

αn−1

p
,
1

p

)
∈ Tn+1 ,with α0 := α1 + . . .+ αn−1 − 1 .

Hence the corresponding contact manifold is

L2n+1
p (α0,−α1, . . . ,−αn−1, 1) .

It is not hard to see that C is a good cone if and only if gcd(αj , p) = 1 for
j = 0, 1, . . . , n− 1. Note that when n is even this implies in particular that
p must be odd.

3. Conley-Zehnder index of non-contractible closed orbits

Let (M2n+1, ξ) be a good toric contact manifold and (W 2(n+1), ω,X) its
associated toric symplectic cone, obtained via symplectic reduction of (Cd \
{0} ∼= R2d \ {0}, ωst, Xst) by the linear action of a subtorusK ⊂ Td (see (1)).
Denote by F : Cd \ {0} → k

∗ the associated moment map, so thatW = Z/K
with Z := F−1(0).

Let α be a toric contact form supporting ξ. As discussed in [2, section 3]
(c.f. [6, 13]) and assuming that c1(ξ) = 0, the index of every closed orbit of
α can be defined using a trivialization of the determinant line bundle Λn

C
ξ.

In this section, we will show how to compute this index for non-contractible
orbits using the above symplectic reduction description.

In order to do this, let us first explain how we dealt with contractible
orbits in [1]. Consider a periodic orbit γ of α. If γ is contractible then it
admits a lift to a closed orbit γ̂ in Z of a suitable linear unitary Hamiltonian
flow on Cd and [1, Lemma 3.14] establishes that the Robbin-Salamon index
of γ̂ with respect to the usual (constant) symplectic trivialization of TCd

equals the Robbin-Salamon index of γ with respect to the trivialization
induced by a capping disk. (The Robbin-Salamon index [18] coincides with
the Conley-Zehnder whenever the periodic orbit is non-degenerate.)

Since Z is simply connected (c.f. [1, section 3]), this lift exists if, and
only if, γ is contractible. Thus, if γ is not contractible we do not have a
closed lift and need to consider an arc of trajectory in Cd. More precisely,
let m be the smallest positive integer such that γm is contractible (recall
that the fundamental group of M is finite cyclic) and let γ̂ be a closed lift
of γm as before. Suppose, without loss of generality, that γm has period one
so that γ has period 1/m. Consider the arc γ̄ := γ̂|[0,1/m]. We can compute

the index of γ̄ using the constant trivialization of TCd but it turns out that,
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in general, this index is not equal to the index of γ if m > 1. We need to
“correct” the symplectic path along γ̄ as stated in the next proposition.

Before we give the precise statement, let us introduce some terminology.
Let g be an element of K such that

(6) γ̄(1/m) = gγ̄(0) and gm = id .

Since c1(ξ) = 0 every element of K is in SU(d). Let ψ : [0, 1/m] → SU(d)
be a smooth map such that ψ(0) = id and ψ(1/m) = g. Denote by φH

t the
Hamiltonian flow on Cd for which γ̄ is an arc of trajectory. As mentioned
before, φH

t is a linear unitary flow.

Proposition 3.1. The Robbin-Salamon index of ψ(t)−1 ◦ φH
t with respect

to the constant symplectic trivialization of TCd is equal to the Robbin-
Salamon index of γ defined using a trivialization of the determinant line
bundle Λn

C
ξ.

Proof. Let π : Z →W be the quotient projection. Choose a basis of the dual
Lie algebra k∗ ofK and let F1, . . . , Fd−n−1 be the corresponding moment map
components. Let D be the distribution on Z given by

D = span{XF1
, . . . , XFd−n−1

,∇F1, . . . ,∇Fd−n−1},

where the gradient is taken with respect to the Euclidean metric. Clearly D

is a symplectic distribution and we can choose the basis of k∗ such that

{XF1
, . . . , XFd−n−1

,∇F1, . . . ,∇Fd−n−1}

defines a symplectic basis of D. Denote by D
ω the symplectic orthogonal of

D and note that dπ|Dω : Dω → TW is a symplectic isomorphism at every
point of Z.

Choose a symplectic frame (u1, . . . , u2n+2) of γ
∗TW obtained via a global

trivialization of Λn
C
ξ (c.f. [2, section 3]). Let (ûi) = (dπ|Dω)−1(ui) be the

frame of γ̄∗Dω given by the lift of (ui) and define the (ordered) frame
(v1, . . . , v2d) of γ̄

∗TCd as

(û1, . . . , û2n+2, XF1
, . . . , XFd−n−1

,∇F1, . . . ,∇Fd−n−1).

Denote by Φ the trivialization of γ̄∗TCd induced by (vi). Since dφ
H
t (XFi

) =
XFi

and dφH
t (∇Fi) = ∇Fi for every i ∈ {1, . . . , d− n− 1} and t ∈ R, we
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have, by construction, that

µRS(γ) = µRS(γ̄; Φ)

where the index on the left hand side is computed using the frame (ui).
Now, consider the symplectic frame (wi) of γ̄∗TCd given by wi(t) =

ψ(t)(vi(0)) and let Ψ be the trivialization of γ̄∗TCd induced by (wi). It is
easy to see that

µRS(γ̄; Ψ) = µRS(ψ(t)
−1 ◦ φH

t ),

where the index on the right hand side is computed using the constant
trivialization of TCd. Therefore, we have to show that

(7) µRS(γ̄; Φ) = µRS(γ̄; Ψ).

To accomplish this equality, consider the extensions of the frames (vi) and
(wi) to γ̂

∗TCd given by

v′i(t+ j/m) = dgj(vi(t)) and w
′
i(t+ j/m) = dgj(wi(t))

for every t ∈ [0, 1/m] and j ∈ {0, . . . ,m− 1}. Since gj ◦ π = π, dgj(XFi
) =

XFi
and dgj(∇Fi) = ∇Fi, we have that

(8) (v′1, . . . , v
′
2n+2, v

′
2n+3, . . . , v

′
2d)

= (û′1, . . . , û
′
2n+2, XF1

, . . . , XFd−n−1
,∇F1, . . . ,∇Fd−n−1),

where (û′i) = (dπ|Dω)−1(u′i) is the lift of the obvious extension (u′i) of the
frame (ui) to (γm)∗TW . It follows from this that

(9) µRS(γ̂; Φ
′) = µRS(γ

m),

where Φ′ is the trivialization of γ̂∗TCd induced by (v′i) and the index on the
right hand side is computed using the frame (u′i). We also have that

(10) w′
i(t) = ψ′(t)(vi(0))

where ψ′ : [0, 1] → SU(d) is the extension of ψ given by ψ′(t+ j/m) = gj ◦
ψ(t) for every t ∈ [0, 1/m] and j ∈ {0, . . . ,m− 1}. Note that ψ′ is a loop in
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SU(d) based at the identity and therefore,

(11) µRS(γ̂; Ψ
′) = µRS(γ̂)

where Ψ′ is the trivialization of γ̂∗TCd induced by (w′
i) and the index on

the right hand side is computed using the constant trivialization of TCd.
We have from [1, Lemma 3.4] that the right hand sides of (9) and (11) are
equal. Hence, we arrive at

(12) µRS(γ̂; Φ
′) = µRS(γ̂; Ψ

′).

Consider the map A′ : [0, 1] → Sp(2d) uniquely defined by the property
that A′

tv
′
i(t) = w′

i(t) for every i and t. Using (8), (10) and the fact that
gj ◦ π = π, dgj(XFi

) = XFi
and dgj(∇Fi) = ∇Fi we conclude that

v′i(j/m) = w′
i(j/m) for every i =⇒ A′

j/m = id

for every j ∈ {0, . . . ,m}. We have that

(13) µRS(γ̂; Φ
′) = µRS(γ̂; Ψ

′) + 2µMaslov(A
′)

and

(14) µRS(γ̄; Φ) = µRS(γ̄; Ψ) + 2µMaslov(A)

where A = A′|[0,1/m]. We claim that

(15) µMaslov(A
′) = mµMaslov(A).

Indeed,

gjAtv
′
i(t) = gjw′

i(t)

= w′
i(t+ j/m)

= A′
t+j/mv

′
i(t+ j/m)

= A′
t+j/mg

jv′i(t)

for every i and consequently

(16) A′
t+j/m = gjAtg

−j

for every t ∈ [0, 1/m] and j ∈ {0, . . . ,m− 1}. But the conjugation map P 7→
gjPg−j is clearly homotopic to the identity and therefore induces the identity
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map on π1(Sp(2d)). Thus, all the loops t ∈ [0, 1/m] 7→ A′
t+j/m, j ∈ {0, . . . ,

m− 1}, are homotopic to the loop t ∈ [0, 1/m] 7→ At. Since A
′ is a concate-

nation of these loops, we conclude the equality (15).
Finally, we deduce from (12) and (13) that µMaslov(A

′) = 0. Thus, (7)
follows immediately from (14) and (15), proving the proposition. □

As we will now explain, Proposition 3.1 implies in particular that the
explicit method to compute the Conley-Zehnder index of any contractible
non-degenerate closed toric Reeb orbit described in [1, section 5] also applies
to non-contractible orbits.

Given a toric diagram D = conv(v1, . . . , vd) ⊂ Rn and corresponding
Gorenstein toric contact manifold (MD, ξD), consider a toric Reeb vector
field Rν ∈ X (MD, ξD) determined by the normalized toric Reeb vector (cf.
Proposition 2.9)

ν = (v, 1) with v =

d∑

j=1

ajvj , aj ∈ R+ , j = 1, . . . , d , and

d∑

j=1

aj = 1 .

By a small abuse of notation, we will also write

Rν =

d∑

j=1

ajνj ,

where νj = (vj , 1), j = 1, . . . , n, are the defining normals of the associated
good moment cone C ⊂ Rn. Making a small perturbation of ν if necessary,
we can assume that

the 1-parameter subgroup generated by Rν is dense in Tn+1,

which means that if v = (r1, . . . , rn) then 1, r1, . . . , rn’s are Q-independent.
This is equivalent to the corresponding toric contact form being non-
degenerate. In fact, the toric Reeb flow of Rν on (MD, ξD) has exactly m
simple closed orbits γ1, . . . , γm, all non-degenerate, corresponding to the m
edges E1, . . . , Em of the cone C, i.e. one non-degenerate closed simple toric
Rν-orbit for each S1-orbit of the Tn+1-action on (MD, ξD). Equivalently,
there is one non-degenerate closed simple toric Rν-orbit for each facet of
the toric diagram D. Let γ denote one of those non-degenerate closed sim-
ple toric Rν-orbits and assume without loss of generality that the vertices
of the corresponding facet, necessarily a simplex, are v1, . . . , vn ∈ Zn. Let
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h ∈ Zn be such that

{ν1 = (v1, 1), . . . , νn = (vn, 1), η = (h, 1)} is a Z-basis of Zn+1.

Then Rν can be uniquely written as

Rν =

n∑

j=1

bjνj + bη , with b1, . . . , bn ∈ R and b = 1−
n∑

j=1

bj ̸= 0 ,

and for contractible γ, as shown in [1, section 5], the Conley-Zehnder index
of γN , for any N ∈ N, is given by

(17) µCZ(γ
N ) = 2




n∑

j=1

⌊
N
bj
|b|

⌋
+N

b

|b|

d∑

j=1

η̃j


+ n ,

where η̃ ∈ Zd is an integral lift of η ∈ Zn+1 under the map β : Zd → Zn+1

defined by (2). The value in the last coordinate of ν1 = (v1, 1), . . . , νd =
(vd, 1) and η = (h, 1) implies that

∑
j η̃j = 1 and so

(18) µCZ(γ
N ) = 2




n∑

j=1

⌊
N
bj
|b|

⌋
+N

b

|b|


+ n .

When γ is not contractible (η, 1) ∈ Zn+1 does not have an integral lift under
the map β, but it does have an integral lift modulo 1

2πβ(K) ⊂ Zn+1. In other
words, there is η̃ ∈ Zd such that

β(η̃) = η −
β(g)

2π
, where g ∈ K ∩ SU(d) is characterized by (6).

It follows from Proposition 3.1 that the index of γN is then given by (17)
for this η̃. Since g ∈ SU(d) we still have that

∑
j η̃j = 1 and so formula (18)

remains valid when γ is not contractible.

4. Contact Betti numbers of S∗(L3

p
(q))

In this section we will use formula (18) for the Conley-Zehnder index to com-
pute the contact Betti numbers of the unit cosphere bundle of 3-dimensional
lens spaces (L3

p(q)), which by Theorem 2.15 are the Gorenstein toric contact
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5-manifolds determined by toric diagrams of the form

conv(v0 = (0, 0), v1 = (1, 0), v2 = (q, p), v3 = (q + 1, p)) ⊂ R2

with p, q ∈ N coprime.

Let E1, E2, E3, E4 be the edges of the toric diagram with endpoints
{v0, v1}, {v0, v2}, {v1, v3}, {v2, v3}. Consider a normalized toric Reeb vec-
tor Rε = (ε1, ε2, 1), with 0 < ε1, ε2 << 1, and denote by γj its simple closed
Reeb orbit corresponding to Ej , j = 1, 2, 3, 4. By taking ε1, ε2 such that
1, ε1, ε2 are Q-independent, we know that the Reeb flow of Rε has exactly
these four simple closed Reeb orbits and they are all non-degenerate. Either
by direct computation using (18) or by using [2, Theorem 1.6], we also know
that by considering ε1 and ε2 arbitrarily small we will have that µCZ(γ

N
1 )

and µCZ(γ
N
2 ) are arbitrarily large for any N ∈ N. Hence, we just need to

compute µCZ(γ
N
3 ) and µCZ(γ

N
4 ) up to arbitrarily large N ∈ N and for arbi-

trarily small 0 < ε1, ε2 << 1.
For γ3, take a vector η3 = (a1, a2, 1) ∈ Z3 such that {ν1 = (v1, 1), ν3 =

(v3, 1), η3} is a Z-basis. This condition is written as

1 = det(ν1, ν3, η3) = (1− a1)p+ a2q.

Solving the corresponding system, we find out that

Rε = b1ν1 + b2ν3 + bη3

where

b1 = (1− p+ a2)
b

p
+ ε1 −

(q + 1)ε2
p

,

b2 = −a2
b

p
+
ε2
p

and b = p(1− ε1) + qε2 .

Therefore, considering also 0 < ε2 << ε1 so that ε2/ε1 is arbitrarily small,
we can apply (18) to get that

µCZ

(
γN3
)
= 2 + 2

(⌊
Nb1
b

⌋
+

⌊
Nb2
b

⌋
+N

)

= 2 + 2

(⌊
−N +

N(1 + a2)

p
+ ε′

⌋
+

⌊
−Na2
p

+ ε′′
⌋
+N

)

= 2 + 2

(⌊
N(1 + a2)

p

⌋
+

⌊
−Na2
p

⌋)
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up to an arbitrarily large N .
For γ4, one can check easily that the vector η4 = (q, p− 1, 1) is such that

{ν2 = (v2, 1), ν3 = (v3, 1), η4} is a Z-basis. Solving the system we get

Rε = (−q + ε1)ν2 + (−(p− q − 1 + ε1 − ε2)) ν3 + (p− ε2)η4.

Therefore, considering again 0 < ε2 << ε1, we can apply (18) to get that

µCZ(γ
N
4 ) = 2 + 2

(⌊
−Nq

p

⌋
+

⌊
N(q + 1)

p
− ε

⌋)

up to an arbitrarily large N .
The fundamental group π1(S

∗(L3
p(q))) is isomorphic to Z3/N ∼= Zp where

N = spanZ{ν0 = (v0, 1), ν1 = (v1, 1), ν2 = (v2, 1), ν3 = (v3, 1)}

and the isomorphism Z3/N ∼= Zp is induced by projection on the second
coordinate to Z composed with the projection Z → Zp, m 7→ m. Via this
isomorphism the classes [γ3], [γ4] in the fundamental group correspond re-
spectively to η3 +N , η4 +N , which correspond to a2 ∈ Zp and p− 1 ∈ Zp,
respectively. Let k ∈ {1, . . . , p− 1} and take r ∈ {1, . . . , p− 1} such that
r ≡ kq mod p. Since (1− a1)p+ a2q = 1, q ≡ a−1

2 mod p, hence ra2 ≡ k

mod p. Thus [γmp+r
3 ] = [γ

(m+1)p−k
4 ], for m ∈ Z≥0, are both the class corre-

sponding to k ∈ Zp
∼= π1(M). We can compute

µCZ

(
γmp+r
3

)
= 2 + 2m+ 2

(⌊
k + r

p

⌋
+

⌊
−
k

p

⌋)
=

{
2m if k + r < p

2m+ 2 if k + r ≥ p

and similarly

µCZ

(
γ
(m+1)p−k
4

)
= 4 + 2m+ 2

(⌊
r

p

⌋
+

⌊
−
r + k

p
− ε

⌋)

=

{
2m+ 2 if k + r < p

2m if k + r ≥ p

up to an arbitrarily large m. Since for contact 5-manifolds, i.e. n = 2, the
contact homology degree is equal to the Conley-Zehnder index, for any non-
trivial class k ∈ (Zp) \ {0} ∼= π1(S

∗(L3
p(q))) \ {0} we get that

cbk∗(S
∗(L3

p(q))) =





1 if ∗ = 0

2 if ∗ ≥ 2 is even

0 otherwise

.
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For the trivial class we note that deg (γmp
3 ) = 2 + 2m and deg (γmp

4 ) = 2m,
up to an arbitrarily large m ∈ Z>0, and so

cb0∗(S
∗(L3

p(q))) =





1 if ∗ = 2

2 if ∗ > 2 is even

0 otherwise

.

Hence, we get the following contact Betti numbers:

cb∗(S
∗(L3

p(q))) =





p− 1 if ∗ = 0

2p− 1 if ∗ = 2 is even

2p if ∗ ≥ 2 is even

0 otherwise

.

Note that these contact Betti numbers do not detect the value of q and do
not distinguish any non-trivial class in π1(S

∗(L3
p(q))).

5. Contact Betti numbers of higher dimensional lens spaces
and applications

In this section we will use formula (18) for the Conley-Zehnder index to
compute the contact Betti numbers cb∗ of Gorenstein contact lens spaces

L2n+1
p (α0,−α1, . . . ,−αn−1, 1)

with n, p ∈ N, α1, . . . , αn−1 ∈ Z, α0 := α1 + · · ·+ αn−1 − 1 and gcd(αj , p) =
1 for j = 0, . . . , n− 1. As illustrative contact topology applications, we will
then prove Propositions 1.1 and 1.2. To simplify notation, we will denote
these lens spaces by L2n+1

p (ᾱ), with ᾱ = (−α1, . . . ,−αn−1) ∈ Zn−1, and their

contact Betti numbers by cb∗(n, p, ᾱ) and cb
k
∗(n, p, ᾱ), where k ∈ Zp

∼=
π1(L

2n+1
p (ᾱ)).
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5.1. Contact Betti numbers

As we saw in § 2.3.3, the moment cone C ⊂ Rn+1 of L2n+1
p (ᾱ) has defining

normals

ν0 =




0
0
...
0
0
1




, νj =




0
...
1
0
...
1




for j = 1, . . . , n− 1, νn =




α1

α2
...

αn−1

p
1




.

Let Ej denote the edge of C given by the intersection of all its facets
except the one with normal νj . Consider a normalized toric Reeb vec-
tor Rε = (ε1, . . . , εn−1, εn, 1), with 0 < ε1, . . . , εn << 1, and denote by γj
its simple closed Reeb orbit corresponding to Ej , j = 0, . . . , n. By taking
ε1, . . . , εn such that 1, ε1, . . . , εn are Q-independent, we know that the Reeb
flow of Rε has exactly these n+ 1 simple closed Reeb orbits and they are
all non-degenerate. Again, either by direct computation using (18) or by us-
ing [2, Theorem 1.6], we also know that by considering ε1, . . . εn arbitrarily
small we will have that µCZ(γ

N
j ), j = 1, . . . , n, are arbitrarily large for any

N ∈ N. Hence, we just need to compute µCZ(γ
N
0 ) up to arbitrarily large

N ∈ N and for arbitrarily small 0 < ε1, . . . , εn << 1.
Take a vector η0 = (a1, . . . , an−1, an, 1) ∈ Zn+1 that completes ν1, . . . , νn

to a Zn+1-basis, that is, such that the following equation holds:

1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 α1 a1
0 1 . . . 0 α2 a2
...

...
...

...
...

0 0 1 αn−1 an−1

0 0 . . . 0 p an
1 1 1 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

= p

∣∣∣∣∣∣∣∣∣∣∣

1 0 0 a1
0 1 . . . 0 a2
...

...
...

...
0 0 . . . 1 an−1

1 1 1 1

∣∣∣∣∣∣∣∣∣∣∣

− an

∣∣∣∣∣∣∣∣∣∣∣

1 0 0 α1

0 1 . . . 0 α2
...

...
...

...
0 0 . . . 1 αn−1

1 1 1 1

∣∣∣∣∣∣∣∣∣∣∣
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= −p(1− a1 − . . .− an−1)− an(1− α1 − . . .− αn−1)

=


1−

n−1∑

j=1

aj


 p+ α0an .

Thus we can take an ≡ α−1
0 mod p and aj , j = 1, . . . , n− 1, in a way that

the above equality holds.
We now want to write Rε in the basis {ν1, . . . , νn, η0}, i.e. we want to

find bj , j = 1, . . . , n, and b such that

Rε = b1ν1 + . . .+ bnνn + bη0 .

We get the following system





εj = bj + αjbn + ajb j = 1, . . . , n− 1

εn = pbn + anb∑n
j=1 bj + b = 1 .

The solution for this system is given by

bn = −
ban
p

+
εn
p
, bj =

αjanb

p
− ajb+ εj −

αjεn
p

, 1 ≤ j ≤ n− 1 ,

and b = p


1−

n−1∑

j=1

εj


+ α0εn.

Therefore, considering also 0 < εn << εj so that εn/εj is arbitrarily small,
for all j = 1, . . . , n− 1, we can apply (18) to get that

µCZ

(
γN0
)
= n+ 2




n−1∑

j=1

⌊
Nbj
b

⌋
+

⌊
Nbn
b

⌋
+N




= n+ 2




n−1∑

j=1

⌊
Nαjan
p

−Naj + ε′j

⌋
+

⌊
−
Nan
p

+ ε′n

⌋
+N




= n+ 2




n−1∑

j=1

⌊
Nαjan
p

⌋
+

⌊
−
Nan
p

⌋
+N


1−

n−1∑

j=1

aj





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= n+ 2




n−1∑

j=1

⌊
Nαjan
p

⌋
+

⌊
−
Nan
p

⌋
+N

(
1− α0an

p

)


= n+ 2


N
p

−
n−1∑

j=1

{
Nαjan
p

}
−

{
−
Nan
p

}


up to an arbitrarily large N . Recall that {x} = x− ⌊x⌋ for any x ∈ R.
Let us define the (SFT) degree function g : N → Z by

g(N) ≡ µCZ(γ
N
0 ) + n− 2(19)

= 2


N
p

+ (n− 1)−
n−1∑

j=1

{
Nαjan
p

}
−

{
−
Nan
p

}
 .

We can observe the following:

• g(N) ≥ 0 for every N > 0;

• g(p) = 2n;

• g(N) ≤ 2(n− 1) for N < p;

• g(N + p) = g(N) + 2 for every N > 0.

By the last property, it is clear that

cb2j(n, p, ᾱ) = # {N ∈ {1, . . . , p} : g(N) ≤ 2j}

since the congruence class {kp+N : k ∈ Z+
0 } contributes to the homology

of degree 2j with 1 if g(N) ≤ 2j and with 0 otherwise. In particular

cb2(n−1)(n, p, ᾱ) = p− 1 and cb2j(n, p, ᾱ) = p if j ≥ n .

Note also that, since {x}+ {−x} = 1 if x /∈ Z, we have g(N) + g(p−N) =
2(n− 1) for N = 1, . . . , p− 1. Thus

g(N) ≤ 2j if and only if g(p−N) > 2(n− 2− j)

and the following symmetry property follows:

cb2j(n, p, ᾱ) + cb2(n−2−j)(n, p, ᾱ) = p− 1 for j = 0, 1, . . . , n− 2.

For information on the decomposition induced by homotopy classes in the
cyclic fundamental group of these Gorenstein contact lens spaces, note that
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γ0 represents a generator and we get that

cb
[γN

0 ]
2j (n, p, ᾱ) =

{
1 if 2j ≥ g̃(N)

0 otherwise,

where g̃ : N → Z is defined by

(20)
g̃(N) = g(N) if N = 1, . . . , p ,

and g̃(N + p) = g̃(N) for all N ∈ N .

We summarize these facts in the following proposition.

Proposition 5.1. We have that cbj(n, p, ᾱ) = 0 whenever j is odd or j < 0
and

cb2j(n, p, ᾱ) = # {N ∈ {1, . . . , p} : g(N) ≤ 2j} for all j ≥ 0,

where g is the degree function defined by (19). In particular:

(i) cb2j(n, p, ᾱ) = p for all j ≥ n;

(ii) cb2(n−1)(n, p, ᾱ) = p− 1;

(iii) cb2j(n, p, ᾱ) + cb2(n−2−j)(n, p, ᾱ) = p− 1 for j = 0, 1, . . . , n− 2.

Moreover,

cb
[γN

0 ]
2j (n, p, ᾱ) =

{
1 if 2j ≥ g̃(N)

0 otherwise,

where g̃ is defined by (20).

When the decomposition induced by homotopy classes in the cyclic fun-
damental group is not relevant, the following definition provides a useful
compact way of presenting the relevant information provided by the contact
Betti numbers of a Gorenstein contact lens space.

Definition 5.2. The contact Betti numbers sequence of a Gorenstein con-
tact lens space L2n+1

p (ᾱ) is defined as

cbs(n, p, ᾱ) :=
(
cb0(n, p, ᾱ), cb2(n, p, ᾱ), . . . , cb2(n−1)(n, p, ᾱ)

)
∈ Nn

0 .
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Example 5.3. When n = 2 we have that p must be odd and

cbs(2, p, ᾱ) =

(
p− 1

2
, p− 1

)
,

i.e. for 5-dimensional Gorenstein contact lens spaces L5
p(ᾱ) the contact Betti

numbers sequence is independent of the weight ᾱ = (α1).

Example 5.4. To see that when n ≥ 3 the contact Betti numbers sequence
does depend on ᾱ, let us compute it for L7

5(−3, 1, 1, 1) and L7
5(1,−1,−1, 1).

For L7
5(−3, 1, 1, 1) we have that n = 3, p = 5, α1 = α2 = −1. Then α0 =

−3 and we can take an = 3 ≡5 (−3)−1 in (19) to get that the degree function
is given by

g(N) = 2

(
N

5
+ 2− 3

{
−3N

5

})
.

This implies that g(1) = g(4) = 2, g(2) = 0, g(3) = 4 and g(5) = 6. It follows
that the contact Betti numbers sequence is

cbs(3, 5, (−1,−1)) = (1, 3, 4) .

For L7
5(1,−1,−1, 1) we have that n = 3, p = 5, α1 = α2 = 1. Then α0 =

1 and we can take an = 1 ≡5 1
−1 in (19) to get that the degree function is

given by

g(N) = 2

(
N

5
+ 2− 2

{
N

5

}
−

{
−
N

5

})
.

This implies that g(1) = g(2) = g(3) = g(4) = 2 and g(5) = 6. It follows that
the contact Betti numbers sequence is

cbs(3, 5, (1, 1)) = (0, 4, 4) .

Example 5.5. When n+ 1 = kp for some k ∈ N, the contact lens space

L2n+1
p (1, . . . , 1)

is Gorenstein. Indeed, we can take αj = −1, j = 1, . . . , n− 1, α0 = −n =
1− (n+ 1) ≡p 1 and an = 1. The degree function (19) is given by

g(N) = 2

(
N

p
+ (n− 1)− n

{
−
N

p

})
.
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When N ∈ {1, 2, . . . , p− 1} we get

g(N) = 2

(
N

p
+ (n− 1)− n

(
1−

N

p

))
= 2

(
N(n+ 1)

p
− 1

)
= 2(kN − 1) .

It follows that

cb2∗(kp− 1, p, (−1, . . . ,−1)) = j

whenever j = 1, . . . , p− 1 and kj − 1 ≤ ∗ < k(j + 1)− 1. For example, this
implies that the contact Betti numbers sequence of Gorenstein real projective
spaces, i.e. RP2n+1 with n odd, is

cbs(n, 2, (−1, . . . ,−1)) = (0, . . . , 0, 1, . . . , 1)

with (n− 1)/2 zeros and (n+ 1)/2 ones.

It also implies that the contact Betti numbers sequence of the prequantization
of (CPn, [ω] = 2πc1(CP

n)), i.e. L2n+1
p (1, . . . , 1) with p = n+ 1 (hence k =

1), is

cbs(n, n+ 1, (−1, . . . ,−1)) = (1, 2, . . . , n) .

5.2. Applications

We will now prove Propositions 1.1 and 1.2.
To prove Proposition 1.1, we will show that the Gorenstein contact lens

spaces

L13
5 (1, 1, 1, 1, 2,−2, 1) and L13

5 (1,−1,−1,−1,−2,−2, 1) ,

which are diffeomorphic as naturally oriented manifolds (they have the same
weights up to an even number of sign changes), have different contact Betti
numbers sequences.

For L13
5 (1, 1, 1, 1, 2,−2, 1) we have that n = 6, p = 5, ᾱ = (−1,−1,−1,

−2, 2) and α0 = −4 ≡5 1. We can take a6 = 1 ≡5 1
−1 in (19) to get that the

degree function is given by

g(N) = 2

(
N

5
+ 5− 4

{
−N

5

}
−

{
−2N

5

}
−

{
2N

5

})
.

This implies that g(1) = 2, g(2) = 4, g(3) = 6, g(4) = 8 and g(5) = 12. It
follows that the contact Betti numbers sequence is

cbs(6, 5, (−1,−1,−1,−2, 2)) = (0, 1, 2, 3, 4, 4) .
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For L13
5 (1,−1,−1,−1,−2,−2, 1) we have that n = 6, p = 5, ᾱ = (1, 1, 1, 2, 2)

and α0 = 6 ≡5 1. We can take a6 = 1 ≡5 1
−1 in (19) to get that the degree

function is given by

g(N) = 2

(
N

5
+ 5− 3

{
N

5

}
− 2

{
2N

5

}
−

{
−N

5

})
.

This implies that g(1) = g(3) = 6, g(2) = g(4) = 4 and g(5) = 12. It follows
that the contact Betti numbers sequence is

cbs(6, 5, (1, 1, 1, 2, 2)) = (0, 0, 2, 4, 4, 4) .

To prove Proposition 1.2, we will use the decomposition of the contact
Betti numbers sequence by homotopy classes in the fundamental group to
show that

L15
5 (1, 1, 1, 2,−2,−2,−2, 1)

is an example of a Gorenstein contact lens space with an homotopy class of
orientation preserving diffeomorphisms that does not contain any contacto-
morphism. Before analysing this particular example in detail, let us make
some more general considerations.

Let Lp denote a lens space with π1(Lp) ∼= Zp. Any diffeomorphism f :
Lp → Lp induces an automorphism f∗ : Zp → Zp. Such an automorphism
must be multiplication by k for some k ∈ (Zp)

∗. It follows from the last
part of Proposition 5.1 that if such an automorphism is induced by a co-
orientation preserving contactomorphism of Lp then g̃(kN) = g̃(N) for ev-
ery N ∈ N, where g̃ is defined by (20). This is a restrictive condition. As
the examples above and in the previous subsection illustrate well, it often
implies that k = 1. However, it is also somewhat restrictive to find lens
spaces Lp with non-trivial automorphisms of Zp induced by orientation
preserving diffeomorphisms (see [15] and [7]). In fact, for p odd, the au-
tomorphisms induced by orientation preserving homotopy equivalences cor-
respond to multiplication by k ∈ (Zp)

∗ such that kn+1 ≡ 1 mod p, where
dimLp = 2n+ 1. To characterize the homotopy equivalences that can be
represented by diffeomorphisms, let ℓ0, ℓ1, . . . , ℓn ∈ Z be the weights of Lp

and consider ∆(Lp) ∈ Q[Zp] defined by

∆(Lp)(t) =

n∏

j=0

(trj − 1) ∈ Q[Zp] ,

where t is a (multiplicative) generator of Zp and rjℓj ≡ 1 mod p. Any au-
tomorphism of Zp extends to an automorphism of Q[Zp] and the class [f ]
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of homotopy equivalences can be represented by an orientation preserving
diffeomorphism if and only if f∗∆(Lp) = tu∆(Lp) for some u ∈ Z (see [7,
Proposition 3.3]).

Consider now the Gorenstein contact lens space L15
5 (1, 1, 1, 2,−2,−2,

−2, 1). We have that n = 7, p = 5, ᾱ = (−1,−1,−2, 2, 2, 2) and α0 = 1. We
can take a7 = 1 ≡5 1

−1 in (19) to get that the degree function is given by

g(N) = 2

(
N

5
+ 6− 3

{
2N

5

}
− 3

{
−N

5

}
−

{
−2N

5

})
.

This implies that g(1) = g(2) = 4, g(3) = g(4) = 8 and g(5) = 14, which
means that there is no 1 ̸= k ∈ (Z5)

∗ such that g̃(kN) = g̃(N) for every N ∈
N. Hence, any co-orientation preserving contactomorphism of L15

5 (1, 1, 1, , 2,
−2,−2,−2, 1) acts trivially on its fundamental group. Since the contacto-
morphism induced by complex conjugation on all coordinates reverses the co-
orientation and acts by −1 on the fundamental group, we conclude that any
contactomorphism acts by multiplication by ±1 ∈ (Z5)

∗. However, this lens
space admits orientation preserving diffeomorphisms that act by multiplica-
tion by 2 ∈ (Z5)

∗ on its fundamental group. In fact note that 28 = 256 ≡5 1,
while

∆(t) = (t− 1)4(t3 − 1)(t−3 − 1)3 =
(−1)3

t4
(t− 1)4(t3 − 1)4

and

∆(t2) = (t2 − 1)4(t− 1)(t−1 − 1)3 = (−1)7(t− 1)4(t3 − 1)4 = t4∆(t) .

An explicit example of such a diffeomorphism is the one induced by the
following linear automorphism of C8:

(z0, z1, z2, z3, z4, z5, z6, z7) 7→ (z̄3, z4, z5, z7, z̄0, z̄1, z̄2, z6) .

Appendix A. Total Chern class of lens spaces

The following proposition is elementary and certainly well known, although
we could not find an explicit reference to it in the literature.
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Proposition A.1. Under natural isomorphisms H2j(L2n+1
p (ℓ0, ℓ1, . . . , ℓn);

Z) ∼= Zp, for j = 1, . . . , n, the Chern classes of the canonical contact struc-
ture ξ on

L2n+1
p (ℓ0, ℓ1, . . . , ℓn)

are given by

cj = σj mod p , j = 1, . . . n ,

where σj = j-th elementary symmetric polynomial of ℓ0, ℓ1, . . . , ℓn.

Proof. This is a particular case of Proposition 2.16 in [1] and its proof,
together with the fact that the j-th Chern class of a sum of line bundles is
the j-th elementary symmetric polynomial of their first Chern classes. The
main points are the following:

(i) The quotient map from S2n+1 to L2n+1
p (ℓ0, ℓ1, . . . , ℓn) is a principal Zp-

bundle and its classifying map f : L2n+1
p (ℓ0, ℓ1, . . . , ℓn) → BZp induces

an isomorphism f∗ : H2(BZp;Z) → H2(L2n+1
p (ℓ0, ℓ1, . . . , ℓn);Z).

(ii) The Zp-action on Cn+1 gives rise to an associated vector bundle
S2n+1 ×Zp

Cn+1 over L2n+1
p (ℓ0, ℓ1, . . . , ℓn), and

c1(ξ) = c1(S
2n+1 ×Zp

Cn+1) = f∗c1(EZp ×Zp
Cn+1).

(iii) H2(BZp;Z) ∼= Zp
∼= character group of Zp and c1(EZp ×Zp

Cn+1) is
the sum of the characters that determine the Zp-action on Cn+1.

□

Consider the polynomial c(ξ) ∈ Zp[x] given by

c(ξ) =

n∏

i=0

(1 + ℓix) = 1 +

n+1∏

i=1

σix
i ∈ Zp[x] .

The total Chern class of ξ is given by [c(ξ)] ∈ Zp[x]/x
n+1 and Proposi-

tion A.1 says that ξ has total Chern class equal to zero if and only if we
have that

n∏

i=0

(1 + ℓix) = 1 + σn+1x
n+1 = 1 +

(
n∏

i=0

ℓi

)
xn+1 ∈ Zp[x] .

This equation is quite restrictive but it does have some solutions that provide
a few interesting examples of lens spaces with canonical contact structure
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with zero total Chern class. For lens spaces of the form

L2n+1
p (1, 1, . . . , 1) , i.e. ℓ0 = ℓ1 = · · · = ℓn = 1 ,

we have that

[c(ξ)] = 0 ⇔ (1 + x)n+1 = 1 + xn+1 ∈ Zp[x]

⇔ n+ 1 = pk for p prime and some k ∈ N.

Hence, any lens space of the form L2pk−1
p (1, 1, . . . , 1), with p prime, has zero

total Chern class. Another set of examples arises from the fact that, for
prime p, we have

1− xp−1 =

p−2∏

i=0

(1 + (i+ 1)x) ∈ Zp[x] .

Hence, any lens space of the form L2p−3
p (1, 2, . . . , p− 1), with p prime, also

has zero total Chern class.
Despite these and some other few examples of lens spaces with canonical

contact structure with zero total Chern class, they do not provide relevant
examples for the type of results considered in Propositions 1.1 and 1.2. In
fact, at least for prime p, there are no examples of lens spaces where the
type of results considered in Propositions 1.1 and 1.2 do not follow from total
Chern class considerations, the reason being that, as we will now see, the
canonical contact structure of a lens space L2n+1

p (ℓ0, ℓ1, . . . , ℓn) is completely
determined by the diffeomorphism type of the lens space and the total Chern
class of the contact structure.

Proposition A.2. Let p be a prime and f be an orientation preserv-
ing diffeomorphism of Lp = L2n+1

p (ℓ0, . . . , ℓn). Suppose that f∗ : π1(Lp) →
π1(Lp) is multiplication by k ∈ Z∗

p. If f preserves the total Chern class of
the canonical contact structure of Lp, then there is a permutation τ of the
set {0, 1, . . . , n} such that

ℓτ(i) ≡ kℓi mod p.

In particular, g̃ defined by (20) satisfies g̃(kN) = g̃(N) for every N , so the
contact Betti numbers and their decomposition by homotopy classes of the
fundamental group do not impose any restriction for f to be homotopic to a
contactomorphism of the canonical contact structure of Lp.
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Proof. The condition that f preserves the total Chern class is equivalent
to kiσi ≡ σi mod p for i = 1, . . . , n. Moreover, since f is an orientation pre-
serving diffeomorphism we also have kn+1 ≡ 1 mod p. Hence the congruence
above also holds for i = n+ 1. Therefore

n∏

i=0

(1 + ℓix) = 1 +

n+1∏

i=1

σix
i = 1 +

n+1∏

i=1

kiσix
i =

n∏

i=0

(1 + kℓix) .

The existence of the permutation τ follows from Zp being a field. □

Proposition A.3. Let p be a prime. Let f be an orientation preserving
diffeomorphism

f : Lp = L2n+1
p (ℓ0, . . . , ℓn) → L2n+1

p (ℓ′0, . . . , ℓ
′
n) = L′

p.

If f preserves the total Chern class of the corresponding canonical contact
structures ξ and ξ′, i.e. f∗[c(ξ′)] = [c(ξ)] ∈ Zp[x]/x

n+1, then there is k ∈ Z∗
p

and a permutation τ of the set {0, 1, . . . , n} such that

ℓ′τ(i) ≡ kℓi mod p.

Proof. Exactly the same as the proof of the previous proposition once we
fix isomorphisms π1(Lp) ∼= Zp

∼= π1(L
′
p). □

Corollary A.4. Let p be a prime. Let f be an orientation preserving dif-
feomorphism

f : Lp = L2n+1
p (ℓ0, . . . , ℓn) → L2n+1

p (ℓ′0, . . . , ℓ
′
n) = L′

p.

Then f is homotopic to a contactomorphism of the corresponding canonical
contact structures ξ and ξ′ if and only if f∗[c(ξ′)] = [c(ξ)] ∈ Zp[x]/x

n+1.

Proof. This follows from the previous proposition together with the fact that
diffeomorphisms of lens spaces are homotopic if and only if they induce the
same map on the fundamental group (because inducing the same map on π1
implies they induce the same map on cohomology due to its ring structure;
see also Proposition 3.2 in [7]). □
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