Four manifolds with no smooth spines

IGOR BELEGRADEK AND BEIBEI LIU

Let W be a compact smooth orientable 4-manifold that deformation retract to a PL embedded closed surface. One can arrange the embedding to have at most one non-locally-flat point, and near the point the topology of the embedding is encoded in the singularity knot K. If K is slice, then W has a smooth spine, i.e., deformation retracts onto a smoothly embedded surface. Using the obstructions from the Heegaard Floer homology and the high-dimensional surgery theory, we show that W has no smooth spine if K is a knot with nonzero Arf invariant, a nontrivial L-space knot, the connected sum of nontrivial L-space knots, or an alternating knot of signature < -4. We also discuss examples where the interior of W is negatively curved.

1. Introduction

A *spine* is a topological (not necessarily locally flat), compact, boundaryless submanifold that is a strong deformation retract of the ambient manifold. A spine is *smooth or* PL if the submanifold has this property.

Examples of 4-manifolds that are homotopy equivalent to closed sufaces but have no PL spines can be found in [Mat75, MV79, LL19, HP]. It is shown in [Ven98] that an example in [MV79] does not even have a topological spine. Some 4-manifolds with topological spines and no PL spines can be found in [KR20]. The present paper constructs 4-manifolds with PL spines and no smooth spines.

In this section W denotes a compact oriented smooth 4-manifold with a PL spine S homeomorphic to a closed oriented connected surface. By a standard argument S can be moved by a PL homeomorphism to a spine with at most one non-locally-flat point; henceforth we assume that S has this property. If S is locally flat, then the submanifold S is smoothable [RS68, Corollary 6.8]. Otherwise, S intersects the link of the non-locally-flat point in a *singularity knot* K. If K is smoothly slice, then replacing the cone on K in S with a smoothly embedded disk in W gives a smooth spine of W.

Belegradek was partially supported by the Simons Foundation grant 524838.

Conversely, if Σ is an oriented connected surface with one boundary component, then attaching $\Sigma \times D^2$ to the 4-ball along the knot K in its boundary with framing r gives a compact oriented 4-manifold with a PL spine homeomorphic to $\Sigma/\partial\Sigma$, which has normal Euler number r and singularity knot K. If $\Sigma = D^2$, the 4-manifold is denoted by K^r and called a *knot trace*.

Examples of non-slice singularity knot such that W has a smooth spine come from exotic knot traces. Namely [Akb93, Theorem A] describes knots K_1 , K_2 such that K_1 is slice, K_2 is not slice, and K_1^r , K_2^r are diffeomorphic for some r. We refer to [HMP, HP, FMN⁺] for a recent study of relations between invariants of knot traces and knot concordance.

Cappell and Shaneson [CS76] developed a surgery-theoretic criterion that can help decide when a manifold with a PL spine of dimension ≥ 3 and codimension 2 also admits a locally flat spine. Applying the criterion to $W \times S^1$ we prove

Theorem 1.1. If W is a compact oriented smooth 4-manifold that has a PL spine whose singularity knot has nonzero Arf invariant, then W contains no smooth spine.

Tye Lidman and Daniel Ruberman asked us if the generalized Rokhlin invariant can be used to give a purely 4-dimensional proof of Theorem 1.1. This was done in [Sae92, Theorem 3.1] in the case when W is a homotopy S^2 with finite $H_1(\partial W)$. We leave the question to an interested reader.

The criterion of [CS76] also gives a weak converse of Theorem 1.1: If K has zero Arf invariant, then $W \times S^1$ has a smooth spine, see Remark 3.2.

If W has two PL spines with regular neighborhoods R_1 , R_2 in the interior of W, then there is a homology cobordism between the boundaries ∂R_1 , ∂R_2 obtained by gluing $W \setminus \operatorname{Int}(R_1)$ and $W \setminus \operatorname{Int}(R_2)$ along ∂W . The Heegaard-Floer *d*-invariants d_{top} , d_{bot} are preserved under homology cobordisms. Furthermore, one can express the *d*-invariants of ∂R_1 , ∂R_2 via singularity knots of their spines, and for some knots the *d*-invariants can be explicitly computed, which gives the following.

Theorem 1.2. If W is a compact oriented smooth 4-manifold that has a PL spine whose singularity knot is a nontrivial L-space knot, the nontrivial connected sum of nontrivial L-space knots, or an alternating knot of signature < -4, then W contains no smooth spine.

Recall that a knot $K \subset S^3$ is an *L*-space knot if there is an integer n > 0 such that the *n*-framed surgery on the knot is an L-space [OS05, Definition 1.1]. For example, torus knots are L-space knots [OS05, p.1285].

The d-invariants obstruction applies to some topologically slice knots in [HKL16], which gives

Corollary 1.3. For any $g, e \in \mathbb{Z}$ with $g \ge 0$ there exists a compact smooth oriented 4-manifold with no smooth spine and a topological locally flat spine that is an oriented closed genus g surface with normal Euler number e.

We were led to the subject of this paper while thinking of examples in [GLT88, Kui88] of oriented hyperbolic 4-manifolds with PL spines. Each of these manifolds is a quotient of the hyperbolic space \mathbb{H}^4 by a Kleinian group Γ_0 which is a torsion-free finite index subgroup in a certain discrete group Γ of orientation preserving isometries of \mathbb{H}^4 . The group Γ is described via face-pairings of its fundamental domain F, which is obtained by removing from \mathbb{H}^4 a neighborhood of a nontrivial torus knot T in the ideal boundary of \mathbb{H}^4 . In turn, the fundamental domain F_0 for Γ_0 is obtained by gluing k copies of F, where k is the index of Γ_0 in Γ , and one can describe F_0 as the result of removing from \mathbb{H}^4 a neighborhood of the k-fold connected sum of T. This k-fold connected sum is the singularity knot in a PL spine of \mathbb{H}^4/Γ_0 , and hence \mathbb{H}^4/Γ_0 has no smooth spine by Theorem 1.2.

A related construction in [GLT88, Section 6] replaces the torus knot T by an arbitrary nontrivial knot K but the group Γ is now generated by reflections in the codimension one faces of F. The resulting singularity knot of the PL spine of \mathbb{H}^4/Γ_0 is the $\frac{k}{2}$ -fold connected sum of $K \# r\bar{K}$, where $r\bar{K}$ is the reverse of the mirror image of K. (Here k is even because \mathbb{H}^4/Γ_0 is orientable and Γ does not preserve orientation). Since $K \# r\bar{K}$ is slice, the singularity knot is slice, and \mathbb{H}^4/Γ_0 has a smooth spine.

An analog of these examples with variable pinched negative curvature is discussed in [Bel], which is based on Ontaneda's Riemannian hyperbolization [Ont20]. Here there is no need to pass to a finite index torsion-free subgroup, and for any knot K one gets pinched negatively curved 4-manifolds whose PL spine has K as a singularity knot. In particular, if K satisfies the assumptions of Theorems 1.1 or 1.2, the negatively pinched 4-manifold has no smooth spine, while in the setting of Corollary 1.3 there exists a topologically flat spine.

The structure of the paper is as follows. In Section 2 we review results on the Kervaire invariant of compact oriented manifolds with codimension 2 spines. In Section 3 we specialize to dimension 4, relate the Kervaire invariant of W and the Arf invariant of the singularity knot, and prove Theorem 1.1. Section 4 is a review of Heegaard Floer *d*-invariants, whose relationship to *V*-functions is explored in Section 5. In Section 6 we investigate how the assumption "*W* has a smooth spine" affects the *V*-function of the singularity knot. Section 7 contains a proof of Theorem 1.2 and Corollary 1.3.

2. Kervaire invariant of codimension two thickenings

Let W be a compact oriented PL manifold with a PL embedded spine S, a closed connected oriented manifold of $\dim(S) = \dim(W) - 2$. Let ξ be an oriented plane bundle over S whose Euler class is the normal Euler class of S in W, and let $p_{\xi} \colon D_{\xi} \to S$ be the associated 2-disk bundle. Then [CS76, Proposition 1.6] gives a homology isomorphism $h \colon (W, \partial W) \to$ $(D_{\xi}, \partial D_{\xi})$ such that h preserves the orientation class in the relative second cohomology, and $p_{\xi} \circ h|_S$ is homotopic to the identity of S. The map h pulls $\alpha := p_{\xi}^*(\nu_w|_S)$ to the stable normal bundle ν_w of W because $h^*\alpha$ and ν_w are isomorphic over S to which W deformation retracts. This gives a normal map (h, b_W) where $b_W \colon \nu_w \to \alpha$ is the above bundle map.

Assuming, as we can, that h is transverse regular to the zero section S of D_{ξ} , we see that $N := h^{-1}(S)$ is a closed surface which is locally flat in W with normal bundle $h^*\xi$. The stable normal bundle to N is $\nu_N = \nu_w|_S \oplus h^*\xi = h^*(\alpha|_S \oplus \xi)$. Thus $h|_N \colon N \to S$ is covered by the bundle map $b_N \colon \nu_N \to \alpha|_S \oplus \xi$. The orientation on ξ and W defines an orientation on N for which $h|_N \colon N \to S$ has degree one, and hence $(h|_N, b_N)$ is a normal map.

The normal invariant of $(h|_N, b_N)$ is the image of the normal invariant of (h, b_W) under the inclusion-induced map $[W, G/PL] \rightarrow [S, G/PL]$, which is a bijection because $S \hookrightarrow W$ is a homotopy equivalence. This standard fact is stated on [CS76, p.195] and in the appendix of [KR08], and the proof amounts to comparing various definitions of the normal invariant.

By [RS71, Section 1] the Kervaire invariant of the normal map $(h|_N, b_N)$ is the Arf invariant of a certain quadratic form on the kernel of $h|_{N*}$: $H_1(N; \mathbb{Z}_2) \to H_1(S; \mathbb{Z}_2)$. A normal map with nontrivial Kervaire invariant represents a nontrivial class in [S, G/PL], see [RS71, Theorem 1.4(ii)], and in fact, the Kervaire invariant defines a group homomorphism $[S, G/PL] \to \mathbb{Z}_2$ [RS71, Corollary 4.5].

3. Kervaire and Arf invariants in dimension four

Let us adopt notations of Section 2 and suppose dim(W) = 4. Then the group [S, G/PL] is isomorphic to $H^2(S; \mathbb{Z}_2) \cong \mathbb{Z}_2$, see e.g. [KT01, Section 2], and hence the Kervaire invariant defines an isomorphism $[S, G/PL] \to \mathbb{Z}_2$.

Fix a triangulation of W for which S is a full subcomplex with only one non-locally flat point. Its star is an embedded 4-ball B, and $C := S \cap B$ is the cone on the knot $K = S \cap \partial B$, the singularity knot of $S \subset W$.

Lemma 3.1. The Kervaire invariant of W in [S, G/PL] is the Arf invariant of the knot K.

Proof. Let V be the smallest subcomplex that contains a neighborhood of S in W. Since S is a full subcomplex, V is a regular neighborhood of S in W, to which W deformation retracts. Denote the relative interiors of B, C, V by \mathring{B} , \mathring{C} , \mathring{V} . Then $V \setminus \mathring{B}$ is a trivial 2-disk bundle over $S \setminus \mathring{C}$. Give B the structure of a trivial 2-disk bundle over a 2-disk, whose zero section Z intersects ∂B in an unknot U. Glue $V \setminus \mathring{B}$ and B by an orientation-preserving 2-disk bundle automorphism identifying ∂C with $\partial Z = U$ so that the resulting 2-disk bundle $D_{\xi} \to S$ has the same Euler class as $S \subset W$. Denote the regular neighborhoods of K and U in ∂B by R_K and R_U , respectively.

Then the above-mentioned map $h: W \to D_{\xi}$ can be chosen so that $h|_{W \setminus \mathring{V}}$ is a deformation retraction onto ∂V , the map $h|_{V \setminus B}$ is the identity, h takes $(B, \partial B, K)$ to $(B, \partial B, U)$, and maps R_K homeomorphically onto R_U . To define $h|_B$ apply [CS76, Proposition 1.6] to the thickening B of C and use the fact that any homology equivalence $(R_K, \partial R_K) \to (R_U, \partial R_U)$ is homotopic to a homeomorphism.

Isotope the zero section Z to a 2-disk $Z_0 \subset \partial B$ rel boundary, and perturb h near B to be transverse regular to Z_0 . Then $\Sigma := h^{-1}(Z_0)$ is a Seifert surface of K and $N := (S \setminus B) \cup \Sigma$ is a closed surface such that $h: N \setminus \Sigma \to S \setminus Z_0$ is the identity. Since the surgery obstruction is additive [Bro72, Theorem III.4.14], the Kervaire invariants of the normal maps $(h|_{\Sigma}, b_N|_{\Sigma})$ and $(h|_N, b_N)$ are equal. Finally, the Kervaire invariant of $(h|_{\Sigma}, b_N|_{\Sigma})$ equals the Arf invariant of K, as stated on [Ran98, page XXXIII] and proved in [Lev66, Proposition 3.3].

Proof of Theorem 1.1. The above thickening V of S is classified by the homotopy class of a map $f: S \to BSRN_2$. Let $\eta: BSRN_2 \to G/PL$ be the normal invariant map, see [CS76, p.182]. Then $\eta \circ f$ is the normal invariant

of $S \hookrightarrow V$. Since K has nonzero Arf invariant, by the above discussion the Kervaire invariant of $\eta \circ f$ is nonzero.

It is easy to check that the thickening $V' := V \times S^1$ of $S' := S \times S^1$ is the pullback of $S \hookrightarrow V$ under the coordinate projection $p: S \times S^1 \to S$, see [CS76, pp.173–175]. Let $i: S \to S \times S^1$ be a section of p, say, given by i(m) = (m, 1). Since $\eta \circ f = \eta \circ f \circ p \circ i$ is homotopically nontrivial, so is $\eta \circ f \circ p$. Hence $S' \hookrightarrow V'$ is a thickening with nontrivial normal invariant.

Arguing by contradiction suppose that W has a locally flat spine L. Then $L' := L \times S^1$ is a locally flat spine of W'. The restriction to L' of the deformation retraction $W' \to S'$ is homotopic to a diffeomorphism $g: L' \to S'$, see e.g. [Lau74, p.5]. Hence the normal invariant of g is trivial.

As we explain in [Bel, Appendix C], the pullback via g of the Poincaré embedding given by the inclusion $S' \subset W'$ is isomorphic to the Poincaré embedding of the locally flat inclusion $L' \subset W'$. Since dim(S') is odd and ≥ 3 , Theorem 6.2 of [CS76] implies that the Poincaré embedding for $L' \subset W'$ can be realized by a locally flat embedding if and only if the normal invariants of g equals the normal invariant of the Poincaré embedding $S' \subset W'$. This is a contradiction because these normal invariants are different and $L' \subset W'$ is locally flat.

Remark 3.2. The above argument can be reversed, namely, if K has zero Arf invariant, then the Poincaré embedding induced by the inclusion $S \hookrightarrow W$ has trivial normal invariant, and hence so does its product with a circle or more generally, with any closed manifold L, and if dim(L) is odd, then $W \times L$ has a locally flat spine [CS76, Theorem 6.2].

4. Heegaard Floer *d*-invariants and *V*-functions of knots

Ozsváth and Szabó introduced [OS03, OS04c, OS04b] Heegaard-Floer homology theories $HF^o(M, \mathfrak{t})$ associated with a Spin^c structure \mathfrak{t} on a closed oriented 3-manifold M. Here o is a decoration indicating the flavor of a Heegaard-Floer theory, and in this paper o is ∞ or -. The homology groups $HF^-(M, \mathfrak{t})$ and $HF^{\infty}(M, \mathfrak{t})$ are modules over $\mathbb{Z}[U]$ and $\mathbb{Z}[U, U^{-1}]$, respectively, where U is a formal variable whose action lowers the relative homological degree by 2. Related invariants for knots and links in 3-manifolds were developed in [Ras03, OS04a, OS08a]. We refer to these papers for background.

Henceforth, we assume that M has standard HF^{∞} [OS03, p.240], and the Spin^c structure t is torsion, i.e., its first Chern class has finite order in $H^2(M)$.

According to [OS04c, Section 4.2.5] the group $H_1^T(M) := H_1(M)/\text{Tors}$ acts on the Heegaard-Floer chain complex $CF^o(M, \mathfrak{t})$, and on the corresponding homology group $HF^o(M, \mathfrak{t})$. Let $HF^o(M, \mathfrak{t})_{\text{bot}}$ and $HF^o(M, \mathfrak{t})_{\text{top}}$ denote the kernel and the cokernel of the $H_1^T(M)$ -action on $HF^o(M, \mathfrak{t})$. The *d*-invariants $d_{\text{top}}(M, \mathfrak{t})$ and $d_{\text{bot}}(M, \mathfrak{t})$ are the maximal homological degrees of a non-torsion class in $HF_{\text{top}}^-(M, \mathfrak{t})$ and $HF_{\text{bot}}^-(M, \mathfrak{t})$, respectively, see [OS03, Section 9] and [LR14, Section 3]. If M is a rational homology sphere, the $H_1^T(M)$ -action is trivial, so that $HF_{\text{top}}^-(M, \mathfrak{t}) = HF_{\text{bot}}^-(M, \mathfrak{t}) =$ $HF^-(M, \mathfrak{t})$, and $d_{\text{top}}(M, \mathfrak{t}) = d_{\text{bot}}(M, \mathfrak{t})$ is the usual d-invariant for rational homology spheres, as in [OS03]. The invariants $d_{\text{top}}(M, \mathfrak{t})$, $d_{\text{bot}}(M, \mathfrak{t})$ are preserved under rational homology cobordisms [LR14, Proposition 4.5].

A null-homologous knot K in M gives rise to a $\mathbb{Z} \oplus \mathbb{Z}$ filtered chain complex $CFK^{\infty}(M, K, \mathfrak{s})$, which is a $\mathbb{F}[U, U^{-1}]$ -module, see [OS04a, Ras03]. The filtration is indexed by the pair of integers (i, j), where i keeps track of the power of U, and j records the so called *Alexander filtration*. For $s \in \mathbb{Z}$, let $A_s^-(K) := A_s^-(M, K, \mathfrak{s})$ be the subcomplex of $CFK^{\infty}(M, K, \mathfrak{s})$ corresponding to $\max(i, j - s) \leq 0$ [MO, Remarks 3.7–3.8]. By the large surgery formula the homology of $A_s^-(K)$ is the sum of one copy of $\mathbb{F}[U]$ and a U-torsion submodule.

Following [NW15] we define the V-function $V_s(K)$ of an oriented knot $K \subset S^3$ so that $-2V_s(K)$ is the maximal homological degree of the free part of $H_*(A_s^-(K))$. For one-component links the H-function for links of [BG18, Liu17] is the V-function of knots. For example, the V-function of the unknot U is given by $V_s(U) = 0$ for $s \ge 0$ and $V_s(U) = -s$ for s < 0. The V-function takes values in nonnegative integers [BG18, Proposition 3.10], and furthermore, [BG18, Proposition 3.10] and [Liu17, Lemma 5.5] give

Proposition 4.1. The V-function of an oriented knot $K \subset S^3$ satisfies

$$V_{-s}(K) = V_s(K) + s$$
 and $V_{s-1}(K) - V_s(K) \in \{0, 1\}.$

Example 4.2. Let K be an alternating knot of signature σ ; recall that $\sigma \in 2\mathbb{Z}$. By [HM17, Theorem 1.7] if $\sigma > 0$, then $V_s(K) = 0$ for all s, and if $\sigma \leq 0$, the values $V_0(K)$ are given in the table below:

σ	$V_0(K)$
-8k	2k
-8k - 2	2k + 1
-8k - 4	2k + 1
-8k - 6	2k+2

5. Surgeries on knots and d-invariants

For a positive integer g let $C^g := \#^{2g}S^2 \times S^1$, the connected sum of 2g copies of $S^2 \times S^1$. As usual $M_n(K)$ denotes the *n*-framed surgery on a closed oriented 3-manifold M along a knot $K \subset M$; in what follows M is S^3 or C^g .

If $B \subset C^g$ is the Borromean knot, as defined e.g. in [Par14, Figure 4.1], then $C_n^g(B)$ has the structure of an oriented circle bundle over the genus goriented surface with Euler number n [OS08b, Section 5.2]. For the unknot $U \subset S^3$ it is well-known that $S_n^3(U)$ is an oriented circle bundle over S^2 with Euler number n.

It follows from [OS03, Propositions 9.3–9.4], cf. [Par14, Proposition 4.0.5], that the manifold $C_n^g(K\#B)$ has standard HF^{∞} for any oriented knot $K \subset S^3$. The same is true for $S_n^3(K)$ [OS04b, Theorem 10.1]. Thus the *d*-invariants d_{top} , d_{bot} are defined for $C_n^g(K\#B)$ and $S_n^3(K)$, and moreover, for $S_n^3(K)$ they reduce to the usual *d*-invariants. They were computed by Ni-Wu [NW15, Proposition 1.6] for $S_n^3(K)$, and by Park [Par14, Theorem 4.2.3] for $C_n^g(B)$, $n \neq 0$. Park's argument extends to $C_n^g(K\#B)$ as follows.

Theorem 5.1. For n > 0, we have

(5.2)
$$d_{top}(C_n^g(K\#B),k)) = g + \frac{(2k-n)^2 - n}{4n} - 2\min_{a=0,\cdots,g} \{a + V_{k-g+2a}(K)\}.$$

(5.3)
$$d_{\text{bot}}(C_n^g(K \# B, k)) = g + \frac{(2k-n)^2 - n}{4n} - 2 \max_{a=0, \cdots, g} \{a + V_{k-g+2a}(K)\}$$

where k labels the torsion Spin^c structures on $C_n^g(K \# B)$ with $-n/2 < k \le n/2$. The d-invariant of $S_n^3(K)$ is given by

(5.4)
$$d(S_n^3(K),k) = \frac{(2k-n)^2 - n}{4n} - 2V_k(K).$$

Proof. As in the proof of [Par14, Theorem 4.1.1], a diagram chase in the surgery mapping cone formula [OS08b, Theorem 4.10] shows that the free part of $H_*(A_k^-)$ is isomorphic to the free part of $HF^-(C_n^g(K\#B), k)$. The grading of the free part of $H_*(A_k^-)$ can be found in [BHL17, Theorem 6.10].

Remark 5.5. Theorem 5.1 extends to n < 0 as follows. Since the Borromean knot is amphichiral, $C_n^g(K \# B) = -C_{-n}^g(\bar{K} \# B)$, where \bar{K} is the

mirror of K. Then [LR14, Proposition 3.7] gives

$$d_{\text{bot}}(C_n^g(K\#B), k) = -d_{\text{top}}(C_{-n}^g(\bar{K}\#B), k)$$

$$d_{\text{top}}(C_n^g(K\#B), k) = -d_{\text{bot}}(C_{-n}^g(\bar{K}\#B), k).$$

Remark 5.6. A similar argument also computes d_{top} and d_{bot} for rational surgeries, i.e., when $0 \neq n \in \mathbb{Q}$.

6. Spines, homology cobordisms, and *d*-invariants

Let W be a compact, oriented, smooth 4-manifold with a PL spine S_1 , an oriented genus g surface with normal Euler number e. As before assume that S_1 has at most one non-locally-flat point with singularity knot $K \subset S^3$. If W also has a smooth spine S_2 , then there is a homology cobordism C between the boundaries M_1 , M_2 of the regular neighborhoods of S_1 , S_2 . Namely, C is obtained by removing the interiors of the regular neighborhoods from W and gluing the results along ∂W .

Here M_1 can be described as an *e*-surgery on $C^g = \#^{2g}S^2 \times S^1$ along the knot K # B where *B* is the Borromean knot [BHL17, Theorem 3.1], while M_2 is the circle bundle over S_2 with Euler number *e*, which is the *e*-surgery on C^g along *B*.

Since $H^2(C) \cong \mathbb{Z}^{2g} \oplus \mathbb{Z}/e\mathbb{Z}$, every torsion Spin^c structure on C can be thought of an element of $\mathbb{Z}/e\mathbb{Z}$ indexed by $k \in (-e/2, e/2]$. Restricting the element to M_j , $j \in \{1, 2\}$, gives a torsion Spin^c structure on M_j , which we denote \mathfrak{t}_{kj} . Thus

(6.1)
$$d_{top}(M_1, \mathfrak{t}_{k1}) = d_{top}(M_2, \mathfrak{t}_{k2}).$$

Theorem 6.2. If $e \ge 0$, and W contains a smooth spine, then the singularity knot K satisfies

(6.3)
$$\min_{a=0,\cdots,g} \{ a + V_{-g+2a}(K) \} = \lceil g/2 \rceil,$$

where $\lceil g/2 \rceil$ is the smallest integer that is $\geq g/2$.

Proof. Since
$$V_s(U) = \frac{|s| - s}{2}$$
 we compute
(6.4)
$$\min_{a=0,\cdots,g} \{a + V_{-g+2a}(U)\} = \lceil g/2 \rceil.$$

If e > 0, by Theorem 5.1

$$d_{top}(M_1, \mathfrak{t}_{k1}) = g + s - 2 \min_{a=0, \cdots, g} \{ a + V_{k-g+2a}(K) \}$$

and

$$d_{top}(M_2, \mathfrak{t}_{k2}) = g + s - 2 \min_{a=0, \dots, g} \{ a + V_{k-g+2a}(U) \}$$

where $s = \frac{(2k-e)^2 - e}{4e}$. Hence

(6.5)
$$\min_{a=0,\cdots,g} \{a + V_{k-g+2a}(K)\} = \min_{a=0,\cdots,g} \{a + V_{k-g+2a}(U)\}.$$

Combining (6.4) and (6.5) for k = 0 gives (6.3) in the case e > 0.

Assume e = 0. Then M_j is the 0-surgery on C^g , where j = 1, 2. Let M'_j denote the 1-surgery on C^g along the same knot as for M_j . By the equality part of [OS03, Corollary 9.14],

$$d_{\mathrm{top}}(M_j,\mathfrak{t}_{0j}) - \frac{1}{2} = d_{\mathrm{top}}(M'_j,\mathfrak{t}'_{0j}),$$

where $\mathfrak{t}_{0j}, \mathfrak{t}'_{0j}$ are the trivial Spin^c structures. Even though [OS03, Corollary 9.14] is stated for knots in S^3 , it generalizes (with the same proof) to knots in 3-manifolds with standard HF^{∞} and trivial $HF_{\rm red}$, which is how we apply it.

By (6.1) M_1 , M_2 have the same d_{top} , and hence

$$d_{\mathrm{top}}(M_1',\mathfrak{t}_{01}') = d_{\mathrm{top}}(M_2',\mathfrak{t}_{02}'),$$

and as before (6.4)–(6.5) imply (6.3), now for e = 0.

Corollary 6.6. If W contains a smooth spine with normal Euler number $e \ge 0$, then the singularity knot K satisfies

(6.7) $V_0(K) = 0$ if g is even and $V_1(K) = 0$ if g is odd.

Proof. If g = 2k, then by Theorem 6.2

$$\min_{k} \{ V_0(K) + k, V_2(K) + k + 1, \cdots, V_{2k}(K) + 2k \} = k.$$

Proposition 4.1 gives $V_{s-1}(K) \leq V_s(K) + 1$, and hence the minimum occurs for $V_0(K) + k = k$, which implies $V_0(K) = 0$. Similarly, if g = 2k + 1, we

have

$$\min\{V_1(k) + k + 1, \cdots, V_{2k+1}(K) + 2k + 1\} = k + 1$$

which means that $V_1(K) + k + 1 = k + 1$, and hence $V_1(K) = 0$.

7. Singularity knots and smooth spines

As in Section 6 let W a compact, oriented, smooth 4-manifold with a PL spine which is an oriented genus g surface with normal Euler number e, and at most one non-locally-flat point with singularity knot K. After changing the orientation of W, if needed, we can and will assume that $e \ge 0$.

Proof of Theorem 1.2. By Corollary 6.6 $V_0(K) = 0$ or $V_1(K) = 0$ depending on the parity of g, and hence $g(K) \leq 1$ [Liu, Lemma 2.11], where g(K) is the genus of of K. If g(K) = 0, then K is the unknot. A genus-one L-space knot is the right-handed trefoil [Ghi08, Corollary 1.5]. According to [NNU98] the Arf invariant for the torus knot T(p,q) is $(p^2 - 1)(q^2 - 1)/24 \pmod{2}$. Thus the Arf invariant of T(2,3) is nonzero, which implies by Theorem 1.1 that W cannot contain a smooth spine. This completes the proof when Kis an L-space knot.

Suppose K is an alternating knot of signature < -4. Hence $V_0(K) \ge 2$ by Example 4.2. Then Proposition 4.1 gives $V_1(K) \ge 1$, which by Corollary 6.6 shows that W does not have a smooth spine.

Finally, suppose that K is the connected sum of nontrivial L-space knots K_1, \dots, K_n with $n \ge 2$. Thus $g(K) = g(K_1) + \dots + g(K_n)$. Since K_i is nontrivial, $g(K_i) \ge 1$, and hence $g(K) \ge n$. For $j \in \mathbb{Z}$ set $R_{K_i}(j) := V_{g(K_i)-j}(K_i)$ and

$$R_K(j) := \min_{j_1 + \dots + j_n = j} R_{K_1}(j_1) + \dots + R_{K_n}(j_n).$$

By Proposition 4.1 the function R_{K_i} is nonnegative and nondecreasing, and combining the proposition with [Liu, Lemma 2.11] gives

$$R_{K_i}(1) = V_{g(K_i)-1}(K_i) = 1.$$

Hence $R_{K_i}(j) \ge 1$ for every $j \ge 1$.

Propositions 5.1 and 5.6 and Lemma 6.2 of [BL14] imply $V_j(K) + j = R_K(g(K) + j)$; the notations in [BL14] are different. Again, by Corollary 6.6 if $V_0(K)$ and $V_1(K)$ are both nonzero, then W does not have a smooth spine.

To see that $V_0(K) = R_K(g(K)) \ge 1$ assume the minimum of $R_K(g(K))$ is attained for $j_1 + \cdots + j_n = g(K)$. Then $j_i \ge 1$ for some i, and $R_K(g(K)) \ge R_{K_i}(j_i) \ge 1$.

To show that $1 \leq V_1(K) = R_K(g(K) + 1) - 1$ assume that the minimum of $R_K(g(K) + 1)$ is attained for $j_1 + \cdots + j_n = g(K) + 1$. If $j_i \geq g(K_i) + 2$, then

$$R_K(g(K)+1) \ge R_{K_i}(j_i) \ge R_{K_i}(g(K_i)+2) = V_{-2}(K_i) = V_2(K_i) + 2 \ge 2$$

as claimed. Otherwise, there are indices with $j_i \ge g(K_i)$ and $j_l = g(K_l) + 1$. Then $R_{K_i}(j_i) \ge V_0(K_i) \ge 1$ and $R_{K_l}(j_l) = V_1(K_l) + 1 \ge 1$, and hence $R_K(g(K) + 1) \ge 2$ as desired.

Proof of Corollary 1.3. For any $m \ge 2$, there is a topologically slice knot K_m with $V_0(K_m) = m$ [HKL16, Proposition 6 and Theorem B.1]. The corresponding manifold W has a topologically flat spine. By Corollary 6.6 and Proposition 4.1 if W has a smooth spine, then $V_0(K) \in \{0, 1\}$.

Acknowledgements

We are grateful to Lisa Piccirillo for leading us to [Akb93] and to Kyle Hayden for expository suggestions. Liu appreciates the support and hospitality of the Max Planck Institute for Mathematics in Bonn, where she was a member when this work began.

References

- [Akb93] S. Akbulut, Knots and exotic smooth structures on 4-manifolds, J. Knot Theory Ramifications 2 (1993), no. 1, 1–10.
 - [Bel] I. Belegradek, Hyperbolization and regular neighborhoods, arXiv: 2011.01320.
- [BG18] M. Borodzik and E. Gorsky, Immersed concordances of links and Heegaard Floer homology, Indiana Univ. Math. J. 67 (2018), no. 3, 1039–1083.
- [BHL17] M. Borodzik, M. Hedden, and C. Livingston, *Plane algebraic curves of arbitrary genus via Heegaard Floer homology*, Comment. Math. Helv. **92** (2017), no. 2, 215–256.

- [BL14] M. Borodzik and C. Livingston, *Heegaard Floer homology and rational cuspidal curves*, Forum Math. Sigma 2 (2014), Paper No. e28, 23.
- [Bro72] W. Browder, Surgery on simply-connected manifolds, Springer-Verlag, New York-Heidelberg, 1972, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 65.
- [CS76] S. E. Cappell and J. L. Shaneson, *Piecewise linear embeddings and their singularities*, Ann. of Math. (2) **103** (1976), no. 1, 163–228.
- [FMN⁺] P. Feller, A. N. Miller, M. Nagel, P. Orson, M. Powell, and A. Ray, Embedding spheres in knot traces, arXiv:2004.04204.
- [Ghi08] P. Ghiggini, Knot Floer homology detects genus-one fibred knots, Amer. J. Math. 130 (2008), no. 5, 1151–1169.
- [GLT88] M. Gromov, H. B. Lawson, Jr., and W. Thurston, Hyperbolic 4manifolds and conformally flat 3-manifolds, Inst. Hautes Études Sci. Publ. Math. (1988), no. 68, 27–45 (1989).
- [HKL16] M. Hedden, S.-G. Kim, and C. Livingston, Topologically slice knots of smooth concordance order two, J. Differential Geom. 102 (2016), no. 3, 353–393.
- [HM17] K. Hendricks and C. Manolescu, Involutive Heegaard Floer homology, Duke Math. J. 166 (2017), no. 7, 1211–1299.
- [HMP] K. Hayden, T. E. Mark, and L. Piccirillo, *Exotic Mazur manifolds* and knot trace invariants, arXiv:1908.05269.
 - [HP] K. Hayden and L. Piccirillo, *The trace embedding lemma and spinelessness*, arXiv:1912.13021.
- [KR08] H. J. Kim and D. Ruberman, Topological triviality of smoothly knotted surfaces in 4-manifolds, Trans. Amer. Math. Soc. 360 (2008), no. 11, 5869–5881.
- [KR20] H. J. Kim and D. Ruberman, Topological spines of 4-manifolds, Algebr. Geom. Topol. 20 (2020), no. 7, 3589–3606.
- [KT01] R. C. Kirby and L. R. Taylor, A survey of 4-manifolds through the eyes of surgery, Surveys on surgery theory, Vol. 2, Ann. of Math. Stud., vol. 149, Princeton Univ. Press, Princeton, NJ, 2001, pp. 387–421.

- [Kui88] N. H. Kuiper, Hyperbolic 4-manifolds and tesselations, Inst. Hautes Études Sci. Publ. Math. (1988), no. 68, 47–76 (1989).
- [Lau74] F. Laudenbach, Topologie de la dimension trois: homotopie et isotopie, Société Mathématique de France, Paris, 1974, With an English summary and table of contents, Astérisque, No. 12.
- [Lev66] J. Levine, Polynomial invariants of knots of codimension two, Ann. of Math. (2) 84 (1966), 537–554.
 - [Liu] B. Liu, *L-space surgeries on 2-component l-space links*, arXiv: 1905.04618, to appear in Trans. London Math. Soc.
- [Liu17] Y. Liu, *L*-space surgeries on links, Quantum Topol. 8 (2017), no. 3, 505–570.
- [LL19] A. S. Levine and T. Lidman, Simply connected, spineless 4manifolds, Forum Math. Sigma 7 (2019), 1–11.
- [LR14] A. S. Levine and D. Ruberman, Generalized Heegaard Floer correction terms, Proceedings of the Gökova Geometry-Topology Conference 2013, Gökova Geometry/Topology Conference (GGT), Gökova, 2014, pp. 76–96.
- [Mat75] Y. Matsumoto, A 4-manifold which admits no spine, Bull. Amer. Math. Soc. 81 (1975), 467–470.
 - [MO] C. Manolescu and P. Ozsvath, *Heegaard floer homology and integer* surgeries on links, arXiv:1011.1317.
- [MV79] Y. Matsumoto and G. A. Venema, Failure of the Dehn lemma on contractible 4-manifolds, Invent. Math. 51 (1979), no. 3, 205–218.
- [NNU98] K. Nakamura, Y. Nakanishi, and Y. Uchida, *Delta-unknotting number for knots*, J. Knot Theory Ramifications 7 (1998), no. 5, 639–650.
- [NW15] Y. Ni and Z. Wu, Cosmetic surgeries on knots in S³, J. Reine Angew. Math. **706** (2015), 1–17.
- [Ont20] P. Ontaneda, *Riemannian hyperbolization*, Publ. Math. Inst. Hautes Études Sci. **131** (2020), 1–72.
- [OS03] P. Ozsváth and Z. Szabó, Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary, Adv. Math. 173 (2003), no. 2, 179–261.

- [OS04a] _____, Holomorphic disks and knot invariants, Adv. Math. 186 (2004), no. 1, 58–116.
- [OS04b] _____, Holomorphic disks and three-manifold invariants: properties and applications, Ann. of Math. (2) **159** (2004), no. 3, 1159– 1245.
- [OS04c] _____, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. (2) **159** (2004), no. 3, 1027–1158.
- [OS05] _____, On knot Floer homology and lens space surgeries, Topology 44 (2005), no. 6, 1281–1300.
- [OS08a] _____, Holomorphic disks, link invariants and the multi-variable Alexander polynomial, Algebr. Geom. Topol. 8 (2008), no. 2, 615– 692.
- [OS08b] P. S. Ozsváth and Z. Szabó, Knot Floer homology and integer surgeries, Algebr. Geom. Topol. 8 (2008), no. 1, 101–153.
- [Par14] K. Park, Some computations and applications of Heegaard Floer correction terms, ProQuest LLC, Ann Arbor, MI, 2014, Thesis (Ph.D.)-Michigan State University, d.lib.msu.edu/etd/2543.
- [Ran98] A. Ranicki, *High-dimensional knot theory*, Springer Monographs in Mathematics, Springer-Verlag, New York, 1998, Algebraic surgery in codimension 2, With an appendix by Elmar Winkelnkemper.
- [Ras03] J. A. Rasmussen, Floer homology and knot complements, ProQuest LLC, Ann Arbor, MI, 2003, Thesis (Ph.D.)–Harvard University.
- [RS68] C. P. Rourke and B. J. Sanderson, *Block bundles. I*, Ann. of Math.
 (2) 87 (1968), 1–28.
- [RS71] C. P. Rourke and D. P. Sullivan, On the Kervaire obstruction, Ann. of Math. (2) 94 (1971), 397–413.
- [Sae92] O. Saeki, On 4-manifolds homotopy equivalent to the 2sphere, Aspects of low-dimensional manifolds, Adv. Stud. Pure Math., vol. 20, Kinokuniya, Tokyo, 1992, pp. 301–330, doi.org/10.2969/aspm/02010301.
- [Ven98] G. A. Venema, A manifold that does not contain a compact core, Topology Appl. 90 (1998), no. 1-3, 197–210.

SCHOOL OF MATHEMATICS, GEORGIA INSTITUTE OF TECHNOLOGY ATLANTA, GA, USA 30332, USA *E-mail address*: ib@math.gatech.edu *E-mail address*: bliu96@gatech.edu

Received March 5, 2021 Accepted September 13, 2021