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Four manifolds with no smooth spines

Igor Belegradek and Beibei Liu

Let W be a compact smooth orientable 4-manifold that deforma-
tion retract to a pl embedded closed surface. One can arrange the
embedding to have at most one non-locally-flat point, and near the
point the topology of the embedding is encoded in the singularity
knot K . If K is slice, then W has a smooth spine, i.e., deforma-
tion retracts onto a smoothly embedded surface. Using the obstruc-
tions from the Heegaard Floer homology and the high-dimensional
surgery theory, we show that W has no smooth spine if K is a
knot with nonzero Arf invariant, a nontrivial L-space knot, the
connected sum of nontrivial L-space knots, or an alternating knot
of signature < −4. We also discuss examples where the interior of
W is negatively curved.

1. Introduction

A spine is a topological (not necessarily locally flat), compact, boundaryless
submanifold that is a strong deformation retract of the ambient manifold.
A spine is smooth or pl if the submanifold has this property.

Examples of 4-manifolds that are homotopy equivalent to closed sufaces
but have no pl spines can be found in [Mat75, MV79, LL19, HP]. It is shown
in [Ven98] that an example in [MV79] does not even have a topological spine.
Some 4-manifolds with topological spines and no pl spines can be found
in [KR20]. The present paper constructs 4-manifolds with pl spines and no
smooth spines.

In this section W denotes a compact oriented smooth 4-manifold with
a pl spine S homeomorphic to a closed oriented connected surface. By a
standard argument S can be moved by a pl homeomorphism to a spine with
at most one non-locally-flat point; henceforth we assume that S has this
property. If S is locally flat, then the submanifold S is smoothable [RS68,
Corollary 6.8]. Otherwise, S intersects the link of the non-locally-flat point
in a singularity knot K . If K is smoothly slice, then replacing the cone on
K in S with a smoothly embedded disk in W gives a smooth spine of W .
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44 I. Belegradek and B. Liu

Conversely, if Σ is an oriented connected surface with one boundary
component, then attaching Σ×D2 to the 4-ball along the knot K in its
boundary with framing r gives a compact oriented 4-manifold with a pl

spine homeomorphic to Σ/∂Σ, which has normal Euler number r and sin-
gularity knot K . If Σ = D2 , the 4-manifold is denoted by Kr and called a
knot trace.

Examples of non-slice singularity knot such that W has a smooth spine
come from exotic knot traces. Namely [Akb93, Theorem A] describes knots
K1 , K2 such that K1 is slice, K2 is not slice, and Kr

1 , K
r
2 are diffeomorphic

for some r . We refer to [HMP, HP, FMN+ ] for a recent study of relations
between invariants of knot traces and knot concordance.

Cappell and Shaneson [CS76] developed a surgery-theoretic criterion
that can help decide when a manifold with a pl spine of dimension ≥ 3
and codimension 2 also admits a locally flat spine. Applying the criterion
to W × S1 we prove

Theorem 1.1. If W is a compact oriented smooth 4-manifold that has a

pl spine whose singularity knot has nonzero Arf invariant, then W contains

no smooth spine.

Tye Lidman and Daniel Ruberman asked us if the generalized Rokhlin
invariant can be used to give a purely 4-dimensional proof of Theorem 1.1.
This was done in [Sae92, Theorem 3.1] in the case when W is a homotopy
S2 with finite H1(∂W ). We leave the question to an interested reader.

The criterion of [CS76] also gives a weak converse of Theorem 1.1: If K
has zero Arf invariant, then W × S1 has a smooth spine, see Remark 3.2.

If W has two pl spines with regular neighborhoods R1 , R2 in the
interior of W , then there is a homology cobordism between the boundaries
∂R1 , ∂R2 obtained by gluing W \ Int(R1) and W \ Int(R2) along ∂W .
The Heegaard-Floer d-invariants dtop , dbot are preserved under homology
cobordisms. Furthermore, one can express the d-invariants of ∂R1 , ∂R2 via
singularity knots of their spines, and for some knots the d-invariants can be
explicitly computed, which gives the following.

Theorem 1.2. If W is a compact oriented smooth 4-manifold that has a

pl spine whose singularity knot is a nontrivial L-space knot, the nontrivial

connected sum of nontrivial L-space knots, or an alternating knot of signa-

ture < −4, then W contains no smooth spine.
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Recall that a knot K ⊂ S3 is an L-space knot if there is an integer n > 0
such that the n-framed surgery on the knot is an L-space [OS05, Definition
1.1]. For example, torus knots are L-space knots [OS05, p.1285].

The d-invariants obstruction applies to some topologically slice knots
in [HKL16], which gives

Corollary 1.3. For any g, e ∈ Z with g ≥ 0 there exists a compact smooth

oriented 4-manifold with no smooth spine and a topological locally flat spine

that is an oriented closed genus g surface with normal Euler number e .

We were led to the subject of this paper while thinking of examples
in [GLT88, Kui88] of oriented hyperbolic 4-manifolds with pl spines. Each of
these manifolds is a quotient of the hyperbolic space H4 by a Kleinian group
Γ0 which is a torsion-free finite index subgroup in a certain discrete group
Γ of orientation preserving isometries of H4 . The group Γ is described via
face-pairings of its fundamental domain F , which is obtained by removing
from H4 a neighborhood of a nontrivial torus knot T in the ideal boundary
of H4 . In turn, the fundamental domain F0 for Γ0 is obtained by gluing
k copies of F , where k is the index of Γ0 in Γ, and one can describe F0

as the result of removing from H4 a neighborhood of the k -fold connected
sum of T . This k -fold connected sum is the singularity knot in a pl spine
of H4/Γ0 , and hence H4/Γ0 has no smooth spine by Theorem 1.2.

A related construction in [GLT88, Section 6] replaces the torus knot T
by an arbitrary nontrivial knot K but the group Γ is now generated by
reflections in the codimension one faces of F . The resulting singularity knot
of the pl spine of H4/Γ0 is the k

2 -fold connected sum of K#rK̄ , where rK̄
is the reverse of the mirror image of K . (Here k is even because H4/Γ0 is
orientable and Γ does not preserve orientation). Since K#rK̄ is slice, the
singularity knot is slice, and H4/Γ0 has a smooth spine.

An analog of these examples with variable pinched negative curvature is
discussed in [Bel], which is based on Ontaneda’s Riemannian hyperboliza-
tion [Ont20]. Here there is no need to pass to a finite index torsion-free sub-
group, and for any knot K one gets pinched negatively curved 4-manifolds
whose pl spine has K as a singularity knot. In particular, if K satisfies
the assumptions of Theorems 1.1 or 1.2, the negatively pinched 4-manifold
has no smooth spine, while in the setting of Corollary 1.3 there exists a
topologically flat spine.

The structure of the paper is as follows. In Section 2 we review results
on the Kervaire invariant of compact oriented manifolds with codimension
2 spines. In Section 3 we specialize to dimension 4, relate the Kervaire
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invariant of W and the Arf invariant of the singularity knot, and prove
Theorem 1.1. Section 4 is a review of Heegaard Floer d-invariants, whose
relationship to V -functions is explored in Section 5. In Section 6 we investi-
gate how the assumption “W has a smooth spine” affects the V -function of
the singularity knot. Section 7 contains a proof of Theorem 1.2 and Corol-
lary 1.3.

2. Kervaire invariant of codimension two thickenings

Let W be a compact oriented pl manifold with a pl embedded spine S ,
a closed connected oriented manifold of dim(S) = dim(W )− 2. Let ξ be
an oriented plane bundle over S whose Euler class is the normal Euler
class of S in W , and let pξ : Dξ → S be the associated 2-disk bundle.
Then [CS76, Proposition 1.6] gives a homology isomorphism h : (W,∂W ) →
(Dξ, ∂Dξ) such that h preserves the orientation class in the relative second
cohomology, and pξ ◦ h|S is homotopic to the identity of S . The map h
pulls α := p∗ξ(νW |S) to the stable normal bundle ν

W
of W because h∗α and

ν
W

are isomorphic over S to which W deformation retracts. This gives a
normal map (h, bW ) where bW : ν

W
→ α is the above bundle map.

Assuming, as we can, that h is transverse regular to the zero section
S of Dξ , we see that N := h−1(S) is a closed surface which is locally flat
in W with normal bundle h∗ξ . The stable normal bundle to N is νN =
ν
W
|S ⊕ h∗ξ = h∗(α|S ⊕ ξ). Thus h|N : N → S is covered by the bundle map

bN : νN → α|S ⊕ ξ . The orientation on ξ and W defines an orientation on
N for which h|N : N → S has degree one, and hence (h|N , bN ) is a normal
map.

The normal invariant of (h|N , bN ) is the image of the normal invariant of
(h, bW ) under the inclusion-induced map [W,G/PL] → [S,G/PL] , which is
a bijection because S →֒ W is a homotopy equivalence. This standard fact
is stated on [CS76, p.195] and in the appendix of [KR08], and the proof
amounts to comparing various definitions of the normal invariant.

By [RS71, Section 1] the Kervaire invariant of the normal map (h|N , bN )
is the Arf invariant of a certain quadratic form on the kernel of h|N∗ :
H1(N ;Z2) → H1(S;Z2). A normal map with nontrivial Kervaire invariant
represents a nontrivial class in [S,G/PL] , see [RS71, Theorem 1.4(ii)], and
in fact, the Kervaire invariant defines a group homomorphism [S,G/PL] →
Z2 [RS71, Corollary 4.5].
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3. Kervaire and Arf invariants in dimension four

Let us adopt notations of Section 2 and suppose dim(W ) = 4. Then the
group [S,G/PL] is isomorphic to H2(S;Z2) ∼= Z2 , see e.g. [KT01, Section 2],
and hence the Kervaire invariant defines an isomorphism [S,G/PL] → Z2 .

Fix a triangulation of W for which S is a full subcomplex with only one
non-locally flat point. Its star is an embedded 4-ball B , and C := S ∩B is
the cone on the knot K = S ∩ ∂B , the singularity knot of S ⊂ W .

Lemma 3.1. The Kervaire invariant of W in [S,G/PL] is the Arf invari-

ant of the knot K .

Proof. Let V be the smallest subcomplex that contains a neighborhood of
S in W . Since S is a full subcomplex, V is a regular neighborhood of S
in W , to which W deformation retracts. Denote the relative interiors of B ,
C , V by B̊ , C̊ , V̊ . Then V \ B̊ is a trivial 2-disk bundle over S \ C̊ . Give
B the structure of a trivial 2-disk bundle over a 2-disk, whose zero section
Z intersects ∂B in an unknot U . Glue V \ B̊ and B by an orientation-
preserving 2-disk bundle automorphism identifying ∂C with ∂Z = U so
that the resulting 2-disk bundle Dξ → S has the same Euler class as S ⊂ W .
Denote the regular neighborhoods of K and U in ∂B by RK and RU ,
respectively.

Then the above-mentioned map h : W → Dξ can be chosen so that
h|

W\V̊ is a deformation retraction onto ∂V , the map h|V \B is the iden-

tity, h takes (B, ∂B,K) to (B, ∂B,U), and maps RK homeomorphically
onto RU . To define h|B apply [CS76, Proposition 1.6] to the thickening B of
C and use the fact that any homology equivalence (RK , ∂RK) → (RU , ∂RU )
is homotopic to a homeomorphism.

Isotope the zero section Z to a 2-disk Z0 ⊂ ∂B rel boundary, and
perturb h near B to be transverse regular to Z0 . Then Σ := h−1(Z0)
is a Seifert surface of K and N := (S \B) ∪ Σ is a closed surface such
that h : N \ Σ → S \ Z0 is the identity. Since the surgery obstruction is
additive [Bro72, Theorem III.4.14], the Kervaire invariants of the normal
maps (h|Σ, bN |Σ) and (h|N , bN ) are equal. Finally, the Kervaire invariant
of (h|Σ, bN |Σ) equals the Arf invariant of K , as stated on [Ran98, page
XXXIII] and proved in [Lev66, Proposition 3.3]. □

Proof of Theorem 1.1. The above thickening V of S is classified by the
homotopy class of a map f : S → BSRN2 . Let η : BSRN2 → G/PL be the
normal invariant map, see [CS76, p.182]. Then η ◦ f is the normal invariant
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of S →֒ V . Since K has nonzero Arf invariant, by the above discussion the
Kervaire invariant of η ◦ f is nonzero.

It is easy to check that the thickening V ′ := V × S1 of S′ := S × S1

is the pullback of S →֒ V under the coordinate projection p : S × S1 → S ,
see [CS76, pp.173–175]. Let i : S → S × S1 be a section of p , say, given by
i(m) = (m, 1). Since η ◦ f = η ◦ f ◦ p ◦ i is homotopically nontrivial, so is
η ◦ f ◦ p . Hence S′ →֒ V ′ is a thickening with nontrivial normal invariant.

Arguing by contradiction suppose that W has a locally flat spine L .
Then L′ := L× S1 is a locally flat spine of W ′ . The restriction to L′ of the
deformation retraction W ′ → S′ is homotopic to a diffeomorphism g : L′ →
S′ , see e.g. [Lau74, p.5]. Hence the normal invariant of g is trivial.

As we explain in [Bel, Appendix C], the pullback via g of the Poincaré
embedding given by the inclusion S′ ⊂ W ′ is isomorphic to the Poincaré
embedding of the locally flat inclusion L′ ⊂ W ′ . Since dim(S′) is odd and
≥ 3, Theorem 6.2 of [CS76] implies that the Poincaré embedding for L′ ⊂ W ′

can be realized by a locally flat embedding if and only if the normal invariants
of g equals the normal invariant of the Poincaré embedding S′ ⊂ W ′ . This
is a contradiction because these normal invariants are different and L′ ⊂ W ′

is locally flat. □

Remark 3.2. The above argument can be reversed, namely, if K has zero
Arf invariant, then the Poincaré embedding induced by the inclusion S →֒ W
has trivial normal invariant, and hence so does its product with a circle or
more generally, with any closed manifold L , and if dim(L) is odd, then
W × L has a locally flat spine [CS76, Theorem 6.2].

4. Heegaard Floer d-invariants and V -functions of knots

Ozsváth and Szabó introduced [OS03, OS04c, OS04b] Heegaard-Floer ho-
mology theories HF o(M, t) associated with a Spinc structure t on a closed
oriented 3-manifold M . Here o is a decoration indicating the flavor of a
Heegaard-Floer theory, and in this paper o is ∞ or − . The homology groups
HF−(M, t) and HF∞(M, t) are modules over Z[U ] and Z[U,U−1] , respec-
tively, where U is a formal variable whose action lowers the relative homo-
logical degree by 2. Related invariants for knots and links in 3-manifolds
were developed in [Ras03, OS04a, OS08a]. We refer to these papers for back-
ground.

Henceforth, we assume that M has standard HF∞ [OS03, p.240], and
the Spinc structure t is torsion, i.e., its first Chern class has finite order in
H2(M).
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According to [OS04c, Section 4.2.5] the group HT
1 (M) := H1(M)/Tors

acts on the Heegaard-Floer chain complex CF o(M, t), and on the corre-
sponding homology group HF o(M, t). Let HF o(M, t)bot and HF o(M, t)top
denote the kernel and the cokernel of the HT

1 (M)-action on HF o(M, t).
The d-invariants dtop(M, t) and dbot(M, t) are the maximal homological
degrees of a non-torsion class in HF−

top(M, t) and HF−
bot(M, t), respectively,

see [OS03, Section 9] and [LR14, Section 3]. If M is a rational homology
sphere, the HT

1 (M)-action is trivial, so that HF−
top(M, t) = HF−

bot(M, t) =
HF−(M, t), and dtop(M, t) = dbot(M, t) is the usual d-invariant for ratio-
nal homology spheres, as in [OS03]. The invariants dtop(M, t), dbot(M, t)
are preserved under rational homology cobordisms [LR14, Proposition 4.5].

A null-homologous knot K in M gives rise to a Z⊕ Z filtered chain
complex CFK∞(M,K, s), which is a F[U,U−1] -module, see [OS04a, Ras03].
The filtration is indexed by the pair of integers (i, j), where i keeps track
of the power of U , and j records the so called Alexander filtration. For
s ∈ Z , let A−

s (K) := A−
s (M,K, s) be the subcomplex of CFK∞(M,K, s)

corresponding to max(i, j − s) ≤ 0 [MO, Remarks 3.7–3.8]. By the large
surgery formula the homology of A−

s (K) is the sum of one copy of F[U ] and
a U -torsion submodule.

Following [NW15] we define the V -function Vs(K) of an oriented knot
K ⊂ S3 so that −2Vs(K) is the maximal homological degree of the free part
of H∗(A

−
s (K)). For one-component links the H -function for links of [BG18,

Liu17] is the V -function of knots. For example, the V -function of the unknot
U is given by Vs(U) = 0 for s ≥ 0 and Vs(U) = −s for s < 0. The V -
function takes values in nonnegative integers [BG18, Proposition 3.10], and
furthermore, [BG18, Proposition 3.10] and [Liu17, Lemma 5.5] give

Proposition 4.1. The V -function of an oriented knot K ⊂ S3 satisfies

V−s(K) = Vs(K) + s and Vs−1(K)− Vs(K) ∈ {0, 1}.

Example 4.2. Let K be an alternating knot of signature σ ; recall that
σ ∈ 2Z . By [HM17, Theorem 1.7] if σ > 0, then Vs(K) = 0 for all s , and if
σ ≤ 0, the values V0(K) are given in the table below:

σ V0(K)

−8k 2k

−8k − 2 2k + 1

−8k − 4 2k + 1

−8k − 6 2k + 2



✐

✐

“2-Liu” — 2022/8/26 — 17:23 — page 50 — #8
✐

✐

✐

✐

✐

✐

50 I. Belegradek and B. Liu

5. Surgeries on knots and d-invariants

For a positive integer g let Cg := #2gS2 × S1 , the connected sum of 2g
copies of S2 × S1 . As usual Mn(K) denotes the n-framed surgery on a
closed oriented 3-manifold M along a knot K ⊂ M ; in what follows M is
S3 or Cg .

If B ⊂ Cg is the Borromean knot, as defined e.g. in [Par14, Figure 4.1],
then Cg

n(B) has the structure of an oriented circle bundle over the genus g
oriented surface with Euler number n [OS08b, Section 5.2]. For the unknot
U ⊂ S3 it is well-known that S3

n(U) is an oriented circle bundle over S2

with Euler number n .
It follows from [OS03, Propositions 9.3–9.4], cf. [Par14, Proposition 4.0.5],

that the manifold Cg
n(K#B) has standard HF∞ for any oriented knot

K ⊂ S3 . The same is true for S3
n(K) [OS04b, Theorem 10.1]. Thus the d-

invariants dtop , dbot are defined for Cg
n(K#B) and S3

n(K), and moreover,
for S3

n(K) they reduce to the usual d-invariants. They were computed by
Ni-Wu [NW15, Proposition 1.6] for S3

n(K), and by Park [Par14, Theorem
4.2.3] for Cg

n(B), n ̸= 0. Park’s argument extends to Cg
n(K#B) as follows.

Theorem 5.1. For n > 0, we have

(5.2) dtop(C
g
n(K#B), k)) = g +

(2k − n)2 − n

4n
− 2 min

a=0,··· ,g

{a+ Vk−g+2a(K)}.

(5.3) dbot(C
g
n(K#B, k)) = g +

(2k − n)2 − n

4n
− 2 max

a=0,··· ,g

{a+ Vk−g+2a(K)}

where k labels the torsion Spinc structures on Cg
n(K#B) with −n/2 < k ≤

n/2. The d-invariant of S3
n(K) is given by

(5.4) d(S3
n(K), k) =

(2k − n)2 − n

4n
− 2Vk(K).

Proof. As in the proof of [Par14, Theorem 4.1.1], a diagram chase in the
surgery mapping cone formula [OS08b, Theorem 4.10] shows that the free
part of H∗(A

−
k ) is isomorphic to the free part of HF−(Cg

n(K#B), k). The
grading of the free part of H∗(A

−
k ) can be found in [BHL17, Theorem 6.10].

□

Remark 5.5. Theorem 5.1 extends to n < 0 as follows. Since the Bor-
romean knot is amphichiral, Cg

n(K#B) = −Cg
−n(K̄#B), where K̄ is the



✐

✐

“2-Liu” — 2022/8/26 — 17:23 — page 51 — #9
✐

✐

✐

✐

✐

✐

Four manifolds with no smooth spines 51

mirror of K . Then [LR14, Proposition 3.7] gives

dbot(C
g
n(K#B), k) = −dtop(C

g
−n(K̄#B), k)

dtop(C
g
n(K#B), k) = −dbot(C

g
−n(K̄#B), k).

Remark 5.6. A similar argument also computes dtop and dbot for rational
surgeries, i.e., when 0 ̸= n ∈ Q .

6. Spines, homology cobordisms, and d-invariants

Let W be a compact, oriented, smooth 4-manifold with a pl spine S1 , an
oriented genus g surface with normal Euler number e . As before assume that
S1 has at most one non-locally-flat point with singularity knot K ⊂ S3 . If W
also has a smooth spine S2 , then there is a homology cobordism C between
the boundaries M1 , M2 of the regular neighborhoods of S1 , S2 . Namely,
C is obtained by removing the interiors of the regular neighborhoods from
W and gluing the results along ∂W .

Here M1 can be described as an e-surgery on Cg = #2gS2 × S1 along
the knot K#B where B is the Borromean knot [BHL17, Theorem 3.1],
while M2 is the circle bundle over S2 with Euler number e , which is the
e-surgery on Cg along B .

Since H2(C) ∼= Z2g ⊕ Z/eZ , every torsion Spinc structure on C can be
thought of an element of Z/eZ indexed by k ∈ (−e/2, e/2]. Restricting the
element to Mj , j ∈ {1, 2} , gives a torsion Spinc structure on Mj , which we
denote tkj . Thus

(6.1) dtop(M1, tk1) = dtop(M2, tk2).

Theorem 6.2. If e ≥ 0, and W contains a smooth spine, then the singu-

larity knot K satisfies

(6.3) min
a=0,··· ,g

{a+ V−g+2a(K)} = ⌈g/2⌉,

where ⌈g/2⌉ is the smallest integer that is ≥ g/2.

Proof. Since Vs(U) =
|s| − s

2
we compute

(6.4) min
a=0,··· ,g

{a+ V−g+2a(U)} = ⌈g/2⌉.
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If e > 0, by Theorem 5.1

dtop(M1, tk1) = g + s− 2 min
a=0,··· ,g

{a+ Vk−g+2a(K)}

and

dtop(M2, tk2) = g + s− 2 min
a=0,··· ,g

{a+ Vk−g+2a(U)}

where s = (2k−e)2−e

4e . Hence

(6.5) min
a=0,··· ,g

{a+ Vk−g+2a(K)} = min
a=0,··· ,g

{a+ Vk−g+2a(U)}.

Combining (6.4) and (6.5) for k = 0 gives (6.3) in the case e > 0.
Assume e = 0. Then Mj is the 0-surgery on Cg , where j = 1, 2. Let

M ′
j denote the 1-surgery on Cg along the same knot as for Mj . By the

equality part of [OS03, Corollary 9.14],

dtop(Mj , t0j)−
1

2
= dtop(M

′
j , t

′
0j),

where t0j , t
′
0j are the trivial Spinc structures. Even though [OS03, Corol-

lary 9.14] is stated for knots in S3 , it generalizes (with the same proof) to
knots in 3-manifolds with standard HF∞ and trivial HFred , which is how
we apply it.

By (6.1) M1 , M2 have the same dtop , and hence

dtop(M
′
1, t

′
01) = dtop(M

′
2, t

′
02),

and as before (6.4)–(6.5) imply (6.3), now for e = 0. □

Corollary 6.6. If W contains a smooth spine with normal Euler number

e ≥ 0, then the singularity knot K satisfies

(6.7) V0(K) = 0 if g is even and V1(K) = 0 if g is odd.

Proof. If g = 2k , then by Theorem 6.2

min
k

{V0(K) + k, V2(K) + k + 1, · · · , V2k(K) + 2k} = k.

Proposition 4.1 gives Vs−1(K) ≤ Vs(K) + 1, and hence the minimum occurs
for V0(K) + k = k , which implies V0(K) = 0. Similarly, if g = 2k + 1, we
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have

min
k

{V1(k) + k + 1, · · · , V2k+1(K) + 2k + 1} = k + 1

which means that V1(K) + k + 1 = k + 1, and hence V1(K) = 0. □

7. Singularity knots and smooth spines

As in Section 6 let W a compact, oriented, smooth 4-manifold with a pl

spine which is an oriented genus g surface with normal Euler number e , and
at most one non-locally-flat point with singularity knot K . After changing
the orientation of W , if needed, we can and will assume that e ≥ 0.

Proof of Theorem 1.2. By Corollary 6.6 V0(K) = 0 or V1(K) = 0 depending
on the parity of g , and hence g(K) ≤ 1 [Liu, Lemma 2.11], where g(K) is
the genus of of K . If g(K) = 0, then K is the unknot. A genus-one L-space
knot is the right-handed trefoil [Ghi08, Corollary 1.5]. According to [NNU98]
the Arf invariant for the torus knot T (p, q) is (p2 − 1)(q2 − 1)/24 (mod 2).
Thus the Arf invariant of T (2, 3) is nonzero, which implies by Theorem 1.1
that W cannot contain a smooth spine. This completes the proof when K
is an L-space knot.

Suppose K is an alternating knot of signature < −4. Hence V0(K) ≥ 2
by Example 4.2. Then Proposition 4.1 gives V1(K) ≥ 1, which by Corol-
lary 6.6 shows that W does not have a smooth spine.

Finally, suppose that K is the connected sum of nontrivial L-space
knots K1, · · · ,Kn with n ≥ 2. Thus g(K) = g(K1) + · · ·+ g(Kn). Since
Ki is nontrivial, g(Ki) ≥ 1, and hence g(K) ≥ n . For j ∈ Z set RKi

(j) :=
Vg(Ki)−j(Ki) and

RK(j) := min
j1+···+jn=j

RK1
(j1) + · · ·+RKn

(jn).

By Proposition 4.1 the function RKi
is nonnegative and nondecreasing, and

combining the proposition with [Liu, Lemma 2.11] gives

RKi
(1) = Vg(Ki)−1(Ki) = 1.

Hence RKi
(j) ≥ 1 for every j ≥ 1.

Propositions 5.1 and 5.6 and Lemma 6.2 of [BL14] imply Vj(K) + j =
RK(g(K) + j); the notations in [BL14] are different. Again, by Corollary 6.6
if V0(K) and V1(K) are both nonzero, then W does not have a smooth
spine.
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To see that V0(K) = RK(g(K)) ≥ 1 assume the minimum of RK(g(K))
is attained for j1 + · · ·+ jn = g(K). Then ji ≥ 1 for some i , and RK(g(K))
≥ RKi

(ji) ≥ 1.
To show that 1 ≤ V1(K) = RK(g(K) + 1)− 1 assume that the minimum

of RK(g(K) + 1) is attained for j1 + · · ·+ jn = g(K) + 1. If ji ≥ g(Ki) + 2,
then

RK(g(K) + 1) ≥ RKi
(ji) ≥ RKi

(g(Ki) + 2) = V−2(Ki) = V2(Ki) + 2 ≥ 2

as claimed. Otherwise, there are indices with ji ≥ g(Ki) and jl = g(Kl) +
1. Then RKi

(ji) ≥ V0(Ki) ≥ 1 and RKl
(jl) = V1(Kl) + 1 ≥ 1, and hence

RK(g(K) + 1) ≥ 2 as desired. □

Proof of Corollary 1.3. For any m ≥ 2, there is a topologically slice knot
Km with V0(Km) = m [HKL16, Proposition 6 and Theorem B.1]. The cor-
responding manifold W has a topologically flat spine. By Corollary 6.6 and
Proposition 4.1 if W has a smooth spine, then V0(K) ∈ {0, 1} . □
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