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We compute the complexity, z-complexity, and support varieties
of the (thick) Kac modules for the Lie superalgebras of type P .
We also show the complexity and the z-complexity have geometric
interpretations in terms of support and associated varieties; these
results are in agreement with formulas previously discovered for
other classes of Lie superalgebras.

Our main technical tool is a recursive algorithm for constructing
projective resolutions for the Kac modules. The indecomposable
projective summands which appear in a given degree of the res-
olution are explicitly described using the combinatorics of weight
diagrams. Surprisingly, the number of indecomposable summands
in each degree can be computed exactly: we give an explicit formula
for the corresponding generating function.
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1. Introduction

1.1. Background

Let g = g0̄ ⊕ g1̄ be a classical Lie superalgebra over the complex numbers.
By definition g0̄ is a reductive Lie algebra and the adjoint action of g0̄ on g

is semisimple. Let F denote the full subcategory of all finite-dimensional g-
supermodules which are completely reducible over g0̄ and have all weights in-
tegral. The category F has enough projectives and is in general not semisim-
ple. In [2–6] the authors and Nakano initiated a study of this category using
tools imported from modular representation theory.

Most relevant to the current paper, in [5] we computed the complexity,
z-complexity, and support varieties for the Kac supermodules and simple su-
permodules for g = gl(m|n). We showed that complexity and z-complexity
have natural interpretations in terms of the dimensions of support varieties
and the associated varieties of [11]. Entirely analogous results were subse-
quently obtained for Lie superalgebras in other types by El Turkey [12, 13].
The main goal of the present paper is to obtain similar results for the Kac
supermodules for the Lie superalgebras of type P , as we now describe.

1.2. Main Results

We define the z-complexity of a g-supermodule M in F , cz(M), to be the
rate of growth of the number of indecomposable summands in each term of
the minimal projective resolution of M in F . The complexity of M , cF (M),
is the rate of growth of the dimension (as a vector space) of each term of the
minimal projective resolution of M in F . See Section 4.1 for further details.
Note, z-complexity is invariant under category equivalences but complexity
need not be preserved.

For the remainder of the introduction let g denote the Lie superalgebra
p(n) as defined in Section 2.2. Let X+(T ) = {

∑n
i=1 µiεi | µi ∈ Z, µ1 ≥ · · ·

≥ µn} be the set of dominant integral weights for p(n). Given µ ∈ X+(T ), a
run is a maximal length sequence µa+1 = · · · = µa+k where k is the size of
the run. To each µ ∈ X+(T ) there is a Kac supermodule of highest weight
µ which we denote by ∆(µ). The simple supermodules in F are labelled by
X+(T ) and can be obtained as the unique irreducible quotients of the Kac
supermodules. Moreover, the category F is a highest weight category with
the Kac supermodules as standard objects. See Section 2.4 for details.

Given a dominant integral weight µ for p(n), let o = o(µ) denote the
number of runs of µ which have odd size. In Theorems 4.3.1 and 5.3.1 the
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z-complexity and complexity are shown to satisfy

(1.2.1)

cz (∆(µ)) =
n− o

2
,

cF (∆(µ)) =

(

n

2

)

−

(

o

2

)

.

Furthermore, these formulas can be interpreted in terms of varieties. By
computing the support and associated varieties of ∆(µ) we are able to verify
in Theorems 5.3.2 and 5.4.1 that

(1.2.2)
cz (∆(µ)) = dimV(f,f0̄) (∆(µ)) ,

cF (∆(µ)) = dimV(g,g0̄) (∆(µ)) + dimX∆(µ),

where V(g,g0̄)(∆(µ)) (resp. V(f,f0̄)(∆(µ))) is the support variety with respect
to g (resp. the detecting subalgebra f ⊆ g), and X∆(µ) is the associated va-
riety of [11]. Identical equalities were verified for other types in [5, 12, 13].
Our results provide further support for the conjecture that these formulas
should hold in general. That is, for any stable classical Lie superalgebra g

over C with detecting subalgebra f defined as in [3], the formulas (1.2.2)
should hold when ∆(µ) is replaced by any module M in F .

1.3. Overview

The paper is organized as follows. In Section 2, we set up the basic con-
ventions for the Lie superalgebra p(n), the category F , and the combina-
torics of weight diagrams following [1]. In Section 3 we introduce our main
technical tool: an explicit projective resolution for each Kac supermodule
(constructed in Theorem 3.2.1) which is described combinatorially in terms
of weight diagrams. In particular, by Theorem 3.5.3 the indecomposable
summands which appear in the resolution are completely described com-
binatorially by certain “allowable functions” between weight diagrams. In
Section 4 weight diagrams are used to compute the rate of growth of the
number of indecomposable summands for this projective resolution.

Surprisingly, the number of indecomposable summands in this projective
resolution can be computed on the nose. If Sµ(u) is the generating function
where the coefficient of ud is the number of indecomposable summands in
the dth term of the projective resolution for ∆(µ), then Theorem 4.3.1 shows

Sµ(u) =
fµ(u)

(1− u)
n−o

2

,
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where fµ(u) is an explicit polynomial. These calculations yield upper bounds
on z-complexity and, when combined with dimension estimates, complexity,
which match the equalities given in (1.2.1).

Finally, in Section 5 we use representation theoretic computations to
obtain lower bounds on the support and associated varieties for the Kac su-
permodules. In combination with previous results, these lower bounds allow
us to compute the support varieties for the Kac supermodules in Theo-
rems 5.3.2 and 5.4.1 as well as verify (1.2.1) and (1.2.2).

It is worth remarking these invariants do not depend on µ, but only
on the number of odd runs in µ. The results of [5] showed the degree of
atypicality of the highest weight played this role for gl(m|n). This suggests
that n minus the number of odd runs may be the true analogue of atypicality
for p(n).

1.4. Additional questions

As the projective resolutions constructed here have the same rate of growth
as the minimal projective resolutions, it is natural to ask if these are in fact
minimal. Related to this, it is worth pointing out the resolutions here fail
to satisfy “parity vanishing” (see Example 3.5.4). This is still true even if
one takes into account parity shifts. Since we could not find a compelling
argument one way or the other on the question of minimality, we leave it as
an open problem.

The Kac supermodules, ∆(µ), studied here are the “thick” Kac super-
modules of [1]. In loc. cit. they also introduce “thin” Kac supermodules,
∇(µ), and show F is a highest weight category where ∆(µ) (resp. ∇(µ))
are the standard (resp. costandard) objects. Related to the lack of parity
vanishing discussed above, it would be interesting to determine if F admits
a Kazhdan-Lusztig Theory in the sense of Cline-Parshall-Scott [9, 10].

Finally, it would be interesting to compute support varieties, complexity,
and z-complexity for the thin Kac supermodules and the simple supermod-
ules. Answering these questions for gl(m|n) used the existence of a duality
on the category which interchanges the standard and costandard objects.
There is no such duality for p(n), which suggests new ideas will be needed.
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2. Preliminaries

2.1. Superspaces

Let C be the field of complex numbers. Unless otherwise stated, all vector
spaces considered in this paper will be finite-dimensional C-vector spaces. A
superspace is a Z2-graded vector space, V = V0̄ ⊕ V1̄. Given a superspace V
and a homogeneous element v ∈ V , we write v ∈ Z2 for its parity. For short
we call an element of V even (resp. odd) if v = 0̄ (resp. v = 1̄). We view C

itself as a superspace concentrated in parity 0̄. Given a superspace V we say
the dimension of V is m|n to record that the dimension of V0̄ is m and the
dimension of V1̄ is n. In particular, the dimension of V as a vector space is
m+ n and the superdimension of V is, by definition, m− n.

If V andW are superspaces, then V ⊗W is naturally a superspace where
a pure tensor has parity given by the formula v ⊗ w = v + w for all homoge-
neous v ∈ V and w ∈ W . Similarly, the space of C-linear maps, HomC(V,W )
is naturally Z2-graded by declaring that a linear map f : V → W has parity
r ∈ Z2 if f(Vs) ⊆ Wr+s for all s ∈ Z2.

2.2. The Lie superalgebra of type P

Let I = In|n be the ordered index set consisting of the 2n symbols {1, . . . , n,
1′, . . . , n′}. Let ¯: I → Z2 be the function defined by i = 0̄ if i ∈ {1, . . . , n}
and i = 1̄ if i ∈ {1′, . . . , n′}. Let V be the vector space with distinguished ba-
sis {vi | i ∈ I}. We define a Z2-grading on V by declaring vi = i for all i ∈ I.
Let gl(V ) = gl(n|n) denote the superspace of all linear endomorphisms of V .
Then gl(V ) is a Lie superalgebra via the graded version of the commutator
bracket. That is,

[f, g] = f ◦ g − (−1)f gg ◦ f

for all homogeneous f, g ∈ gl(V ). Note here and later we adopt the con-
vention that a condition is only given for homogeneous elements and leave
implicit the understanding that the general case can be obtained via linear-
ity.

Define an odd, supersymmetric, nondegenerate bilinear form on V by
declaring (vi, vj′) = (vj′ , vi) = δi,j , (vi, vj) = (vi′ , vj′) = 0, for i, j = 1, . . . , n.
We define a Lie superalgebra g = p(n) ⊆ gl(V ) consisting of all linear maps
which preserve the bilinear form for all homogeneous x, y ∈ V ,

g = p(n) =
{

f ∈ gl(V )
∣

∣

∣
(f(x), y) + (−1)f̄ x̄(x, f(y)) = 0

}

.
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One can easily check that the supercommutator defines a Lie superalgebra
structure on g = p(n). By definition this is the Type P Lie superalgebra.

With respect to our choice of basis it is straightforward to describe p(n)
as 2n× 2n complex matrices,

(2.2.1) g =

{(

A B
C −At

)}

,

where A,B,C are n× n complex matrices with B symmetric, C skew-
symmetric, and where At denotes the transpose of A. The Z2-grading is
given by observing g0̄ is the subspace of all such matrices where B = C = 0
and g1̄ is the subspace of all such matrices where A = 0. In particular, notice
g0̄ is canonically isomorphic to the Lie algebra gl(n).

A g-supermodule is a superspace M with an action of g which re-
spects the grading in the sense that gr.Ms ⊆ Mr+s for all r, s ∈ Z2, and
which satisfies graded versions of the axioms for a Lie algebra module.
If M,N are g-supermodules, then HomC(M,N) inherits a Z2-grading as
before. A homogeneous g-supermodule homomorphism is a homogeneous
f ∈ HomC(M,N) which satisfies f(xm) = (−1)fxxf(m) for all homogeneous
x ∈ g and m ∈ M . Note we do not assume a supermodule homomorphism
is homogenous; instead we will make it explicit if and when it is important
that a map be homogeneous.

Let U(g) denote the universal enveloping superalgebra of g. Then U(g)
is a Hopf superalgebra. In particular, if M and N are finite-dimensional g-
supermodules (equivalently, finite-dimensional U(g)-supermodules) one can
use the coproduct and antipode of U(g) to define a g-supermodule struc-
ture on the tensor product M ⊗N and the dual M∗. Also, viewing C as a
superspace concentrated in parity zero with action given by the counit of
U(g) defines the trivial supermodule for g. We also have C1̄ which is C with
g-supermodule structure given by the counit, but concentrated in parity 1̄.
For brevity we frequently leave the prefix “super” implicit in what follows.

There is a Z-grading on g which is compatible with the Z2 grading in
that reducing modulo two recovers the Z2-grading. It is given by setting g1
equal to the subspace of all matrices of the form (2.2.1) where A and C are
zero, g0 = g0̄, and g−1 consists of all matrices of the form (2.2.1) where A
and B are zero.

Let b0̄ denote the subalgebra of g0̄ consisting of matrices which are upper
triangular in the A block. Then we choose the Borel subalgebra of g to be
b = b0̄ ⊕ g−1. Let h denote the Cartan Lie subsuperalgebra of g consisting
of diagonal matrices. We fix a basis ε1, . . . , εn ∈ h∗ where εi is the linear
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functional which picks out the ith diagonal entry of h ∈ h when written as
a matrix as in (2.2.1); that is, the ith diagonal entry of the A block. Let
X(T ) = ⊕n

i=1Zεi denote the integral weight lattice. Let

X+(T ) =

{

µ =

n
∑

i=1

µiεi ∈ X(T )

∣

∣

∣

∣

∣

µ1 ≥ · · · ≥ µn

}

.

Fix ρ =
∑n

i=1(n− i)εi. We denote by µ̄ the element µ+ ρ =
∑n

i=1 µ̄iεi.
It is convenient to introduce the bijectionX(T ) → ⊕n

i=1Z given by µ 7→ [µ] =
[a1, . . . , an] where µ+ ρ =

∑n
i=1 an−i+1εi. Then µ is an element of X+(T ) if

and only if it maps to a strictly increasing sequence [µ] of integers.

2.3. A basis

For later calculations it will be useful to fix a choice of basis for p(n). Given
i, j ∈ In|n, let Ei,j denote the matrix unit with a 1 in the (i, j) position
and zero everywhere else. For 1 ≤ i ≤ n let hi = Ei,i − Ei′,i′ ∈ h ⊆ g0. For
1 ≤ i, j ≤ n, i ̸= j, let ai,j = Ei,j − Ej′,i′ ∈ g0. This is a root vector for the
root εi − εj . For 1 ≤ i ≤ j ≤ n, let bi,j = Ei,j′ + Ej,i′ ∈ g1. This is a root
vector for the root εi + εj . For 1 ≤ i < j ≤ n, let ci,j = Ei′,j − Ej′,i ∈ g−1.
This is a root vector for the root−εi − εj . We have the following commutator
formulas:

(2.3.1) [cu,v, bp,q] =

{

δq,uap,v − δq,vap,u + δp,uaq,v − δp,vaq,u, p < q;

δp,u2ap,v − δp,v2ap,u, p = q.

When contemplating the above formulas the reader should keep in mind our
conventions mean bp,p has a 2 in the (p, p′) position. Similarly,

(2.3.2) [ai,j , cp,q] = δi,pcq,j − δi,qcp,j ,

where we adopt the convention that ci,j := −cj,i if i > j and ci,i = 0. Further
calculations show

(2.3.3) [ai,j , bp,q] = δj,pbi,q + δj,qbi,p,

where we adopt the convention that bi,j := bj,i if i > j.
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2.4. Categories and modules

Let F = F(g, g0̄) denote the full subcategory of all g-modules which are
finite-dimensional, decompose into weight spaces with respect to the action
of h, and all weights lie in X(T ). In particular, these representations are
completely reducible when restricted to g0̄. Moreover, this category is closed
under tensor products and duals and is a monoidal supercategory. The cat-
egory F admits a parity shift functor Π given by setting ΠM = C1̄ ⊗M .
Except when otherwise stated, all g-modules will be assumed to be objects
of F .

For µ ∈ X+(T ), let L0(µ) denote the simple g0̄
∼= gl(n)-module of highest

weight µ with respect to the Cartan and Borel subalgebras, h and b0̄ ⊆ g0̄,
respectively. The (thick) Kac module for µ ∈ X+(T ) is defined to be

∆(µ) = U(g)⊗U(g0̄⊕g−1) L0(µ),

where L0(µ) is viewed as a g0̄ ⊕ g−1-module by having g−1 act trivially. By
standard arguments ∆(µ) is a highest weight module with a unique maximal
proper submodule. If we write L(µ) for the simple quotient of ∆(µ), then
the set {L(µ) | µ ∈ X+(T )} gives a complete set of simple modules in F
up to isomorphism and parity shift. Let P (µ) denote the indecomposable
projective cover of L(µ) and ∆(µ). By [4, Proposition 2.2.2] it is known that
the projectives and injectives in F coincide.

2.5. Weights and weight diagrams

Given µ =
∑n

i=1 µiεi ∈ X+(T ) define its degree of atypicality by

(2.5.1) atyp(µ) = # {i | 1 ≤ i < n, µi = µi+1} ,

where we write #X for the cardinality of a set X. We call µ (and ∆(µ) and
L(µ)) typical if atyp(µ) = 0 and atypical, otherwise.

A weight diagram with n dots is the real number line with markings on
n distinct integers. We draw the markings as dots. When needed to avoid
confusion, we use tick-marks for integers which do not have dots. We label
one or more integers on the number line when needed. When a dot in a
weight diagram does not have a dot to its immediate left or right, then we
call it an isolated dot. When a dot in a weight diagram does not have a dot
to its immediate left, then we call it a left-isolated dot. In particular, every
isolated dot is left-isolated.
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Given µ ∈ X+(T ), the weight diagram of µ is the weight diagram ob-
tained by placing a dot at the integers a1, . . . , an, where µ 7→ [µ]=[a1, . . . , an]
is the map from Section 2.2. Since µ is dominant integral, the integers
a1, . . . , an are strictly increasing and the result will be a weight diagram
with n dots. Conversely, given a weight diagram with n dots, there is a
unique µ ∈ X+(T ) which corresponds to that weight diagram. We freely
identify a dominant weight with its weight diagram.

For example, if n = 4 and µ = 2ε1 + 2ε2 + ε3 − 4ε4, then µ̄ = µ+ ρ =
5ε1 + 4ε2 + 2ε3 − 4ε4, [µ] = [−4, 2, 4, 5], and the weight diagram is

0

· · ·· · · .

In this example the dots at −4 and 2 are isolated and the dots at −4, 2, and
4 are left-isolated.

Given t ∈ Z and µ, λ ∈ X+(T ), if we write [µ] = [a1, . . . , an] and [λ] =
[b1, . . . , bn], then define

ℓt(λ, µ) = # {i | bi ≤ t} −# {i | ai ≤ t} .

In terms of weight diagrams, ℓt(λ, µ) is the difference in the number of dots
which are at or to the left of the integer t in the weight diagrams of λ and
µ. Since ℓt(λ, µ) = 0 for all but finitely many t, it makes sense to define the
relative length function on λ, µ ∈ X+(T ) as

(2.5.2) ℓ(λ, µ) =

∞
∑

t=−∞

ℓt(λ, µ).

Define a partial order on X+(T ) by declaring µ ≤ λ if λi ≤ µi for i =
1, . . . , n. That is, µ ≤ λ if and only if ℓt(λ, µ) ≥ 0 for all t ∈ Z.

3. Projective resolutions

3.1. Translation functors

Regard V as the natural module for g. For each i ∈ Z there is an exact
endofunctor Θi : F → F given by tensoring with V and projecting onto the
generalized i-eigenspace for the action of the Casimir element. See [1, Def-
inition 4.1.7] where this functor is denoted Θ′

i. By [1, Theorem 7.1.1] these
functors take indecomposable projectives to indecomposable projectives or
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zero. We will need the following special cases of [1, Proposition 5.2.1, Lem-
mas 7.2.1 and 7.2.3], concerning the effect of translation functors on Kac
modules and on indecomposable projective modules. As before, we do not
distinguish between a dominant weight and its weight diagram. In the pre-
sentation of the following results we adopt the convention that the weight
diagrams in question are identical except for the indicated changes.

Theorem 3.1.1. Let λ ∈ X+(T ) and let j ∈ Z.

1) If λ is as given below, then Θj+1∆(λ) ∼= ∆(µ), where µ is as given
below:

λ =
j − 1 j j + 1

· · ·· · ·

µ =
j − 1 j j + 1

· · ·· · ·

2) If λ is as given below, then there is a short exact sequence

0 → ∆(µ′) → Θj+1∆(λ) → ∆(µ′′) → 0

where µ′ and µ′′ are as given below:

λ =
j − 1 j j + 1

· · ·· · ·

µ′ =
j − 1 j j + 1

· · ·· · ·

µ′′ =
j − 1 j j + 1

· · ·· · ·

Theorem 3.1.2. Let λ ∈ X+(T ) and let j ∈ Z.

1) If λ is as below, then Θj+1P (λ) ∼= P (µ), where µ is as below:

λ =
j − 1 j

· · ·· · ·

µ =
j − 1 j

· · ·· · ·
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2) If λ is as below, then Θj+1P (λ) = P (µ), where µ is as below:

λ =
j − 2 j − 1 j

· · ·· · ·

µ =
j − 2 j − 1 j

· · ·· · ·

3.2. The algorithm

In this subsection we describe a recursive algorithm which constructs pro-
jective resolutions for Kac modules. The algorithm is based on the one
constructed by Brundan for gl(m|n) in [7]. First, for any d ≥ 0 and any
µ ∈ X+(T ) we explain how to construct an exact sequence of projective
modules

Pd → Pd−1 → · · · → P0 → ∆(µ) → 0.

We call such a sequence a partial projective resolution of length d.
The easy case is when µ is typical. In this case ∆(µ) = P (µ) by [1,

Lemma 3.4.1] and we take P0 = P (µ) and Pi = 0 for all i > 0. For atypi-
cal µ ∈ X+(T ) we let P0 = P (µ) and let P0 → ∆(µ) → 0 be the canonical
surjection. Thus we have such a resolution for arbitrary d when µ is typical
and for d = 0 when µ is atypical. We construct longer sequences for atyp-
ical d inductively as follows. Note that the terms of the sequences will be
projective modules by [1, Theorem 7.1.1]

For the inductive step, we assume we have a partial projective resolution
of length d− 1 for all ν with atyp(ν) = atyp(µ) and of length d for all ν
with atyp(ν) < atyp(µ). In particular, we assume atyp(µ) ≥ 1 and we have
a partial projective resolution of ∆(µ) of length d− 1. We give a procedure
for constructing a partial projective resolution of length d from this data.
Step 1: Choose the smallest i so the weight diagram for µ is of the form

µ =
i − 1 i i + 1

· · ·· · · .

Such an i exists since atyp(µ) ≥ 1. There are now two cases.

Step 2a: Suppose µ has no dot at i− 2. Then set j = i. We have

µ =
j − 2 j − 1 j j + 1

· · ·· · · ,
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and set

ν =
j − 2 j − 1 j j + 1

· · ·· · · .

Since atyp(ν) < atyp(µ), ∆(ν) has a partial projective resolution of length
d, say

Qd → · · · → Q1 → Q0 → ∆(ν) → 0.

Applying the exact functor Θj+1 to this sequence yields the exact sequence

Θj+1Qd → · · · → Θj+1Q1 → Θj+1Q0 → Θj+1∆(ν) → 0.

Furthermore, by Theorem 3.1.1 there is a short exact sequence

0 → ∆(µ′) → Θj+1∆(ν) → ∆(µ) → 0

where

µ′ =
j − 2 j − 1 j j + 1

· · ·· · · .

Since atyp(µ′) ≤ atyp(µ), ∆(µ′) has a partial projective resolution of length
d− 1, say

Ud−1 → · · · → U1 → U0 → ∆(µ′) → 0.

Applying the Comparison Theorem [16, Theorem 2.2.6] to the inclusion
i : ∆(µ′) →֒ Θj+1∆(ν) yields a double complex

· · · −→ U1 −→ U0 −→ ∆(µ′) −→ 0

· · · −→ Θj+1Q1 −→ Θj+1Q0 −→ Θj+1∆(ν) −→ 0

i

Taking the total complex yields an exact (by the Acyclic Assembly Lemma
[16, Lemma 2.7.3]) sequence

Θj+1Qd ⊕ Ud−1 → Θj+1Qd−1 ⊕ Ud−2 → · · ·

→ Θj+1Q0 ⊕∆(µ′) → Θj+1∆(ν) → 0.

Factoring out ∆(µ′) from the last two terms yields a partial projective res-
olution of length d for ∆(µ), as desired.

Step 2b: Suppose µ has a dot at i− 2. Then
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µ =
i − 2 i − 1 i i + 1

· · ·· · · ,

and by our choice of i the dots at and to the left of i− 2 are isolated. Choose
the largest j < i so that the weight diagram for µ looks locally like

µ =
j − 2 j − 1 j j + 1

· · ·· · · .

In other words, j is the location of the rightmost dot at or left of i− 2, which
has no dot to its immediate right nor in the two positions to its immediate
left. Set

ν =
j − 2 j − 1 j j + 1

· · ·· · · .

That is, the weight diagram of ν is obtained from that of µ by moving the dot
at j one position left, while leaving all other dots unchanged. Since atyp(ν) =
atyp(µ), then by assumption there is a partial projective resolution of length
d− 1 for ∆(ν). If there is a partial projective resolution of length d for ∆(ν),
say

Qd → · · · → Q0 → ∆(ν) → 0,

applying Θj+1 yields a partial projective resolution of length d for ∆(µ):

Θj+1Qd → · · · → Θj+1Q0 → ∆(µ) → 0,

as desired. If there is not (yet) a partial projective resolution of length d for
∆(ν), then repeat Step 2b, replacing µ with ν. After finitely many applica-
tions of Step 2b, we will have a dominant integral weight with atypicality
equal to atyp(µ) and of the form shown in Step 2a. Applying the construc-
tion in Step 2a yields a partial projective resolution of length d for that
dominant integral weight and, by the repeated applications of Step 2b, it
follows that ∆(µ) has a partial projective resolution of length d.

Replacing d by d+ 1, the same procedure constructs an exact sequence
Pd+1 → Pd → · · · → P0 → ∆(µ) → 0, where we can always ensure that the
terms of degree ≤ d are the same as the ones constructed before. Now letting
d → ∞ we get a projective resolution P•(µ) → ∆(µ). Summarizing, we have
the following result.
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Theorem 3.2.1. Let µ ∈ X+(T ) be a dominant integral weight. Then the
Algorithm constructs a projective resolution of ∆(µ):

· · · → P3(µ) → P2(µ) → P1(µ) → P0(µ) → ∆(µ) → 0.

3.3. Key properties

The following results summarize some key properties of the projective reso-
lution constructed in Theorem 3.2.1.

Lemma 3.3.1. Suppose P (λ) occurs as a summand of some Pd(µ), where
µ has an isolated dot at position k. Then λ has a left-isolated dot at k.

Proof. The proof is by induction on atyp(µ) together with d. If µ is typical
or d = 0, then the only possibility is λ = µ and degree d = 0, and the result
is clear.

So assume atyp(µ) ≥ 1 and d ≥ 1, and that the result is true for all
weights of smaller atypicality in degree d, and for all weights of the same
atypicality in degree d− 1. In particular, the result is true for the projec-
tive indecomposables P (λ̃) occurring in the projective resolutions of the
Kac modules of highest weights ν and µ′ arising in Steps 2a and 2b in the
algorithm used to form Pd(µ).

In Step 2a, µ does not have an isolated dot at any coordinate j −
2, . . . , j + 2, and µ differs from ν only in coordinates j − 1 and j. Thus if µ
has an isolated dot at k, so does ν, and either k < j − 2 or k > j + 2. By in-
duction, for every projective indecomposable summand P (λ̃) of Pd(ν) = Qd,
λ̃ has a left-isolated dot at k, and also at j − 1 since ν has an isolated dot
at j − 1. So by Theorem 3.1.2, Θj+1P (λ̃) = P (λ) where λ differs from λ̃ at
most in positions j − 2, j − 1, and j. Thus λ still has a left-isolated dot at
k.

Similarly, µ differs from µ′ only in coordinates j − 1, j, and j + 1. Thus
if µ has an isolated dot at k, then so does µ′ (with the same restrictions
on k as in the previous paragraph). By induction, for each indecomposable
summand P (λ) of Pd−1(µ

′) = Ud−1 (which become summands of Pd(µ)), λ
has a left-isolated dot at k.

In Step 2b, a similar analysis as for Step 2a applies to any isolated dots
of µ at k > j + 1 or k < j − 2. We need only consider the isolated dot at
j in µ. Note that ν has an isolated dot at j − 1, so by induction any λ̃
for which P (λ̃) is a summand of Pd(ν) has a left-isolated dot at j − 1. By
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Theorem 3.1.2, Θj+1P (λ̃) = P (λ) where λ has a dot at j and no dot at j − 1,
as required. □

Lemma 3.3.2. The result of the Algorithm is independent of the order in
which the steps are applied, provided at each step the diagrams of dots and
ticks are locally as specified. In other words, the phrases “the smallest i” in
Step 1 and “the largest j” in Step 2b can be replaced by “any i” and “any
j,” respectively.

Proof. The proof is again by induction on atyp(µ) and d, with induction
hypothesis similar to before. Assume atyp(µ) ≥ 1 and there are two allow-
able steps in the algorithm, either of which can be applied to µ. The most
complicated situation is where both steps are of type 2a, so we will treat
that case, and leave to the reader the easier cases where at least one of the
moves is of type 2b. So we have the following picture:

µ = · · · · · ·
i − 2 i − 1 i i + 1

· · ·
j − 2 j − 1 j j + 1

ν1 =
i − 1 i i + 1

· · ·
j j + 1

ν2 =
i i + 1

· · ·
j − 1 j j + 1

τ = · · · · · ·
i − 2 i − 1 i i + 1

· · ·
j − 2 j − 1 j j + 1

with i ≤ j − 4. There are short exact sequences

0 → ∆(µ′
1) → Θi+1∆(ν1) → ∆(µ) → 0

0 → ∆(µ′
2) → Θj+1∆(ν2) → ∆(µ) → 0

0 → ∆(ν ′1) → Θj+1∆(τ) → ∆(ν1) → 0

0 → ∆(ν ′2) → Θi+1∆(τ) → ∆(ν2) → 0

0 → ∆(σ) → Θi+1∆(ν ′1) → ∆(µ′
2) → 0

0 → ∆(σ) → Θj+1∆(ν ′2) → ∆(µ′
1) → 0

where µ′
1 (resp. ν

′
2) is obtained from µ (resp. ν2) by shifting the dots at i, i+ 1

to i− 1, i; similarly for µ′
2 and ν ′1 using j in place of i; and σ is obtained

from µ by shifting both pairs of dots i, i+ 1 and j, j + 1 one position left. For
k = 1, 2, let us denote by P k

d (µ) the degree d term of the projective resolution
for ∆(µ) obtained via the kth short exact sequence above, involving ∆(νk).
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Following the left path from τ via ν1, and using the first and third short
exact sequences, we have

P 1
d (µ)

∼= Θi+1Pd(ν1)⊕ Pd−1(µ
′
1)

Pd(ν1) ∼= Θj+1Pd(τ)⊕ Pd−1(ν
′
1).

From the second of these, and exactness of the functors Θs,

Θi+1Pd(ν1) ∼= Θi+1Θj+1Pd(τ)⊕Θi+1Pd−1(ν
′
1).

But using the fifth short exact sequence,

Pd−1(µ
′
2)

∼= Θi+1Pd−1(ν
′
1)⊕ Pd−2(σ),

whence

Θi+1Pd(ν1)⊕ Pd−2(σ) ∼= Θi+1Θj+1Pd(τ)⊕ Pd−1(µ
′
2).

Therefore

P 1
d (µ)⊕ Pd−2(σ) ∼= Θi+1Θj+1Pd(τ)⊕ Pd−1(µ

′
2)⊕ Pd−1(µ

′
1).

Similarly, following the right path from τ via ν2, we obtain

P 2
d (µ)⊕ Pd−2(σ) ∼= Θj+1Θi+1Pd(τ)⊕ Pd−1(µ

′
1)⊕ Pd−1(µ

′
2).

Since j − i ≥ 4, [1, Theorem 4.51] gives that Θi+1Θj+1
∼= Θj+1Θi+1.

Hence P 1
d (µ)

∼= P 2
d (µ) and this case of the independence of path is proved.

□

Remark 3.3.3. Not only is the resolution constructed by the Algorithm
unique, there is a “canonical” typical weight µ0 to which µ will be reduced
by the Algorithm, independent of the order in which the steps are applied.
Roughly speaking, µ0 is obtained by shifting adjacent dots left so there is one
tick between them, and, recursively, moving left any other dot when a dot
needs to move into the spot to its immediate right, so as never to create any
new pairs of adjacent dots.

3.4. Allowable functions

Given µ, λ ∈ X+(T ) with [µ] = [a1, . . . , an] and [λ] = [b1, . . . , bn], we say a
function is of type µ→λ and write f : µ→λ if f : {a1, . . . , an}→{b1, . . . , bn}
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is a bijection. It is convenient to draw a function of type µ → λ using weight
diagrams as follows:

µ =
0

· · ·· · ·

λ =
0

· · ·· · ·

As the reader may have guessed, this picture depicts the function f(0) = 0,
f(1) = 1, f(2) = −4, and f(3) = −3.

Given a function f̃ : µ̃ → λ̃ there are three distinguished “moves” which
construct a new function. These moves are local in the sense that there may
be dots and arrows other than those depicted, but they are assumed to be
left unchanged by the move.

Move 1 (Sliding Isolated Dots): Say f̃ : µ̃ → λ̃ is as follows:

µ̃ =
j − 2 j − 1 j

· · ·· · ·

λ̃ =
j − 2 j − 1 j

· · ·· · ·

.

Then by definition Move 1 yields the function f : µ → λ:

µ =
j − 2 j − 1 j

· · ·· · ·

λ =
j − 2 j − 1 j

· · ·· · ·

.

Move 2 (Leapfrogging): Say f̃ : µ̃ → λ̃ is as follows:

µ̃ =
j − 2 j − 1 j

· · ·· · ·
k

λ̃ =
j − 2 j − 1 j

· · ·· · ·

.
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Then by definition Move 2 yields the function f : µ → λ:

µ =
j − 2 j − 1 j

· · ·· · ·
k

λ =
j − 2 j − 1 j

· · ·· · ·

.

Move 3 (Sliding an Isolated Pair): Say f̃ : µ̃ → λ̃ is as follows:

µ̃ =
j − 1 j j + 1

· · · · · ·

λ̃ =
k ℓ

· · ·· · ·· · ·

.

Then by definition Move 3 yields the function f : µ → λ:

µ =
j − 1 j j + 1

· · · · · ·

λ =
k ℓ

· · ·· · ·· · ·

.

Given dominant integral weights µ, λ ∈ X+(T ), we call a function f :
µ → λ an allowable function of type µ → λ if f can be obtained from the
identity function Idγ : γ → γ for some typical dominant integral weight γ ∈
X+(T ) using a finite sequence of Moves 1, 2, and 3. It is clear inductively
from the description of the Moves that an allowable function is nonincreas-
ing; in other words, if f : µ → λ is an allowable function, then µ ≤ λ in the
partial order of Section 2.5.

3.5. Leapfrogging

We now explain how the combinatorics of allowable functions describes
which projective indecomposables appear in the resolution of ∆(µ) and in
which degrees they appear.
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Theorem 3.5.1. Let µ ∈ X+(T ) be a dominant integral weight. Then P (λ)
appears in the projective resolution for ∆(µ) constructed in Theorem 3.2.1
if and only if there is an allowable function f : µ → λ. In particular, µ ≤ λ
in the partial order of Section 2.5.

Proof. This is a combinatorial reformulation of the algorithm. The result is
clearly true when µ is typical. So assume atyp(µ) ≥ 1, and that the result is
true inductively as in Section 3.2. Let us first prove the “only if” assertion.

First, suppose that Pd(µ) is obtained as in Step 2b of the algorithm.
Then Pd = Θj+1Qd. So P (λ) = Θj+1P (λ̃) for some summand P (λ̃) of Qd

for ∆(ν). By induction, there is an allowable function f̃ : ν → λ̃. Because
j − 1 is an isolated dot in ν, it follows from the description of the Moves,
and by Lemma 3.3.1, that f̃(j − 1) = j − 1 and λ̃ has no dot at j − 2. There
are two cases, according to whether or not λ̃ has a dot at j.

If λ̃ does not have a dot at j, then we are in the setting of Move 1.
According to Theorem 3.1.2 (1), Θj+1P (λ̃) = P (λ), where λ is obtained
from λ̃ by moving the dot from j − 1 to j. Note that µ is obtained from ν
by exactly the same procedure. Thus we construct f from f̃ via Move 1.

On the other hand, if λ̃ does have a dot at j, then we are in the setting
of Move 2. (Notice that since ν does not have a dot at j, and since every
allowable function is nonincreasing, there must exist k > j with f̃(k) = j as
in the Move 2 diagram.) By Theorem 3.1.2 (2), Θj+1P (λ̃) = P (λ), where
λ is obtained from λ̃ by moving the dot from j − 1 to j − 2. On the other
hand, µ is still obtained from ν by moving the dot from j − 1 to j. Thus we
construct f from f̃ via Move 2.

Second, suppose that Pd(µ) is obtained as in Step 2a of the algorithm.
Then Pd = Θj+1Qd ⊕ Ud−1. The analysis of the summands coming from
Θj+1Qd is exactly the same as in the first case, since ν again has an isolated
dot at j − 1. The summands coming from Ud−1 are as pictured in Move 3,
since µ is obtained from µ′ by sliding an isolated pair of dots at j − 1 and j
one step right (to j and j + 1), whereas the indecomposable projective P (λ)
does not change. Thus we obtain f from f̃ via Move 3.

The converse follows largely by the same line of argument, using induc-
tion, the fact that it is trivially true when µ is typical, and the fact that
Moves 1, 2, and 3 correspond precisely to the way that summands P (λ) of
Pd(µ) arise in the algorithm. There is one subtle point, however, and that
is that the algorithm steps are to be carried out in a very specific order,
whereas an allowable function could be constructed via a sequence of Moves
1, 2, and 3 in any order. The fact that the order does not matter follows
from Lemma 3.3.2.
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The last statement of the theorem follows from the observation at the
end of Section 3.4. □

Definition 3.5.2. Let µ, λ ∈ X+(T ) with [µ] = [a1, . . . , an]. Let f : µ → λ
be a function of type µ → λ. If 1 ≤ i < j ≤ n, but f(ai) > f(aj), then we
call the pair (i, j) a leapfrogging pair for f .

Given f : µ → λ, let L(f : µ → λ) be the total number of leapfrogging
pairs for f : µ → λ. That is,

L(f) = L(f : µ → λ) =

n
∑

j=2

# {i < j | f(ai) > f(aj)} .

In terms of the pictorial representation of f : µ → λ, if the arrows are drawn
as straight lines so that at most two lines intersect at each point, then L(f)
is simply the number of crossings. For example, if f is the function drawn
at the beginning of Section 3.4, then L(f) = 4.

Given µ, λ ∈ X+(T ) and an allowable f : µ → λ, the previous result
shows P (λ) appears as a direct summand of some term in the projective
resolution of ∆(µ) constructed in Theorem 3.2.1. The next theorem sharp-
ens this result.

Theorem 3.5.3. Given µ, λ ∈ X+(T ), then P (λ) occurs as a direct sum-
mand of Pd(µ) if and only if there exists an allowable function f : µ → λ
such that

d = 1
2ℓ(λ, µ)− L(f),

where ℓ is the relative length function from (2.5.2). Moreover, the number
of times P (λ) appears as a direct summand of Pd(µ) equals the number of
such allowable functions.

Proof. Theorem 3.5.1 shows there is a bijection between functions f of type
µ → λ and summands P (λ) (counted with multiplicities) in P•(µ). It remains
to check the degree formula. This is proved by induction much as in other
proofs, with the base case f = Idµ : µ → µ correctly giving degree d = 0.

For the inductive step, we analyze projective indecomposable summands
P (λ) arising as in the proof of Theorem 3.5.1 via each of Moves 1, 2, and 3
in turn, assuming inductively that P (λ̃) occurs in degree d̃ of P•(µ̃), where
d̃ is given by the claimed formula using f̃ .

In the case of Move 1, we have
∑

t µt = 1 +
∑

t µ̃t and
∑

t λt = 1 +
∑

t λ̃t,
so ℓ(λ, µ) = ℓ(λ̃, µ̃). Also L(f) = L(f̃). So the claimed formula gives d = d̃ as
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desired: recall from the proof of Theorem 3.5.1 that Move 1 corresponds to
summands coming from Θj+1Qd →֒ Pd in the Algorithm.

In the case of Move 2,
∑

t µt = 1 +
∑

t µ̃t whereas
∑

t λt = −1 +
∑

t λ̃t,
so ℓ(λ, µ) = ℓ(λ̃, µ̃) + 2. On the other hand L(f) = 1 + L(f̃). So the claimed
formula gives d = d̃ as desired: Move 2 also corresponds to summands coming
from Θj+1Qd →֒ Pd in the Algorithm.

Finally for Move 3,
∑

t µt = 2 +
∑

t µ̃t and
∑

t λt =
∑

t λ̃t, so ℓ(λ, µ) =
ℓ(λ̃, µ̃) + 2. And L(f) = L(f̃). So the claimed formula gives d = d̃+ 1 as de-
sired: Move 3 corresponds to summands coming from Ud−1 →֒ Pd in Step 2a
of the Algorithm. □

Example 3.5.4. (1) It can happen that the same indecomposable projec-
tive P (λ) occurs in two successive degrees Pd and Pd+1. Thus the resolution
P•(µ) does not satisfy the “parity vanishing” condition expected if it were a
minimal resolution and if the highest weight category F(g, g0̄) were to have
a Kazhdan-Lusztig Theory in the sense of Cline-Parshall-Scott [9, 10]. A
small example is µ = [3, 4, 5, 7, 8], λ = [0, 1, 3, 5, 6]. Two allowable functions
f : µ → λ are pictured here:

µ =
3 8

· · ·· · ·

λ =
0 6

· · ·· · ·

µ =
3 8

· · ·· · ·

λ =
0 6

· · ·· · ·

We have ℓ(λ, µ) = 12. The first function has L(f) = 2 so d = 4, whereas the
second function has L(f) = 1 so d = 5.

(2) It is also possible to have some P (λ) appear more than once as a
summand in a given Pd(µ). For example, with µ = [0, 1, 2, 3, 8, 9, 10, 11], λ =
[−4,−3, 0, 1, 4, 5, 8, 9] we have two allowable functions f : µ → λ pictured
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here:

µ =
0 8

· · ·· · ·

λ =
−4 0 4 8

· · ·· · ·

µ =
0 8

· · ·· · ·

λ =
−4 0 4 8

· · ·· · ·

We have ℓ(λ, µ) = 24, and both functions have L(f) = 4. So these functions
correspond to two occurrences of P (λ) in degree d = 8.

4. Complexity

4.1. Rates of growth

Given a sequence of nonnegative integers (rd)d≥0, the rate of growth of the
sequence is the smallest nonnegative integer c for which there exists a fixed
real number K > 0 such that rd ≤ Kdc−1 for all d ≥ 0. If no such c exists,
then we declare the rate of growth of the sequence to be infinite.

We define the z-complexity of any sequence {Ud}d≥0 of finite-dimensional
g-modules, cz(U•), as the rate of growth of the number of indecomposable
summands of Ud. We define the z-complexity of a g-module M ∈ F , cz(M),
to be the z-complexity of the minimal projective resolution of M in F .
Clearly cz(∆(µ)) ≤ cz(P•(µ)).

Similarly, define the complexity of any sequence {Ud}d≥0 of modules,
c(U•), as the rate of growth of the dimensions (as vector spaces) of the Ud.
For µ ∈ X+(T ), write c(µ) for the complexity of the projective resolution
P•(µ) of ∆(µ) constructed in Section 3.2. We define the complexity of a
g-module M ∈ F , cF (M), to be the complexity of the minimal projective
resolution of M in F . Clearly cF (∆(µ)) ≤ c(µ).

4.2. z-complexity

For µ ∈ X+(T ), let sd(µ) denote the number of indecomposable summands
in Pd(µ), where P•(µ) → ∆(µ) is the projective resolution constructed in
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Theorem 3.2.1. In this section we compute the z-complexity of this projective
resolution; that is, the rate of growth of the sequence (sd(µ))d≥0.

For µ ∈ X+(T ), define a run of µ to be a maximal sequence of (one
or more) adjacent dots in the weight diagram [µ]. The size of a run is the
number of dots it contains (a run of size one is the same as an isolated dot).
Let π = π(µ) = (π1, . . . , πt) be the sequence of sizes of the runs of µ, ordered
from right to left in the weight diagram. Then π is a composition of n. Let
o be the number of odd parts in π.

Lemma 4.2.1. Suppose µ and µ̃ are two dominant weights which differ
only in the number of integers separating their runs. Then

sd(µ) = sd(µ̃)

for all d ≥ 0.

Proof. Self evidently, atyp(µ) = atyp(µ̃).
If µ and µ̃ are typical, then the result is clear. It is also clear for d = 0

for any weights µ, µ̃. We proceed inductively by assuming the result is true
up to degree d− 1 for weights of the same atypicality as µ and µ̃, and up
to degree d for weights of smaller atypicality. In particular, we assume that
atyp(µ) = atyp(µ̃) ≥ 1 and d > 0. Let us say that the kth black dots in the
weight diagrams of µ and of µ′, scanning from the left, correspond, for each
1 ≤ k ≤ n.

As a preliminary observation, suppose a weight diagram ν is obtained
from ν̃ by moving a single isolated dot from k − 2 to k − 1 where it re-
mains isolated (i.e., there is no dot at k − 3 or k in either ν or ν̃). Then
Θk∆(ν̃) = ∆(ν), ΘkPd(ν̃) = Pd(ν), and, since (by Lemma 3.3.1) any P (λ̃)
which appears in Pd(ν̃) will have a left-isolated dot at k − 2, by Theo-
rem 3.1.2 ΘkP (λ̃) will be an indecomposable projective summand of Pd(ν).
Thus sd(ν) = sd(ν̃), for all d ≥ 0.

Now suppose Pd(µ) is obtained via Step 2a of the Algorithm. Then there
are dominant weights ν, µ′ with atyp(ν) < atyp(µ) and atyp(µ′) ≤ atyp(µ)
and an index j such that

Pd(µ) = Θj+1Pd(ν)⊕ Pd−1(µ
′).

Moreover, for the same reasoning as in the previous paragraph, Θj+1 sends
each indecomposable projective summand of Pd(ν) to an indecomposable
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projective (i.e., not zero). Thus

(4.2.1) sd(µ) = sd(ν) + sd−1(µ
′).

With one exception, Pd(µ̃) is also obtained via Step 2a of the Algorithm,
by moving the dot at j̃, corresponding to the dot at j in µ, one position left to
obtain the weight ν̃, and subsequently moving the dot at j̃ + 1 one position
left to obtain µ̃′. As above, sd(µ̃) = sd(ν̃) + sd−1(µ̃

′). Moreover ν̃ (resp. µ̃′)
differs from ν (resp. µ′) only in the number of integers separating their runs.
Thus by our induction hypothesis, sd(ν̃) = sd(ν) and sd−1(µ̃

′) = sd−1(µ
′).

Combined with the previous equations, this gives sd(µ̃) = sd(µ).
The exception occurs when µ̃ has a dot at j̃ − 2. In this case a sequence

of isolated dots at and possibly left of position j̃ − 2 in µ̃ must be moved
one position left, while remaining isolated, before Step 2a can be applied.
However, according to the preliminary observation above, each weight in this
sequence will have all the same values of sd as does µ̃. Thus when we are
finally able to apply Step 2a, we get the same conclusion as in the previous
paragraph.

Suppose Pd(µ) (and/or Pd(µ̃)) is obtained via Step 2b of the Algorithm.
This step only involves moving isolated dots so that they remain isolated.
But by the preliminary observation, this does not change sd. Thus we may
without loss assume that all necessary applications of Step 2b have been
performed already, thereby reverting to the situation of Step 2a, where the
result has been proved. □

Lemma 4.2.2. If µ and µ̃ are dominant weights with run sizes π =
(π1, . . . , πt) and π̃ = (π̃1, . . . , π̃t) where π and π̃ are equal as unordered mul-
tisets, then

sd(µ) = sd(µ̃)

for all d ≥ 0.

Proof. Self evidently, atyp(µ) = atyp(µ̃). We induct on atypicality and d. If
µ and µ̃ are typical, then the result is obvious for all d ≥ 0; in general it
is obvious for d = 0. Now consider the case when µ and µ̃ are atypical and
d > 0. We assume as usual that the result holds in degree d for all dominant
weights which have strictly smaller atypicality, and in degree d− 1 for all
weights whose atypicality equals that of µ and µ̃. Since we are assuming
t < n, it follows that µ contains a run consisting of two or more dots, say
the one indexed by a, of size πa. By assumption µ and µ̃ have the same
run sizes, so there is a b such that π̃b = πa. By Lemma 4.2.1 we may also



✐

✐

“3-Kujawa” — 2022/8/30 — 15:56 — page 83 — #25
✐

✐

✐

✐

✐

✐

Complexity and support varieties 83

assume for both µ and µ̃ that they have a large number of integer positions
separating their runs. By Lemma 3.3.2 we may also assume the construction
of Pd(µ) (resp. Pd(µ̃)) was by applying Step 2a of the Algorithm to the
leftmost dot of run a (resp. b).

As argued in the proof of Lemma 4.2.1 to obtain (4.2.1), there are domi-
nant weights ν, µ′ with atyp(ν) < atyp(µ) and atyp(µ′) ≤ atyp(µ) such that

sd(µ) = sd(ν) + sd−1(µ
′).

There are also dominant weights ν̃, µ̃′ with atyp(ν̃) < atyp(µ̃) and atyp(µ̃′) ≤
atyp(µ̃) such that

sd(µ̃) = sd(ν̃) + sd−1(µ̃
′).

By the inductive assumption sd(ν) = sd(ν̃) and sd−1(µ
′) = sd−1(µ̃

′), there-
fore sd(µ) = sd(µ̃) as desired. □

4.3. Hilbert-Poincaré series for z-complexity

Given a dominant integral weight µ ∈ X+(T ) with run sizes π = (π1, . . . , πt),
define a generating function

(4.3.1) Sµ(u) = Sπ(u) =
∑

d≥0

sd(µ)u
d.

By the previous lemma this depends only on the composition π and, indeed,
only on the multiset of run sizes. In what follows it will be convenient to
write Sπ(u) for any tuple of positive integers π = (π1, . . . , πt), where the
series is understood to be defined as in (4.3.1) using a dominant weight µ
with tuple of run sizes equal to π. To avoid clutter we sometimes write r for
the composition (r).

For r ≥ 0, let fr(u) be the polynomial in the variable u determined by
f0(u) = 1, f1(u) = 1, and the recursions:

f2k(u) = (1− u)f2k−1(u) + uf2k−2(u),

f2k+1(u) = f2k(u) + uf2k−1(u),

for k ≥ 1. In particular, f2(u) = 1. If π = (π1, . . . , πt) is a composition, then
set

fπ(u) = fπ1
(u) · · · fπt

(u).

We write o = o(π) for the number of odd runs (i.e., parts) in the composi-
tion π.
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Theorem 4.3.1. The following statements hold true.

1) If π = (π1, . . . , πt) is a composition of n, then

Sπ(u) =

t
∏

j=1

Sπj
(u).

2) For all r ≥ 0,

Sr(u) =
fr(u)

(1− u)⌊r/2⌋
.

3) If π = (π1, . . . , πt) is a composition of n, then

Sπ(u) =
fπ(u)

(1− u)
n−o(π)

2

.

4) The z-complexity of the projective resolution P•(µ) → ∆(µ) constructed
in Theorem 3.2.1 is given by

cz (P•(µ)) =
n− o(µ)

2
.

Proof. We first prove (1) under the assumption that all runs for π have
size one or two. In this case we prove the statement by inducting on the
number of runs of size two. The base case is when all runs have size one,
in which case the µ for π is typical and, hence, Sπ(u) = 1, S1(u) = 1, and
the result follows trivially. Now assume µ has at least one run of size two.
By Lemma 3.3.2 we may assume without loss that the leftmost run has size
two; that is, πt = 2 (recall that our convention is to list the run sizes from
right to left). By applying the Algorithm to the leftmost dot on this run we
may apply (4.2.1) and Lemma 4.2.1 to deduce

Sπ(u) = S(π1,...,πt−1,1,1)(u) + uSπ(u).

Thus by the inductive assumption and the base case it follows that

Sπ(u) =
1

1− u

t−1
∏

i=1

Sπi
(u).
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But the same argument applied in the special case when π = 2 shows S2(u) =
1

1−u and, hence,

Sπ(u) =

t
∏

i=1

Sπi
(u).

We now prove (1) in general by inducting on the atypicality of µ. If µ
is typical or consists of only runs of size one and two, it is handled by the
previous paragraph. Therefore we may assume π has a run of size strictly
greater than 2. Again by Lemma 3.3.2 we may assume this run is πt. As
above, we have

Sπ(u) = S(π1,...,πt−1,πt−1,1)(u) + uS(π1,...,πt−1,πt−2,2)(u).

By the inductive assumption we have

Sπ(u) =

t−1
∏

i=1

Sπi
(u)

[

S(πt−1,1)(u) + uS(πt−2,2)(u)
]

.

However, applying (4.2.1) to the leftmost dot in the special case of a single
run of size greater than two proves

Sπt
(u) = S(πt−1,1)(u) + uS(πt−2,2)(u).

Substituting this into the previous equation proves (1).
To prove (2) we induct on r with r = 1, 2 already handled earlier in the

proof. Therefore we may assume r ≥ 3. Arguing as in the previous paragraph
we have the first equality below and the subsequent equalities follow by the
induction assumption and the definition of fr(u):

Sr(u) = S(r−1,1)(u) + uS(r−2,2)(u)

=
fr−1(u)

(1− u)⌊(r−1)/2⌋
+ u

fr−2(u)

(1− u)⌊(r−2)/2⌋+1

=

{

fr−1(u)+ufr−2(u)
(1−u)⌊r/2⌋ , r odd;

(1−u)fr−1(u)+ufr−2(u)
(1−u)⌊r/2⌋ , r even;

=
fr(u)

(1− u)⌊r/2⌋
.
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Now (3) follows immediately from (1) and (2) and the observation that

t
∑

i=1

⌊πi/2⌋ =
n− o(π)

2
,

for any composition π = (π1, . . . , πt) of n.
Finally, the recursion formulas easily imply fr(1) > 0 for all r ≥ 0 and

this along with (3) immediately implies (4) (e.g., see [8, Lemma 4.1.7]). □

Remark 4.3.2. Using standard techniques one can determine the polyno-
mials fr(u) defined recursively above. Set p(u) = −3u2 + 2u+ 1. Then:

2kf2k(u) =
∑

0≤i≤k
i even

(

k

i

)

(u+ 1)k−i p(u)i/2

+
∑

0≤i≤k
i odd

(

k

i

)

(u+ 1)k−i(1− u) p(u)(i−1)/2,

2kf2k+1(u) =
∑

0≤i≤k
i even

(

k

i

)

(u+ 1)k−i p(u)i/2

+
∑

0≤i≤k
i odd

(

k

i

)

(u+ 1)k−i+1 p(u)(i−1)/2.

Alternatively, they can be written as single sums after reindexing:

2kf2k(u) =
∑

0≤i≤k
i even

[(

k

i

)

(u+ 1) +

(

k

i+ 1

)

(1− u)

]

(u+ 1)k−i−1 p(u)i/2,

2kf2k+1(u) =
∑

0≤i≤k
i even

(

k + 1

i+ 1

)

(u+ 1)k−ip(u)i/2.

As we do not need the precise form of the polynomials for the paper, we omit
the derivation.

4.4. Complexity

We next consider the complexity c(µ) of the resolution P•(µ) → ∆(µ) con-
structed in Theorem 3.2.1 for any µ ∈ X+(T ).
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Using the matrix realization given in (2.2.1) we identify g−1 as the space
of skew-symmetric n× nmatrices. Let (g−1)k be the subset of g−1 consisting
all matrices of rank k. Its Zariski closure (g−1)k then consists of the elements
of g−1 of rank at most k. It is an easy exercise to verify when k = 2ℓ is even,
dim (g−1)2ℓ = ℓ(2n− 2ℓ− 1).

Theorem 4.4.1. For µ ∈ X+(T ) let o denote the number of odd runs of
µ. We then have

c(µ) ≤

(

n

2

)

−

(

o

2

)

= dim (g−1)n−o.

Proof. The equality is a simple consequence of the dimension formula im-
mediately preceding the theorem, so we focus on the inequality. We need an
upper bound on the dimensions of the possible indecomposable projective
summands P (λ) of Pd = Pd(µ). The argument in [5, Section 5.1] carries over
mutatis mutandis to show that

dimL0(λ) ≤ dimP (λ) ≤ 2dim g1̄ dimL0(λ).

As in [5, Section 5.2], it suffices to obtain an upper bound (as a monomial
in d) for dimL0(λ) for the possible direct summands P (λ) of Pd. Fix such
a summand and let f : µ → λ be the associated allowable function as in
Theorem 3.5.3. Since f is a bijection, we have a permutation φ ∈ Sn such
that f(µ̄i) = λ̄φ(i) for all i; recall that µ̄ = µ+ ρ.

First, by tensoring by sufficiently many copies of the supertrace rep-
resentation we may assume that µ̄i ≤ 0 for 1 ≤ i ≤ n. Also λ ≥ µ, whence
λ̄i ≤ µ̄i ≤ 0 for all i.

Next, it is an immediate consequence of the Moves in Section 3.4 that
each dot of µ is either fixed by f , or is part of an “adjacent pair” of dots
to which Move 3 was applied at some step of the algorithm. In fact, it is
not hard to see that the first time Move 3 is applied to a particular pair
of adjacent dots, they must both have been fixed, and after the move, they
each map one position left via the allowable function. All subsequent moves
keep this pair of dots adjacent (although their images under the function
may become separated by applications of Move 2). We view such a pair as
permanently “linked” through the remainder of the algorithm, and call them
an “adjacent pair.”
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In particular, each of the o odd runs of µ has at least one fixed point
µ̄i = f(µ̄i) = λ̄φ(i). Set

F0(µ, f) = { 1 ≤ i ≤ n | µ̄i is the rightmost fixed point of an odd run of µ },

F ′
0(λ, f) = {φ(i) | i ∈ F0(µ, f) },

Note that these are each sets of size o. Evidently the remaining dots of
each (even or odd) run of µ (other than those indexed by F0(µ, f)) consist
of adjacent pairs and (an even number of) fixed points. Let’s pair these
(remaining) fixed points beginning at the left of each run. Set

P (µ, f) = { (i, i+ 1) | µ̄i and µ̄i+1 are an adjacent pair in some run of µ },

F (µ, f) = { (i, j) | i < j, µ̄i and µ̄j are paired fixed points in some run of µ }.

Define P ′(λ, f) (resp. F ′(λ, f)) by applying φ to each pair in P (µ, f) (resp.
F (µ, f)). Then each index 1 ≤ i ≤ n appears exactly once in one of F0(µ, f),
P (µ, f), or F (µ, f) (resp. F ′

0(λ, f), P
′(λ, f), or F ′(λ, f)).

Partition the positive even roots Φ+
0 = { εr − εs | r < s } into three sub-

sets:

A(µ) = { εr − εs | r, s ∈ F0(µ, f) },

B(µ) = { εr − εs | (r, s) ∈ P (µ, f) ∪ F (µ, f) },

C(µ) = Φ+
0 ∖ (A(µ) ∪B(µ)).

Define A′(λ), B′(λ), C ′(λ) similarly using F ′
0(λ, f), P

′(λ, f), F ′(λ, f). Notice
that #A(µ) = #A′(λ) =

(

o
2

)

and #B(µ) = #B′(λ) = (n− o)/2.
To bound the dimension of L0(λ) we use the Weyl dimension formula

for gl(n):

dimL0(λ) =
∏

α∈Φ+
0

(λ+ ρ, α)

(ρ, α)
(4.4.1)

=
∏

α∈A′(λ)

(λ+ ρ, α)

(ρ, α)

∏

α∈B′(λ)

(λ+ ρ, α)

(ρ, α)

∏

α∈C′(λ)

(λ+ ρ, α)

(ρ, α)
.

Since the denominators in (4.4.1) are at least one, we can and will henceforth
ignore them in determining an upper bound.

We now analyze each of the three factors on the right hand side of (4.4.1).
The numerator in the first factor is a product over pairs r′ < s′ in F ′

0(λ, f)
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of

(λ̄, εr′ − εs′) = λ̄r′ − λ̄s′ = µ̄r − µ̄s,

where for simplicity of notation we are denoting φ−1(r′) by r, and similarly
for s. Thus the first factor in (4.4.1) is bounded above by a positive constant
C1 depending only on n and µ.

The numerator of the second factor is a product of two types of factors
λ̄r′ − λ̄s′ . The first type, coming from pairs of fixed points (r, s) ∈ F (µ, f),
can be handled exactly as in the previous paragraph. The second type comes
from pairs (r, s) ∈ P (µ, f). In this case r and s = r + 1 index an adjacent
pair in µ. Recall that these are created via an application of Move 3 in
the algorithm, with the image dots also initially adjacent. Subsequently the
image dots under the function can be moved apart by 2 for each instance of
Move 2: an isolated dot moving from left to right past the leftmost of the
two image dots. Since there are at most n− 2 dots to the left which can
effect such a move, it follows that

λ̄r′ − λ̄s′ ≤ 2(n− 2) + (µ̄r − µ̄s).

In particular, the second factor in (4.4.1) is bounded above by a positive
constant C2 depending only on n and µ.

Next, we consider the third factor. Recall the identity

d = 1
2ℓ(λ, µ)− L(f).

from Theorem 3.5.3. Here L(f) = #{ i < j | f(µ̄i) > f(µ̄j) } ≤
(

n
2

)

. Thus

∑

i

(µ̄i − λ̄i) = ℓ(λ, µ) ≤ 2d+ 2

(

n

2

)

.

Since we normalized so that, for each 1 ≤ i ≤ n, λ̄i ≤ µ̄i ≤ 0, we deduce

|λ̄i| = −λ̄i ≤ −µ̄i + 2d+ n(n− 1) = 2d+ |µ̄i|+ n(n− 1).

Hence a typical factor in the numerator of the third factor of (4.4.1) is

λ̄r′ − λ̄s′ ≤ |λ̄r′ |+ |λ̄s′ | ≤ 4d+D

where D is a positive constant depending only on n and µ. Since #C ′(λ) =
(

n
2

)

−
(

o
2

)

− n−o
2 , we deduce that the third factor of (4.4.1) is bounded above
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by

C3d
(n2)−(

o

2)−
n−o

2 ,

where C3 is a positive constant depending only on n and µ.

Putting this all together, we have that dimP (λ) ≤ C4d
(n2)−(

o

2)−
n−o

2 where
C4 = C1C2C3 · 2

dim g1̄ is a positive constant depending only on n and µ.
Combining this with the computation of the z-complexity of this resolution
in Theorem 4.3.1 we have

dimPd =
∑

P (λ)|Pd

dimP (λ) ≤ Cd(
n

2)−(
o

2)−
n−o

2 d
n−o

2
−1 = Cd(

n

2)−(
o

2)−1,

where C is a positive constant depending only on n and µ. This gives the
inequality in the statement of the theorem, and completes the proof. □

5. Support and associated varieties

5.1. Support varieties

Let g be a classical Lie superalgebra and let M be in F := F(g, g0̄). Ac-
cording to [3], R := H•(g, g0̄;C) = ⊕d≥0 Ext

d
F (C,C) is a finitely generated

commutative ring and Ext•F (M,M) = ⊕d≥0 Ext
d
F (M,M) is a finitely gener-

ated R-module. Set J(g,g0̄)(M) := AnnR(Ext
•
F (M,M)) (i.e., the annihilator

ideal of this module). The support variety of M is

(5.1.1) V(g,g0̄)(M) := MaxSpec(R/J(g,g0̄)(M)).

Since g = p(n) is Z-graded and concentrated in degrees −1, 0, and 1,
both g1 and g−1 are abelian Lie superalgebras. Consequently,

R± := H•(g±1,C) = H•(g±1, {0};C) ∼= S(g∗±1)

as graded algebras. Let F(g±1) be the category of finite-dimensional g±1-
modules. If M is an object in F(g±1), then one can define the g±1 support
variety of M ,

Vg±1
(M) := V(g±1,0)(M),

as above. Since g±1 is abelian the arguments given in [3, Section 5] for detect-
ing subalgebras apply here as well and one has that Vg±1

(M) is canonically
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isomorphic to the following rank variety:

Vrank
g±1

(M) := {x ∈ g±1 | M is not projective as a U(⟨x⟩)-module} ∪ {0},

where U(⟨x⟩) denotes the enveloping algebra of the Lie subsuperalgebra gen-
erated by x ∈ g±1. We will identify Vg±1

(M) and Vrank
g±1

(M) via this canonical
isomorphism.

Let p± = g0 ⊕ g±1 and let M be a p±-module in F(p±,g0). By [5, Theo-
rem 3.3.1], we have

(5.1.2) cF(p±,g0)(M) = dimVg±1
(M) = dimVrank

g±1
(M).

5.2. A rank variety calculation

Before continuing we establish the existence of certain explicit elements in
Vg−1

(∆(µ)) for µ ∈ X+(T ). Fix k with 1 ≤ k ≤ n. Let g′ = g′(k) be the
subspace of g = p(n) spanned by the following sets:

{hi | 1 ≤ i ≤ n, i ̸= k} ,

{ai,j | 1 ≤ i ̸= j ≤ n, i ̸= k, j ̸= k} ,

{bi,j | 1 ≤ i ≤ j ≤ n, i ̸= k, j ̸= k} ,

{ci,j | 1 ≤ i < j ≤ n, i ̸= k, j ̸= k} .

That is, g′ is the subspace of g consisting of matrices which have zeros in
the kth and (n+ k)th rows and columns. Using the commutator formulas
given in Section 2.3 we see g′ is a Lie subsuperalgebra of g and, moreover,
g′ ∼= p(n− 1).

For this section, we write X+
n (T ) for the dominant integral weights for

p(n). Similarly, for µ ∈ X+
n (T ) we write L0,n(µ) for the simple p(n)0 ∼= gl(n)

module of highest weight µ and

∆n(µ) = U(p(n))⊗U(p(n)0⊕p(n)−1) L0,n(µ)

for the Kac module. Given µ =
∑n

i=1 µiεi ∈ X+
n (T ), let µ′ =

∑

i ̸=k µiεi be

identified in the obvious way with an element of X+
n−1(T ).

Lemma 5.2.1. Fix k with 1 ≤ k ≤ n and let g = p(n) and g′ = g′(k) ⊆ g.
For any µ ∈ X+

n (T ) let µ′ ∈ X+
n−1(T ) be as above. Then there is a direct
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sum decomposition of g′-modules,

∆n(µ) ∼= ∆n−1(µ
′)⊕ U,

for some g′-module U .

Proof. First, consider L0,n(µ) as a g′0-module. By complete reducibility and
the fact that the highest weight vector in L0,n(µ) is a highest weight vector
of weight µ′ for g′, it follows that

L0,n(µ) ∼= L0,n−1(µ
′)⊕ U ′

for some g′0-submodule U ′.
The superspace Λ• (g1) has a basis consisting of monomials in the el-

ements bi,j for 1 ≤ i ≤ j ≤ n. Let Λ′ denote the subspace spanned by the
monomials in the elements {bi,j | 1 ≤ i ≤ j ≤ n, i, j ̸= k} and let Λ′′ be the
span of all monomials which contain at least one bi,k or bk,i for 1 ≤ i ≤ n.
As a superspace, we have the following decomposition:

Λ• (g1) = Λ′ ⊕ Λ′′.

From the PBW theorem we have

(5.2.1) ∆n(µ) = Λ•(g1)⊗ L0,n(µ)

as a superspace. Combining this with the decompositions given above yields
the following decomposition as superspaces:

∆n(µ) =
(

Λ′ ⊗ L0,n−1(µ
′)
)

⊕
(

Λ′ ⊗ U ′ ⊕ Λ′′ ⊗ L0,n(µ)
)

.

Using the commutator formulas given in Section 2.3 it follows this is a de-
composition as g′-modules.

It remains to verify Λ′ ⊗ L0,n−1(µ
′) is isomorphic to ∆n−1(µ

′) as a g′-
module. Since 1⊗ L0,n−1(µ

′) is isomorphic to L0,n−1(µ
′) as a g′0 ⊕ g′−1-

module, the universal property of ∆n−1(µ
′) implies there is a surjective

g′-module homomorphism ∆n−1(µ
′) → Λ′ ⊗ L0,n−1(µ

′). As the dimensions
of these superspaces coincide, it is an isomorphism. □
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The module ∆(µ) admits a Z-grading determined by (5.2.1). Namely,
the Z-grading is given by

∆(µ) = ∆(µ)0 ⊕∆(µ)1 ⊕∆(µ)2 ⊕ · · · ,

where

∆(µ)d = Λd(g1)⊗ L0(µ).

Moreover this Z-grading is compatible with the Z-grading of g introduced
in Section 2.2 in the sense that gr.∆(µ)s ⊆ ∆(µ)r+s for all r, s ∈ Z.

Given a homogeneous x ∈ g, we write ⟨x⟩ for the Lie subsuperalgebra
generated by x. In particular, if x ∈ g−1, then ⟨x⟩ is a one-dimensional Lie
superalgebra concentrated in odd parity and the enveloping superalgebra
U(⟨x⟩) is isomorphic to an exterior algebra on one generator. In this case it
is well known that the only indecomposable modules (up to parity shift) are
the trivial module and its projective cover, U(⟨x⟩).

In what follows, for a partition λ write ℓ(λ) for the number of nonzero
parts of λ, 2λ for the partition obtained by doubling all entries of λ, and
λ′ for the conjugate (or transpose) of λ. We write cλ3

λ1,λ2
for the Littlewood-

Richardson coefficient defined by

cλ3

λ1,λ2
= [L0(λ1)⊗ L0(λ2) : L0(λ3)] .

Theorem 5.2.2. Let µ ∈ X+(T ) be fixed and set o to be the number of odd
runs in µ. Then there is a rank n− o matrix x ∈ g−1 such that ∆(µ) is not
free as a U (⟨x⟩)-module. In particular, x ∈ Vg−1

(∆(µ)).

Proof. The proof is by induction on the number of odd runs in µ. If µ has
an odd run, let µk be an entry in such a run. Let g′ = g′(k) and µ′ be as
in Lemma 5.2.1. By the induction hypothesis there is an element x ∈ g′−1 of
rank (n− 1)− (o− 1) such that ∆n−1(µ

′)|U(⟨x⟩) is not free. By Lemma 5.2.1,
x ∈ g−1 is an element of rank n− o such that ∆n(µ)|U(⟨x⟩) is not free.

Thus it remains to check the base case o = 0. With this assumption, n
is even and we choose to reindex and write it as 2n for convenience. Fur-
thermore, by tensoring with the one-dimensional supertrace representation
if needed, we may assume without loss that the nth coordinate of µ is equal
to zero.

Set

x =









0 0 0 0
0 0 0 0
0 In 0 0

−In 0 0 0









∈ g−1,
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where In denotes the n× n identity matrix and 0 denotes the n× n zero
matrix. Set

cx = {a ∈ g0̄ | [a, x] = 0} .

This is the subalgebra of g0̄ consisting of elements which centralize x. By
comparing with [15, Section 1.2] we see cx ∼= sp(2n). Explicitly,

cx =























m q 0 0
p −mt 0 0
0 0 −mt −p
0 0 −q m























,

where m, p, q are n× n matrices with p and q symmetric.

Claim 1: ∆(µ)0 ∼= L0(µ) contains a trivial direct summand as a cx-module.

Since µ ∈ X+(T ) is assumed to have nth coordinate equal to zero, there
are unique partitions µ+ and µ− with at most n parts such that

µ =

ℓ(µ+)
∑

i=1

µ+
i εi −

ℓ(µ−)
∑

i=1

µ−
ℓ(µ−)+1−iε2n+1−i.

Furthermore, since by assumption µ consisted of only even runs, the column
lengths of µ+ and µ− are necessarily even. By [14, Theorem 2.4.2], if ν
is a partition with at most n parts, then the multiplicity of the simple
cx ∼= sp(2n)-module of highest weight ν in the g0̄

∼= gl(2n)-module L0(µ) is
given by

(5.2.2)
∑

α,β,γ,δ

cνα,β c
µ+

α,(2γ)′ c
µ−

β,(2δ)′ ,

where the sum is over all partitions α, β, γ, δ.
Set ν = α = β = ∅. For these choices for α, β, γ, δ, and ν it is easy to

verify the Littlewood-Richardson coefficients appearing as factors of the cor-
responding term in (5.2.2) are positive. Consequently the trivial cx-module
appears as a direct summand of L0(µ), as claimed.

Claim 2: ∆(µ)1 ∼= g1 ⊗ L0(µ) does not contain a trivial direct summand as
a cx-module.

We first observe that as a g0̄-module, g1 ∼= S2(V ), where V is the natural
g0̄

∼= gl(2n)-module and ∆(µ)1 ∼= S2(V )⊗ L0(µ) as a g0̄-module. We then
have
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(5.2.3) Homcx (∆(µ)1,C) ∼= Homcx

(

S2(V )⊗ L0(µ),C
)

∼= Homcx

(

L0(µ), S
2(V )∗

)

∼= Homcx

(

L0(µ), S
2(V )

)

,

where the last isomorphism follows from the fact that S2(V ) ∼= S2(V )∗ as cx-
modules. Therefore, ∆(µ)1 contains a trivial direct summand as a cx-module
if and only if S2(V ) is a direct summand of L0(µ).

Since S2(V ) is a simple cx-module we can again use (5.2.2), but now

with ν = (2). For c
(2)
α,β to be nonzero it must be that we are in one of three

possible cases: (i) α = ∅, β = (2); (ii) β = ∅, α = (2); or (iii) α = β = (1).
We handle each case in turn. For (i) we have α = ∅ and β = (2). However,
since µ− and (2δ)′ will both be partitions whose columns all have even

length, the Littlewood-Richardson rule easily shows cµ
−

(2),(2δ)′ = 0 regardless

of δ. For (ii) one argues similarly and shows cµ
+

(2),(2γ)′ = 0 for all γ. Finally,

for (iii) an even easier application of the Littlewood-Richardson rule verifies

cµ
+

(1),(2γ)′ = cµ
−

(2),(2δ)′ = 0 regardless of the choices of γ or δ. Therefore, in every

case S2(V ) does not appear as a summand of L0(µ) as a cx-module and,
hence, ∆(µ)1 does not contain a trivial direct summand for cx.

We can now prove the statement of the theorem. Since U (⟨x⟩) is isomor-
phic to an exterior algebra on one generator, ∆(µ) is isomorphic to a direct
sum of modules isomorphic to C and U(⟨x⟩). Consequently it suffices to ex-
hibit a nonzero vector v ∈ ∆(µ) such that xv = 0 and to prove there does
not exist a vector w ∈ ∆(µ) for which xw = v. Such a vector v necessarily
spans a trivial direct summand which, in turn, implies x ∈ Vg−1

(∆(µ)), as
desired.

By Claim 1 we may choose a v ∈ ∆(µ)0 which spans a trivial direct sum-
mand for cx and the Z-grading on ∆(µ) implies xv = 0. If there existed a
w ∈ ∆(µ) for which xw = v, then without loss we could assume w ∈ ∆(µ)1
(again thanks to Z-grading considerations). Furthermore, since cx is semisim-
ple and the action of x defines a cx-module homomorphism, Schur’s Lemma
would then imply w must span a trivial cx-module in ∆(µ)1. However, by
Claim 2 no such vector can exist. □

5.3. Complexity and support varieties

Recall we write (g−1)k for the rank k matrices of g−1; its closure (g−1)k
consists of the matrices of rank at most k. Let G0

∼= GL(n) with the adjoint
action on g±1 and g1̄.
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Theorem 5.3.1. Let µ be a dominant weight for g = p(n) and let o be the
number of odd runs in µ. Then

Vg−1
(∆(µ)) = (g−1)n−o,

and

cF (∆(µ)) = dim (g−1)n−o =

(

n

2

)

−

(

o

2

)

.

Moreover the projective resolution of ∆(µ) constructed in Section 3.2 has
the same rate of growth as the minimal projective resolution.

Proof. The formula for dim (g−1)n−o was stated in Theorem 4.4.1. From
Theorem 5.2.2 and the rank variety description given in Section 5.1 it fol-
lows there exists x ∈ Vg−1

(∆(µ)) of rank n− o. Moreover, since the support
variety of a g-module restricted to g−1 is a closed, G0-invariant subvariety of
g−1, it follows that (g−1)n−o ⊆ Vg−1

(∆(µ)). Using [5, Section 6.1] together
with (5.1.2) and Theorem 4.4.1, we deduce

dim (g−1)n−o ≤ dimVg−1
(∆(µ)) = cF(p−,g0)(∆(µ))

≤ cF(g,g0)(∆(µ)) ≤ c(µ) ≤ dim (g−1)n−o.

Hence all the inequalities are equalities, and the theorem follows. □

Let

XC = {x ∈ g1̄ | [x, x] = 0}

be the cone of odd self-commuting elements in g. For M ∈ F , Duflo and
Serganova [11] introduced the associated variety for M :

XM = {x ∈ XC | M is not projective as a U(⟨x⟩)-module} ∪ {0} .

Theorem 5.3.2. Let µ ∈ X+(T ) be a dominant weight for g = p(n) and
let o be the number of odd runs in [µ]. Then

1) X∆(µ) = (g−1)n−o;

2) V(g,g0̄) (∆(µ)) = {0};

3) cF (∆(µ)) = dimX∆(µ) + dimV(g,g0̄) (∆(µ)).

Proof. A calculation entirely analogous to the proof of [5, Theorem 6.4.1(a)]
using the first equality in Theorem 5.3.1 proves (1). The argument used in
the proof of [2, Theorem 3.3.1] applies and shows V(g,g0̄) (∆(µ)) = {0} as
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claimed in (2). Combining these results with the complexity calculation in
Theorem 5.3.1 proves (3). □

5.4. z-complexity and support varieties for the detecting
subalgebra

For g = p(n) set h = ⌊n/2⌋ and let f1̄ be the subspace of g1̄ spanned by
{bi,h+i | 1 ≤ i ≤ h} ∪ {ci,h+i | 1 ≤ i ≤ h}. Set f0̄ = [f1̄, f1̄] ⊆ g0̄ and f = f0̄ ⊕
f1̄. Then f is a Lie subsuperalgebra of g which in [3] was called a detecting
subalgebra1 of g. Since f is classical one can consider the cohomological sup-
port variety for a finite-dimensional f-module M . Moreover there is again a
canonical isomorphism with the rank variety:

V(f,f0̄) (M) ∼= Vrank
(f,f0̄)

(M)

= {x ∈ f1̄ | M is not projective as a U(⟨x⟩)-module} ∪ {0}.

We will identify the rank and support varieties for f. Using the detect-
ing subalgebra we can give the following geometric interpretation of the
z-complexity of ∆(µ).

Theorem 5.4.1. Let µ ∈ X+(T ) be a dominant weight for p(n), set h =
⌊n/2⌋, and let o = o(µ) be the number of odd runs in [µ]. Then

V(f,f0̄) (∆(µ)) =

{

h
∑

i=1

aici,h+i

∣

∣

∣

∣

∣

# {i | ai ̸= 0} ≤
n− o

2

}

.

Moreover,

dimV(f,f0̄) (∆(µ)) =
n− o

2
= cz (∆(µ)) .

Proof. As argued in the proof of [5, Theorem 9.2.1], the Z-grading on ∆(µ)
implies

V(f,f0̄) (∆(µ)) = f1̄ ∩ Vg−1
(∆(µ)) .

Elements of f1̄ ∩ g−1 are of the form
∑h

i=1 aici,h+i and have rank 2k if and
only if precisely k of the ai are nonzero. Since Vg−1

(∆(µ)) is precisely the
matrices of rank n− o or less, the stated description of V(f,f0̄)(∆(µ)) follows.

1The careful reader will note that f is actually a G0̄-conjugate of the detecting
subalgebra introduced in [3]. This choice has no effect on the results considered
here and will be ignored.
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As this variety has dimension (n− o)/2, the stated equalities will follow
once we show the z-complexity of ∆(µ) equals (n− o)/2. By Theorem 4.3.1
cz(∆(µ)) ≤ (n− o)/2. However, if this were a strict inequality, then using
this in the last displayed formula in the proof of Theorem 4.4.1 would show
the complexity of ∆(µ) is strictly less than

(

n
2

)

−
(

o
2

)

, contradicting Theo-
rem 5.3.2. □
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