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The local information of difference

equations
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We give a definition for the restriction of a difference module on the
affine line to a formal neighborhood of an orbit, trying to mimic
the analogous definition and properties for a D-module. We show
that this definition is reasonable in two ways. First, we show that
specifying a difference module on the affine line is equivalent to
giving its restriction to the complement of an orbit, together with
its restriction to a neighborhood of an orbit and an isomorphism
between the restriction of both to the intersection. We also give
a definition for vanishing cycles of a difference module and define
a local Mellin transform, which is an equivalence between vanish-
ing cycles of a difference module and nearby cycles of its Mellin
transform, a D-module.
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1. Statements

This paper concerns algebraic difference equations on the affine line and
their singularities. Analogously to the study of differential equations using
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D-modules, we use difference modules to study these difference equations.
Difference modules are modules over the ring of difference operators, i.e.
the ring generated by multiplication by functions and translations. This is
the ring ∆A1 = C[z]⟨τ, τ−1⟩ given by the relations τz = (z − 1)τ and ττ−1 =
τ−1τ = 1. We interpret τ as the pushforward by the translation z 7→ z + 1.

The most familiar approach to the study of linear algebraic difference
equations is to study matrix difference equations: given A(z) ∈ GLn(C(z)),
one has the system of equations y(z + 1) = A(z)y(z). Two systems given
by matrices A1, A2 are called gauge equivalent if there exists some R(z) ∈
GLn(C(z)) such that A2(z) = R(z + 1)−1A1(z)R(z). Studying matrix
difference equations up to gauge equivalence is equivalent to studying
C(z)⟨τ, τ−1⟩-modules which are finite dimensional over C(z) (see Construc-
tion 2.1).

The relation between matrix difference equations and ∆A1-modules is
the same as the relation between generic local systems and holonomic D-
modules: every matrix difference equation has a canonical “intermediate
extension” (Construction 2.16), which is a holonomic ∆A1-module, and ev-
ery holonomic ∆A1-module generically becomes a matrix difference equation
(Proposition 2.4). Part of our motivation to study ∆A1-modules is that, just
like D-modules, they have better functorial properties, which are essential
for the results of this paper. From a more geometric point of view, they are
quasicoherent Z-equivariant sheaves on A1.

Our goal is to give a good definition for the formal local type of a ∆A1-
module at a point p ∈ A1. For matrix difference equations, we have the
monodromy matrix from [5], which can be recovered from our definition
(Corollary 4.13). We also show how our local type can be computed from the
zeroes and poles of a matrix defining a difference equation (Proposition 4.6),
which are what one naively would define as “singularities” of the equation.

In the remainder of the paper, we show that this formal type M 7→
M |Up

has two desirable properties. First, we show that a module satisfies a
“sheaf” property under this definition: it can be uniquely (and functorially)
recovered from the data ofM |Up

,M |A1\p and an isomorphism between these
two defined on Up \ p. This theorem ensures that the formal type doesn’t
lose information. As an application, we describe how to obtain all the ∆A1-
modules which are generically equal to a given matrix difference equation
(Section 3.2).

Secondly, we show that this construction is compatible with the Mellin
transform. The Mellin transform is a particular case of the Fourier transform
of [10], which can be seen as the ring isomorphism DGm

:= C[x, x−1]⟨∂x⟩ ∼=
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C[z]⟨τ, τ−1⟩ = ∆A1 mapping x to τ and x∂x to z. We show that the lo-
cal types of a D-module at 0 and ∞ predict the local types of its Mellin
transform at all points p ∈ A1, via an equivalence we call the local Mellin
transform. This statement is to be expected, given that for the usual Fourier
transform, which mapsD-modules on A1 to themselves, one has local Fourier
transforms [4], and in loc. cit. it is shown that collection of local types of a
D-module at every point p ∈ A1 ∪∞ completely determine the local types
of its Fourier transform. The result in this paper, together with the result
in [8], shows that the collection of local types of a D-module on A1 \ 0
completely determine, and are determined by, the local types of its Mellin
transform. Both in the Fourier and the Mellin cases, to make the statement
precise one needs to be careful with what is meant by “local type” (see [1]
for the Fourier transform). In our situation, we define functors for difference
modules which we believe deserve to be called “vanishing cycles” by analogy
with the D-module case, especially the local Fourier transform as stated in
loc. cit.

Note that in order to talk about the Mellin transform, it is necessary to
use ∆A1-modules rather than matrix difference equations. The intermediate
extensions allows matrix difference equations to be mapped to ∆A1-modules,
but then one runs into the issue that the Mellin transform of an intermediate
extension is not necessarily an intermediate extension, and the same happens
for the inverse Mellin transform.

Algebraic difference equations are of interest to the study of spaces of ini-
tial conditions of Painlevé equations, especially discrete Painlevé equations.
In [2], it is shown how some discrete and differential Painlevé equations
arise as isomonodromy transformations and deformations respectively, for
certain moduli spaces of difference equations, namely on spaces of difference
equations with a certain specified local type. Moreover, in loc. cit. an exam-
ple of the local Mellin transform is shown, as a moduli space of difference
equations with a given local type is shown to be isomorphic via the Mellin
transform to a space of differential equations with another given local type.
The results in this paper provide a framework in which such a construction
can be done in general.

Other Painlevé equations arise as isomonodromy transformations of dif-
ferent discrete equations, such as q-difference equations and elliptic differ-
ence equations. In [9], we show how one can build on these ideas to define
the local type for all of these.
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1.1. The local type

Let us start by comparing our situation to the D-module case. A D-module
on the affine line is a module over the ring of differential operators C[x]⟨∂x⟩,
where ∂xx = x∂x + 1. Given such a D-module M , it can be restricted to a
formal disk around a point p: this can be thought of as the functor M 7→
Mp := C[[x− p]]⊗C[x] M , where Mp has a natural C[[x− p]]⟨∂x⟩-module
structure. The analogy with difference equations starts to break down here:
if M is a ∆A1-module, there is no reasonable way to endow Mp = C[[z −
p]]⊗M with an action of τ , but rather τ identifies Mp with Mp+1.

If we restrict ourselves to difference modules which are “small” (i.e.
holonomic, see Definition 2.3), then we can easily see that their stalks are
finitely generated (Proposition 2.4). Therefore, Mp is a finitely generated
module over C[[z − p]], so it is completely described by its rank and its
torsion. However, difference modules have singularities that are not captured
by this picture. Considering a difference equation for a matrix A, zeroes
and poles of A should be singularities of the equation. Here by poles (resp.
zeroes) we mean points where A (resp. A−1) is not defined. However, Mp

only remembers the dimension of A.
To define the local type, we attach additional structure to C[[z − p]]⊗

M , namely the data of two submodules, which record the information “at
+∞” and “at −∞”.

Construction 1.1. Let M be a holonomic ∆A1-module, and let p ∈ A1.
Choose any finitely generated sub-C[z]-module L ⊂M such that M/L is a
torsion C[z]-module. The submodules (τnL)p ⊆Mp and (τ−nL)p ⊆Mp are
independent of the choices of L and n as long as n is big enough (depending
on L). The restriction of M to the formal neighborhood Up of p+ Z, de-
noted M |Up

, is defined to be the module Mp, together with the data of two
submodules M |lUp

:= (τnL)p and M |rUp
:= (τ−nL)p.

Thus the restriction M |Up
is not a difference module, but a C[[z − p]]-

module equipped with additional information. The local type lands in the
category of diagrams a→ b← c of C[[z − p]]-modules. Even though the def-
inition a priori involves an unknown big enough n, the local type can be
computed in a straightforward way (Proposition 4.6).

In Section 3 we prove that the above definition is well-defined and we
show that for the “open covering” A1 = Up ∪ (A1 \ p), difference modules
behave like sheaves. Here is what we mean precisely.
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Localizing the ring ∆A1 at an orbit p+ Z yields the ring

∆A1∗ = C

[
z,

{
1

z − p− n

}

n∈Z

]
⟨τ, τ−1⟩,

which gives rise to a similar theory of difference modules on the punctured
affine line (described in Section 2.2), including an analogous restriction func-
tor |U∗

p
from ∆A1∗-modules to C((z − p))-modules equipped with the data

of two submodules. This gives rise to a commutative square of restrictions
(any commutative diagram of categories in the present paper should be un-
derstood as commuting up to natural isomorphism):

(1.2)

Hol(∆A1) Hol(∆A1∗)

Hol(Up) Hol(U∗p ).

|A1∗

|Up
|U∗

p

|U∗
p
=·⊗C((z−p))

Here Hol(∆A1) denotes holonomic difference modules on the affine line,
and analogously for Hol(∆A1∗). These definitions are given in Section 2. The
remaining arrows and categories are all defined in Section 3.1.

Theorem A. The diagram (1.2) is a fibered product of categories.

In other words, holonomic difference modules can be recovered from their
restrictions to A1 \ (p+ Z) and Up, together with a compatibility between
these two, which amounts to a given isomorphism between their restrictions
to the punctured disk U∗p . Conversely, this information is enough to deter-
mine a difference module on the line.

This is analogous to the fact that functions on a scheme form a sheaf,
or, in a slightly different way, can be seen as analogous to the following
statement, which is an example of faithfully flat descent. Let V be a variety,
let p ∈ V , and letOp be its completed local ring. Then there is a commutative
square, all of whose arrows are pullbacks:

QCoh(V ) QCoh(V \ {p})

Mod(Op) Mod (Frac(Op)) .

This square is a Cartesian square of categories. It is not even neces-
sary to complete the local ring: the statement would be true replacing Op
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by the stalk of O at p. The same is true for the diagram (1.2): We could
replace formal fibers everywhere by stalks and obtain the same statement
(Proposition 3.12).

1.2. Vanishing cycles and Mellin transform

For every pair of points q ∈ Gm ∪ {0,∞} = P1
x and p ∈ A1 ∪ {∞} = P1

z, there
is a local Mellin transform M(q,p) relating the local type of D-modules at
q with the local type of difference modules at p. There are four essentially
different behaviors depending on whether p and q are points “at infinity”
(including q = 0). If p =∞, then there are two possibilities: either q ∈ Gm

or q = 0,∞. Both of these possibilities were defined and computed in [8].
The focus of the present paper are local Mellin transforms from q = 0 or
q =∞ ∈ P1 to points p ∈ A1. Translation makes all Mellin transforms on
the same Z-orbit isomorphic, and consequently we will denote these local
Mellin transformsM(0,p+Z) andM(∞,p+Z).

Following the analogy with the local Fourier transform, the local Mellin
transformM(0,p+Z) should give an equivalence between some nearby cycles
of a D-module M at 0 and vanishing cycles of M(M) at p+ Z. So first of
all we need a notion of vanishing cycles for a difference module.

Definition 1.3. Let M ∈ Hol(∆A1) and p ∈ A1. The left (resp. right)
vanishing cycles of M at p+ Z are defined as

Φl
p+ZM :=

Mp

M |lUp

, (resp.) Φr
p+ZM :=

Mp

M |rUp

.

These functors approximately compute a familiar notion: if a difference
equation is given as a matrix difference equation y(z + 1) = A(z)y(z), where
A(z) ∈ GLn(C(z)), then Φr

p+Z
computes the poles of the matrix A and Φl

p+Z

computes the zeroes. This is not completely true, since taking a gauge trans-
formation y(z) = R(z)ỹ(z) for R(z) ∈ GLn(C(z)) might change the set of
zeroes and poles, in two ways. First, the zeroes and poles could be trans-
lated in the same Z-orbit (consider for example the change R(z) = A(z)−1).
To deal with this, we think of singularities as a property of the whole Z-
orbit. Second, a gauge change might introduce new apparent singularities
(“apparent” because they can be removed by a gauge change). The local
type and vanishing cycles provide a notion of zeroes and poles that is coor-
dinate independent, and it can detect apparent singularities (Remark 3.14).
Proposition 4.6 describes the exact relation between the local type and a
matrix difference equation.
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Note that Φl
p+Z

and Φr
−p+Z

can be interchanged by the automorphism

z ↔ −z and τ ↔ τ−1 on the difference side, and x↔ x−1 on the D-module
side, thus we may just focus on Φl from now on. We show that the image
of Φl

p+Z
lands in the category Mod(C[z − p])fin of finite length C[[z − p]]-

modules. Further, we construct its right adjoint, which we denote ι→p! . It is
simply the functor N 7→ C((τ))⊗C N .

These are all the necessary ingredients to construct the local Mellin
transform. On the D-module side, irregular D-modules are the input of
M(0,∞). This suggests that the domain of M(0,p+Z) should consist of reg-
ular D-modules, which would imply that together both Mellin transforms
completely determine the local type at 0. Thus, we will let Hol(DK0

)reg

denote the category of regular holonomic modules over DK0
= C((x))⟨∂x⟩.

Following [1], we denote by ȷ̊0∗ the forgetful functor from C((x))⟨∂x⟩-modules
to C[x, x−1]⟨∂x⟩-modules.

Further, using the classification ofD-modules over the formal disk (origi-
nally proved by Turrittin [18] and Levelt [11], but the proof can also be found
in [19]), any regular DK0

-module splits as a direct sum
⊕

p∈C/ZM
(p), where

M (p) has leading term p. We say that a holonomic DK0
-module is regular of

leading term p ∈ C if it has a C((x))-basis which is annihilated by a power
of x∂x − p. The leading term is only well-defined up to adding an integer, so
we denote Hol(DK0

)reg,(p) the category of those regular D-modules whose
leading term is in p+ Z.

Theorem B.

1) For any p+ Z ∈ A1/Z, there is an equivalence

M(0,p+Z) : Hol(DK0
)reg,(p) −→Mod(C[z − p])fin.

and for any F ∈ Hol(DK0
)reg,(p), there is a functorial isomorphism

M(̊ȷ0∗(F ))
∼
−→ ι→p! (M

(0,p+Z)(F )).

The isomorphism is a homeomorphism in the natural topology, i.e. the
τ -adic topology. This determinesM(0,p+Z) up to natural isomorphism.

2) For any p+ Z ∈ A1/Z, there is an equivalence

M(∞,p+Z) : Hol(DK∞
)reg,(−p) −→Mod(C[z − p])fin.
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and for any F ∈ Hol(DK∞
)reg,(−p), there is a functorial isomorphism

M(̊ȷ∞∗(F ))
∼
−→ ι←p! (M

(∞,p+Z)(F )).

The isomorphism is a homeomorphism in the natural topology, i.e. the
τ -adic topology. This determinesM(∞,p+Z) up to natural isomorphism.

Analogously to the result in [1], the adjunctions Φl
p+Z
⊢ ι→p! , Ψ0 ⊢ ȷ̊0∗

(where Ψ denotes nearby cycles) immediately yield the following corollary,
which as desired gives the relation between the local information of a D-
module and that of its Mellin transform.

Corollary 1.4. Let F ∈ Hol(DGm
). For any p ∈ A1/Z, there are natural

isomorphisms

Φl
p+Z(M(F )) ∼=M(0,p+Z)(Ψ0(F )

reg,(p));

Φr
p+Z(M(F )) ∼=M(∞,p+Z)(Ψ∞(F )reg,(−p)).

Here we write M reg,(p) to denote the functor that picks from a DK0
-

module its regular singular summand with leading coefficient p (i.e. the left
adjoint to the inclusion of these submodules into general DK0

-modules).

2. Difference equations and difference modules

The purpose of this section is to fix notation and to server as a refresher
for the reader on the basics of the theory. Most of the results of this section
are analogous to those in [15]. Sabbah focuses on q-difference equations,
but most of his methods transfer without changes. We include here the
statements and the proofs for convenience: Since we work in dimension 1,
some proofs and definitions are simpler than the more general case.

A system of linear difference equations is given as follows: let A(z) ∈
GLn(C(z)), and consider the equation

y(z + 1) = A(z)y(z).

Where y is a vector function A1 → Cn. A natural generalization of this
setting, which allows for difference equations to be defined locally, comes
from taking y to be not a section of a trivial bundle On, but of a vector
bundle V without a trivialization. In this setting, a difference equation is
a rational isomorphism A : V

∼
99K t∗V , where t denotes the translation of
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A1. In [2] this is called a d-connection. On the fibers where A is defined
and invertible, A|z is an isomorphism V |z → V |z+1 that depends on z as a
rational function. This notation will only be used briefly in Section 4.2.

Instead, we can simplify our notation using the fact that A1 is affine.
We can identify a vector bundle V with its C[z]-module of global sections.
Given such a A, we consider τ = (t∗)−1 ◦ A : V → V . Now, since t∗ is not
C[z]-linear, τ is not linear, but rather we have the relation τz = (z − 1)τ .
Conversely, if we are given a C(z)⟨τ±1⟩-module V , we can take the corre-
sponding vector bundle (up to rational isomorphism) and define A = t∗ ◦ τ .

In sight of this description, it seems natural to consider all ∆A1-modules,
regardless of whether they are vector bundles. Let us now fix the notation
for the difference module corresponding to a difference equation.

Construction 2.1. Consider A ∈ GLn(C(z)) and the difference equation
y(z + 1) = A(z)y(z). Make C(z)n into a difference module by letting
τ(y(z)) = A(z − 1)y(z − 1). This ensures that τ(zy(z)) = (z − 1)τ(y(z)). In-
side C(z)n, consider the trivial vector bundle L = C[z]n ⊂ C(z)n. The dif-
ference module corresponding to A is the ∆A1-module M generated
by L. The solutions to the difference equation are “horizontal” sections, i.e.
sections which are fixed by τ .

Remark 2.2. A gauge transformation y(z) = R(z)ỹ(z) for R(z) ∈
GLn(C(z)) yields an equivalent difference equation, with matrix Ã(z) =
R(z + 1)A(z)R(z)−1. The corresponding difference module will be generated
by the columns of R(z), i.e. by a vector bundle L̃ which is a modification of
L at the points where R or R−1 is not defined. Over ∆A1 , it is possible for
L and L̃ to generate the same module even if they are not equal. For the
simplest example, consider A(z) = (1), and R(z) = (z).

Given a d-connection, i.e. a module over C(z)⟨τ−±1⟩ which is a finite
dimensional vector space over C(z), there are many choices of finitely gen-
erated ∆A1-modules which generate it. There is, however, a smallest such
one, which we call the intermediate extension by analogy with the D-module
case. We discuss its properties in Section 2.4. Intermediate extensions can
be recognized by the local type (see Remark 3.13), and Section 3.2 details
how to use the local type to describe all holonomic ∆A1-modules which
generically look the same. If one is only looking for ∆A1-modules which are
torsion-free, the answer (at every orbit p+ Z) is identical to the question of
extending a torsion C[[z − p]]-module by a free C[[z − p]]-module to obtain
a torsion-free module (Corollary 3.16).
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2.1. Holonomic difference modules

We will restrict our attention to holonomic difference modules. Over the
affine line, they have an analogous definition to the one for D-modules.

Definition 2.3. A ∆A1-module is holonomic if it is finitely generated over
∆A1 and every element is annihilated by a nonzero element of ∆A1 .

The same definition holds for a D-module (see for example [6, Chapter
10]), so a difference module is holonomic if and only if its Mellin transform
is holonomic. In general, holonomic difference modules are characterized by
the codimension of their singular support, see [13]. A general definition using
vanishing of Ext groups can be found in [15], which one can verify that it
coincides with our definition in the one-dimensional case.

Note that the Mellin transform shows that holonomic difference modules
have finite length, since holonomic D-modules do.

Holonomic difference modules satisfy many desirable properties. How-
ever, they are not vector bundles over a dense open set, as in the case of
D-modules. The simplest counterexample is the torsion module δ0 generated
by an element s and the relation zs = 0. The element τns is supported on
n ∈ A1, which yields a countable collection of points where δ0 has torsion.

One desirable property, however, is the following, which does not hold
for holonomic D-modules.

Proposition 2.4. Any holonomic ∆A1-module has finite stalks. Explicitly,
if M ∈ Hol(∆A1), then for any p, C[z](z−p) ⊗C[z] M is a finitely generated
C[z](z−p)-module.

Proof. Let us first prove it for a cyclic ∆A1-module (actually all holonomic
modules are cyclic, but we will not need this fact here). Let M be gener-
ated by an element s. If M is holonomic, then s is annihilated by a nonzero
element of Q ∈ ∆A1 , which after multiplying by a suitable power of τ can
be written as Q =

∑n
i=0 Pi(z)τ

i, where Pn, P0 ̸= 0 and n ≥ 0. Choose some
N ≫ 0 such that (z − p) ̸ | P0(z −m)Pn(z −m) whenever |m| ≥ N . Then
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P0(z −m) and Pn(z −m) are invertible in C[z](z−p) and the following iden-
tities hold:

τm+ns =
−1

Pn(z −m)

n−1∑

i=0

Pi(z −m)τ i+ms;

τ−ms =
−1

P0(z +m)

n∑

i=1

Pi(z +m)τ i−ms.

This implies that the stalk C[z](z−p) ⊗C[z] M is generated over C[z](z−p) by
the finite set {τ1−Ns, . . . , τN+n−1s}. Note that the proof holds if n = 0, in
which case the sums above become empty.

IfM is not cyclic, then the statement follows by induction on the length.
□

Corollary 2.5. A holonomic ∆A1-module has finite generic rank, i.e. if
M ∈ Hol(∆A1), C(z)⊗C[z] M is finite dimensional over C(z).

Remark 2.6. If a module M is finitely generated over ∆A1 , then the con-
verse to the corollary above is also true. If M has finite generic rank, then it
cannot contain ∆A1 ∼=

⊕
i∈ZC[z]τ

i as a submodule, because it has infinite
rank, and therefore every element is torsion.

Remark 2.7. A statement similar to Proposition 2.4 can be found in [15,
Proposition 2.3.2]. The conclusion is weaker, but it holds in more generality.
Corollary 2.5 appears in [12, Théorème 1.2.1].

2.2. Difference modules on the punctured affine line

One of our goals is to relate difference modules on the affine line to difference
modules on the punctured affine line. Due to the action of Z, instead of
removing a single point from the line, one must remove a whole Z-orbit
p+ Z. In the sequel, we will let p ∈ A1 be fixed, and we will let A1∗ =

A1 \ (p+ Z) = SpecC
[
z, 1

z−p ,
1

z−p±1 , . . .
]
.

Definition 2.8. Difference modules on the punctured line A1 are defined
to be left modules over the ring

∆A1∗ = C

[
z,

{
1

z − p− i

}

i∈Z

]
⟨τ, τ−1⟩.
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A difference module is said to be holonomic if it is finitely generated and
every element is annihilated by a nonzero f ∈ ∆A1∗ . We denote the cate-
gories of difference modules and holonomic modules on the punctured line
by Mod(∆A1∗) and Hol(∆A1∗), respectively.

Definition 2.9. Define the restriction to the punctured line functor
|A1∗ : Mod(∆A1) −→Mod(∆A1∗) as follows: for M ∈ Hol(∆A1),

M |A1∗ ∼= C

[
z,

{
1

z − p− i

}

i∈Z

]
⊗C[z] M.

The action of τ on M |A1∗ is defined by τ(P (z)⊗m) = P (z − 1)⊗ τm. It
makes M |A1∗ into a left ∆A1∗-module.

Remark 2.10. If M is holonomic, then M |A1∗ is holonomic, so |A1∗ gives
rise to a functor |A1∗ : Hol(∆A1) −→ Hol(∆A1∗).

2.3. Coherent subsheaves of difference modules

For a holonomic difference module, we will repeatedly make use of its finitely
generated C[z]-submodules, particularly the ones that are generically equal
to the given module.

Definition 2.11. Let M ∈Mod(∆A1). We define the set S(M) to be the
set of C[z]-submodules L ⊆M such that L is finitely generated over C[z]
and M/L is a torsion C[z]-module.

Observation 2.12. S(M) is nonempty whenever M ∈ Hol(∆A1) or
Hol(∆A1∗), by Corollary 2.5, or when M is a finitely generated C(z)-vector
space. If S(M) ̸= ∅, every finite subset ofM is contained in some L ∈ S(M).

Definition 2.13. Let M ∈ Hol(∆A1) and let L ∈ S(M). We define the ze-

roes of L as the finite set ZL = supp
τ−1L

L ∩ τ−1L
= supp

L+ τ−1L

L
, and the

poles of L as the finite set PL = supp
L+ τ−1L

τ−1L
= supp

L

L ∩ τ−1L
.

Remark 2.14. If L and M come from a matrix A via Construction 2.1,
then PL is the set of poles of A and ZL is the set of zeroes. Both of these
sets are finite because they are the supports of finitely generated torsion
C[z]-modules.
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Lemma 2.15. Let M ∈ Hol(∆A1) and L ∈ S(M). Then M/L is supported
on finitely many orbits.

Proof. Two finitely generated modules that agree over C(z) are equal away
from a finite set. Therefore, it is enough to prove the statement for any
choice of L ∈ S(M).

Let L ∈ S(M) be chosen such that it contains a finite generating set of
M over ∆A1 . We will prove by induction that Ln = (L+ τL+ · · ·+ τnL)/L
is supported on ZL + PL + Z (actually on PL + Z≥0). We use the following
short exact sequence, together with the fact that the support of a module
is contained in the union of the supports of a submodule and quotient:

0 −→
L+ · · ·+ τn−1L

L
−→

L+ · · ·+ τnL

L
−→

L+ · · ·+ τnL

L+ · · · τn−1L
−→ 0.

We note that τn−1L+τnL
τn−1L surjects onto L+···+τnL

L+···+τn−1L , so the support on the
latter is contained in the support of the former. Further, we note that
τn−1L+τnL

τn−1L = τn L+τ−1L
τ−1L , which implies that supp τn−1L+τnL

τn−1L = PL + n. The
induction hypothesis then shows that supp L+···+···+τnL

L ⊂ PL + Z≥0.
The analogous reasoning yields the same result for negative n’s, and

these together show the desired result, since M =
∑

n∈Z τ
nL. □

2.4. The intermediate extension

One of the first questions one can ask is whether any d-connection, or more
generally any holonomic ∆A1∗-module can be extended over the puncture
to a ∆A1-module in some canonical way. For a D-module, there are three
answers, namely j∗, j! and j!∗, whose definitions can be found in [17], for
example.

For difference modules, we have j∗, the forgetful functor, which has the
disadvantage that it does not preserve holonomic modules. However, the
intermediate extension j!∗ does have a difference analogue, which preserves
holonomicity. This follows from [15, Proposition 2.2.1]. We will construct
it as the smallest ∆A1-module contained in a given ∆A1∗-module that only
differs from it at p+ Z.

Construction 2.16. Let M ∈ Hol(∆A1∗). The intermediate extension of
M , denoted j!∗M or jp+Z

!∗ M , is constructed as follows: Consider some L ∈
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S(M) such that PL ∩ (ZL + Z>0) = ∅. We will call such submodules aus-
tere1.

Then j!∗M is defined as the ∆A1-submodule of M generated by all the
subspaces P (z)−1L := {m ∈M : ∃n, P (z)nm ∈ L} for all polynomials P (z)
with no roots in p+ Z, and L ∈ S(M) can be arbitrary provided it is austere.
In other words, if L is chosen to agree with M outside of p+ Z, then L
generates j!∗M .

Proposition 2.17.

1) Any holonomic module M contains austere submodules L ∈ S(M).
Furthermore, any W ∈ S(M) contains a submodule L ∈ S(M) that is
austere.

2) Any two austere submodules V ∈ S(M) generate the same module j!∗M
by Construction 2.16.

Proof. 1) Consider any submodule W ∈ S(M). We claim that for the
submodule W ′ = τ−1W ∩W ∈ S(M), its poles satisfy PW ′ ⊆ PW − 1:
Indeed

W ′

τ−1W ′ ∩W ′
=

τ−1W ∩W

τ−2W ∩ τ−1W ∩W
⊆

τ−1W

τ−2W ∩ τ−1W
.

And further supp τ−1W
τ−2W∩τ−1W = −1 + supp τ

(
τ−1W

τ−2W∩τ−1W

)
= PW − 1.

Turning to the set of zeroes, we see that Z ′W ⊆ ZW , since

W ′

τ−1W ′ ∩W ′
=

τ−1W ∩W

τ−2W ∩ τ−1W ∩W
⊆

τ−1W

τ−1W ∩W
.

Thus iterating this process shifts the poles of the submodule to the
left, while the zeroes do not move at all. Analogously, considering
the submodule W ′′ = τW ∩W , one can check that PW ′′ ⊆ PW and
ZW ′′ ⊆ ZW + 1, which allows to move the zeroes to the right while
keeping the poles in place. This process of shifting the zeroes and
poles must reach a submodule V which is austere.

2) Let L,L′ ∈ S(M) be austere. By virtue of the first part of this proposi-
tion, without loss of generality we may assume that L ⊂ L′ (by choos-
ing a third submodule in S(M) that is contained in L ∩ L′). We may
also assume that L′/L is supported on p+ Z, since modifying L away

1Because they dispense with unnecessary elements.
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from p+ Z doesn’t affect the construction of j!∗. For the time being,
we will let j!∗M be the module generated from L by the procedure
above. We will show that L′ ⊆ j!∗M .

We may take the quotient by the ∆A1-module j!∗M , so (L′ + j!∗M)/
j!∗M is a finite dimensional module supported on p+ Z. If (L′ +
j!∗M)/j!∗M is nonzero, it has some pole to the right of some zero: if the
point in the support of (L′ + j!∗M)/j!∗M with the biggest (resp. small-
est) real part is z1 (resp. z0), then z1 is a pole and z0 − 1 is a zero. This
contradicts the assumption that L′, and therefore (L′ + j!∗M)/j!∗M ,
is austere. □

Example 2.18. Let p = 0. Let P (z) ∈ C(z), and for simplicity of notation,
assume that the zeroes and poles of P (z) are integers. Consider the module
M ∈ Hol(∆A1∗) given by generators and relations as a cyclic module gen-
erated by an element s with the relation τs = P (z)s. Let L0 = C[z]s ⊆M .
The zeroes (resp. the poles) of L0 are the zeroes (resp. the poles) of P (z − 1),
so L0 might not be austere. For any Q(z) ∈ C (z) whose zeroes and poles
are integers, we can consider s̃ := Q(z)s as a new generator, so the relation
becomes

τ s̃ = Q(z)−1Q(z − 1)P (z)s̃.

With such a change of coordinates, the integer zeroes and poles of P can
be shifted (independently) by an integer. Thus we can choose Q such that
assume thatQ(z)−1Q(z − 1)P (z) = zn, where n ∈ Z and P̃ (z) has no integer
zeroes or poles. Let Q(z) be chosen in this way, and consider the C[z]-
submodule L generated by s̃ = Q(z)s. If n ≥ 0, L is τ -invariant, and if n ≤ 0,
L is τ−1-invariant. In both cases, L is austere, so s̃ generates j!∗M over ∆A1 .

Proposition 2.19. Let M ∈ Hol(∆A1∗). Then the following hold.

1) (j!∗M)|A1∗ =M .

2) The intermediate extension has no nonzero submodules or quotient
modules with support contained in p+ Z.

3) Out of the modules contained in M , j!∗M is the smallest ∆A1-module
N such that N |A1∗ =M .

4) If N is a ∆A1-module such that N |A1∗ ∼=M and N has no nonzero
submodules or quotients supported on p+ Z, then the map ϕ : N →
N |A1∗ →M factors through an isomorphism N → j!∗M .

5) The functor j!∗ is fully faithful.
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Proof. 1) This follows from the construction, since the stalks of M and
j!∗M are equal away from p+ Z.

2) Since j!∗M ⊂M , j!∗M has no elements supported on p+ Z. Now sup-
pose that N ⊂ j!∗M is a C[z]⟨τ, τ−1⟩-submodule such that j!∗M/N is
supported on p+ Z. By Proposition 2.17, there is an austere L ∈ S(N),
in particular L ⊆ N and L ∈ S(M). By the second part of said propo-
sition, L generates all the stalks of j!∗M at the points of p+ Z, and
therefore N = j!∗M .

3) Let N be such a module. Then j!∗M and N coincide outside of p+ Z.
Therefore, j!∗M/(N ∩ j!∗M) is supported on p+ Z, and by the previ-
ous part of this proposition, this implies that j!∗M/(N ∩ j!∗M) = 0,
so j!∗M ⊆ N .

4) First of all, ϕ is injective: the kernel of N → N |A1∗ is supported on
p+ Z, so it must vanish. The image of ϕ must contain j!∗M , by the
minimality of j!∗M . Finally, The quotient N/j!∗M vanishes after ap-
plying |A1∗ , so it is supported on p+ Z, so it must vanish by hypothesis.

5) Since |A1∗ ◦ j!∗ ∼= Id, it is enough to show that |A1∗ is faithful on the
essential image of j!∗. Suppose a map f : j!∗M → j!∗N is such that
f |A1∗ = 0. Then the image of f is a torsion submodule of j!∗N , which
implies that its image is 0. Therefore, |A1∗ is faithful. □

3. Restriction to the formal disk

Throughout this section, we will let p ∈ A1 be fixed, and consider its orbit
p+ Z. We will show how difference modules on A1 can be recovered from
their restriction to A1 \ (p+ Z) = A1∗ and to a neighborhood of p+ Z. For
that purpose, we will give a definition for a holonomic difference module on⊔

i∈Z Up+i, where Up+i = SpecC[[z − p− i]] is the formal neighborhood of
p+ i, and a similar definition for a difference module on

⊔
i∈Z U

∗
p+i, where

U∗p+i = SpecC((z − p− i)) is the punctured formal neighborhood of p+ i.
This will yield two categories of difference modules, which we will denote
Hol(Up) and Hol(U∗p ), respectively. We will also define restriction functors
between these categories, which give rise to a commutative diagram:

(3.1)

Hol(∆A1) Hol(∆A1∗)

Hol(Up) Hol(U∗p ).

|A1∗

|Up
|U∗

p

|U∗
p
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The main theorem is Theorem A from the introduction.

Theorem A. The diagram (3.1) yields an equivalence

Hol(∆A1) ∼= Hol(Up)×Hol(U∗
p )
Hol(∆A1∗).

Explicitly, the theorem states that the category Hol(∆A1) is equivalent
to the category of triples (MUp

,MA1∗ ,∼=), where MUp
∈ Hol(Up), MA1∗ ∈

Hol(∆A1∗), and ∼= is an isomorphism MUp
|U∗

p

∼=MA1∗ |U∗
p
.

In Section 3.1 we will give all the definitions and in Section 6 we will
prove the Theorem.

3.1. Definitions

Difference equations with support on p+ Z are trivial in the sense that for
a ∆A1-module M which is torsion over C[z], τ induces isomorphisms Mz →
Mz+1. Hence describing these modules amounts to describing C[z]-modules
supported at a point. Taking limits, one can argue that difference modules
over a formal neighborhood of the orbit p+ Z should be just modules over
C[[z − p]]. Note that nothing is gained by consideringMp+i for i ∈ Z together
with the τ -action: a sequence {Mp+i : i ∈ Z} where Mp+i is a C[[z − p− i]]-
module together with twisted (i.e. such that τz = (z − 1)τ) isomorphisms
τ : Mp+i

∼=Mp+i+1 is equivalent to the data of just Mp ∈Mod(C[[z − p]]).
Our definition of difference modules will contain slightly more information
than just a module over C[[z − p]]. Throughout, we will consider p ∈ A1 to
be fixed and we will abbreviate π = z − p. For a C[z]-module, we will denote
Mp = C[[π]]⊗C[z] M .

Example 3.2. Let us show that Theorem A cannot hold if one considers
the local type to be given by M 7→Mp, i.e. that the following square is not
cartesian:

Hol(∆A1) Hol(∆A1∗)

Mod(C[[z − p]]) Mod(C((z − p))).

C[[z−p]]⊗C[z]

|Up

C((z−p))⊗C[z]

C((z−p))⊗C[[z−p]]

Let p = 0, and consider the following module M , generated by an element s
subject to the relation z(τ − 1)s = 0. The factorization of z(τ − 1) induces
the following short exact sequence, where C[z] has the trivial ∆A1-module
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structure given by τP (z) = P (z − 1):

(3.3) 0→ δ0 := ⟨s0 | zs0 = 0⟩
s0 7→(τ−1)s
−−−−−−−→M

s 7→1
−−−→ C[z]→ 0.

As a C[z]-module, we can verify that

δ0 ∼=
⊕

n∈Z

C · τnδ0 ∼=
⊕

n∈Z

C[z]

(z − n)C[z]
.

Let us see to which object of Mod(C[[z]])×Mod(C((z))) Hol(∆A1∗) M corre-
sponds. Using (3.3), we have:

M0
∼=

C[[z]]

zC[[z]]
⊕ C[[z]]; C((z))⊗C[[z]] M0

∼= C((z)); M |A1∗ ∼= C[z]|A1∗ .

We can easily see that the short exact sequence (3.3) becomes split if we
consider its image in Mod(C[[z]])×Mod(C((z))) Hol(∆A1∗), and that it is not
split inHol(∆A1) (indeedM does not contain C[z] as a submodule, as can be
checked directly). Therefore, the induced functor between these categories
cannot be an equivalence.

Example 3.4. We consider another illustrating example. Let M̃ be a rank
1 free C(z)-module generated by a symbol s, with the ∆A1-module structure

such that τ(P (z)s) = P (z − 1)zs for any P (z) ∈ C(z). Let M ⊂ M̃ be the
∆A1-submodule generated by s, which is necessarily holonomic. It is gen-
erated over C[z] by {τ−ns : n ∈ Z≥0}, and therefore it is also generated by{

1
z+ns : n ∈ Z≥1

}
.

Under an intuitive definition of singularities, this module should be con-
sidered “singular”, as the defining equation τs = zs vanishes at z = 0. By
analogy with the D-module case, the fact that M is not finitely generated
over C[z] also suggests that it should be considered “singular”. However,
M0 = C[[z]]⊗C[z] M ⊆ C((z)) is a rank one free module generated by the
image of s, which suggests that M0 does not capture the full story.

The way we will capture the full story is by considering which submod-
ules of M0 are the formal stalk of a finitely generated C[z]-submodule. Let

0 ̸= P (z) ∈ C(z) be such that P (z)s ∈M ⊆ M̃ , and let L = C[z]P (z)s ⊊M .
Note that if n > 0,

τnL = z(z − 1) · · · (z − n− 1)P (z − n)C[z]s ⊊M ; τ−nL

=
P (z + n)

(z + 1) · · · (z + n)
C[z]s ⊊M.
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Considering the stalks at 0 of these modules, we see that they stabilize for
n≫ 0 and n≪ 0. For which n the sequence of stalks stabilizes depends on
L, but what they stabilize to does not. If n≫ 0, we have:

(τnL)0 = zC[[z]]s ⊊ C[[z]]s =M0; (τ−nL)0 = C[[z]]s =M0.

We claim that the strict inclusion n≫ 0⇒ (τnL)0 ⊊M0 is indicative of
the singularity of the initial difference equation, while the equality n≫ 0⇒
(τ−nL)0 =M0 reflects the fact that the difference equation has no poles. See
Section 4.1 for more details.

Definition 3.5. The category of difference modules on a formal
disk, denoted ModZ(Up), is a full subcategory of the category of diagrams

M l il
−→M

ir
←−M r where M l, M and M r are C[[π]]-modules. It is defined

as follows:

• The objects of ModZ(Up) are diagrams (M l il
→M

ir
←M r) ∈

Mod(C[[π]]), such that
1) M l and M r are finite rank free C[[π]]-modules.
2) il and ir are injections.
3) M/M l and M/M r are torsion modules.

• Morphisms inModZ(Up) are morphisms of diagrams of C[[π]]-modules.
In other words, morphisms (M l →M ←M r)→ (N l → N ← N r)
are C[[π]]-homomorphisms ϕ :M → N such that ϕ(M l) ⊆ N l and
ϕ(M r) ⊆ N r.

We will often omit il and ir when describing an object of ModZ(Up)
and just write M = (M l,M,M r), or even omit the reference to M l and M r

altogether. To avoid repetition, we will use the index lr to mean either l or
r.

Observation 3.6. The categoryModZ(Up) is additive, but it is not abelian,
as the cokernel of a morphism could be an object (M l,M,M r) where M l

and/or M r have torsion. It is, however, an exact category, since it is a sub-
category of the (abelian) category of triples of C[[π]]-modules, and it is closed
under extensions.

For a morphism ϕ to be decomposed as an admissible epimorphism fol-
lowed by an admissible monomorphism, it is necessary and sufficient for ϕl

and ϕr to have constant rank. As we will prove later, this is the case for any
restriction from a morphism in Hol(∆A1).
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Definition 3.7. We define the following full subcategories of ModZ(Up):

• Hol(Up) is the category of (M l,M,M r) such that M is finitely gener-
ated.

• Hol(U∗p ) is the category of (M l,M,M r) such that M is the restriction
of scalars of a finite dimensional C((π))-vector space.

We have all four relevant categories of difference modules in all four
relevant spaces. We will now define the restriction functors.

Definition 3.8. We define the functor of restriction to the punctured
disk |U∗

p
: Hol(Up)→ Hol(U

∗
p ) as follows:

M =
(
M l,M,M r

)
7−→M |U∗

p
=

(
M l,C((π))⊗C[[π]] M,M r

)
.

WhereM lr is defined as the image of the compositionM lr ilr
→M → C((π))⊗

M (which is isomorphic to M lr).

We are missing the restrictions from the (punctured) line to the (punc-
tured) formal disk. We will use the following notation to talk about this
restriction.

Definition 3.9. We define the functor of restriction to the disk |Up
:

Hol(∆A1)→ Hol(Up) as follows: For M ∈ Hol(∆A1), we let LM ∈ S(M)
(Definition 2.11), n≫ 0 and

M |Up
= (M |lUp

,Mp,M |
r
Up
) :=

(
(τnLM )p,Mp, (τ

−nLM )p
)
=

=
(
τn(LM )p−n,Mp, τ

−n(LM )p+n

)
.

M |Up
is seen as a C[[π]]-module by identifying π = z − p. The restriction

|U∗
p
: Hol(∆A1∗)→ Hol(U∗p ) is defined in exactly the same way.

Proposition 3.10. The functor |Up
has the following properties:

1) Its definition has no ambiguity, i.e. |Up
does not depend on LM ∈ S(M)

or a big enough n (depending on LM ).

2) For M ∈ Hol(∆A1), M |Up
∈ Hol(Up), i.e. it has the following proper-

ties:
a) Mp is a finitely generated C[[π]]-module.
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b) M |lUp
and M |rUp

are finite rank free C[[π]]-modules.

c) The maps ilr :M |lrUp
→Mp are injections.

d) Mp/M |
l
Up

and Mp/M |
r
Up

are torsion modules.

3) The functor |Up
maps morphisms in Hol(∆A1) to morphisms in Hol(Up).

4) It is an exact functor, in the sense of exact categories: it maps short
exact sequences to short exact sequences.

5) Let f :M → N be a morphism in Hol(∆A1). Then f |lrUp
:M |lrUp

→ N |lrUp

is a morphism of free C[[π]]-modules that has constant rank, i.e. its
cokernel is torsion-free.

The functor |U∗
p

has the exact same properties, except for 2a): if M ∈
Hol(∆A1∗), Mp is a finite dimensional C((π))-vector space.

Proof.

1) Consider the zeroes and poles of LM : ZLM
and PLM

respectively. Note
that if p+m /∈ PLM

, the isomorphism τ :Mp+m →Mp+m+1 maps
(LM )p+m inside of (LM )p+m+1, and if p+m /∈ ZLM

, the analogous
statement is true for τ−1 :Mp+m+1 →Mp+m. Therefore, if n is big
enough (for example, if ZLM

∪ PLM
⊆ [p− n, p+ n− 1]), τ identifies

all the modules (LM )p+n+m ⊆Mp+n+m for m ≥ 0, and similarly it
identifies all the modules (LM )p+n−m ⊆Mp−n−m.

Suppose now a different L′M ∈ S(M) is chosen. Without loss of gen-
erality, taking the intersections allows us to assume that L′M ⊆ LM .
The module LM/L

′
M is finite dimensional. Therefore, for big enough n,

(L′M )p±n = (LM )p±n, as submodules of Mp±n. This shows that M |Up

doesn’t depend on the choices of L ∈ S(M) or a big enough n, as
desired.

2) a) This follows from Proposition 2.4.
b) We must prove that for some LM ∈ S(M), (LM )p±m is a finite rank

free C[[π]]-module, where m≫ 0. This follows from the fact that
LM is a finitely generated C[z]-module, and therefore its torsion is
a finite length module. This implies that if n≫ 0, the support of
the torsion of LM will be contained in [p− n, p+ n], (LM )p±m will
be torsion free if m ≥ n.

c) Since C[[π]] is a flat C[z]-module, the maps M |lUp
→Mp ←M |rUp

are automatically injections.
d) This follows from the fact that M/LM is itself a torsion module.
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3) Consider a ∆A1-homomorphism f : M →M ′, and let us show that the
corresponding map f |Up

is a morphism in Hol(Up). Pick some LM ∈
S(M), and LM ′ ∈ S(M ′) containing f(LM ). Then, for big enough n,
τ±n(LM )p∓n =M |lrUp

and τ±n(LM ′)p∓n =M ′|lrUp
, so there are indeed

maps f |lUp
: τn(LM )p−n → τn(LM ′)p−n and f |rUp

: τ−n(LM )p+n →

τ−n(LM ′)p+n that are restrictions of fp : M |Up
→M ′|Up

. These maps
are uniquely determined, since the maps i′lr : M ′|lrUp

→M ′|Up
are in-

jective by the previous part.

4) Consider a short exact sequence 0→ A
f
→ B

g
→ C → 0 in Hol(∆A1),

and let LB ∈ S(B). Let LA = LB ∩A. It’s a submodule of LB, and
therefore it’s a finitely generated C[z]-module, and A/LA embeds into
B/LB, so it is a torsion module. Further, choose LC ∈ S(C) such that
it contains g(LB). Then, LA ∈ S(A), and now we observe that

A|lrUp
= τ±n(LA)p∓n = ker(τ±n(LB)p∓n −→ τ±n(LC)p±n)

= ker(B|lrUp
−→ C|lrUp

).

It follows that A|Up
= ker(g|Up

).
For the exactness on the right, we observe that g(LB) ∈ S(C). Since

g(LB) ∼= LB/f(LA), we have that coker(f |lrUp
) = C|lrUp

.

5) This follows by decomposing every morphism in ∆A1 into a surjection
followed by an injection, and then applying the exactness of |Up

.

The proof for |U∗
p
is analogous. □

The following statement is straightforward.

Proposition 3.11. The diagram (3.1) is commutative, in the sense that
there’s a natural isomorphism |U∗

p
◦ |Up

∼= |U∗
p
◦ |A1∗.

We can now prove Theorem A. The proof can be found in Section 6. The
reader can now skip to it, since it does not use any statements other than
the ones proved up to this point.

Proposition 3.12. Theorem A works the same when “formal fibers” are
replaced by “stalks”. Let Vp = SpecC[z](z−p), and let Hol(Vp), Hol(V

∗
p ), |Vp

and |V ∗
p

be defined as Hol(Up), Hol(U
∗
p ), |Up

and |U∗
p
, replacing C[[π]] ev-

erywhere by C[z](z−p) and C((π)) by C(z). The following diagram is a fiber
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product of categories:

Hol(∆A1) Hol(∆A1∗)

Hol(Vp) Hol(V ∗p ).

|A1∗

|Vp
|V ∗

p

|V ∗
p

Proof. Consider the diagram

Hol(∆A1) Hol(Vp) Hol(Up)

Hol(∆A1∗) Hol(V ∗p ) Hol(U∗p ).

|A1∗

|Vp

|V ∗
p

C[[π]]⊗C[z]

|U∗
p

|V ∗
p C[[π]]⊗C[z]

The horizontal arrows on the right are given by (M l,M,M r) 7→ (C[[π]]⊗
M l,
C[[π]]⊗M,C[[π]]⊗M r). We claim that it is a fiber square, from which
it follows that Theorem A implies the statement by the following abstract
fact: if the outer rectangle is cartesian and the right square is cartesian as
well, then the left square is cartesian.

First of all, we check that

Mod(C[z](z)) ∼= Mod(C[[z]])×Mod(C((z))) Mod(C(z)).

The functor F from left to right is given by tensoring. The inverse functor G
is given by mapping a triple (MC[[z]],MC(z), ϕ : C((z))⊗MC[[z]]

∼= C((z))⊗
MC(z)) to the kernel of the map MC[[z]] ⊕MC(z) → C((z))⊗MC[[z]]

∼=
C((z))⊗MC(z). The fact that GF ∼= Id comes from tensoring with the short
exact sequence 0→ C[z](z) → C[[z]]⊕ C(z)→ C((z))→ 0. To see that FG ∼=
Id, notice that localizing the short exact sequence S = (0→ GM →MC[[z]] ⊕
MC(z) → C(z)⊗MC[[z]] → 0) yields C(z)⊗GM ∼=MC(z), and we can apply
the five lemma to the natural map of short exact sequences from 0→ GM →
C[[z]]⊗GM ⊕ C(z)⊗GM → C((z))⊗GM → 0 to S. This yields the iso-
morphism FG ∼= Id. Note that the naturality of the isomorphisms implies
that F and G are inverse when acting on morphisms as well.

Given thatMod(C[z](z−p)) ∼= Mod(C[[π]])×Mod(C((π))) Mod(C(z)), we
can now prove that Hol(Vp) ∼= Hol(Up)×Hol(U∗

p )
Hol(V ∗p ). Start by noting

that the functor (M l,M,M r) 7→M induces an equivalence

Hol(Up)×Hol(U∗
p )
Hol(V ∗p )

∼= Hol(Up)×Mod(C((π))) Mod(C(z)).
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The inverse of this functor is given by (M1,M2) 7→ (M1,M2), with M lr
2 =

G(M lr
1 ,M2). Now notice that Hol(Up)×Mod(C((π))) Mod(C(z)) is the cat-

egory of diagrams al → a← ar with objects in Mod(C[[π]])×Mod(C((π)))

Mod(C(z)) such that after applying G they land in Hol(Up): this is in-
duced by the functor

(
((M l

1 →M1 ←M r
1 ),M2)

)
←→

(
(M l

1,M2)→ (M1,M2)← (M r
1 ,M2)

)
.

Now the claim follows from the fact that F and G are mutual inverses. □

3.2. Extending a difference module over a puncture

One application of Theorem A is to compute all the possible ways that a
difference module on the punctured line can be extended to a module on the
whole affine line.

Remark 3.13. Let M ∈ Hol(∆A1∗). j!∗M is the module given by the fol-
lowing information: (j!∗M)|A1∗ =M and

(j!∗M)|Up
=

(
M |lU∗

p
,M |lU∗

p
+M |rU∗

p
,M |rU∗

p

)
⊂M |U∗

p
=

(
M |lU∗

p
,Mp,M |

r
U∗

p

)
.

Let us see that this is indeed describing j!∗M , by showing that is has no
submodules or quotients supported on p+ Z and applying Proposition 2.19.
If a ∆A1-module N is supported on p+ Z, then Np is torsion. By Propo-
sition 3.10, N |lrUp

must be free C[[z − p]]-submodules of a torsion module,
i.e. they must vanish. If such a module N is a submodule or a quotient of
our candidate for j!∗M , then by the exactness (Proposition 3.10) N |Up

is a
submodule or a quotient of (j!∗M)|Up

.
Therefore, it suffices to see that (j!∗M)|Up

as described above has no
torsion subojects or quotients. Since M |lU∗

p
+M |rU∗

p
is torsion-free, it cannot

have torsion subobjects. Finally, the kernel of a map from (j!∗M)|Up
to a

triple of the form (0, N |Up
, 0) must contain M |lU∗

p
and M |rU∗

p
, hence the map

must vanish.

Remark 3.14. Given a N ∈ Hol(∆A1) coming from a difference equation
via Construction 2.1, we can think of the difference N

j!∗(N |A1∗ )
as apparent

singularities, because they disappear after the change of coordinates that
transforms N into j!∗(N |A1∗). The remark above shows that the local type
can detect these, since they correspond to the module Np

N |lUp
+N |rUp

.
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Now let N be any other module in Hol(∆A1) such that N |A1∗ =M . The
adjunction between |∆A1∗ and the forgetful functor yields a natural map
N →M , whose image we will denote N , and Proposition 2.19 ensures that
j!∗M ⊆ N ⊆M . Therefore, we have a diagram

N ↠ N ←֓ j!∗M.

The kernel of the first arrow and the cokernel of the second are torsion
modules supported on p+ Z, so they are successive extensions of δ =
∆A1/∆A1(z − p). Therefore, to understand the collection of possible N ’s it
is sufficient to understand extensions of modules by torsion modules. The
following proposition computes all extensions in ModZ(Up). Notice that
even though ModZ(Up) is just an exact category, since it is closed under
extensions in the category of diagrams of C[[π]]-modules, Ext groups can be
computed in this larger abelian category, and the same is true for Hol(Up)
and Hol(U∗p ).

Proposition 3.15. Let M = (M l,M,M r) and N = (N l, N,N r) be two
modules in ModZ(Up). Let us denote ΦlrN = N lr

N . There is an exact se-
quence:

0 −→ Hom
Mod

Z(Up)
(M,N)

Θ
−→ HomC[[π]](M,N)

−→
HomC[[π]](M

l,ΦlN)
⊕

HomC[[π]](M
r,ΦrN)

−→ Ext1
Mod

Z(Up)
(M,N)

Θ
−→ Ext1

C[[π]](M,N) −→ 0.

Where Θ is the forgetful functor from ModZ(Up) to Mod(C[[π]]), and the
map HomC[[π]](M,N)→ HomC[[π]](M

l,ΦlN)⊕HomC[[π]](M
r,ΦrN) is given

by restricting to M lr and composing with the projection to N/N lr.

Corollary 3.16. 1) If M is torsion, then

Ext1
Mod

Z(Up)
(M,N) ∼= Ext1

C[[π]](M,N).

2) If M is torsion-free, then

Ext1
Mod

Z(Up)
(M,N) ∼=

HomC[[π]](M
l,ΦlN)⊕HomC[[π]](M

r,ΦrN)

HomC[[π]](M,N)/Hom
Mod

Z(Up)
(M,N)

.
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This corollary is enough to compute all the possible extensions of a
module M ∈ Hol(∆A1∗) to some N ∈ Hol(∆A1). Going back to the diagram
N ↠ N ←֓ j!∗M , the first part can be applied to compute the possible N ’s
from j!∗M , which amounts to taking a finitely generated submodule N such
that (j!∗M)p ⊆ N ⊆Mp. The second part of the corollary can then be ap-
plied to obtain all possible extensions of N by a torsion module.

Proof of Proposition 3.15. From the fact that Θ is a functor we obtain a

homomorphism Ext1
Mod

Z(Up)
(M,N)

Θ
−→ Ext1

C[[π]](M,N). Let us show that it

is surjective. Consider an extension of C[[π]]-modules 0→ N
f
→ P

g
→M →

0. We need to find two submodules P lr ⊂ P such that there are induced
short exact sequences 0→ N lr → P lr →M lr → 0. Since M lr is a projective
C[[π]]-module, there is a lift ĩlr :M lr → P such that g ◦ ĩlr = ilr :M lr →M .
Then, one can take P lr = fN lr + ĩlrM lr. Since fN lr ⊂ ker g and g|̃ilrM lr is
injective, this sum is actually a direct sum, so we indeed obtain the desired
short exact sequences, and thus some P = (P l, P, P r) ∈ModZ(Up) fitting
into a short exact sequence 0→ N → P →M → 0.

The kernel of Θ is the group of extensions that take the form

0 −→ N −→ (P l, N ⊕M,P r) −→M −→ 0.

These extensions are all given by choosing submodules P lr ⊂ N ⊕M , such
that they contain N lr and the quotients map isomorphically into M lr. The
short exact sequence 0→ N lr → P lr →M lr → 0 splits because M lr is pro-
jective. Let ĩlr :M lr → P lr → N ⊕M be one such splitting. The M compo-
nent of ĩlr must be the identity, and therefore, it is determined by a map
M lr → N . Therefore we have a map HomC[[π]](M

l, N)⊕HomC[[π]](M
l, N)→

Ext1
Mod

Z(Up)
(M,N) whose image is the kernel of Θ.

Let us show that this map is a C[[π]]-module homomorphism: multipli-
cation by C[[π]] is induced on both sides by multiplication on N , so it is
clear that it commutes with C[[π]]. For the sum, we can use the Baer sum.
For two maps (jl, jr) :M l ⊕M r → N , the corresponding extension is the
class of the following module, with the obvious structure of an extension of
M by N :

P =M ⊕N ;P lr = (IdM , j
lr)M lr +N lr.

Suppose we have two pairs of maps, jlri , for i = 1, 2, giving rise to two ex-
tensions Pi. Their Baer sum is by definition:

P3 =
P1 ×M P2

{(a, 0)− (0, a) : a ∈ N}
∼=
N ⊕N ⊕M

N
.



✐

✐

“5-Herradon-Cueto” — 2022/8/26 — 17:33 — page 157 — #27
✐

✐

✐

✐

✐

✐

The local information of difference equations 157

In the last term, N is embedded in N ⊕N diagonally, so P3 is isomorphic
to N ⊕M , via the map (n1, n2,m) 7→ (n1 + n2,m). Looking at this map, we
see that the image ofM lr by jlr in P3 is given by (jlr1 + jlr2 , IdM ), as desired.

We have an exact sequence

HomC[[π]](M
l, N)⊕HomC[[π]](M

r, N)→ Ext1
Mod

Z(Up)
(M,N)

Θ
−→ Ext1

C[[π]](M,N)→ 0.

Let us compute the kernel of the leftmost map. It is made of the pairs of
maps (jl, jr) ∈ HomC[[π]](M

l, N)⊕HomC[[π]](M
r, N) such that the following

short exact sequence is split:

0 −→ N −→ (N l ⊕ (jl, 1)M l, N ⊕M,N r ⊕ (jr, 1)M r)
p
−→M −→ 0.

These short exact sequences split exactly when there is a section of the
second arrow, i.e. a map s :M → N ⊕M such that p ◦ s = 1M . This means
that s is of the form s = (j, 1). Further, in order to be a morphism, s must
map M lr inside of (N ⊕M)lr = N lr ⊕ (jlr, ilr)M lr. Since slr = (jlr, 1) does
map M lr into (N ⊕M)lr, we have that

s(M lr) ⊆ (N ⊕M)lr ⇔ (s|M lr − slr)(M lr) ⊆ (N ⊕M)lr.

Now, (s|M lr − slr) = (j − jlr, 0), so s is a morphism if and only if j − jlr

maps M lr into N lr = (N ⊕M)lr ∩N ⊕ 0. Therefore, the above extension is
trivial if and only if there exist three maps as follows:

(al, j, ar) ∈ HomC[[π]](M
l, N l)⊕HomC[[π]](M,N)⊕HomC[[π]](M

r, N r).

This triple must have the property that jlr = j + alr. Using the fact that
M lr is free, we can simplify the quotient:

HomC[[π]](M l,N)
HomC[[π]](M l,N l) ⊕

HomC[[π]](Mr,N)
HomC[[π]](Mr,Nr)

im(HomC[[π]](M,N))

=
HomC[[π]](M

l,ΦlN)⊕HomC[[π]](M
r,ΦrN)

im(HomC[[π]](M,N))
.

Finally, note that the maps in HomC[[π]](M,N) that become 0 in

Hom(M l,ΦlN)⊕Hom(M r,ΦrN) are exactly those in Hom
Mod

Z(Up)
(M,N).

□
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4. Vanishing cycles and singularities of difference equations

In this section we define vanishing cycles and we show some properties that
suggest it is a good analogue for the functor of vanishing cycles in the case of
D-modules. As always, we will fix an orbit p+ Z ⊂ A1. We start by recalling
Definition 1.3.

Definition 4.1. The (left) vanishing cycles Φl
p+Z

: Hol(∆A1)→
Mod(C[[π]]) are defined as:

Φl
p+Z(M) =

Mp

M |lUp

.

The construction is made into a functor in the obvious way.

Throughout this section we may abbreviate Φ = Φl
p+Z

.

Remark 4.2. We can make the following observations.

1) By Proposition 3.10, Φl
p+Z

M is a finite length C[[π]]-module.

2) The analogous definition yields a second functor Φr
p+Z

(M) = Mp

M |rUp

.

Every statement in this section has an analogous statement for Φr
p+Z

after interchanging the roles of τ and τ−1.

3) Φl
p+Z

is exact: it is a composition of two exact functors between exact
categories Hol(∆A1)→ Hol(Up)→Mod(C[[π]]). Since its source and
target are abelian, it is indeed an exact functor in the sense of abelian
categories.

One reason why Φl
p+Z

is a good replacement for vanishing cycles is that it
vanishes exactly for modules with no zeroes (and Φr

p+Z
vanishes for modules

with no poles). We also show exactly how to compute the local type and
vanishing cycles from a matrix difference equation.

4.1. Relation to singularities of difference equations

We show that many reasonable notions of zeroes and poles are equivalent.
In particular, we can describe when a difference module M ∈ Hol(∆A1) has
a “zero” or a “pole” in terms of the underlying C[z]-module.

Proposition 4.3. Let M ∈ Hol(∆A1). The following are equivalent:
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1) Φl
p+Z

M = 0 for every p ∈ A1 (resp. Φr
p+Z

M = 0).

2) For some L ∈ S(M), there’s some N ∈ R such that M/L is supported
on {a ∈ C : ℜ(a) ≥ N} (resp. ≤ N).

3) For every L ∈ S(M), there’s some N ∈ R such that M/L is supported
on {a ∈ C : ℜ(a) ≥ N} (resp. ≤ N).

4) Any finite subset of M is contained in some L ∈ S(M) with no zeroes
(resp. no poles), i.e. such that τ−1L ⊆ L (resp. L ⊆ τL).

5) M is finitely generated over C[z]⟨τ⟩ (resp. C[z]⟨τ−1⟩).

Proof.

1⇒ 2 Suppose that ΦlM = 0, and let L ∈ S(M). The fact that all the van-
ishing cycles are 0 implies that for every p ∈ A1/Z and n≫ 0, Mp =
τn(Lp−n). Since τ

n induces an isomorphism Mp−n
∼=Mp, we deduce

that Mp−n = Lp−n for some big enough n (which can be chosen uni-
formly for all p’s, since only a finite set affect the count by Lemma
2.15). The conclusion follows.

2⇒ 3 Two modules L1, L2 ∈ S(M) can only differ at a finite set, since
Li/(L1 ∩ L2) are finite length modules.

3⇒ 4 Choose any L ∈ S(M) containing a given finite set. Note that the
support of τ−nL+τ−n+1L

τ−n+1L is ZL − n+ 1. Therefore, if n is big enough,
we take L′ = τ−nL+ · · ·+ L ∈ S(M), and we have that

ZL′ = supp
L′ + τL′

τL′
⊆ supp

τ−nL+ τ−n+1L

τ−n+1L
∩ supp

M

L
=

= (ZL − n+ 1) ∩ {z : ℜz ≫ 0} = ∅.

4⇒ 5 Let L ∈ S(M) have no zeroes, chosen to contain a (finite) generat-
ing set of M over ∆A1 . Then, τ−1L ⊆ L, which implies that M =∑

n∈Z τ
nL =

∑
n≥0 τ

nL, so a finite set generating L over C[z] also
generates M over C[z]⟨τ⟩, as desired.

5⇒ 1 Suppose that M is finitely generated as a C[z]⟨τ⟩-module, and let
S be a finite generating set over C[z]⟨τ⟩. Let L ∈ S(M) containing
S. By assumption,

∑
i≥0 τ

iL =M . τ−1L is a finitely generated C[z]-
module, since it is generated by τ−1 applied to a generating set of L.
Therefore, there is a finite m for which τ−1L ⊂ L+ τL+ · · ·+ τmL.
Let L′ = L+ τL+ · · ·+ τmL. Then τ−1L′ ⊆ L′, so the sequence τ iL′

is increasing with i, and we have that
∑

i≥0 τ
iL′ =

⋃
i≥0 τ

iL′ =M .
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Fixing a fiber p, we have that
⋃

i≥0 τ
i(L′p−i) =

⋃
i≥0(τ

iL′)p =Mp. We
have that Mp/Lp is a finite length module, by definition of S(M) and
Proposition 2.4. Therefore there is an N ≫ 0 such that (τnL′)p =Mp

for any n ≥ N . By definition of |Up
, this implies that Mp =M |lUp

, so

Φl
p+Z

M = 0. □

Remark 4.4. In particular, note that if M comes from a matrix difference
equation y(z + 1) = A(z)y(z) (Construction 2.1), then if A(z) is defined ev-
erywhere on p+ Z, Φr

p+Z
M = 0. Conversely, if Φr

p+Z
M = 0, then there is a

gauge change after which A becomes defined everywhere on p+ Z. The same
holds for A−1 and Φl

p+Z
.

These can be put together to characterize difference modules with no
singularities at finite points.

Corollary 4.5. Let M ∈ Hol(∆A1). The following are equivalent:

1) Φl
p+Z

M = Φr
p+Z

M = 0 for every p ∈ A1.

2) M is finitely generated over C[z].

3) M is a vector bundle.

Proof. 1⇒2 Let L ∈ S(M). By Proposition 4.3, M/L is supported on a set
of the form {a ∈ C : −N ≤ ℜ(a) ≤ N} for some N ∈ R, which com-
bined with Lemma 2.15 implies that M/L has finite support. Finally,
Proposition 2.4 implies that M/L is finitely generated, so M is indeed
finitely generated over C[z].

2⇒3 IfM is finitely generated over C[z] and it is not a vector bundle, it must
have a torsion element. Let s ∈M \ {0} be such that its support is a
single point a. Then supp τns = a+ n, which implies that the torsion
submodule ofM is not finitely generated, and thereforeM itself is not
finitely generated.

3⇒1 This follows directly from Proposition 4.3. □

Consider a matrix difference equation y(z + 1) = A(z)y(z) and use Con-
struction 2.1 to construct a difference module M with a trivial bundle
L ⊆M . We will now discuss how the local type of M can be computed
directly from the matrix. The answer is most convenient when all the ze-
roes of A are to the left of its poles, which is the opposite situation to the
“austerity” used to construct the intermediate extension.
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Proposition 4.6. Consider a matrix difference equation y(z + 1) =
A(z)y(z) with A ∈ GLn(C(z)), and consider the corresponding difference
module C[z]n = L ⊆M ⊆ C(z)n. Let PA ⊂ C be the subset of p+ Z over
which A(z) is not defined, and let ZA be the subset of p+ Z over which
A(z)−1 is not defined. Consider the obvious ordering on p+ Z. We define
the following sequence of matrices (A(n)(z))n∈Z:

A(0)(z) = Id ∈ GLn(C(z))

A(n+1)(z) = A(n)(z)A(z + n)−1

A(n−1)(z) = A(n)(z)A(z + n− 1).

It is straightforward to check that τ−nL is generated over C[z] by the columns
of A(n).

1) Let n1, n2 ∈ Z be such that p+ n1 ≤ ZA ∪ PA < p+ n2. Then:

M |lUp
= (τ−n1M)p; M |rUp

= (τ−n2M)p.

In terms of matrices, there exists a basis for M |lUp
such that the coor-

dinates for a basis of M |rUp
are given by the columns of (A(n1))−1A(n2).

Since a basis for M |lUp
is a basis for C((z − p))⊗Mp, this computes

M |U∗
p
.

2) Additionally, Let n3 ≤ n4 be such that p+ n3 ≤ PA and ZA < p+ n4.
In this case, Mp is generated by {(τ−nL)p}n3≤n≤n4

. In the standard
basis of L, Mp is generated by the columns of {A(n)}n3≤n≤n4

. In this
case, M |lUp

= (τ−n1L)p and M |rUp
= (τ−n2L)p, so in the standard basis

M |lUp
(resp. M |rUp

) is the column span of A(n1) (resp. A(n2)).

3) In particular, suppose that n3, n4 above can be chosen so that n3 =
n4. Then Mp = (τ−n3M)p. In terms of matrices, there is a basis of
Mp such that M |lUp

(resp. M |rUp
) is the column span of (A(n3))−1A(n1)

(resp. (A(n3))−1A(n2)) over C[[z − p]].

Proof. Let n ∈ Z. Since the difference module structure is τ−1(y(z)) =
A(z)−1y(z + 1), A(p+ n)−1 being well-defined is equivalent to τ−1(Lp+n+1)
⊆ Lp+n, or equivalently, Lp+n+1 ⊆ τ(Lp+n) = (τL)p+n+1. Analogously, p+
n /∈ PA if and only if (τL)p+n+1 = τ(Lp+n) ⊆ Lp+n+1. Applying τ

−1−n, we
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obtain the following relations:

p+ n /∈ ZA ⇔ (τ−n−1L)p ⊆ (τ−nL)p;

p+ n /∈ PA ⇔ (τ−nL)p ⊆ (τ−n−1L)p.

Let Cn = (τ−nL)p ⊆Mp, and consider the sequence (Cn). We have just
shown that Cn ⊆ Cn+1 (resp. Cn ⊇ Cn+1) whenever p+ n /∈ PA (resp. p+
n /∈ ZA). Thus:

p+ n1 ≤ ZA ∪ PA =⇒ Cn = Cn1
∀n ≤ n1;

ZA ∪ PA < p+ n2 =⇒ Cn2
= Cn ∀n ≥ n2;

p+ n3 ≤ PA =⇒ Cn ⊆ Cn3
∀n ≤ n3;

ZA < p+ n4 =⇒ Cn ⊆ Cn4
∀n ≥ n4.

Therefore, when n≫ 0,M |lUp
= (τnL)p = C−n = Cn1

, and similarlyM |rUp
=

Cn2
. Also, Mp is generated by (τ−nL)p for n ∈ Z. For n ≤ n3, (τ−nL)p ⊆

(τ−n3L)p and for n ≥ n4, (τ
−nL)p ⊆ (τ−n4L)p, so to generate Mp only the

above modules for n3 ≤ n ≤ n4 are required. In particular, if n3 = n4,Mp =
(τ−n3L)p.

All the statements about matrices are straightforward given that the
columns of A(n) generate τ−nLp. □

Remark 4.7. Note that the matrices (A(n))−1A(m) have the following sim-
ple expression, which gets simpler as |n−m| gets smaller:

n > m⇒ (A(n))−1A(m) = A(z + n− 1)A(z + n− 2) · · ·A(z +m);

n < m⇒ (A(n))−1A(m) = A(z + n)−1A(z + n+ 1)−1 · · ·A(z +m− 1)−1.

4.2. Relation to the monodromy matrix

In this section, concretely as Proposition 4.12, we describe the relation be-
tween the monodromy matrix described in [5], which comes from the results
of [3], and the local type.

In this section we will work in the analytic topology and with holomor-
phic functions. We will let MX and HX be the sheaf of meromorphic and
holomorphic functions respectively on a complex manifold X. We are also
usingM for the Mellin transform, but it will not make an appearance here,
nor will we work in the analytic topology outside of this section.

We will state all the results in the section followed by the proofs.



✐

✐

“5-Herradon-Cueto” — 2022/8/26 — 17:33 — page 163 — #33
✐

✐

✐

✐

✐

✐

The local information of difference equations 163

Theorem 4.8 ([3, Theorem III], [5, Theorem 1.3]). Let A(z) ∈
GLn(C(z)), and consider the difference equation y(z + 1) = A(z)y(z). There
are matrices Y l, Y r ∈ GLn(MC) with the following properties:

• They solve the difference equation: Y lr(z + 1) = A(z)Y lr(z).

• There is a left (resp. right) half-plane over which both Y l and (Y l)−1

(resp. Y r and (Y r)−1) are holomorphic. By a left half-plane we mean
a set of the form {z ∈ C : ℜz < N}.

If Y ′lr is another matrix with the same properties, then there exists a matrix
B ∈ GLn(HC) such that Y ′lr = Y lrB and B(z + 1) = B(z).

Remark 4.9. The statement in [3], which is corrected in [5], requires some
hypotheses on A in order to better understand the asymptotic growth of the
solutions. We will not need this, so in return for proving a weaker property
we can find solutions in full generality.

Definition 4.10. Let y(z + 1) = A(z)y(z) be a difference equation as above.
Let Y l(z) and Y r(z) be two solution matrices given by 4.8. The mon-
odromy matrix of the equation is the matrix P (z) = (Y r)−1Y l. It is de-
termined up to multiplication on the left and on the right by two holo-
morphic, invertible, periodic matrices, i.e. it is a well-defined element of
GLn(HC∗)\GLn(MC∗)/GLn(HC∗), where functions on C∗ are pulled back
to C via z 7→ e2πiz. Note that P (z) is itself periodic.

Proposition 4.11 ([3, Theorem IV]). Let u = e2πiz be the coordinate in
C∗, and let A(z) and P (u) be as above. Then the class of A in GLn(HC∗)\
GLn(MC∗)/GLn(HC∗) is represented by a diagonal matrix diag(di) ∈
GLn(C(u)) such that di divides di+1, which is unique up to multiplication by
diagonal matrix with entries in C[u, u−1]×.

Proposition 4.12. Consider A(z), P (e2πiz) as above, and fix p ∈ C. Let
M ⊆ C(t)n be the (holonomic) ∆A1-module generated by any basis of C(t)n.
Consider the composition Q : C((z − p))⊗C[[z−p]] M |

l
Up
→ C((z − p))⊗Mp

→ C((z − p))⊗M |rUp
. There are C[[z − p]]-bases of M |lUp

and M |rUp
such

that the matrix of Q equals P .

Corollary 4.13. LetM be a holonomic ∆A1-module. Then the collection of
punctured local types {M |U∗

p
}p∈C/Z and the monodromy matrix of C(z)⊗M

determine each other.
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Proof of Theorem 4.8. Construct a difference module structure on V = C(t)n

using Construction 2.1. Fix Hl = {z ∈ A1 : ℜz < −N} and Hr = {z ∈ A1 :
ℜz > N} two half-planes with the property that all the singularities of A
(i.e. the points where A or A−1 is not defined) have real parts contained
in (−N − 1, N + 1). On Hl, τ and τ−1 both preserve the analytic trivial
bundle Hn ⊂ V an (we will abuse notation and write τ in place of τan), so
we have an H-linear isomorphism t∗ ◦ τ : Hn|Hl

∼
→ (t∗Hn)|Hl , where t is the

translation. Therefore, Hn has a Z-equivariant structure, which can be ex-
tended past Hl if we modify the vector bundle Hn. Consider the coherent
sheaf Y l ⊂ V an defined on any bounded open set U by Y l(U) = {s ∈ V an :
τ−is ∈ Hn(U − i) ∀i≫ 0}. Since τHn|Hl = Hn|Hl , this definition is the same
as Y l(U) = {s ∈ V an : τ−i0s ∈ Hn(U − i0)} where now i0 is any integer such
that U ⊆ Hl + i0. From the definition it is clear that Y l is locally free, since
we have defined it to be locally isomorphic to Hn, and that it is τ -invariant.
Lastly, Y l|Hl = Hn|Hl as subsheaves of V an. Similarly, we define Yr to be
τ -invariant and coinciding with Hn over Hr.

Now, the Z-equivariant structure on Y lr allows it to descend along the
quotient π : C→ C/Z = C∗, which is given by z 7→ e2πiz. This is done by

defining Y
lr
(U) = {f ∈ Y lr(π−1(U)) : τf = f}. In particular, on a simply

connected set U , π−1(U) =
⊔

i∈Z Ui, and Y
lr
(U) = (π−1)∗Y lr(Ui), where i

can be chosen arbitrarily. Since locally Y
lr

is isomorphic to Y lr, it is also
locally free, and therefore it is a trivial vector bundle, since C∗ has no non-
trivial analytic vector bundles [7, Theorem 30.4].

Since Y
lr
is trivial, consider a basis and pull it back to Y lr: this yields a

τ -invariant basis of Y lr, i.e. a basis of meromorphic solutions to the equation
y(z) = τy(z) = A(z − 1)y(z − 1), or equivalently y(z + 1) = A(z)y(z). Fur-
ther, since Y l|Hl = Hn|Hl , these solutions are holomorphic and they form a
basis at every point of Hl, and similarly for Yr. Let the two matrices formed
by these column vectors be Y l(z) and Y r(z).

Now, suppose we have another matrix Y ′l with the same properties.
The columns of Y ′l are τ -invariant, and when restricted to Hl, they lie in
Y l|Hl = Hn

Hl (possibly by shrinking Hl to a smaller half-plane). By the τ -
invariance of both Y ′l and Y l, it follows that the columns of Y ′l form a
basis of Y l at every point in C, including outside of Hl. Also, since they

are τ -invariant, they descend to sections of Y
l
, which form a basis at every

point (because locally it is isomorphic to Y l), so they form a global basis for

Y
l
. Two bases for Y

l ∼= Hn
C∗ differ by a matrix B(u) ∈ GLn(HC∗) (acting on

the right, since we are working with column vectors). Therefore, Y ′l(z) =
Y l(z)π∗B(u) = Y l(z)B(e2πiz), as desired, and similarly for Y ′r. □
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Proof of Proposition 4.11. First of all, note that if A(p) is well-defined and
invertible at p, then on a neighborhood B of p, τ gives an isomorphism
Hn|B ∼= H

n|B+1. Therefore, on the open set consisting of Z-orbits that don’t
contain zeroes or poles of A, Y l = Yr = Hn. Therefore, on the image of this

open set we have that Y
l
= Y

r
, so the matrix P (u) mapping a basis of one

to the other is holomorphic and invertible away from a finite set of points,
the images of the zeroes and poles of A.

The rest of the proof is very similar to the algorithm that computes the
Smith normal form. The similarity is due to [14, Theorem 15.15], which en-
sures that every finitely generated ideal in the ring of holomorphic functions
is principal. Note that this extends easily to every finitely generated frac-
tional ideal (recall thatM is the field of fractions ofH, [14, Theorem 15.12]):
for such a fractional ideal I = f1/g1H+ · · ·+ fm/gmH with fi, gi ∈ H, we
have that g1 · · · gmI is a principal ideal generated by some f , so I is gen-
erated by an element of the form f/(g1 · · · gm). Note that in particular any
two meromorphic functions f, g have a greatest common divisor h such that
hH = fH+ gH ⊂M, and we have Bézout’s identity: af + bg = h for some
a, b ∈ H.

Let P = (pij), and let g be a generator of the fractional ideal
∑

i,j pijH ⊆
M: since P is defined away from a finite set, the entries pij have a finite
set of poles, so g also has a finite set of poles. Note that multiplying by
matrices in GLn(H) doesn’t change the ideal (g). By permuting the rows,
assume that p11 ̸= 0. We will now ensure that pi1 = 0 for every i ̸= 1. Let h
be the greatest common divisor of p11 and p21, and take Bézout’s identity
ap11 + bp21 = h. We multiply on the left by the matrix which is the identity
except for the top left 2× 2 block, which is given by:

E =

(
a b
−p21

h
p11

h

)
.

After this multiplication, the (2, 1) term vanishes, while the (1, 1) term is
replaced by a divisor. It is clear that we can carry out this procedure on all
the remaining rows, so we may assume that pi1 = 0 for j ̸= 0. At the end of
this process, p11 has been replaced by a divisor p̃11, i.e. a function such that
p11

p̃11
∈ H.

At this point, the assumption that A and A−1 are well-defined away from
a finite set imply that p11 has a finite set of zeroes and poles. Now, continuing
the Smith normal form algorithm, we carry out the steps in the previous
paragraph on the transpose matrix, to ensure that a1j = 0 for j ̸= 1. While
doing this, the entries in the first column might become nonzero. However,
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p11 is replaced by a divisor of p11. Again, the new p11 has a finite set of
zeroes and poles.

We repeat this process with rows and columns, noting that each new
p11 must be a divisor of the previous one. However, it is always the case
that p11 ∈ gH, so eventually it must stabilize: g has a finite set of poles so
p11/g is a holomorphic function with a finite set of zeroes, and this set gets
smaller (with multiplicity) at very step. Once the process stabilizes, p11 will
divide every entry in its row and column, so we can perform row and column
operations to ensure everything in the first row and column is a zero. We
can continue inductively until we obtain a diagonal matrix.

Once we have a diagonal matrix, its entries have a finite set of zeroes and
poles, so we can multiply by a diagonal matrix with holomorphic nonzero
entries to ensure that all entries become rational functions. Now we have a
matrix with rational entries, so the classical Smith normal form ensures that
we can finish the algorithm so that each entry divides the next. The Smith
normal form is unique up to multiplication by a diagonal matrix. It follows
that this matrix is unique as well, up to multiplication by a diagonal matrix
of rational functions. Such a diagonal matrix is invertible if it has entries in
C[u, u−1]×. □

We will illustrate our version of Theorem 4.8 and Proposition 4.11 by
looking at the equation from [5, Remark 1.5].

Example 4.14. Consider the equation:

y(z + 1) =

(
1 1/z
0 1/e

)
y(z).

We have the following solutions:

Y l(z) =

(
1 2πi

e2πiz−1 −
∑∞

n=0
e−z−n

z+n

0 e−z

)
;Y r(z) =

(
1 −

∑∞
n=0

e−z−n

z+n

0 e−z

)
.

So the monodromy matrix is

P (z) =

(
1 2πi

e2πiz−1

0 1

)
∼

(
1

u−1 0

0 u− 1

)
.

Proof of Proposition 4.12. Let LM be the C[z]-submodule generated by the
chosen basis of V , which will be a free module of rank n. LM coincides with
the trivial bundle away from a finite set. In particular, on some left half-
plane it will coincide with Y l, which is also the trivial vector bundle. Since
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τY l = Y l, we have that if n≫ 0 and B is a ball around p,

(τnLan
M )|B = τn(Lan

M |B−n)
n≫0
= τn(Y l|B−n) = (τnY l)|B = Y l|B.

And similarly, if n≫ 0, (τ−nLan
M )|B = Yr|B. Also, note that the local type

concerns formal fibers, which are the same for analytic and algebraic bundles.
Therefore, we have the following commutative diagram for any p ∈ C

Y
l
e2πip (Mn

C∗)e2πip Y
r
e2πip

Y l
p (V an)p Yr

p

(τnLM )p =M |lUp
Mp M |rUp

= (τ−nLM )p.

π∗∼ π∗∼ π∗∼

τn τ−n

We can think of every object in the above diagram as a module over C[[z −
p]] = C[[u− e2πip]]. After tensoring with C((z − p)) every arrow becomes an
isomorphism, so the arrows that go right to left can be inverted. The compo-

sition C((z − p))⊗ Y
l
e2πip → C((z − p))⊗ Y

r
e2πip is given by the matrix P (u),

so it agrees with the composition Q as desired. □

Proof of Corollary 4.13. Since M is holonomic, C(z)⊗M is finite dimen-
sional over C(z), by Proposition 2.4, so we may choose a basis of C(z) so
that τ is given by a matrix A(z). The punctured local types are nontrivial
in a finite set of Z-orbits (Lemma 2.15). Let Q1, . . . , Qm be the Smith nor-
mal forms of the corresponding maps C((z − pi))⊗M |lU∗

pi

→ C((z − pi))⊗

M |rU∗
pi

, which by Proposition 4.12 all coincide with P (u) for the matrix A

(over the corresponding ring C[[z − pi]]). By the uniqueness of the Smith
normal forms, it must follow that P (u) = Q1 · · ·Qm. Conversely, starting
with P (u), the matrix Qi at pi is given by clearing away all the factors in
P (u) that have no zeroes or poles at e2πipi . □

5. Local Mellin transform

In this section we will show Theorem B. Throughout we will focus on the
case of Φl

p+Z
, since the corresponding case of Φr

p+Z
can be obtained by the

symmetry as discussed in the introduction. Let DGm
= C[x±1]⟨∂⟩ be the ring
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of differential operators on A1 \ {0}, and let DK0
= C((x))⟨∂⟩ be the ring

of differential operators on the punctured disk at 0. Recall that Theorem B
amounts to definingM(0,p+Z) that fits into the following diagram:

Hol(DGm
) Hol(∆A1)

Hol(DK0
)reg,(p) Mod(C[π])fin.

M
∼

reg,(p)◦Ψ0

M(0,p+Z)

∼

Φl
p+Z

Here M is the Mellin transform, the equivalence induced by the ring iso-
morphism DGm

∼= ∆A1 given by x 7→ τ and x∂ 7→ z. The functor of nearby
cycles Ψ0 in this case is the functor C((x))⊗C[x] •, which we compose with
picking the regular part with leading coefficient in p+ Z.

The classification of Levelt and Turrittin already ensures that Hol(DK0
)

is equivalent to Mod(C[π])fin, by an equivalence that maps C[π]/πC[π] ∈
Mod(C[π])fin to the D-module DK0

/DK0
(x∂ − p). However, we will not take

this approach, and instead we will construct M(0,p+Z) by using properties
of difference modules. We will use the functor ιp! (denoted ι

→
p! in the intro-

duction), given by the following formula:

ιp! : Mod(C[π])fin −→ Mod(∆A1)
M 7−→ C((τ))⊗C M.

The C((τ))-module ιp!M acquires the structure of a ∆A1-module by letting
z act on a simple tensor (

∑
anτ

n)⊗m as follows:

z


 ∑

n≥−N

anτ
n


⊗m = “

∑
(anτ

n ⊗ (π + p+ n)m)” =

=
(∑

(p+ n)anτ
n
)
⊗m+

(∑
anτ

n
)
⊗ πm.

We will show that ιp! is the right adjoint to Φl
p+Z

. On the other side of

the diagram, the right adjoint to reg,(p) ◦Ψ0 is the forgetful functor to DGm
-

modules, which we will denote ȷ̊0∗. Consider then the diagram:

Mod(DGm
) Mod(∆A1)

Hol(DK0
)reg,(p) Mod(C[π])fin.

M
∼

ȷ̊0∗

M(0,p+Z)

∼

ιp!
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We will construct M(0,p+Z) by showing that the images of M◦ ȷ̊0∗ and ιp!
coincide. Both these functors are faithful, but not full, so we are referring
to their image as a subcategory of Mod(∆A1) which is not full. Once we
know that the images coincide, the commutativity of the above diagram is
automatic, and then Corollary 1.4 follows because the ιp! is the right ad-
joint to bothM◦ ȷ̊0∗ ◦ (M

(0,p+Z))−1 and Φl
p+Z

, so they must be canonically
isomorphic because adjoints are unique.

Remark 5.1. It is possible to consider vanishing cycles on all Z-orbits
at once, by simply making Φl

fin =
⊕

p∈S Φl
p+Z

, where Φl
finM becomes a C[z]-

module by identifying z = π − p on each summand. The set S can be chosen
to be any class of representatives of A1/Z, for example the complex numbers
with real part in [0, 1). In this case the local Mellin transform will give an
equivalence between Hol(DK0

)reg and the category of finite length modules
supported on S.

5.1. A different approach to vanishing cycles

We will describe the image of ιp!, which we will denote Ĥol*(∆l
A1)p+Z, and

obtain an equivalence ιp! : Mod(C[π])fin −→ Ĥol*(∆l
A1)p+Z. To describe this

image we will make use of four categories of C[z]⟨τ⟩-modules, starting with

Mod(∆l
A1)p+Z. M̂od(∆l

A1)p+Z consists of objects which are limits of mod-
ules in Mod(∆l

A1)p+Z, and then we describe corresponding categories of
“small” modules.

Definition 5.2. The category Mod(∆l
A1)p+Z is the full subcategory of left

modules V over ∆l
A1 = C[z]⟨τ⟩ satisfying the following properties:

1) Any m ∈ V is supported on p+ Z, i.e. there exists a P (z) ∈ C[z] such
that P (z)m = 0 and the roots of P are contained in p+ Z.

2) τ : V → V is a locally nilpotent map, i.e. for every m there’s a natural
number n such that τnm = 0.

Definition 5.3. A module in Mod(∆l
A1)p+Z is holonomic if τ−1(0) is

finite dimensional. We denote the category of holonomic modules by
Hol(∆l

A1)p+Z.

In Section 5.1.1 we describe the relevant properties for these modules.
We consider the collection of C[[τ ]]⟨z⟩-modules which are limits of these
modules.
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Definition 5.4. The category M̂od(∆l
A1)p+Z is defined to be the cate-

gory of modules M over C[[τ ]]⟨z⟩ such that the following natural map is
an isomorphism: M → lim

←−
M/L, where L ranges across the set of C[[τ ]]⟨z⟩-

submodules such that M/L ∈Mod(∆l
A1)p+Z.

Let us recall here the definition of the natural topology on C[[τ ]]-modules,
the τ -adic topology.

Definition 5.5. Let M be a C[τ ]-module. The τ-adic topology on M is
defined as follows: a subspace U ⊂M is open if for every finitely generated
submodule N ⊆M , there is a k such that τkN ⊆ U . Open subspaces form
a basis of neighborhoods of 0.

Definition 5.6. We say a moduleM ∈ M̂od(∆l
A1)p+Z is holonomic if it is

of Tate type, i.e. if it has an open (in the τ -adic topology) finitely generated
C[[τ ]]-submodule U such that τ−1(U)/U is a finite dimensional vector space.

The category of holonomic modules will be denoted Ĥol(∆l
A1)p+Z. We let

Ĥol*(∆l
A1)p+Z ⊂ Ĥol(∆

l
A1)p+Z be the full subcategory consisting of modules

on which τ acts as a unit.

Proposition 5.15 gives several equivalent definitions to the definition
above.

Definition 5.7. We define the functor of “sections with support at p”
ι!p : Ĥol(∆

l
A1)p+Z →Mod(C[z]) by taking

ι!p :M 7−→ ι!pM = {m ∈M : ∃n, (z − p)nm = 0}.

Corollary 5.18 shows that the image of ι!p is contained in Mod(C[π])fin.

The remainder of this section is devoted to building the tools to prove
the following proposition. Its proof can be found in Section 5.1.3.

Proposition 5.8. The functors ι!p and ιp! induce inverse equivalences be-

tween the categories Ĥol*(∆l
A1)p+Z and Mod(C[π])fin.

Remark 5.9. The above Proposition can be proven by taking the Mellin
transform of modules in Ĥol*(∆l

A1)p+Z, which turns the difference modules
into D-modules on the punctured formal disk. Then the classification of
said differential operators can be used to obtain the result. However, we
have chosen to take an alternative approach to the proof, which involves
only difference modules.
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5.1.1. Difference modules with support on an orbit. Let us show
some useful properties about Hol(∆l

A1)p+Z.

Remark 5.10. All modules V in Mod(∆l
A1)p+Z have a natural increasing

filtration V i = τ−i(0) = τ−1(V i−1). Note that τ induces a map V i → V i−1

with kernel V 1, which implies that dimV i ≤ dimV i−1 + dimV 1. We will
use this notation in what follows.

Proposition 5.11. Both Mod(∆l
A1)p+Z and Hol(∆l

A1)p+Z are closed under
submodules, quotients and extensions. Further, if W is a submodule or a
quotient of V ∈ Hol(∆l

A1)p+Z, then dimW 1 ≤ dimV 1.

Proof. Mod(∆l
A1)p+Z is clearly closed under submodules, quotients and ex-

tensions.
Being holonomic is clearly preserved under submodules. For quotients,

suppose V ∈ Hol(∆l
A1)p+Z and W is a submodule of V . Then the only

nontrivial condition is that in V/W , τ−1(0) is finite dimensional, i.e. that
τ−1(W )/W is finite dimensional. Note that τ−1(W i) ∩W =W i+1. There-

fore, τ−1(W )
W =

⋃
i
τ−1(W i)
W =

⋃
i
τ−1(W i)
W i+1 . Since τ induces a map τ−1(W i)→

W i with kernel contained in V 1,

dim
τ−1(W i)

W i+1
= dim τ−1(W i)− dimW i+1

≤ dim τ−1(W i)− dimW i ≤ dimV 1.

Therefore, τ−1(W )/W is a union of subspaces of dimension at most dimV 1,
and therefore it has dimension at most dimV 1, which implies that V/W ∈
Hol(∆l

A1)p+Z.
Finally, for extensions, observe that a short exact sequence 0→ U →

V →W → 0 yields an exact sequence of vector spaces 0→ U1 → V 1 →W 1.
□

We will use the following lemma in the sequel.

Lemma 5.12. Let V ∈ Hol(∆l
A1)p+Z. The following inequalities hold:

1) dim ι!pV ≤ dimV 1.

2) dimV/τV ≤ dimV 1, with equality if and only if V is finite dimen-
sional.
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Proof.

1) Since V 1 is a torsion C[z]-module, we may decompose it based on
supports, as V 1 =

⊕
i∈Z(V

1)p+i. It is finite dimensional, so only a finite
number of the components are nonzero. On ι!pV , we may consider

the filtration by subvector spaces (ι!pV )i = V i ∩ ι!pV . Then there are

injections τ i : (ι!pV )i+1/(ι!pV )i →֒ (V 1)p+i, which show that

dim ι!pV =
∑

i

dim(ι!pV )i+1/(ι!pV )i ≤
∑

i

dim(V 1)p+i ≤ dimV 1.

2) Consider the exact sequence 0→ V i → V i+1 τ i

−→ V 1 → V 1/(τ iV i+1)
→ 0. The dimension of the last term is at most dimV1 and it is
nondecreasing with i. This dimension equals di = dimV 1 + dimV i −
dimV i+1. If it is ever the case that di = dimV 1, this implies that V i =
V i+1 = V , so V is finite dimensional. It remains to observe that the
exact sequence 0→ V 1 → V i+1 τ

→ V i → V i/(τV i+1)→ 0 yields the
identity dimV 1 + dimV i − dimV i+1 = dimV i/(τV i+1). In this iden-
tity, the limit of the right-hand side equals the dimension of V/τV ,
and it is at most dimV1, as desired. □

Corollary 5.13. Every module V ∈ Hol(∆l
A1)p+Z is Artinian.

Proof. Given a decreasing sequence Vj ⊂ V , we consider for every j the
sequence (aij)i∈N = (dim(Vj)

i)i∈N. The proof of the previous lemma shows

that aij is nondecreasing and concave when i increases and j is fixed: ai+1
j −

aij = a1j − di is nonincreasing. As i is fixed and j varies aij it nonincreasing.

Let us show that for such a sequence of nonnegative integers if ai+1
j ≥ aij ,

aij+1 ≤ a
i
j and ai+1

j − aij ≤ a
i
j − a

i−1
j , then there is some big enough N such

that if j ≥ N , aij = aiN for all i. Consider the quantity kj = mini a
i+1
j − aij .

Both kj and a0j are nonincreasing, so there is some N for which kj and a0j
are constant if j ≥ 0. Let us forget about aij for j < N , since we only care

about the eventual stabilization. Consider now bij = aij − a
0
j − ikj . We have

that
bij ≥ 0; bi+1

j − bij = ai+1
j − aij − kj ≥ 0;

bij+1 ≤ b
i
j ; bi+1

j − 2bij + bi−1j = ai+1
j − 2aij + ai−1j ≤ 0.

So the new sequence (bij) keeps the same properties, b0j = 0 and when j is

fixed, bij is eventually constant. Now, mj = maxi b
i
j is also nonincreasing, so

it is eventually constant as well. As before, let us ignore the small enough
j’s so that mj is not the minimum value, so we have that bij ≤ m.
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Consider the sequence (ci) = (minj b
i
j), and notice that (ci) is also posi-

tive, nondecreasing, concave and bounded above by m. Let i0 be such that
ci0 = ci0+1. There is some j for which ci0 = bi0j = bi0+1

j , so ci0 = m. There-

fore, we have that bij = m for every i ≥ i0. There are only finitely many
functions [0, i0]→ [0,m], so the sequence eventually stabilizes as desired.

□

5.1.2. Limits of difference modules with support on an orbit. We
are particularly interested in the category Ĥol(∆l

A1)p+Z. A way to state some
of the properties of these modules is by using the natural topology on them.
Recall the definition of the τ -adic topology (Definition 5.5).

Remark 5.14. A C[[τ ]]⟨z⟩-module M is in M̂od(∆l
A1)p+Z if and only if

there is a basis {U} of open C[[τ ]]⟨z⟩-modules such that for every U and ev-
ery s ∈M/U , there is a polynomial P (z) such that P (z)s = 0 and the roots
of P are contained in p+ Z. This is due to the fact that on a C[[τ ]]-module
the τ -adic topology is always Hausdorff and complete, so M → lim

←−
L open

M/L

is always an isomorphism.

Proposition 5.15. For a module M ∈ C[[τ ]]⟨z⟩, the following are equiva-
lent:

1) M ∈ Ĥol(∆l
A1)p+Z.

2) M contains an open C[[τ ]]⟨z⟩-submodule N that is finitely generated
over C[[τ ]] and such that M/N ∈ Hol(∆l

A1)p+Z. Moreover, z − c acts
as a unit on M for any c /∈ p+ Z.

3) There is a basis {Ni} of open neighborhoods of 0 which are C[[τ ]]⟨z⟩-
submodules such that M/Ni ∈ Hol(∆

l
A1)p+Z and dim τ−1Ni/Ni is

bounded.

4) There is a basis {Ni} of open neighborhoods of 0 which are C[[τ ]]⟨z⟩-
submodules that are finitely generated over C[[τ ]] and with the property
that M/Ni ∈ Hol(∆

l
A1)p+Z.

Proof.

1⇒ 2 Let U ⊆M be a witness to M being a space of Tate type, i.e. U is a
finitely generated C[[τ ]]-module and τ1(U)/U is finite dimensional. By

the assumption that M ∈ M̂od(∆l
A1)p+Z, M has a particular basis of

open submodules. We may choose an N ⊆ U that is an open C[[τ ]]⟨z⟩-
submodule, andM/N ∈Mod(∆l

A1)p+Z. In fact,M/N ∈ Hol(∆l
A1)p+Z:
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as a C[[τ ]]-module, M/N is an extension of M/U by U/N , and there
is an exact sequence

0 −→
τ−1(N) ∩ U

N
−→

τ−1(N)

N
−→

τ−1(U)

U
.

The last term in the sequence is finite dimensional by assumption.
The first one is contained in the torsion finitely generated C[[τ ]]-
module U/N , and therefore it is also finite dimensional. This shows
that M/N ∈ Hol(∆l

A1)p+Z. Since N ⊆ U , N is finitely generated over
C[[τ ]].

Lastly, if c /∈ p+ Z, z − c acts as a unit because M is an inverse
limit of modules in Mod(∆l

A1)p+Z, on each of which z − c acts as a
unit.

2⇒ 3 Let N ⊆M be the submodule in the assumption. Then we claim
that {τ iN}i≥0 is the required basis. It is easy to check that they are
C[[τ ]]⟨z⟩-submodules, given that N is one. Let us see that M/τ iN ∈
Hol(∆l

A1)p+Z. For each i, consider the exact sequence

0 −→
N ∩ τ−1τ iN

τ iN
−→

τ−1τ iN

τ iN
−→

τ−1N

N
.

The dimension of N∩τ−1τ iN
τ iN is bounded above. This is true because N

is a finitely generated C[[τ ]]-module and this claim can be checked by
writing N as a direct sum of a finite module and a free module. There-
fore, dim τ−1τ iN/τ iN is a bounded number. Let us show now that the
τ iN form a basis of open sets. They are indeed open since N is. If U
is any other open subspace, then the fact that N is finitely generated
combined with the definition of an open set shows that τ iN ⊆ U for a
big enough i.

Lastly, let us show that M/τ iN ∈ Hol(∆l
A1)p+Z for every i. It only

remains to show that all its elements are supported on p+ Z. We
consider the short exact sequence

0 −→
N

τ iN
−→

M

τ iN
−→

M

N
−→ 0.

The first term in the sequence is finite dimensional, so the support of
its elements is in p+ Z, since z − c acts as a unit on it for c /∈ p+ Z.
Therefore, suppM/τ iN ⊆ suppN/τ iN ∪ suppM/N ⊆ p+ Z.

3⇒ 4 Let B = {Ni} be the basis in the statement. We must find a basis
of finitely generated C[[τ ]]-modules with the required properties. It
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will be a subset of B, namely we will choose a fixed N ∈ B, and the
new basis will consist of the elements of B contained in N . By Proposi-
tion 5.11, the quantity dim τ−1(Ni)/Ni is nondecreasing asNi ∈ B gets
smaller. Let N ∈ B be such that dim τ−1(N)/N = d is the maximum
among elementsNi ∈ B, so in particular ifNi ⊆ N , dim τ−1Ni/Ni = d.
We will show that N is finitely generated over C[[τ ]]. From here, it fol-
lows that BN = {Ni ∈ B : Ni ⊆ N} is the required basis.

Let Ni ∈ BN and let πi :M →M/Ni be the projection. Consider
the short exact sequence: 0→ πiN → πiM →

M
N → 0. Now, V 1 =

Tor
C[[τ ]]
1 (C[[τ ]]/τC[[τ ]], V ), which is proved using the free resolution

C[[τ ]]
τ
→ C[[τ ]]. The sequence above induces the following Tor exact

sequence of finite dimensional vector spaces

0 −→ (πiN)1 −→ (πiM)1 −→

(
M

N

)1

−→
πiN

τπiN
.

The assumption that dim τ−1N/N is maximal implies that the dimen-
sion of the two spaces in the middle is equal, which in turn implies that
dim πiN

τπiN
≥ dim(πiN)1. By Lemma 5.12 this implies that πiN is finite

dimensional, and by Nakayama’s lemma it is generated by any system
of generators for πiN/τπiN . Further, dimπiN/τπiN ≤ dim(πiN)1 ≤
dim(πiM)1 = d.

Consider now the short exact sequences

0 −→
τ−1(Ni) ∩N

Ni
−→ πiN

τ
−→ πiN −→

πiN

τπiN
−→ 0.

We claim that the inverse limit of these sequences as i→∞ is also
exact. We can check the Mittag-Leffler conditions and then apply
the results on exactness of inverse limits ([16, Tag 0598]). Splitting
the exact sequence into two short exact sequences, we have that the
Mittag-Leffler conditions hold because the spaces τ−1(Ni)/Ni are fi-
nite dimensional, and because the maps τπiN → τπi′N are surjections,
respectively. Therefore, the limit of the sequences is the exact sequence

0 −→ τ−1(0) ∩N −→ N
τ
−→ N −→

N

τN
−→ 0.

In particular, N/τN = lim
←−

πiN/τπiN . On the right-hand side we have
an inverse limit of surjections of finite dimensional vector spaces of di-
mension at most d, so eventually all the maps are isomorphisms. Lifting
any given basis for N/τN will generate all the modules πiN/τπiN , so

http://stacks.math.columbia.edu/tag/0598
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by Nakayama’s lemma it will generate all the πiN ’s (we can apply
the Lemma since these are finitely dimensional), and therefore it will
generate N .

This shows that there is an element N in the basis B which is finitely
generated over C[[τ ]]. Therefore, the basis BN = {Ni ∈ B : Ni ⊆ N}
satisfies the required properties.

4⇒ 1 This is clear. □

Corollary 5.16. Let M ∈ Ĥol(∆l
A1)p+Z, and let U ⊆M be an open finitely

generated C[[τ ]]-module (which is guaranteed to exist by the definition). Then
U contains an open C[[τ ]]⟨z⟩-module L, such that

a) L is finitely generated over C[[τ ]].

b) {τ iL}i≥0 is a basis of neighborhoods of 0.

c) M/τ iL ∈ Hol(∆l
A1)p+Z.

d) dim τ−1τ iL
τ iL = d is constant.

e) For any open C[[τ ]]⟨z⟩-submodule N ⊆M , M/N ∈ Hol(∆l
A1)p+Z and

further dim τ−1N/N ≤ d.

Proof. Let B be a basis as in Proposition 5.15, part 3), and choose L ∈ B
contained in U , such that d = dim τ−1L/L is the maximum in B. Let L be
chosen so that τ−1L/L is the maximum among the basis provided by the
Proposition. Since L is contained in U , it satisfies a). Part b) is true for any
open finitely generated C[[τ ]]-module. For every i, let Ni ∈ B be contained
in τ iL. Then M/τ iL is a quotient of M/Ni ∈ Hol(∆

l
A1)p+Z, so we have part

c). Finally, Proposition 5.11 ensures that dim τ−1τ iL/τ iL ≥ dim τ−1L/L,
and dim τ−1τ iL/τ iL ≤ dim τ−1Ni/Ni ≤ d, so we have part d). Finally, if N
is such a submodule, by the basis property there is some τ iL contained in N .
Again Proposition 5.11 ensures that dim τ−1N/N ≤ dim τ−1τ iL/τ iL = d, so
e) is satisfied. □

Corollary 5.17. Both M̂od(∆l
A1)p+Z and Ĥol(∆l

A1)p+Z are abelian cate-
gories.

Proof. They are both full subcategories of the abelian category
Mod(C[[τ ]]⟨z⟩), so it is enough to show that they are closed under quotients

and submodules. Let us start with M̂od(∆l
A1)p+Z: consider a short exact se-

quence of C[[τ ]]⟨z⟩-modules 0→ N →M →M/N → 0, and suppose M ∈

M̂od(∆l
A1)p+Z. For any L ⊆M such that M/L ∈Mod(∆l

A1)p+Z, we have
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a short exact sequence 0→ N/(N ∩ L)→M/L→M/(N + L)→ 0, which
shows that both the submodule and the quotient are in Mod(∆l

A1)p+Z.
Taking the limits of these short exact sequences shows that N,P ∈

M̂od(∆l
A1)p+Z (note that in this case the limit is exact because it is a limit

of surjections).
Now, suppose we have a short exact sequence 0→ L→M →M/L→ 0

in M̂od(∆l
A1)p+Z and suppose M ∈ Ĥol(∆l

A1)p+Z. Choose a basis {Ni} of
neighborhoods of 0 ∈M as in Corollary 5.16, part 4). Then {Ni ∩ L} and
{Ni + L/L} are bases for L and P respectively, and it is straightforward to
check that they have property 4) in Proposition 5.15 as well. □

Corollary 5.18. If M ∈ Ĥol(∆l
A1)p+Z, then ι

!
pM ∈Mod(C[π])fin.

Proof. We must show that ι!pM is finite dimensional. Consider a basis of

submodules Ni ⊆M as in Corollary 5.16. For every i,M/Ni ∈ Hol(∆
l
A1)p+Z,

and Lemma 5.12 implies that dim ι!p(M/Ni) ≤ dim τ−1Ni/Ni is finite

dimensional and bounded. Since M ∼= lim
←−

M/Ni, we can see that ι!pM ⊆

lim
←−

ι!pM/Ni, so it is finite dimensional as desired. □

5.1.3. Proof of Proposition 5.8. Finally, we have all the tools to prove
Proposition 5.8. Let us abbreviate ι! = ιp! and ι

! = ι!p.

Lemma 5.19. The functor ι! : Ĥol(∆l
A1)p+Z →Mod(C[π])fin is exact.

Using this lemma, we will now prove the proposition. First of all, it is
straightforward to check that ι!ι! ∼= Id, so it remains to show that ι!ι

! ∼= Id.
There is a natural map η : ι!ι

!M −→M . Let us show that η is an isomor-
phism. By the exactness of ι!, ι!(co) ker η ∼= (co) ker ι!η. However, the isomor-
phism ι!ι! ∼= Id implies that ι!η is an isomorphism, so ι! ker η = ι! coker η = 0.
It is therefore enough to show that ι!P = 0 implies that P = 0.

Let us show that ι!P = 0 for P ∈ Ĥol*(∆l
A1)p+Z implies that P = 0. Let

L ⊆ P be as in Corollary 5.16. Since ι! is exact, ι!P surjects onto ι!(P/L).
If ι!P = 0, then ι!(P/L) = 0. If P/L ̸= 0, then it has some nonzero element
m supported at some point p− j for some j. Then τ jm is a nonzero ele-
ment of ι!(P/τ jL), contradicting the assumption that ι!P = 0 and therefore
ι!(P/τ jL) = 0. Therefore, P/L = 0. This implies that P = L is a C((τ))-
vector space which is finitely generated over C[[τ ]], so indeed P = 0.

Proof of Lemma 5.19. In general, ι! is left exact. In order to show that it is
right exact as well, it will be enough to show that it maps surjections to sur-
jections. Let us start by considering a surjection f :M → N inHol(∆l

A1)p+Z.
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SinceM,N ∈ Hol(∆l
A1)p+Z, we may writeM =

⊕
i∈ZMp+i and similarly for

N . The morphism f sends each component Mp+i to Np+i, so ι
!f becomes

the map ι!f :Mp −→ Np, which must necessarily be surjective.

Now let us consider the case where M,N ∈ Ĥol(∆l
A1)p+Z. Suppose we

have a basis {L} of open C[[τ ]]⟨z⟩-submodules in M . First we need to prove
that the following map is an isomorphism:

ι!M = ι! lim
←−

M

L
−→ lim
←−

ι!
M

L
.

It can be checked that it is injective. To see that it is surjective, a system of
compatible elements {sL} on the right-hand side corresponds to an element
s of M , and we must show that this element is torsion. Since the L’s are
open, Corollary 5.16 ensuresM/L ∈ Hol(∆l

A1)p+Z and that dim τ−1L/L ≤ d
for some fixed d. Further, by Lemma 5.12, dim ι!M/L ≤ dim τ−1L/L ≤ d.
In particular, (z − p)dι!M/L = 0, so sL is annihilated by (z − p)d for every
L. This implies that (z − p)ds = 0, so s ∈ ι!M as we wished.

Suppose now that we have a surjection f :M −→ N in Ĥol(∆l
A1)p+Z.

We must show that the corresponding map ι!f : ι!M → ι!N is surjective.
Let {L} be a basis of neighborhoods of 0 for M as above. Further, since f
is a surjection, it can be checked that {f(L)} is a basis of neighborhoods of
0 in N with the same properties. Thus ι!f can be seen as a map

ι!f : ι! lim
←−

M

L
−→ ι! lim

←−
N

f(L)
.

By the discussion above, the map is isomorphic to

lim
←−

ι!fL : lim
←−

ι!
M

L
−→ lim
←−

ι!
N

f(L)
.

Each of the maps in the limit is surjective. A sufficient condition for an
inverse limit of surjective maps to be surjective is the arrows forming the
limit being surjections themselves [16, Tag 0598]. This is the case, because
we have already shown that ι! is right exact when restricted to Hol(∆l

A1)p+Z.
This shows that ι! is exact. □

5.1.4. The right adjoint to vanishing cycles.

Proposition 5.20. The functors Φl
p+Z

and ιp! are adjoints in the following
sense: if M ∈ Hol(∆A1) and N ∈Mod(C[π])fin, there is a natural isomor-
phism

HomC[π](Φ
l
p+ZM,N) ∼= Hom∆A1 (M, ιp!N).

http://stacks.math.columbia.edu/tag/0598
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Remark 5.21. Technically, it is not true that Φl
p+Z
⊢ ιp! because the image

of ιp! is not made of holonomic modules. However, the statement above is
enough for our purposes. Notice that it implies that Φl

p+Z
is determined by

this adjunction.

Proof of Proposition 5.20. Let M ∈ Hol(∆A1), and let N ∈Mod(C[π])fin,
and let us abbreviate Φ = Φl

p+Z
and ι! = ιp!. We must find a natural isomor-

phism

HomC[π](ΦM,N) ∼= HomC[z]⟨τ,τ−1⟩(M, ι!N).

First of all, note that since τ acts as a unit on bothM and ι!N , the forgetful
functor gives an isomorphism HomC[z]⟨τ,τ−1⟩(M, ι!N) ∼= HomC[z]⟨τ⟩(M, ι!N).

Throughout this proof, we will denote C[τ,τ−1]
τn+1C[τ ] = τnC[τ−1] for short. In

other words, we have that

C((τ)) = lim
←−
n→∞

C[τ, τ−1]

τn+1C[τ ]
= lim
←−

τnC[τ−1].

Where the projection maps τnC[τ−1]→ τn−1C[τ−1] are implied. Using this
notation, we will also abbreviate τnC[τ−1]⊗C N to τnC[τ−1]N . By the def-
inition of limit, we have that

HomC[z]⟨τ⟩(M, ι!N) ∼= HomC[z]⟨τ⟩

(
M, lim
←−

τnC[τ−1]N
)

∼= lim
←−

HomC[z]⟨τ⟩

(
M, τnC[τ−1]N

)
.

Consider now one of the arrows in the right-hand side limit:

π : Hom
(
M, τn+1C[τ−1]N

)
−→ Hom

(
M, τnC[τ−1]N

)

f 7−→ π(f) = f mod τnN.

The homomorphism π has an inverse: π−1(f) = τ ◦ f ◦ τ−1, where τ is seen
as the C-linear isomorphism τnC[τ−1]N → τn+1C[τ−1]N . One verifies that
π−1(f) is indeed C[z]⟨τ⟩-linear, and that π and π−1 are inverses. Therefore,
lim
←−

Hom
(
M, τnC[τ−1]N

)
is a limit of a system of isomorphisms, so it is

isomorphic to any one of its terms:

HomC[z]⟨τ,τ−1⟩(M, ι!N) ∼= lim
←−

HomC[z]⟨τ⟩

(
M, τnC[τ−1]N

)

∼= HomC[z]⟨τ⟩

(
M,C[τ−1]N

)
.

We can write a map f :M → C[τ−1]N as f(s) =
∑

i≥0 τ
−iϕi(s), where {ϕi}

is a collection of mapsM → N . The conditions of f being C[z]⟨τ⟩-linear and
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the image of f landing in C[τ−1]N rather than in C[[τ−1]]N boil down to
the following three conditions:

∀m ∈M ϕi(m) = ϕ0(τ
im)

∀m ∈M ϕ0(zm) = zϕ0(m)
∀m ∈M∃n ∈ Z≥0 0 = ϕn(m) = ϕ0(τ

nm).

The first two conditions imply that f is determined by a C[z]-linear map
ϕ0 :M → N , i.e.

HomC[z]⟨τ⟩

(
M,C[τ−1]N

)
∼=

{
ϕ ∈ HomC[z] (M,N) : ∀m∃n, ϕ(τnm) = 0

}
.

Let us denote the group above by Hom
(τ)
C[z] (M,N). To finish the proof, we will

show that the maps in Hom
(τ)
C[z] (M,N) are precisely the maps that factor

through the map M → ΦM . Let ϕ ∈ Hom
(τ)
C[z] (M,N), and let L ∈ S(M).

Since L is finitely generated, it follows that for some big enough n, ϕ(τnL) =
0. Therefore, the map ϕp :Mp → (C[τ−1]N)p ∼= N sends (τnL)p to 0, and

therefore it factors (uniquely) through a map ϕ̃ : ΦM =Mp/(τ
nL)p −→ N .

To go in the opposite direction, let g : ΦM → N and consider the com-
position g̃ = g ◦ π, where π is the projection M → ΦM . Taking L ∈ S(M)
containing a given m, (τnm)p ∈ (τnL)p, so if n≫ 0, πm = 0. Therefore,

g̃ ∈ Hom
(τ)
C[z] (M,N). Putting all the steps together, we have concluded the

proof. □

5.2. Local Mellin transform

Definition 5.22. Let F ∈ Hol(K0)
reg,(p). The local Mellin transform of

F is defined as

M(0,p+Z)F = ι!p(M(̊ȷ0∗F )).

Where ȷ̊0∗ is the forgetful functor Hol(DK0
)→ Hol(DGm

) (we are using [1]’s
notation here). The vector spaceMȷ̊0∗F equals F , together with an action
of C((τ))⟨z⟩ given by τ±1 7→ x±1 and z 7→ x∂ and in Proposition 5.24 we

show thatMȷ̊0∗F ∈ Ĥol(∆
l
A1)p+Z, so it makes sense to apply ι!p to it.

Remark 5.23. By definition, the x-adic topology on ȷ̊0∗F coincides with
the τ -adic topology on ιp!M

(0,p+Z)(F ), and this together with the condition

M(̊ȷ0∗(F ))
∼
−→ ιp!(M

(0,p+Z)(F )).
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determines M(0,p+Z). This follows from the fact that ι!p and ιp! are mutual
inverses, Proposition 5.8.

Proposition 5.24. The functorM(0,p+Z) induces an equivalence

M(0,p+Z) : Hol(DK0
)reg,(p)

∼
−→Mod(C[π])fin.

Proof. Using Proposition 5.8, this will follow from showing that the following
functor is an equivalence, since it remains to compose with ι!p:

M◦ ȷ̊0∗ : Hol(DK0
)reg,(p)

∼
−→ Ĥol*(∆l

A1)p+Z.

First of all, we must check that the image of Hol(DK0
)reg,(p) is indeed

contained in Ĥol*(∆l
A1)p+Z. Let V ∈ Hol(DK0

)reg,(p). By definition of the
leading coefficient and having regular singularities, we can find a lattice
L ⊂ V such that (x∂ − p)nL ⊆ xL for some big enough n. This implies that
Mȷ̊0∗V/L ∈Mod(∆l

A1)p+Z: if we let s ∈ V , then for some m, xms ∈ L. De-

notingMȷ̊0∗s = ŝ andMȷ̊0∗L = L̂, we have that

τm(z − p+m)nŝ = (z − p)nτmŝ ∈ τL̂

⇒ τm−1(z − p+m)nŝ ∈ L̂

⇒ τm−1(z − p−m+ 1)n(z − p+m)nŝ

= (z − p)nτm−1(z − p+m)nŝ ∈ (z − p)nL̂ ⊆ τL̂

⇒ τm−2(z − p−m+ 1)n(z − p+m)nŝ ∈ L̂

⇒ (· · · )⇒ (z − p+m)n · · · (z − p+ 1)nŝ ∈ L̂.

A similar computation for xiL shows condition (4) in Proposition 5.15, so

it follows thatMȷ̊0∗V ∈ Ĥol(∆
l
A1)p+Z.

It is clear that M◦ ȷ̊0∗ is fully faithful, since morphisms on both sides
are linear maps over isomorphic rings C((x))⟨∂⟩ ∼= C((τ))⟨z⟩. To show that
it is essentially surjective, we just need to produce a preimage for every
isomorphism class in Ĥol*(∆l

A1)p+Z, or equivalently, for every module of the
form ιp!M = C((τ))⊗C M , whereM ∈Mod(C[π])fin. We may view ιp!M as
a module over C((x))⟨∂⟩ via the Mellin transform. It is finite dimensional,
since its dimension over C((x)) equals dimCM , and further it is regular
and its leading coefficient is p, since it contains the lattice L = C[[x]]⊗C M
which is a witness to both these facts. □

The corollary below follows directly from the adjunctions Ψ0 ⊢ ȷ̊0∗ and
Φl
p+Z
⊢ ιp!.
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Corollary 5.25. The following square is commutative up to a natural iso-
morphism:

Hol(DGm
) Hol(∆A1)

Hol(DK0
)reg,(p) Mod(C[π])fin.

M
∼

reg,(p)◦Ψ0

M(0,p+Z)

∼

Φl
p+Z

6. Proof of Theorem A

Throughout this section, an object of Hol(Up)×Hol(U∗
p )
Hol(∆A1∗) will be

written as a pair M = (MUp
,MA1∗) ∈ Hol(Up)×Hol(∆A1∗), where there is

a fixed isomorphismMUp
|U∗

p

∼=MA1∗ |U∗
p
. We will often omit this isomorphism

and think of it as an identification MUp
|U∗

p
=MA1∗ |U∗

p
.

All four restriction functors are essentially tensor products, and the ad-
junction between tensoring and the forgetful functor induces certain mor-
phisms of modules. For M ∈ Hol(∆A1), there is a ∆A1-module homomor-
phism

|A1∗ : M −→ M |A1∗

m 7−→ m|A1∗ = 1⊗m ∈ C
[
z, 1

z−p

]
⊗C[z] M.

Also, there is a countable collection of C[z]-module homomorphisms

|Up+i
: M −→ M |Up

m 7−→ m|Up+i
= 1⊗ τ−im ∈ C [[π]]⊗C[z] M.

Recall that we denote π = z − p. Note that ((z − p− i)m)|Up+i
= π(m|Up+i

),
and (τm)|Up+i

= m|Up+i−1
. Similarly, there are two more homomorphisms

for the other restrictions. If MUp
∈Mod(C[[π]]) and MA1∗ ∈ Hol(∆A1∗), we

have

MUp
C((π))⊗MUp

MA1∗ MA1∗ |U∗
p

m m|U∗
p
= 1⊗m m m|U∗

p+i
= 1⊗ τ−im.

|U∗
p

|U∗
p+i

Proof of Theorem A. Let G be the induced functor

Hol(∆A1)→ Hol(Up)×Hol(U∗
p )
Hol(∆A1∗),

which is given by G(M) = (M |Up
,M |A1∗ ,∼=M ), where M |Up

|U∗
p

∼=M MA1∗ |U∗
p

is the isomorphism from Proposition 3.11. The claim is that G is an equiv-
alence.
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Let us construct an inverse. Consider an object in Hol(Up)×Hol(U∗
p )

Hol(∆A1∗). It is of the form M = (MUp
,MA1∗), where MUp

∈ Hol(Up), so it
has two distinguished submodulesM l

Up
,M r

Up
⊂MUp

, andMA1∗ ∈ Hol(∆A1∗).
The final piece of the data is an isomorphismMUp

|U∗
p

∼=MA1∗ |U∗
p
, identifying

MUp
|lrU∗

p
withMA1∗ |lrU∗

p
. We will identify these two objects in Hol(U∗p ) and call

them both M |U∗
p
. We construct the following module:

F (M) :=



((mi)i∈Z,mA1∗) ∈MZ

Up
⊕MA1∗ :

mA1∗ |U∗
p+i

= mi|U∗
p
;

mi ∈M
l
Up

for i≪ 0;

mi ∈M
r
Up

for i≫ 0



 .

It has the structure of a ∆A1-module in the following way:

z((mi)i,mA1∗) = (((π + p+ i)mi)i, zmA1∗);

τ((mi)i,mA1∗) = ((mi−1)i, τmA1∗).

One can check that z and τ preserve F (M), and that zτ = τ(z − 1), so
indeed F (M) is a ∆A1-module. The map F can be made into a functor in
the following way: A morphism f : (MUp

,MA1∗)→ (NUp
, NA1∗) consists of

a pair of morphisms fUp
:MUp

→ NUp
and fA1∗ :MA1∗ → N |A1∗ such that

fUp
|U∗

p
= fA1∗ |U∗

p
, i.e. the following diagram commutes:

MUp
|U∗

p
NUp
|U∗

p

MA1∗ |U∗
p

NA1∗ |U∗
p
.

fUp |U∗
p

∼=M
∼=N

fA1∗ |U∗
p

So we can identify both horizontal arrows as one map f |U∗
p
:M |U∗

p
→

N |U∗
p
. We define a map Ff : F (M)→ F (N), given by

F (f) : ((mi)i,mA1∗) 7−→ ((fUp
mi)i, fA1∗mA1∗).

Before we prove that F is well-defined (i.e. that F (M) is holonomic), let
us prove a useful lemma.

Lemma 6.1. For a module M ∈ Hol(Up)×Hol(U∗
p )
Hol(∆A1∗), let K(M) ⊂

F (M) be defined as the sub-∆A1-module of F (M) consisting of sections sup-
ported on p+ Z. Then

K(M) = F (M) ∩ (MZ

Up
⊕ 0) ⊂ F (M).
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Further, K(M) is generated over ∆A1 by the elements of MZ

Up
⊕MA1∗ of the

form

{((mi)i,mA1∗) ∈MZ

Up
⊕MA1∗ : mA1∗ = 0;mi = 0 ∀i ̸= 0} =

= {m ∈ K(M) : ∃N, (z − p)Nm = 0} = K(M)p.

Let F (M) =
F (M)

K(M)
, and let MUp

be the image of MUp
in MU∗

p
. Then

F (M) ∼= {m ∈MA1∗ : m|U∗
p+i
∈MUp

∀i}.

Proof. Suppose m = ((mi)i,mA1∗) ∈ F (M) is supported on p+ Z. This
means that there is some P (z) such that P (z)m = 0 whose roots are con-
tained in p+ Z. In particular, P (z)mA1∗ = 0, and since P (z) is a unit in
C [z, { 1

z−p−i }i], we have that mA1∗ = 0. The fact that mi|U∗
p
= mA1∗ |U∗

p
= 0

implies that every element mi is torsion. Since M l
Up

and M r
Up

are torsion
free, mi = 0 for |i| ≫ 0. Therefore, K(M) is generated by the elements
((mi),mA1∗) for which m0 is the only nonzero entry, as desired.

From the fact that K(M) = F (M) ∩ (MZ

Up
⊕ 0), we have that F (M)

injects into MA1∗ , and we have that

F (M) ∼=



m ∈MA1∗ :

∃mi ∈MUp
,m|U∗

p+i
= mi|U∗

p
;

mi ∈M
l
Up

for i≪ 0;

mi ∈M
r
Up

for i≫ 0



 .

Since M lr
Up

are torsion-free, they map isomorphically into their images

MUp
|lrU∗

p
=MA1∗ |lrU∗

p
⊂MUp

, which means F (M) can be seen as

F (M) ∼=




m ∈MA1∗ :

m|U∗
p+i
∈MUp

;

m|U∗
p+i
∈M

l
Up

for i≪ 0;

m|U∗
p+i
∈M

r
Up

for i≫ 0




.

Now we observe that the last two conditions are vacuous, since anym ∈MA1∗

is contained in an element of S(MA1∗). Therefore,

F (M) ∼= {m ∈MA1∗ : m|U∗
p+i
∈MUp

}.

□

Lemma 6.2. The construction of F above defines a functor

F : Hol(Up)×Hol(U∗
p )
Hol(∆A1∗)→ Hol(∆A1).



✐

✐

“5-Herradon-Cueto” — 2022/8/26 — 17:33 — page 185 — #55
✐

✐

✐

✐

✐

✐

The local information of difference equations 185

Proof. Let us first show that for M = (MUp
,MA1∗), F (M) is holonomic.

Consider the exact sequence

(6.3) 0 −→ K(M) −→ F (M) −→MA1∗ .

We use Lemma 6.1: since MUp
is finitely generated and K(M)p ⊂MUp

,
K(M)p is a finitely generated C[z]-module, so K(M) is finitely generated
over ∆A1 . Its generators are torsion over C[z], so in particular they are
torsion over ∆A1 . This proves that K(M) is holonomic.

Therefore, it suffices to show that F (M) = F (M)
K(M) ⊂MA1∗ is holonomic.

Since it is contained in the holonomic ∆A1∗-module MA1∗ , every element is
torsion, so we only have to prove that it is finitely generated.

Using Lemma 6.1, we have that F (M) ∼= {m ∈MA1∗ : mU∗
p+i
∈MUp

},
and it remains to prove that such a module is finitely generated over ∆A1 .
First of all, choose some L ∈ S(F (M)) (this is possible by Observation 2.12).
Then L is finitely generated over C[z], and F (M)/L is a torsion module.
For a given i, F (M)p+i

∼=MUp
is a finitely generated C[[z − p− i]]-module,

and therefore its torsion quotient (F (M)/L)p+i is finitely generated over
C[z]. Now we note that for big enough i, τ induces isomorphisms Lp−i−1 →
Lp−i and Lp+i → Lp+i+1, and therefore a finite collection of elements of
F (M) suffice to generate (F (M)/L)p+i for all i, over ∆A1 . Putting everything
together, F (M) is indeed finitely generated over ∆A1 .

Let us show that the action of F on morphisms is well-defined. Let f :
M → N be a morphism in Hol(Up)×Hol(U∗

p )
Hol(∆A1∗), and consider F (f) :

F (M)→ F (N), defined as above by f((mi)i,mA1∗) = ((fUp
mi)i, fA1∗mA1∗).

We claim that this map is well-defined. It is straightforward to check that
F (f) is a ∆A1-module homomorphism. We will now prove that its image is
contained in F (N). Let us show that (fA1∗mA1∗)|U∗

p+i
= (fUp

mi)|U∗
p
:

(fA1∗mA1∗)|U∗
p+i

= (fA1∗τ−imA1∗)|U∗
p
= f |U∗

p
(τ−imA1∗)|U∗

p
=

= f |U∗
p
(mA1∗)|U∗

p+i
= f |U∗

p
(mi)|U∗

p
= (fUp

mi)|U∗
p
.

Next we have to show that fUp
mi ∈ N

l
Up

for i≪ 0: if i≪ 0, mi ∈M
l
Up
, so

fUp
mi ∈ N

l
Up
. Since fUp

is a morphism in Hol(Up), it maps M l
Up

into N l
Up
.

Similarly, it can be shown that fUp
mi ∈ N

r
Up

for i≫ 0.
Given that F is well-defined, it is clear that indeed it is a functor, i.e.

that it preserves compositions and it maps identity morphisms to identity
morphisms. □

Lemma 6.4. F ◦G ∼= IdHol(∆A1 ).
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Proof. LetM ∈ Hol(∆A1). There is a natural map ϕ :M → F (G(M)), given
by

ϕ(m) = ((m|Up+i
)i,m|A1∗).

It can be checked that ϕ(m) ∈ F (G(M)): this amounts to showing that
m|Up+i

|U∗
p
= m|A1∗ |U∗

p+i
, which is Proposition 3.11, and that m|Up+i

∈M lr
Up

for big enough or small enough i. This follows from the fact that any element
is contained in an element of S(M). So indeed ϕ is well-defined. We claim
that ϕ is injective: if ϕ(m) = 0, then m|A1∗ = 0, which implies that m is
supported on p+ Z, and if m|Up+i

= 0 for all i, then m has no support on
any point of p+ Z either. Therefore, ϕ is injective.

Now let us show that ϕ is surjective. Consider the sequence (6.3) applied
to G(M) = (M |Up

,M |A1∗):

0 −→ K(G(M)) −→ F (G(M)) −→ G(M)A1∗ .

Let F (G(M)) be the image of F (G(M)) in G(M)A1∗ =M |A1∗ , so we have a
short exact sequence

0 −→ K(G(M)) −→ F (G(M)) −→ F (G(M)) −→ 0.

The composition M
ϕ
→ F (G(M))→ F (G(M)) ⊂M |A1∗ is just the natural

map |A1∗ . We claim that M → F (G(M)) is surjective, which boils down to

M := {m ∈M |A1∗ : ∃m′ ∈M,m = m′|A1∗} ⊇

⊇ {m ∈M |A1∗ : m|U∗
p+i
∈M |Up

∀i} = F (G(M)).

Take an m ∈M |A1∗ contained in the right-hand side. By the definition of
M |A1∗ , there is some P (z) with roots contained in p+ Z such that P (z)m ∈
M . Thinking of M as a quasicoherent sheaf on A1, this is saying that m
is a section of M on the open set which is the complement of the roots of
P . The fact that m|U∗

p+i
∈M |Up+i

implies that this section is regular at the

points which are roots of P (z). Since M is a sheaf, this means that m is a
global section of M , as we wished to prove.

Therefore, ϕ induces a surjection onto F (G(M)), so we just have to
show that the image of ϕ contains K(G(M)). By Lemma 6.1, K(G(M)) is
generated by its elements which are supported at p, K(G(M))p = {(mi) ∈
K(G(M)) : mi = 0 ∀i ̸= 0}. All of these elements are in the image of ϕ, since
they are exactly the image of the elements of M whose support is {p}. □

Lemma 6.5. G ◦ F ∼= IdHol(Up)×Hol(U∗
p )Hol(∆A1∗ ).
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Proof. LetM = (MUp
,MA1∗) ∈ Hol(Up)×Hol(U∗

p )
Hol(∆A1). Let us construct

a natural map ψ : G(F (M))→M . Let us write

G(F (M)) = (F (M)|Up
, F (M)|A1∗).

We define

ψUp
: F (M)|Up

−→ MUp
; ψA1∗ : F (M)|A1∗ −→ MA1∗

((mi)i,mA1∗)|Up
7−→ m0 ((mi)i,mA1∗)|A1∗ 7−→ mA1∗ .

We must prove all of the following.

1) ψUp
does not depend on the representatives chosen, i.e. if

((mi)i,mA1∗)|Up
= ((m′i)i,m

′
A1∗)|Up

,

then m0 = m′0. Similarly, ψA1∗ doesn’t depend on the choice of a rep-
resentative.

2) ψUp
is C[[π]]-linear and ψA1∗ is ∆A1∗-linear.

3) ψUp
maps F (M)|lrUp

into M lr
Up
.

4) ψUp
|U∗

p
= ψA1∗ |U∗

p
.

5) ψUp
and ψA1∗ are bijections.

6) ψUp
induces bijections F (M)|lrUp

∼
→M lr

Up
.

From the above 6 statements, it follows that (ψUp
, ψA1∗) is an isomorphism.

Here are the proofs.

1) By the fact that tensoring is a left adjoint, the map ψUp
: F (M)|Up

→
MUp

is equivalent to a C[π]-linear map F (M)→MUp
, namely the map

((mi)i,mA1∗) 7→ m0, which gives rise to ψUp
after tensoring. Similarly,

ψA1∗ comes from the C[z]-linear map ((mi)i,mA1∗) 7→ mA1∗ , after ten-
soring by C[z, (z − p)−1].

2) This is clear given that ψUp
and ψA1∗ are well defined.

3) Let LF (M) ∈ S(F (M)), and let S be a finite generating set for it. By

definition, τNS generates F (M)|lUp
for N ≫ 0. Since S is finite, there

is an N such that if i ≥ N and for any ((mi)i,mA1∗) ∈ S, m−i ∈M
l
Up
.

Therefore, picking N big enough, for m = ((mi)i,mA1∗) ∈ S,

ψUp
τNm = ψUp

((mi−N )i, τ
NmA1∗) = m−N ∈M

l
Up
.
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So the generators of F (M)|lUp
are mapped into M l

Up
. The analogous

proof shows ψUp
(F (M))|rUp

⊆M r
Up
.

4) The statement ψUp
|U∗

p
= ψA1∗ |U∗

p
amounts to saying that for ((mi)i,

mA1∗) ∈ F (M), m0|U∗
p
= mA1∗ |U∗

p
, which is true by the definition of

F (M).

5) Let us first show that ψUp
is injective. Suppose m = ((mi)i,mA1∗) ∈

F (M) and ψUp
(m|Up

) = 0, i.e. m0 = 0. Therefore, mA1∗ |U∗
p
= m0|U∗

p
=

0, which implies that the support of mA1∗ is finite, so it is annihilated

by some nonzero P (z) ∈ C
[
z,
{

1
z−p−i

}
i

]
, which can be multiplied by

a unit to make it a polynomial with no roots in p+ Z. Consider now
m′ = P (z)m. The fact that m′

A1∗ = 0 implies that m′ ∈ K(M), and
therefore it is annihilated by a polynomial Q(z) ∈ C[z] whose roots
are contained in p+ Z and Q(p) ̸= 0, since m′0 = 0. Since Q is a unit
in C[[z − p]], this means thatm′|Up

= 0, and since P (z) is also a unit in
C[[z − p]], m|Up

= 0. If ψUp
had nonzero kernel, then the kernel would

contain some nonzero element of the form m|Up
, for some m ∈ F (M),

which as we have just shown cannot happen, so we indeed have that
ψUp

is injective.
Let us now show that ψA1∗ is injective. Supposem = ((mi)i,mA1∗) ∈

F (M) and ψA1∗(m|A1∗) = 0, i.e. mA1∗ = 0. Therefore, m ∈ K(M). By

Lemma 6.1,m is annihilated by a unit in C
[
z,
{

1
z−p−i

}
i

]
. This implies

that m|A1∗ is annihilated by a unit in the ring, so m|A1∗ = 0. As before,
if ψA1∗ had a kernel, it would intersect the image of F (M) in F (M)|A1∗ .
Therefore ψA1∗ is injective.

Let us show that ψUp
is surjective. Let η ∈MUp

. First, suppose η
is torsion. Then, there’s an element m of F (M) given by mi = 0 for
i ̸= 0, m0 = η, and mA1∗ = 0, so ψUp

(m|Up
) = η as desired. If we now

let t :MUp
→MUp

be the quotient of MUp
by its torsion, it suffices to

prove that the composition t ◦ ψUp
is surjective. We have that MUp

⊂
C((π))⊗MUp

=M |U∗
p
. We claim that MUp

is generated by elements
of the form m|U∗

p
, where m ∈MA1∗ .

Let n be the generic rank of MA1∗ , and let {e1, . . . , en} ⊂MA1∗ be a
C(z)-basis of C(z)⊗MA1∗ . Let {e′1, . . . , e

′
n} be a C[[π]]-basis of MUp

.
Then they are both C((π))-bases of MU∗

p
, so there is some matrix B

such that e′i = Bei, where B ∈ GLn(C((π))). Now we use the following
lemma, which is proved at the end of the section.
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Lemma 6.6.

GLn(C((π))) = GLn(C[[π]]) GLn(C[π, π
−1]).

If we write B=AC, with C∈GLn

(
C
[
z, 1

z−p

])
and A∈GLn(C[[π]]),

we have that {Cei} is another C(z)-basis of C(z)⊗MA1∗ , and {A−1e′i}
is another C[[π]]-basis of MUp

. By the identity B = AC, Cei = A−1e′i,
so MUp

is generated by elements in the image of MA1∗ . Let m0 be
one of these elements, which we want to prove are in the image of
t ◦ ψUp

. Since it’s in the image of some element mA1∗ ∈MA1∗ , we may
consider elements mi = mA1∗ |U∗

p+i
∈MUp

. If we find mi ∈MUp
with

mi|U∗
p
= mi, mi ∈M

l
Up

for i≪ 0 and mi ∈M
r
Up

for i≫ 0, then we
will have that

tψUp
((mi)i,mA1∗) = tm0 = m0.

As desired, proving that m0 is in the image of t ◦ ψUp
. In order to

prove that the mi’s exist, observe that t :MUp
→MUp

is surjective,
so there exist some mi’s such that mi|U∗

p
= mi. Since mi = mA1∗ |U∗

p+i
,

we have that mi ∈M
l
U∗

p
for i≪ 0. Since t induces an isomorphism

M l
Up
→M l

U∗
p
⊂MUp

, we may choose mi in M l
Up

for i small enough,

and similarly mi ∈M
r
Up

for i big enough. This finishes the proof that
ψUp

is surjective.
Finally, let us show that ψA1∗ is surjective. Let mA1∗ ∈MA1∗ , and

consider the sequence (τ−imA1∗)|U∗
p
∈MA1∗ |U∗

p
: by definition of |U∗

p
:

Hol(∆A1∗)→Hol(U∗p ), for i≪0 we have (τ−imA1∗)|U∗
p
∈MA1∗ |lU∗

p
while

for i≫ 0, (τ−imA1∗)|U∗
p
∈MA1∗ |rU∗

p
. This implies that for almost all i’s,

mA1∗ |U∗
p+i
∈M l

U∗
p
∪M r

U∗
p
⊂MUp

. Therefore, for some polynomial P (z)

with roots in p+ Z, we have that P (z)mA1∗ |U∗
p+i
∈MUp

, where MUp

is the image of MUp
in MUp

|U∗
p
=MA1∗ |U∗

p
. Let mi = P (z)mA1∗ |U∗

p+i
∈

MUp
.

We must find a sequence mi ∈MUp
with mi|U∗

p
= mi, mi ∈M

l
Up

for
i≪ 0 and mi ∈M

r
Up

for i≫ 0. In order to do this, we may proceed as

before, using the fact that t :MUp
→MUp

is surjective and it induces
isomorphisms M l

Up
→M l

U∗
p
⊂MUp

. Then ψA1∗((mi)i, P (z)mA1∗) =

P (z)mA1∗ . Since P (z) is a unit, this implies that mA1∗ is in the image
of mA1∗ , as desired.

6) It only remains to prove that the restriction ψl
Up

: F (M)|lUp
−→M l

Up

is surjective (and the proof for ψr
Up

will be analogous). Given that
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both modules are torsion-free, and that we already know that ψUp

is a bijection, we may kill all the torsion, consider instead the map

F (M)|lUp
→M

l
Up

and show that it is surjective. We also have that

F (M)|Up

∼= F (M)|Up
, where F (M) is the quotient of F (M) by the

elements supported on p+ Z. By Lemma 6.1, F (M) ∼= {m ∈MA1∗ :
m|U∗

p+i
∈M |Up

∀i} ∼= F (MUp
,MA1∗).

Therefore, it suffices to show that the map ψ : G(F (M))→M =
(MUp

,M |A1∗) is an isomorphism in Hol(Up)×Hol(U∗
p )
Hol(∆A1∗). We

have already shown that both its components ψUp
and ψA1∗ are bi-

jections. It only remains to observe that for an element N ∈ Hol(Up)
×Hol(U∗

p )
Hol(∆A1∗) such that NUp

is torsion-free, the modules N lr
Up

are
determined by NUp

and NA1∗ , just by the fact that NUp
→ NUp

|U∗
p
is

an injective map. Therefore, ψ must indeed be an isomorphism.

We have thus proven that (ψUp
, ψA1∗) is an isomorphism G ◦ F ∼= Id. □

The last two lemmas together prove that G and F are mutual inverses,
and therefore G is an equivalence, as desired. □

Proof of Lemma 6.6. Let A ∈ GLn(C((π))). We show a sequence of row and
column operations with coefficients in C[[π]] and C[π, π−1] respectively yield
the identity matrix.

First, row operations with coefficients in C[[π]] allow to make the matrix
upper triangular. Then, multiplying by diagonal matrices on the left and
on the right (with the correct coefficients) can ensure that the coefficients
along the diagonal are all 1. At this point, more row operations can ensure
all the remaining nonzero coefficients become Laurent polynomials, so the
resulting matrix is in GLn(C[π, π−1]). □
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