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We consider a compact connected CR manifold with a transver-
sal CR locally free R-action endowed with a rigid positive CR line
bundle. We prove that a certain weighted Fourier-Szegő kernel of
the CR sections in the high tensor powers admits a full asymptotic
expansion and we establish an R-equivariant Kodaira embedding
theorem for CR manifolds. Using similar methods we also establish
an analytic proof of an R-equivariant Boutet de Monvel embedding
theorem for strongly pseudoconvex CR manifolds. In particular,
we obtain equivariant embedding theorems for irregular Sasakian
manifolds. As applications of our results, we obtain Torus equiv-
ariant Kodaira and Boutet de Monvel embedding theorems for CR
manifolds and Torus equivariant Kodaira embedding theorems for
complex manifolds.
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1. Introduction and statement of the main results

Let (X,T 1,0X) be a torsion free CR manifold of dimension 2n− 1, n ≥ 2.
Then there is a Reeb vector field T ∈ C∞(X,TX) such that the flow of T
induces a transversal CR R-action on X. The study of R-equivariant CR em-
beddablity for X is closely related to important problems in CR geometry,
complex geometry and mathematical physics. For example, for a compact
irregular Sasakian manifold X, it is important to know if there is an em-
bedding of X preserving the Reeb vector field and this problem is related to
R-equivariant CR embedding problems for torsion free strongly pseudocon-
vex CR manifolds. Furthermore, R-equivariant CR embedding problems are
also congeneric to G-equivariant Boutet de Monvel and Kodaira embedding
problems for CR and complex manifolds.

Suppose that all orbits of the flow of T are compact. Then X admits a
transversal CR S1-action eiθ. In [5] and [12], we established S1-equivariant
Boutet de Monvel and Kodaira embedding theorems. Let us briefly review
the method used in [12]. Assume that X admits a rigid CR line bundle
L. For k ∈ N, let H0

b(X,L
k) denote the space of global smooth CR sections

with values in Lk. The difficulty of Kodaira embedding problem for X comes
from the fact that it is very difficult to understand the large k behavior of
H0

b(X,L
k) even if L is positive. By using the S1-action eiθ, we consider the

spaces

H0
b,m(X,Lk) =

{
u ∈ C∞(X,Lk); ∂bu = 0, Tu = imu

}
,

H0
b,≤kδ(X,L

k) = ⊕m∈Z,|m|≤kδH
0
b,m(X,Lk), δ > 0.

(1.1)

We proved in [12] that if L is positive and δ > 0 small enough, then

dk := dimH0
b,≤kδ(X,L

k) ≈ kn if k ≫ 1

and a weighted Fourier-Szegő kernel for H0
b,≤kδ(X,L

k) admits a full asymp-
totic expansion. Using that weighted Fourier-Szegő kernel asymptotics, we
showed in [12] that the map

Φ̂k,δ : X → CPdk−1,

x→ [f1(x), . . . , fdk
(x)]

is an embedding if k is large enough, where {f1, . . . , fdk
} is an orthonormal

basis for the space H0
b,≤kδ(X,L

k) with respect to some S1-invariant L2 inner

product such that for each j = 1, 2, . . . , dk, we have fj ∈ H0
b,mj

(X,Lk) for
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some mj ∈ Z. It is clear that the map Φ̂k,δ is S1-equivariant and hence X
can be S1-equivariant CR embedded into the projective space.

The method mentioned above does not work when there is an orbit of
the flow of T which is non-compact. In that case, X admits a transversal CR
R-action η. How to get R-equivariant embedding theorems for CR manifolds
(and irregular Sasakian manifolds) is an important and difficult problem in
CR (and Sasaki Geometry). In this paper, we introduce a new idea and
we successfully establish an R-equivariant Kodaira embedding theorem for
CR manifolds. For example, we obtain an equivariant Kodaira embedding
theorem for irregular Sasakian manifolds. Let us briefly describe our idea.
Let T be the infinitesimal generator of the R-action and assume that X
admits a rigid CR line bundle L. Consider the operator

−iT : C∞(X,Lk) → C∞(X,Lk).

Assume that there is an R-invariant L2 inner product ( · | · )k on C∞(X,Lk)
(if L is positive, we can always find an R-invariant L2 inner product ( · | · )k
on C∞(X,Lk)) and we extend −iT to L2 space by

− iT : Dom (−iT ) ⊂ L2(X,Lk) → L2(X,Lk),

Dom(−iT ) =
{
u ∈ L2(X,Lk); −iTu ∈ L2(X,Lk)

}
.

It is easy to see that −iT is self-adjoint with respect to ( · | · )k. When T
comes from S1-action, we can assume Spec (−iT ) = {m; m ∈ Z} and every
element in Spec (−iT ) is an eigenvalue of −iT , where Spec (−iT ) denotes
the spectrum of −iT . When T comes from an R-action, it is very difficult to
understand Spec (−iT ). The key observation in this paper is the following:
we show that if there exists a Riemannian metric g on X, such that the
R-action acts by isometries with respect to this metric, then the R-action
comes from a torus action on X. From this result, we prove that if L is
positive then the R-action comes from a torus action on X and by using the
torus action, it is not difficult to show that if L is positive, then Spec (−iT )
is countable and any element in Spec (−iT ) is an eigenvalue of −iT .

It was known before that the automorphism group of a compact Sasakian
manifold is compact (see [22] and [4]) and therefore that the R-action in-
duced by the Reeb flow comes from a torus action (see for example [3]).
Using that result, an R-equivariant embedding result for compact Sasakian
manifold (and hence for compact strongly pseudoconvex maniflolds with
transversal CR vector fields) with vanishing first cohomology was proven
in [3]. In this work we use elementary tools from Riemannian geometry to
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study the R-actions on CR manifolds. It turns out that the strongly pseu-
doconvexity condition can be replaced by the existence of a rigid positive
CR line bundle. Furthermore, we can even drop the compactness condition
and find out that there only exists two types of transversal CR R-actions
(see Theorem 3.5). This enables the study of non-compact CR manifolds by
analytic methods.

However, in this work we restrict ourselves to the compact case, that is
we only need to consider R-actions which come from a CR torus actions.

Now, assume that L is positive, i.e. there is an open interval I ⊂ R

such that RL
x − 2sLx is positive, for every x ∈ X and every s ∈ I, where

RL denotes the curvature of L and L denotes the Levi form of X (see
Definition 2.15). For simplicity, we may assume that ]− δ, δ[⊂ I, where δ >
0. For every α ∈ Spec (−iT ), put

C∞
α (X,Lk) :=

{
u ∈ C∞(X,Lk); −iTu = αu

}
.

As (1.1), we define

H0
b,α(X,L

k) :=
{
u ∈ C∞

α (X,Lk); ∂bu = 0
}

and

H0
b,≤kδ(X,L

k) :=
⊕

α∈Spec (−iT ),|α|≤kδ

H0
b,α(X,L

k).

We can prove that H0
b,≤kδ(X,L

k) is finite dimensional (see Lemma 4.6) and
hence that it is a closed subspace. Then, we can modify the method used
in [12] and show that a weighted Fourier-Szegő kernel for H0

b,≤kδ(X,L
k)

admits a full asymptotic expansion and by using the weighted Fourier-Szegő
kernel asymptotics, we show that the map

Φ̂k,δ : X → CPdk−1,

x→ [f1(x), . . . , fdk
(x)]

is an embedding if k is large enough, where {f1, . . . , fdk
} is an orthonormal

basis for the space H0
b,≤kδ(X,L

k) such that for each j = 1, 2, . . . , dk, we have

fj ∈ H0
b,α(X,L

k), for some α ∈ Spce (−iT ). It is clear that the map Φ̂k,δ is
R-equivariant. As an application, we obtain equivariant Kodaira embedding
theorems for irregular Sasakian manifolds. In particular, we show that a
compact transversal Fano irregular Sasakian manifold can be R-equivariant
CR embedded into the projective space. It should be mentioned that the
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idea of using CR sections to embed CR manifolds into the projective space
was introduced by Marinescu [16] (see also [17]).

When X is strongly pseudoconvex, the R-action also comes from a torus
action on X and we established a R-equivariant Boutet de Monvel embed-
ding theorem for X by using our S1-equivariant Boutet de Monvel embed-
ding theorem [5].

We now formulate our main results. We refer the reader to Section 2
for some standard notations and terminology used here. Let (X,T 1,0X) be
a compact connected CR manifold of dimension 2n− 1, n ⩾ 2, endowed
with a R-action η, η ∈ R: η : X → X, x ∈ X → η ◦ x ∈ X. Let T be the
infinitesimal generator of the R-action. We assume that the R-action η is
transversal CR, that is, T preserves the CR structure T 1,0X, and T and
T 1,0X ⊕ T 1,0X generate the complex tangent bundle to X.

Let (L, hL) be a rigid CR line bundle over X, where hL is a rigid Hermi-
tian metric on L. Let RL be the curvature of L induced by hL. We say that
(L, hL) is a rigid positive CR line bundle over X if there is an open interval
I ⊂ R such that RL − 2sL is positive definite at every point of X, for every
s ∈ I, where L denotes the Levi form on X. For simplicity, in this work, we
always assume that ]− δ, δ[⊂ I, where δ > 0. Let Lk be the k-th power of
L. The Hermitian metric on Lk induced by hL is denoted by hL

k

. Let ⟨ · | · ⟩
be the rigid Hermitian metric on CTX induced by RL such that

T 1,0X ⊥ T 0,1X, T ⊥ (T 1,0X ⊕ T 0,1X), ⟨T |T ⟩ = 1.

We denote by dvX the volume form induced by ⟨ · | · ⟩. Let ( · | · )k be the
L2 inner product on C∞(X,Lk) induced by hL

k

and dvX . Let L2(X,Lk) be
the completion of C∞(X,Lk) with respect to ( · | · )k. We extend ( · | · )k to
L2(X,Lk). Consider the operator

−iT : C∞(X,Lk) → C∞(X,Lk)

and we extend −iT to L2 space by

− iT : Dom (−iT ) ⊂ L2(X,Lk) → L2(X,Lk),

Dom(−iT ) =
{
u ∈ L2(X,Lk); −iTu ∈ L2(X,Lk)

}
.

By using the fact that the R-action comes from a torus action on X (see
Theorem 3.5), we will show that (see Theorem 4.1 and Theorem 4.5) −iT
is self-adjoint with respect to ( · | · )k, Spec (−iT ) is countable and every
element in Spec (−iT ) is an eigenvalue of −iT , where Spec (−iT ) denotes
the spectrum of −iT .
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Let ∂b : Ω
0,q(X,Lk) → Ω0,q+1(X,Lk) be the tangential Cauchy-Riemann

operator with values in Lk. For every α ∈ Spec (−iT ), put

(1.2) C∞
α (X,Lk) :=

{
u ∈ C∞(X,Lk); −iTu = αu

}
,

and

(1.3) H0
b,α(X,L

k) :=
{
u ∈ C∞

α (X,Lk); ∂bu = 0
}
.

It is easy to see that for every α ∈ Spec (−iT ), we have

(1.4) dimH0
b,α(X,L

k) <∞.

For λ > 0, put

(1.5) H0
b,≤λ(X,L

k) :=
⊕

α∈Spec (−iT ),|α|≤λ

H0
b,α(X,L

k).

For every α ∈ Spec (−iT ), let L2
α(X,L

k) ⊂ L2(X,Lk) be the eigenspace
of −iT with eigenvalue α. It is easy to see that L2

α(X,L
k) is the completion

of C∞
α (X,Lk) with respect to ( · | · )k. Let

(1.6) Q
(0)
α,k : L2(X,Lk) → L2

α(X,L
k)

be the orthogonal projection with respect to ( · | · )k. We have the Fourier
decomposition

L2(X,Lk) =
⊕

α∈Spec (−iT )

L2
α(X,L

k).

We first construct a bounded operator on L2(X,Lk) by putting a weight
on the components of the Fourier decomposition with the help of a cut-off
function. Fix δ > 0 and a function

(1.7) τδ ∈ C∞
0 ((−δ, δ)), 0 ≤ τδ ≤ 1, τδ = 1 on

[
−
δ

2
,
δ

2

]
.

Let Fk,δ : L
2(X,Lk) → L2(X,Lk) be the bounded operator given by

Fk,δ : L
2(X,Lk) → L2(X,Lk),

u 7→
∑

α∈Spec (−iT )

τδ

(α
k

)
Q

(0)
α,k(u).

(1.8)
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For every λ > 0, we consider the partial Szegő projector

(1.9) Πk,≤λ : L2(X,Lk) → H0
b,≤λ(X,L

k)

which is the orthogonal projection on the space of R-equivariant CR sec-
tions of degree less than λ. Finally, we consider the weighted Fourier-Szegő
operator

(1.10) Pk,δ := Fk,δ ◦Πk,≤kδ ◦ Fk,δ : L
2(X,Lk) → H0

b,≤kδ(X,L
k).

The Schwartz kernel of Pk,δ with respect to dvX is the smooth section
(x, y) 7→ Pk,δ(x, y) ∈ Lk

x ⊗ (Lk
y)

∗ satisfying

(1.11) (Pk,δu)(x) =

∫

X

Pk,δ(x, y)u(y) dvX(y) , u ∈ L2(X,Lk).

Let fj = f
(k)
j , j = 1, . . . , dk, be an orthonormal basis of H0

b,≤kδ(X,L
k).

Then

Pk,δ(x, y) =

dk∑

j=1

(Fk,δfj)(x)⊗
(
(Fk,δfj)(y)

)∗
,

Pk,δ(x, x) =

dk∑

j=1

∣∣(Fk,δfj)(x)
∣∣2
hLk .

(1.12)

It should be noticed that the full Szegő kernel
∑dk

j=1 |fj(x)|
2
hLk doesn’t admit

an asymptotic expansion in general, hence the necessity of using the cut-off
function Fk,δ. In the discussion after Corollary 1.2 in [12], we gave an example
to show that the full Szegő kernel doesn’t admit an asymptotic expansion.
In order to describe the Fourier-Szegő kernel Pk,δ(x, y) we will localize Pk,δ

with respect to a local rigid CR trivializing section s of L on an open set
D ⊂ X. We define the weight of the metric hL on L with respect to s to be
the function Φ ∈ C∞(D) satisfying |s|2hL = e−2Φ. We have an isometry

(1.13) Uk,s : L
2(D) → L2(D,Lk), u 7−→ uekΦsk,

with inverse U−1
k,s : L2(D,Lk) → L2(D), g 7→ e−kΦs−kg. The localization of

Pk,δ with respect to the trivializing rigid CR section s is given by

(1.14) Pk,δ,s : L
2
comp(D) → L2(D), Pk,δ,s = U−1

k,sPk,δUk,s,
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where L2
comp(D) is the subspace of elements of L2(D) with compact support

in D. Let Pk,δ,s(x, y) ∈ C∞(D ×D) be the Schwartz kernel of Pk,δ,s with
respect to dvX . The first main result of this work describes the structure of
the localized Fourier-Szegő kernel Pk,δ,s(x, y).

Theorem 1.1. Let X be a compact CR manifold of dimension 2n− 1,
n ≥ 2, with a transversal CR locally free R-action and let L be a positive
rigid CR line bundle on X. With the notations and assumptions above,
consider a point p ∈ X and a canonical coordinates neighborhood (D,x =
(x1, . . . , x2n−1)) centered at p. Let s be a local rigid CR trivializing section
of L on D and set |s|2h = e−2Φ. Fix δ > 0 small enough and D0 ⋐ D. Then

(1.15) Pk,δ,s(x, y) =

∫

R

eikφ(x,y,t)g(x, y, t, k)dt+O(k−∞) on D0 ×D0,

where φ ∈ C∞(D ×D × (−δ, δ)) is a phase function such that for some con-
stant c > 0 we have

dxφ(x, y, t)|x=y = −2Im ∂bΦ(x) + tω0(x),

dyφ(x, y, t)|x=y = 2Im ∂bΦ(x)− tω0(x),

Imφ(x, y, t) ≥ c|z − w|2,

(x, y, t) ∈ D ×D × (−δ, δ), x = (z, x2n−1), y = (w, y2n−1),

Imφ(x, y, t) +
∣∣∣∂φ∂t (x, y, t)

∣∣∣
2
≥ c |x− y|2, (x, y, t) ∈ D ×D × (−δ, δ),

φ(x, y, t) = 0 and ∂φ
∂t
(x, y, t) = 0 if and only if x = y,

(1.16)

and g(x, y, t, k) ∈ Sn
loc (1;D ×D × (−δ, δ)) ∩ C∞

0 (D ×D × (−δ, δ)) is a sym-
bol with expansion

g(x, y, t, k) ∼
∞∑

j=0

gj(x, y, t)k
n−j in Sn

loc (1;D ×D × (−δ, δ)),(1.17)

and for x ∈ D0 and |t| < δ we have

(1.18) g0(x, x, t) = (2π)−n
∣∣det

(
RL

x − 2tLx

)∣∣ |τδ(t)|2 ,

where ω0 ∈ C∞(X,T ∗X) is the global real 1-form of unit length orthogonal
to T ∗1,0X ⊕ T ∗0,1X, see (2.2),

∣∣det
(
RL

x − 2tLx

)∣∣ = |λ1(x, t) · · ·λn−1(x, t)|,
where λj(x, t), j=1, . . . , n−1, are the eigenvalues of the Hermitian quadratic
form RL

x − 2tLx with respect to ⟨ · | · ⟩, RL
x and Lx denote the curvature two
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form of L and the Levi form of X respectively (see Definition 2.14 and
Definition 2.2).

We refer the reader to Section 2.2 in [12] for the notations in semi-
classical analysis used in Theorem 1.1. For more properties of the phase
function φ(x, y, t), see Section 3.3 in [12]. For the meaning of canonical
coordinates, we refer the reader to the discussion after Definition 2.15.

We define now the equivariant Kodaira map. Consider an open set D ⊂
X with

(1.19)
⋃

η∈R

η(D) ⊂ D ,

and let s : D → L be a local rigid CR trivializing section on D, where

η(D) := {η ◦ x; x ∈ D} .

For any u ∈ C∞(X,Lk) we write u(x) = sk(x)⊗ ũ(x) onD, with ũ ∈ C∞(D).
Let {fj}

dk

j=1 be an orthonormal basis of H0
b,≤kδ(X,L

k) with respect to ( · | · )k
such that fj ∈ H0

b,αj
(X,Lk), for some αj ∈ Spec (−iT ). Set gj = Fk,δfj , j =

1, . . . , dk. The equivariant Kodaira map is defined on D by

Φk,δ : D −→ CPdk−1,

x 7−→
[
Fk,δf1(x), . . . , Fk,δfdk

(x)
]

:=
[
g̃1(x), . . . , g̃dk

(x)
]
, for x ∈ D.

(1.20)

We will show in Theorem 3.12 and Corollary 3.13 that there exists an open
cover of X with sets D satisfying (1.19). Thus we have a well-defined global
map

Φk,δ :X −→ CPdk−1,

x 7−→
[
Fk,δf1(x), . . . , Fk,δfdk

(x)
]
=:

[
Φ1
k,δ(x), . . . ,Φ

dk

k,δ(x)
]
.

(1.21)

Since gj ∈ H0
b,αj

(X,Lk) we have −iT g̃j = αj g̃j hence

gj(η ◦ x) = sk(η ◦ x)⊗ g̃j(η ◦ x) = sk(η ◦ x)⊗ eiαjη g̃j(x).

Thus

Φk,δ(η ◦ x) = [g̃1(η ◦ x), · · · , g̃dk
(η ◦ x)]

= [eiα1η g̃1(x), · · · , e
iαdk

η g̃dk
(x)]

=
[
eiα1ηΦ1

k,δ(x), . . . , e
iαkηΦdk

k,δ(x)
]
.

(1.22)
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We are thus led to consider weighted diagonal R-actions on CPN , that is,
actions for which there exists (α1, . . . , αN , αN+1) ∈ RN+1 such that for all
η ∈ R,
(1.23)
η ◦ [z1, . . . , zN+1] =

[
eiα1ηz1, . . . , e

iαN+1ηzN+1

]
, [z1, . . . , zN+1] ∈ CPN .

Theorem 1.2. Let (X,T 1,0X) be a compact CR manifold of dimension
2n− 1, n ≥ 2, with a transversal CR R-action η. Assume there is a rigid
positive CR line bundle L over X. Then there exists δ0 > 0 such that for all
δ ∈ (0, δ0) there exists k(δ) so that for k > k(δ) and any orthonormal basis
{fj}

dk

j=1 of H0
b,≤kδ(X,L

k) with respect to ( · | · )k such that fj ∈ H0
b,αj

(X,Lk),
for some αj ∈ Spec (−iT ), the map Φk,δ introduced in (1.20) is a smooth
CR embedding which is R-equivariant with respect to the weighted diagonal
R-action on CPdk−1 defined by (α1, . . . , αdk

) ∈ Rdk as in (1.23), that is,

Φk,δ(η ◦ x) = η ◦ Φk,δ(x), x ∈ X, η ∈ R.

In particular, the image Φk,δ(X) ⊂ CPdk−1 is a CR submanifold with an
induced weighted diagonal locally free R-action.

Remark 1.3. Let {fj}
dk

j=1 be an orthonormal basis of H0
b,≤kδ(X,L

k) with

respect to ( · | · )k such that fj ∈ H0
b,αj

(X,Lk), for some αj ∈ Spec (−iT ). As
above, we define

Φ̂k,δ : X −→ CPdk−1,

x 7−→
[
f1(x), . . . , fdk

(x)
]
.

(1.24)

From Theorem 1.2, it is easy to see that Φ̂k,δ is a smooth CR embedding
which is R-equivariant with respect to the weighted diagonal R-action on
CPdk−1 defined by (α1, . . . , αdk

) ∈ Rdk as in (1.23).

Ohsawa and Sibony [19, 20] constructed for every κ ∈ N a CR projective
embedding of class Cκ of a Levi-flat CR manifold by using ∂-estimates. The
second author and Marinescu [9] gave a Szegő kernel proof of Ohsawa and
Sibony’s result. A natural question is whether we can improve the regularity
to κ = ∞. Adachi [1] showed that the answer is no, in general. The analytic
difficulty of this problem comes from the fact that the Kohn Laplacian is not
hypoelliptic on Levi flat manifolds. The second, third author and Marinescu
[12] generalized Ohsawa and Sibony’s result to C∞-smooth when the CR
manifold admits a transversal CR circle action and the CR line bundle is
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rigid and positive. Theorem 1.2 above shows that the circle action in [12]
can be weakened to a R-action.

Corollary 1.4. Let (X,T 1,0X) be a compact irregular Sasakian manifold
and let T be the associated Reeb vector field. Let η ∈ R be the R-action in-
duced by the Reeb vector field. If X admits a rigid positive CR line bundle
L, then, for k sufficiently large, the maps Φk,δ and Φ̂k,δ are smooth CR em-
beddings of X in CPdk−1 which are R-equivariant with respect to a weighted
diagonal R-actions on CPdk−1 (cf. Theorem 1.2 and Remark 1.3).

Corollary 1.5. Let (X,T 1,0X) be a compact transverse Fano irregular
Sasakian manifold. Let T be the associated Reeb vector field on X and let
η ∈ R be the R-action induced by the Reeb vector field. Then , for k suf-
ficiently large, the maps Φk,δ and Φ̂k,δ are smooth CR embeddings of X
in CPdk−1 which are R-equivariant with respect to a weighted diagonal R-
actions on CPdk−1 (cf. Theorem 1.2 and Remark 1.3).

Remark 1.6. If the rigid CR line bundle over the Sasakian manifold
(X,T 1,0X) in Corollary 1.4 or Corollary 1.5 is not positive the maps Φk,δ

and Φ̂k,δ may fail to be embeddings. However, in that case we can still find
a smooth R-equivariant embedding of X into some CPN with respect to a
weighted diagonal R-actions on CPN . That follows from Corollary 1.8 using
the map CN ∋ (z1, . . . , zN ) 7→ [1, z1, . . . , zN ] ∈ CPN .

Now, we consider a torsion free compact connected strongly pseudocon-
vex CR manifold (X,T 1,0X) of dimension 2n− 1, n ≥ 2. Then, X admits a
transversal CR R-action η, η ∈ R: η : X → X, x 7→ η ◦ x. By using the fact
that the R-action comes from a torus action on X (see Corollary 3.8) and
the equivariant embedding theorem established in [5], we get (see the proof
of Theorem 3.11)

Theorem 1.7. Let X be a connected compact strongly pseudoconvex CR
manifold equipped with a transversal CR R-action η. Then, there exists N ∈
N, ν1, . . . , νN ∈ R and a CR embedding Φ = (Φ1, . . . ,ΦN ) : X → CN such
that

Φ(η ◦ x) = (eiν1ηΦ1(x), . . . , e
iνNηΦN (x))

holds for all x ∈ X and η ∈ R. In other words, Φ is equivariant with respect
to the holomorphic R-action η ◦ z = (eiν1ηz1, . . . , e

iνNηzN ) on CN .
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Corollary 1.8. Let X be a compact connected Sasakian manifold with Reeb
vector field T . There exist N ∈ N, ν1, . . . , νN ∈ R and an equivariant embed-
ding Φ: X → CN with respect to the R-action on X generated by T and the
R-action η ◦ z = (eiν1ηz1, . . . , e

iνNηzN ) on CN . Furthermore, we have

Φ∗Tx = i

N∑

j=1

νj(zj
∂

∂zj
− zj

∂

∂zj
)
∣∣
z=Φ(x) .

1.1. Applications: Torus equivariant Kodaira and Boutet de
Monvel embedding theorems for CR manifolds

We will apply Theorem 1.2 to establish a torus equivariant Kodaira em-
bedding theorem for CR manifolds. Let (X,T 1,0X) be a compact connected
orientable CR manifold of dimension 2n− 1, n ≥ 2. We assume that X ad-
mits a d-dimensional Torus action T d ↷ X denoted by (eiθ1 , . . . , eiθd). Let
g denote the Lie algebra of T d. For any ξ ∈ g, we write ξX to denote the
vector field on X induced by ξ, that is, (ξXu)(x) =

∂
∂t

(u(exp(tξ) ◦ x)) |t=0,
for any u ∈ C∞(X). Let g = Span {ξX ; ξ ∈ g}. For every j = 1, . . . , d, let Tj
be the vector field on X given by

(Tju)(x) =
∂

∂θj
u((1, . . . , 1, eiθj , 1, . . . , 1) ◦ x)|θj=0.

We have g = span {Tj ; j = 1, . . . , d}. We assume that

[Tj , C
∞(X,T 1,0X)] ⊂ C∞(X,T 1,0X), j = 1, 2, . . . , d,

span
{
T 1,0X ⊕ T 0,1X,Cg

}
= CTX.

(1.25)

Suppose that X admits a torus invariant CR line bundle L. For every
(m1, . . . ,md) ∈ Zd, put

H0
b,m1,...,md

(X,Lk) = {u ∈ C∞(X,Lk); ∂bu = 0,

u((eiθ1 , . . . , eiθd) ◦ x) = eim1θ1+···+imdθdu(x),

∀x ∈ X, ∀(eiθ1 , . . . , eiθd) ∈ T d}.

(1.26)

Theorem 1.9. With the notations and assumptions used above, assume
that L admits a T d-invariant Hermitian metric hL such that the induced cur-
vature RL is positive. Fix any βj ∈ R, j = 1, . . . , d, where βj, j = 1, . . . , d,
are linear independent over Q. Then there is a k0 > 0 such that for all



✐

✐

“6-Hsiao” — 2022/8/30 — 15:47 — page 205 — #13
✐

✐

✐

✐

✐

✐
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k ≥ k0, there is a torus equivariant CR embedding

Φk : X → CPNk−1,

x 7→ [g1(x), . . . , gNk
(x)],

such that gj ∈ H0
b,mj1

,...,mjd

(X,Lk), for some (mj1 , . . . ,mjd) ∈ Zd with

|mj1β1 + · · ·+mjdβd| ≤ kδ,

j = 1, . . . , Nk, where Nk ∈ N.

Proof. From (1.25), there is a real non-vanishing vector field T ∈ g such that

T 1,0X ⊕ T 0,1X ⊕ CT = CTX.

By continuity, we may take T = β1T1 + · · ·+ βdTd. Then, X admits a locally
free R-action η:

η : X → X,

x 7→ η ◦ x = (eiβ1η, . . . , eiβdη) ◦ x,

and T is the infinitesimal generator of the R-action η. From (1.25), we see
that the R-action is transversal and CR. Take a T d-invariant Hermitian
metric hL on L such that the induced curvature RL is positive. Then, hL

is also T -rigid. As before, let ⟨ · | · ⟩ be the rigid Hermitian metric on CTX
induced by RL such that

T 1,0X ⊥ T 0,1X, T ⊥ (T 1,0X ⊕ T 0,1X), ⟨T |T ⟩ = 1

and let ( · | · )k be the L2 inner product on C∞(X,Lk) induced by hL
k

and
⟨ · | · ⟩. For every (m1, . . . ,md) ∈ Zd, put

C∞
m1,...,md

(X,Lk) :

= {u ∈ C∞(X,Lk); u((eiθ1 , . . . , eiθd) ◦ x) = eim1θ1+···+imdθdu(x),

∀x ∈ X, ∀(eiθ1 , . . . , eiθd) ∈ T d}.

For u ∈ C∞(X), we have the orthogonal decomposition with respect to
( · | · )k:

(1.27) u(x) =
∑

(m1,...,md)∈Zd

um1,...,md
(x), um1,...,md

(x) ∈ C∞
m1,...,md

(X,Lk).
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From (1.27) and note that βj , j = 1, . . . , d, are linear independent over Q,
it is easy to check that
(1.28)
C∞
m1,...,md

(X,Lk) = C∞
α (X,Lk), α = β1m1 + · · ·+ βdmd ∈ Spec (−iT ),

where C∞
α (X,Lk) is as in (1.2). From (1.28), we conclude that for every

α ∈ Spec (−iT ), we have

(1.29) H0
b,α(X,L

k) = H0
b,m1,...,md

(X,Lk), α = m1β1 + · · ·+mdβd,

where H0
b,α(X,L

k) is as in (1.3). By Theorem 1.2, we can find an orthonor-

mal basis {gj}
dk

j=1 of H0
b,≤kδ(X,L

k) with respect to ( · | · )k such that gj ∈

H0
b,αj

(X,Lk), for some αj ∈ Spec (−iT ), the map Φk,δ introduced in (1.20)

is a smooth CR embedding, where H0
b,≤kδ(X,L

k) is as in (1.5). From (1.29),

we see that each gj is in H0
b,mj1

,...,mjd

(X,Lk), for some (mj1 , . . . ,mjd) ∈ Zd

with |mj1β1 + · · ·+mjdβd| ≤ kδ. The theorem follows. □

Let (X,T 1,0X) be a compact connected strongly pseudoconvex CR man-
ifold of dimension 2n− 1, n ≥ 2. We assume that X admits a d-dimensional
torus action (eiθ1 , . . . , eiθd). Assume that this torus action satisfies (1.25).
For every (m1, . . . ,md) ∈ Zd, put

H0
b,m1,...,md

(X)

= {u ∈ C∞(X); ∂bu = 0, u((eiθ1 , . . . , eiθd) ◦ x) = eim1θ1+···+imdθdu(x),

∀x ∈ X, ∀(eiθ1 , . . . , eiθd) ∈ T d}.

From Theorem 1.7 and by repeating the proof of Theorem 1.9 with minor
change, we obtain torus equivariant Boutet de Monvel embedding theorem
for strong pseudoconvex CR manifolds.

Theorem 1.10. With the assumptions and notations used above, there is
a torus equivariant CR embedding

Φ : X → CN ,

x 7→ (g1(x), . . . , gN (x)),

such that gj ∈ H0
b,mj1

,...,mjd

(X), for some (mj1 , . . . ,mjd) ∈ Zd, j = 1, . . . , N .
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1.2. Applications: Torus equivariant Kodaira embedding
theorem for complex manifolds

Let (E, hE) be a holomorphic line bundle over a connected compact com-
plex manifold (M,J) with dim CM = n, where J denotes the complex struc-
ture map of M and hE is a Hermitian fiber metric of E. Assume that
(M,J) admits a holomorphic d-dimensional torus action T d ↷ X denoted
by (eiθ1 , . . . , eiθd) and that the action lifts to a holomorphic action on E. For
(m1, . . . ,md) ∈ Zd, put

H0
m1,...,md

(M,Ek)

= {u ∈ C∞(M,Ek); ∂u = 0, u((eiθ1 , . . . , eiθd) ◦ x) = eim1θ1+···+imdθdu(x),

∀x ∈M, ∀(eiθ1 , . . . , eiθd) ∈ T d}.

(1.30)

We have the following torus equivariant Kodaira embedding theorem.

Theorem 1.11. With the notations and assumptions used above, assume
that E admits a T d-invariant Hermitian metric hE such that the induced cur-
vature RE is positive. Fix any βj ∈ R, j = 1, . . . , d, where βj, j = 1, . . . , d,
are linear independent over Q. Then there is a k0 > 0 such that for all
k ≥ k0, there is a torus equivariant holomorphic embedding

ϕk :M → CPNk−1,

x 7→ [q1(x), . . . , qNk
(x)],

such that qj ∈ H0
mj1

,...,mjd
(M,Ek) with

∣∣mj1β1 + · · ·+mjdβd +mjd+1

∣∣ ≤ kδ,

for some (mj1 , . . . ,mjd ,mjd+1
) ∈ Zd+1, j = 1, . . . , Nk, where Nk ∈ N.

Proof. We will use the same notations as in the proof of Theorem 1.9. Con-
sider X :=M × S1. Then X is a compact connected CR manifold with CR
structure T 1,0

(x,eiu)X := T 1,0
x M , for every (x, eiu) ∈M × S1. Then X admits

a T d+1-action (eiθ1 , . . . , eiθd , eiθd+1) with

(eiθ1 , . . . , eiθd , eiθd+1) ◦ (x, eiu) := ((eiθ1 , . . . , eiθd) ◦ x, eiθd+1+iu),

∀(x, eiu) ∈M × S1.
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It is clear that E is a T d+1-invariant CR line bundle over X and the T d+1-
action satisfies (1.25). By Theorem 1.9, there is a k0 > 0 such that for all
k ≥ k0, we can find a CR embedding the map

(1.31) x ∈ X 7−→
[
f1(x), . . . , fNk

(x)
]
∈ CPNk−1

such that each fj is in H0
b,mj1

,...,mjd+1

(X,Lk) with

∣∣mj1β1 + · · ·+mjdβd +mjd+1

∣∣ ≤ kδ,

for some (mj1 , . . . ,mjd ,mjd+1
) ∈ Zd+1, j = 1, . . . , Nk, where Nk ∈ N. For ev-

ery j = 1, . . . , Nk, let qj(x) := fj(x, e
iu)|u=0. Then we have that qj(x) ∈

H0
m1,...,md

(M,Ek) holds for some (m1, . . . ,md) ∈ Zd. It is not difficult to
check that the map

x ∈M 7−→
[
q1(x), . . . , qNk

(x)
]
∈ CPNk−1

is a holomorphic embedding. The theorem follows. □

2. Preliminaries

2.1. Some standard notations

We will use the following notations.
N = {1, 2, . . .}, N0 = N ∪ {0}, R is the set of real numbers and R+ :=
{x ∈ R; x ≥ 0}. For a multiindex α = (α1, . . . , αm) ∈ Nm

0 we set |α| = α1 +
· · ·+ αm. For x = (x1, . . . , xm) ∈ Rm we write

xα = xα1

1 . . . xαm

m , ∂xj
=

∂

∂xj
, ∂αx = ∂α1

x1
. . . ∂αm

xm
=
∂|α|

∂xα
,

Dxj
=

1

i
∂xj

, Dα
x = Dα1

x1
. . . Dαm

xm
, Dx =

1

i
∂x .

Let z = (z1, . . . , zm), zj = x2j−1 + ix2j , j = 1, . . . ,m, be coordinates of Cm,
where x = (x1, . . . , x2m) ∈ R2m are coordinates in R2m. Throughout the pa-
per we also use the notation w = (w1, . . . , wm) ∈ Cm, wj = y2j−1 + iy2j ,
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j = 1, . . . ,m, where y = (y1, . . . , y2m) ∈ R2m. We write

zα = zα1

1 . . . zαm

m , zα = zα1

1 . . . zαm

m ,

∂zj =
∂

∂zj
=

1

2

( ∂

∂x2j−1
− i

∂

∂x2j

)
, ∂zj

=
∂

∂zj
=

1

2

( ∂

∂x2j−1
+ i

∂

∂x2j

)
,

∂αz = ∂α1

z1 . . . ∂
αm

zm =
∂|α|

∂zα
, ∂αz = ∂α1

z1
. . . ∂αm

zm
=
∂|α|

∂zα
.

Let X be a C∞ orientable paracompact manifold. We let TX and T ∗X
denote the tangent bundle of X and the cotangent bundle of X respectively.
The complexified tangent bundle of X and the complexified cotangent bun-
dle of X will be denoted by CTX and CT ∗X respectively. We write ⟨ · , · ⟩
to denote the pointwise duality between TX and T ∗X. We extend ⟨ · , · ⟩
bilinearly to CTX × CT ∗X.

Let E be a C∞ vector bundle over X. The fiber of E at x ∈ X will be
denoted by Ex. Let F be another vector bundle over X. We write F ⊠ E∗

to denote the vector bundle over X ×X with fiber over (x, y) ∈ X ×X
consisting of the linear maps from Ey to Fx.

Let Y ⊂ X be an open set. The spaces of smooth sections of E over Y and
distribution sections of E over Y will be denoted by C∞(Y,E) and D ′(Y,E)
respectively. Let E ′(Y,E) be the subspace of D ′(Y,E) whose elements have
compact support in Y . For m ∈ R, we let Hm(Y,E) denote the Sobolev
space of order m of sections of E over Y with respect to some Hermitian
metric and some locally finite atlas. Put

Hm
loc (Y,E) =

{
u ∈ D

′(Y,E); φu ∈ Hm(Y,E), ∀φ ∈ C∞
0 (Y )

}
,

Hm
comp (Y,E) = Hm

loc(Y,E) ∩ E
′(Y,E) .

2.2. CR manifolds with R-action

Let (X,T 1,0X) be a compact CR manifold of dimension 2n− 1, n ≥ 2, where
T 1,0X is a CR structure of X. That is T 1,0X is a subbundle of rank n− 1
of the complexified tangent bundle CTX, satisfying T 1,0X ∩ T 0,1X = {0},
where T 0,1X = T 1,0X, and [V,V] ⊂ V, where V = C∞(X,T 1,0X). We as-
sume that X admits a R-action η, η ∈ R: η : X → X, x 7→ η ◦ x. Let T ∈
C∞(X,TX) be the infinitesimal generator of the R-action which is given by

(2.1) (Tu)(x) =
∂

∂η
(u(η ◦ x)) |η=0, u ∈ C∞(X).
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Definition 2.1. We say that the R-action η is CR if

[T,C∞(X,T 1,0X)] ⊂ C∞(X,T 1,0X)

and the R-action is transversal if for each x ∈ X,

CT (x)⊕ T 1,0
x (X)⊕ T 0,1

x X = CTxX.

Moreover, we say that the R-action is locally free if T ̸= 0 everywhere.

Assume that (X,T 1,0X) is a compact CR manifold of dimension 2n− 1,
n ≥ 2, with a transversal CR R-action η and we let T be the global vector
field induced by the R-action. Let ω0 ∈ C∞(X,T ∗X) be the global real one
form determined by

⟨ω0 , u ⟩ = 0, ∀u ∈ T 1,0X ⊕ T 0,1X,

⟨ω0 , T ⟩ = −1.
(2.2)

Definition 2.2. For p ∈ X, the Levi form Lp is the Hermitian quadratic
form on T 1,0

p X given by Lp(U, V ) = − 1
2i⟨ dω0(p) , U ∧ V ⟩, U, V ∈ T 1,0

p X.

Denote by T ∗1,0X and T ∗0,1X the dual bundles of T 1,0X and T 0,1X re-
spectively. Define the vector bundle of (0, q) forms by T ∗0,qX = Λq(T ∗0,1X).
Let D ⊂ X be an open set. Let Ω0,q(D) denote the space of smooth sections
of T ∗0,qX over D and let Ω0,q

0 (D) be the subspace of Ω0,q(D) whose elements
have compact support in D. Similarly, if E is a vector bundle over D, then
we let Ω0,q(D,E) denote the space of smooth sections of T ∗0,qX ⊗ E over
D and let Ω0,q

0 (D,E) be the subspace of Ω0,q(D,E) whose elements have
compact support in D.

As in the S1-action case (see Section 2.3 in [12]), for u ∈ Ω0,q(X), we
define

(2.3) Tu :=
∂

∂η

(
η∗u

)
|η=0 ∈ Ω0,q(X),

where η∗ : T ∗0,q
η◦x X → T ∗0,q

x X is the pull-back map of η. Let ∂b : Ω
0,q(X) →

Ω0,q+1(X) be the tangential Cauchy-Riemann operator. Since the R-action
is CR, as in the S1-action case (see Section 2.4 in [12]), we have

T∂b = ∂bT on Ω0,q(X).
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Definition 2.3. Let D ⊂ X be an open set. We say that a function u ∈
C∞(D) is rigid if Tu = 0. We say that a function u ∈ C∞(X) is Cauchy-
Riemann (CR for short) if ∂bu = 0. We say that u ∈ C∞(X) is rigid CR if
∂bu = 0 and Tu = 0.

2.3. Rigid CR bundles

Let (X,T 1,0X), dimX = 2n+ d, be a CR manifold of codimension d ∈ N

and CR dimension n ∈ N. The following definitions for CR vector bundles
can be found in [6].

Definition 2.4. A complex vector bundle (E, π,X) over X is called CR
vector bundle if

(i) E is a CR manifold of codimension d,

(ii) π : E → X is a CR submersion,

(iii) E ⊕ E ∋ (ξ1, ξ2) → ξ1 + ξ2 ∈ E and C× E ∋ (λ, ξ) → λξ ∈ E are CR
maps.

A smooth section s ∈ C∞(U,E) defined on an open set U ⊂ X is called CR
section if the map s : U → E is CR.

Let (E1, π1, X) and (E2, π2, X) be two CR vector bundles over X. A map
F : E1 → E2 is called a CR bundle isomorphism if F is a C∞-diffeomorphism
such that F, F−1 are CR maps, π2 ◦ F = π1 and F is fiberwise linear.

Given a CR vector bundle (E, π,X) we find (see [6]) the linear partial

differential operator ∂
E

b : C∞(X,E) → C∞(X,E ⊗ T ∗0,1X) satisfying

(a) ∂
E

b (f · s) = s∂b(f) + f∂
E

b (s) for all f ∈ C∞(X) and s ∈ C∞(X,E),

(b) s ∈ C∞(U,E) is a CR section if and only if ∂
E

b s = 0.

Definition 2.5. A CR vector bundle (E, π,X) of rank r is called locally CR
trivializable if for any point p ∈ X there exists an open neighborhood U ⊂ X
such that E|U is CR vector bundle isomorphic to the trivial CR vector bundle
U × Cr.

The following lemma is well-known.

Lemma 2.6. Let (E, π,X) be a CR vector bundle. The following are equiv-
alent:
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(i) (E, π,X) is locally CR trivializable,

(ii) For any p ∈ X there exists a smooth frame {f1, . . . , fr} of E|U on an open
neighborhood U ⊂ X around p such that f1, . . . , fr : U → E are CR sections.

Proof. Let p ∈ X be a point. Assuming that (E, π,X) is locally CR trivial-
izable we find an open neighborhood U ⊂ X around p and a CR bundle iso-
morphism F : U × Cr → E|U . For 1 ≤ j ≤ r let ej ∈ Cr be the vector which
has a one at the j-th position and zeros everywhere else. Then we have that
x 7→ (x, ej) defines a CR map between U and U × Cr. Putting fj : U → E|U ,
fj(x) = F (x, ej) it follows that fj is a smooth CR map and since F is a bun-
dle map we find that fj is a CR section for any 1 ≤ j ≤ r. For x ∈ U assume∑r

j=1 λjfj(x) = 0 for some λ1, . . . , λr ∈ C. We find 0 = F (x, (λ1, . . . , λr))
and since F is a bundle isomorphism we must have λ1 = . . . = λr = 0. Hence
{f1(x), . . . , fr(x)} is linear independent for any x ∈ U .

Now let {f1, . . . , fr} be a smooth frame of E|U such that fj : U → E|U
is a CR map for any 1 ≤ j ≤ r. From (iii) in Definition 2.4 it follows that
F : U × Cr → E|U , F (x, (λ1, . . . , λr)) =

∑r
j=1 λjfj(x) is a CR map. By con-

struction we have that F is a bundle isomorphism and since {f1, . . . , fr} is a
smooth frame we have that F is a diffeomorphism. Then we just need to show
that dF (T 1,0(U × Cr)) = T 1,0E|U in order to prove that F−1 is a CR map.
The map F is CR which means dF (T 1,0(U × Cr)) ⊂ T 1,0E|U . Furthermore,
we have that dF is injective at any point which implies dimC dF (T

1,0(U ×
Cr)) = n+ r = dimC T

1,0E|U and the claim follows. □

Remark 2.7. Let {f1, . . . , fr} be a frame of E|U for some open set U ⊂ X.
Then {f1, . . . , fr} is called CR frame if any fk, 1 ≤ k ≤ r, is a CR section.
Given two CR frames of E|U we find by (a) and (b) that the corresponding
transition matrix is CR in the sense that any entry is a CR function.

Definition 2.8. Let (X,T 1,0X) be a CR manifold of codimension d and
let T ∈ C∞(X,TX) be a CR vector field (that is [T,C∞(X,T 1,0X)] ⊂
C∞(X,T 1,0X)). A CR bundle lift of T to (E, π,X) is a smooth linear partial
differential operator

TE : C∞(X,E) → C∞(X,E)

such that

(i) TE(f · s) = T (f) · s+ fTE(s) for all f ∈ C∞(X) and s ∈ C∞(X,E),

(ii) [TE , ∂
E

b ] = 0.
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In order to define [TE , ∂
E

b ] we need to define TE on (0, 1) forms with
values in E first. But this definition follows immediately from the fact that
any w ∈ C∞(X,E ⊗ T ∗0,1X) locally can be written w =

∑r
j=1 fj ⊗ ωj where

{ωj} are (0, 1)-forms and {fj} are local frames of E and that T is defined
also for (0, q)-forms using the Lie derivative.

Definition 2.9. Let (X,T 1,0X) be a CR manifold of codimension d and let
T ∈ C∞(X,TX) be a CR vector field. A CR vector bundle (E, π,X) of rank
r over X with a CR bundle lift TE of T is called rigid CR (with respect to
TE) if for every point p ∈ X there exists an open neighborhood U around p
and a CR frame {f1, . . . , fr} of E|U with TE(fj) = 0 for 1 ≤ j ≤ r.

A section s ∈ C∞(X,E) is called a rigid CR section if TEs = 0 and

∂
E

b s = 0. The frame {fj}
r
j=1 in Definition 2.9 is called a rigid CR frame of

E|U . Note that it follows from Lemma 2.6 that any rigid CR vector bundle
is locally CR trivializable.

Lemma 2.10. Let (E, π,X) be CR vector bundle over a CR manifold
(X,T 1,0X) of codimension d and let T ∈ C∞(X,TX) be a CR vector field.
The following are equivalent:

(i) T has a CR bundle lift TE such that (E, π,X) is rigid CR with respect
to TE.

(ii) There exist an open cover {Uj}j∈N of X and CR frames {f j1 , . . . , f
j
r }

for E|Uj
, j ∈ N, such that the corresponding transition matrices are

rigid CR in the sense that any entry is a rigid CR function.

Recall that a function f ∈ C∞(X) is rigid if Tf = 0 holds.

Proof. In order to prove ”(ii) ⇒ (i)“ define a CR bundle lift TE of T as
follows: Given a smooth section s ∈ C∞(X,E) and a point p ∈ X write
s|Uj

=
∑r

k=1 a
j
kf

j
k for any j ∈ N with p ∈ Uj where ajk are smooth functions

on Uj . Then define TE(s)(p) =
∑r

k=1 T (a
j
k)f

j
k . The definition is independent

of j since the transition matrices are rigid. Since T satisfies the Leibniz rule
the same holds for TE and since [T, ∂b] = 0 and the local frames {f j1 , . . . , f

j
r },

j ∈ N, are CR we find [TE , ∂
E

b ] = 0. By construction we find that the frames
{f j1 , . . . , f

j
r } are rigid CR and hence that (E, π,X) is rigid CR with respect

to TE .
The implication ”(i) ⇒ (ii)“ follows from Definition 2.9: For any point

p ∈ X we find an open neighborhood Up around p and a CR frame {fp1 , . . . , f
p
r }
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of E|Up
with TE(fpl ) = 0 for 1 ≤ l ≤ r. Since X is a manifold we can choose

{pj}j∈N such that {Upj
}j∈N is an open cover of X. For j ∈ N and 1 ≤ l ≤ r

put f jl := f
pj

l and Uj := Upj
. Given j, k ∈ N with Uk ∩ Uj ̸= ∅ let A denote

the transition matrix between the frames {f j1 , . . . , f
j
r } and {fk1 , . . . , f

k
r } that

is

(f j1 , . . . , f
j
r ) = (fk1 , . . . , f

k
r )A.

It follows from Remark 2.7 that A is CR. Furthermore, we find

0 = (TE(f j1 ), . . . , T
E(f jr )) = (TE(fk1 ), . . . , T

E(fkr ))A+ (fk1 , . . . , f
k
r )TA

= (fk1 , . . . , f
k
r )TA.

Since {fk1 , . . . , f
k
r } is a frame we have TA = 0, that is the transition matrix

is rigid and CR. □

Let (X,T 1,0X), dimX = 2n− 1, be a CR manifold of codimension one
and CR dimension n− 1 with a transversal CR R-action. Let T be the
infinitesimal generator of the R-action. In this paper we will make systematic
use of appropriate coordinates introduced by Baouendi-Rothschild-Treves [2,
Theorem II.1, Proposition I.2]. For each point p ∈ X there exist a coordinate
neighborhood U with coordinates (x1, . . . , x2n−1), centered at p, and ε > 0,
ε0 > 0, such that, by setting zj = x2j−1 + ix2j , j = 1, . . . , n− 1, x2n−1 = η
and D = {(z, η) ∈ U : |z| < ε, |θ| < ε0} ⊂ U , we have

(2.4) T =
∂

∂η
on D,

and the vector fields

(2.5) Zj =
∂

∂zj
− i

∂ϕ

∂zj
(z)

∂

∂η
, j = 1, . . . , n− 1,

form a basis of T 1,0
x X for each x ∈ D, where ϕ ∈ C∞(D,R) is independent

of η. We call (x1, . . . , x2n−1) canonical coordinates, D canonical coordinate
patch and (D, (z, η), ϕ) a BRT trivialization. The frames (2.5) are called
BRT frames. We can also define BRT frames on the bundle T ∗0,qX. We
sometime write (D,x = (x1, . . . , x2n−1)) to denote canonical coordinates.

Example 2.11. Let X be a compact CR manifold with a transversal CR
R-action. Let T be the infinitesimal generator of the R-action. We study here
the bundle T 1,0X by using the canonical BRT coordinates [2, Theorem II.1,
Proposition I.2]. In particular, we will show that the BRT coordinates give
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rise to a CR structure on T 1,0X and a CR bundle lift of T , such that T 1,0X
becomes a rigid CR vector bundle. Let (D, (z, θ), ϕ) be a BRT trivialization
defined in (2.5). Then on D,

T =
∂

∂θ
,

Zj =
∂

∂zj
− i

∂ϕ

∂zj
(z)

∂

∂θ
, j = 1, . . . , n− 1,

(2.6)

where {Zj : j = 1, . . . , n− 1} is a frame of T 1,0X over D. Let (D̃, (w, η), ϕ̃)
be another BRT trivialization. Then on D̃,

T =
∂

∂η
,

Z̃j =
∂

∂wj
− i

∂ϕ̃

∂wj
(w,w)

∂

∂η
, j = 1, . . . , n− 1,

(2.7)

where {Z̃j : j = 1, . . . , n− 1} is a frame of T 1,0X over D̃. We have on D ∩
D̃,

(2.8) Z̃j =

n−1∑

k=1

cj,kZk

where cj,k ∈ C∞(D ∩ D̃) are rigid CR functions. Write E = T 1,0X. The lo-
cal frames give rise to a CR vector bundle structure on E. Then T will admit
a natural CR bundle lift TE on E. In fact, for any f ∈ C∞(X,E) we can
write f =

∑n−1
j=1 fjZj and one can define

(2.9) TEf =

n−1∑

j=1

(Tfj)Zj .

Moreover, since [T, ∂b] = 0 then it follows from (2.9) that [TE , ∂
E

b ] = 0.

The goal of our paper is to prove a Kodaira embedding theorem, so
to work with very ample line bundles, whose global CR sections give an
embedding in the projective space. Such bundles are locally CR trivializable,
so we restrict here to CR vector bundles which are locally CR trivializable.
The following lemma can be seen as a variant of Proposition 2.7 in [12] for
bundle lifts of the vector field T .
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Lemma 2.12. Let (X,T 1,0X) be a CR manifold of codimension one with
a transversal CR R-action. Let T be the infinitesimal generator of the R-
action. Let (E, π,X) be a locally CR trivializable CR vector bundle of rank
r = 1. Assume that TE is a CR bundle lift of T to (E, π,X). Then (E, π,X)
is rigid CR. More precisely, for any p ∈ X there exist an open neighborhood
U ⊂ X around p and a CR frame {f} of E|U with TE(f) = 0.

Proof. Using Lemma 2.6 we find an open neighborhood V ⊂ X around p
and a CR frame {s} of E|V . Any other smooth frame {f} on V can be
written as f = sA where A : V → C \ {0} is smooth. Furthermore, we can
write TE(s) = sB with B : V → C smooth. Since T is non vanishing, we
can solve the linear partial differential T (A) = −BA in A with A(p) = 1
in a small neighborhood V ′ of p with A(x) ∈ C \ {0} for any x ∈ V ′. Then
{f} defined by f = sA is a frame of E|V ′ with TE(f) = s(TA+AB) = 0. It
remains to show that we can find a solution A such that {f} is a CR frame,

that is ∂bA = 0. With [TE , ∂
E

b ] = 0 we find ∂bB = 0 and since [T, ∂b] = 0
we have T (∂bA) = B(∂bA). Therefore we have to find a hypersurface H
around p transversal with respect to T and initial Data A0 on H such that
the solution of the transport equation T (A) = −BA with A = A0 on H
satisfies ∂bA = 0 on H. Then it follows from T (∂bA) = −B(∂bA) that ∂bA =
0 holds in an open neighborhood around p. Choose BRT coordinates ((z, t) ∈
P × I, φ) on an open neighborhood U ′ around p such that P is an open
polydisc in some Cn−1, I ⊂ R an open interval around 0 and identify U ′ with
P × I where p corresponds to (0, 0) ∈ P × I. Set H = P × {0} and write
A = A(z, t), B = B(z, t). If A is a solution of T (A) = −BA with ∂bA = 0
we must have ∂A(z, 0) = −i(∂φ)B(z, 0)A(z, 0) on P where ∂ =

∑n−1
j=1 dzj ∧

∂
∂zj

. From ∂bB = 0 we find ∂B = i(∂φ)TB and hence ∂((∂φ(z))B(z, 0)) = 0

on P . So let g ∈ C∞(P ) be a smooth solution of ∂g(z) = −i(∂φ)B(z, 0)
with g(0) = 0 and set A0(z, t) = exp(g(z)). Let A be the solution of T (A) =
−BA with A = A0 on H. By construction we have ∂bA = 0 on H and since
T (∂bA) = B(∂bA) we have ∂bA = 0 in a neighborhood of p. Since A(p) =
A(0, 0) = exp(g(0)) = 1 we find that A is non vanishing in a neighborhood
U around p. Then f := sA is the desired frame for E|U . □

Definition 2.13. Let E be a rigid vector bundle over X. Let ⟨ · | · ⟩E be a
Hermitian metric on E. We say that ⟨ · | · ⟩E is a rigid Hermitian metric
if for every local rigid frame f1, . . . , fr of E, we have T ⟨ fj | fk ⟩E = 0, for
every j, k = 1, 2, . . . , r.
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In order to simplify the notation we will denote by ∂b, T the operators

∂
E

b , T
E where E is any rigid CR vector bundle on X. Let (X,T 1,0X) be a CR

manifold of codimension one with a transversal CR R-action and let T be the
infinitesimal generator of the R-action. Consider a locally CR trivializable
CR line bundle L over X with a CR bundle lift of T . By Lemma 2.12 we find
that L is rigid CR with respect to that bundle lift. Hence there exists an
open covering (Uj)

N
j=1 and a family of rigid CR trivializing frames {sj}

N
j=1

with each sj defined on Uj and the transition functions between different
rigid CR frames are rigid CR functions. Let Lk be the k-th tensor power
of L. Then {skj }

N
j=1 is a family of rigid CR trivializing frames on each Uj .

Let ∂
Lk

b : Ω0,q(X,Lk) → Ω0,q+1(X,Lk) be the tangential Cauchy-Riemann
operator. Since Lk is rigid CR we have ∂bf = ∂bfj ⊗ skj , Tf = (Tfj)⊗ skj
for any f = fj ⊗ skj ∈ Ω0,q(X,Lk) and

(2.10) T∂b = ∂bT on Ω0,q(X,Lk).

Let hL be a Hermitian fiber metric on L. The local weight of hL with
respect to a local rigid CR trivializing section s of LL over an open subset
D ⊂ X is the function Φ ∈ C∞(D,R) for which

(2.11) |s(x)|2hL = e−2Φ(x), x ∈ D.

We denote by Φj the weight of hL with respect to sj .

Definition 2.14. Let L be a rigid CR line bundle and let hL be a Hermitian
metric on L. The curvature of (L, hL) is the the Hermitian quadratic form
RL = R(L,hL) on T 1,0X defined by

(2.12) RL
p (U, V ) =

〈
d(∂bΦj − ∂bΦj)(p), U ∧ V

〉
, U, V ∈ T 1,0

p X, p ∈ Uj .

Due to [8, Proposition 4.2], RL is a well-defined global Hermitian form,
since the transition functions between different frames sj are annihilated
by T .

Definition 2.15. We say that (L, hL) is positive if there is an interval
I ⊂ R such that the associated curvature RL

x − 2sLx is positive definite at
every x ∈ X, for every s ∈ I.
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3. The relation between R-action and torus action

on CR manifolds

In this section we state and proof our main results about R-actions on a
CR manifold X (see Theorem 3.5). It turns out that if the R-action is CR
transversal and X is either strongly pseudoconvex or admits a rigid positive
CR line bundle there are only two cases which need to be considered. In
particular, we find out that the R-action does not come from a CR torus
action if there exists an orbit which is a closed but non-compact subset of X
and in that case all the orbits have this property (see Corollary 3.8 and 3.9).
If X is in addition compact it is easy to see that the R-action is always
induced by a CR torus action.

3.1. Some facts in Riemannian geometry

Let (X, g) be a connected Riemannian manifold with metric g and denote
by Iso(X, g) the group of isometries from (X, g) onto itself, that is F ∈
Iso(X, g) if and only if F is a C∞-Diffeomorphism and F ∗g = g. A Lie group
is always assumed to be finite dimensional. The following result is well-known
(see [18]).

Theorem 3.1. We have that Iso(X, g) is a Lie transformation group acting
on X. More precisely, Iso(X, g) together with the composition of maps carries
the structure of a Lie group such that the map

Iso(X, g)×X ∋ (F, x) 7→ F (x) ∈ X

is of class C1.
Furthermore, assuming that X is compact it follows that Iso(X, g) is

compact too.

Lemma 3.2. In the situation of Theorem 3.1 we have that for every v ∈
CTX the map Qv : Iso(X, g) → CTX, Qv(F ) = dFπ(v)v is continuous. Here
π : CTX → X denotes the standard projection and all fibrewise linear maps
on TX are extended C-linearly to CTX.

Proof. The proof follows immediately from Lemma 7 in [18]. □

Lemma 3.3. The map Iso(X, g)×X ∋ (F, x) 7→ (x, F (x)) ∈ X ×X is
proper.

Proof. see Satz 2.22 in [21]. □



✐

✐

“6-Hsiao” — 2022/8/30 — 15:47 — page 219 — #27
✐

✐

✐

✐

✐

✐
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3.2. Application to CR geometry

Let (X,T 1,0X) be a connected CR manifold and denote by Iso(X, g) the
group of isometries on X with respect to some Riemannian metric g. Let
AutCR(X) be the group of CR automorphisms on X, that is F ∈ AutCR(X)
if and only if F : X → X is a C∞-Diffeomorphism satisfying dF (T 1,0X) ⊂
T 1,0X.

Lemma 3.4. We have that Iso(X, g) ∩AutCR(X) is a Lie group. Further-
more, assuming that X is compact implies that Iso(X, g) ∩AutCR(X) is a
compact Lie group.

Proof. Obviously, Iso(X, g) ∩AutCR(X) is a subgroup of Iso(X, g). We only
need to show that Iso(X, g) ∩AutCR(X) is a topologically closed subset of
Iso(X, g). Then, by Theorem 3.1, Cartan’s closed subgroup theorem and
the fact that a closed subset of a compact set is again compact, the result
follows. Recall that Cartan’s closed subgroup theorem states that if H is a
closed subgroup of a Lie group G, then H is an embedded Lie group with
the relative topology being the same as the group topology.
We have that T 1,0X is a closed subset of CTX. Then by Lemma 3.2 we have
that for every v ∈ T 1,0X the set Q−1

v (T 1,0X) is a closed subset of Iso(X, g)
and hence H :=

⋂
v∈T 1,0X Q−1

v (T 1,0X) is a closed subset of Iso(X, g). More-
over, by definition a C∞-Diffeomorphism F : X → X is CR if and only if
dFπ(v)v ∈ T 1,0X holds for all v ∈ T 1,0X. Hence, H = Iso(X, g) ∩AutCR(X)
which proofs the claim. □

Now assume that (X,T 1,0X) is equipped with a CR R-action, i.e. a Lie
group homomorphism γ : R → AutCR(X).

Theorem 3.5. Let (X,T 1,0X) be a connected CR manifold equipped with a
CR R-action. Assume that there exists a Riemannian metric g on X, such
that the R-action acts by isometries with respect to this metric. Then exactly
one of the following two cases will appear:

case 1: All orbits are closed subsets and non compact.

case 2: γ(R) is a torus in Iso(X, g) ∩AutCR(X). In other words, the R-action
comes from a CR torus action.

Here γ(R) is the closure of γ(R) taken in Iso(X, g) ∩AutCR(X).

Remark 3.6. Note that we neither assume that the R-action is transversal
or locally free nor that the manifold is compact. However, if we additionally
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assume that X is compact, we find that the first case cannot appear and
hence the R-action is induced by a CR torus action.

Proof of Theorem 3.5. If γ fails to be injective, we find that the R-action is
either constant or reduces to an S1-action. In both cases there is nothing to
show. So let us assume that γ is injective.

We have that Iso(X, g) ∩AutCR(X) is a Lie group and that γ(R) is a
topologically closed, abelian subgroup. Hence, γ(R) is an abelian Lie group
and thus can be identified with V × T , where V is a finite dimensional real
vector space and T is some torus.

In the case γ(R) = γ(R) we find by dimensional reasons and because γ is
injective that T = {id} and V ≃ R holds. Take a point p ∈ X and consider
the map γ̃ : R → X, t 7→ γ(t)(p). Since γ(R) is a closed subset of Iso(X, g) ∩
AutCR(X) which is closed in Iso(X, g) and by Lemma 3.3 we have that γ̃ is
proper. Furthermore, γ̃ is injective, because otherwise it would be periodic
or constant what contradicts the properness. Summing up we have that γ̃ is
continuous, injective and proper and hence it is an embedding. Since p ∈ X
was chosen arbitrary, case 1 follows.
Given the case γ(R) ̸= γ(R) we will show that V = {0} holds. Denote the
action T ↷ X by (eiθ1 , . . . , eiθd). It is not difficult to see that the R-action
γ is given by

t 7→ (tv, eiα1t, . . . , eiαdt), for some v ∈ V and (α1, . . . , αd) ∈ Rd

and hence the projection of γ onto V is of the form t 7→ tv, for some v ∈ V .
First consider the case v ̸= 0. For h = (w, λ) ∈ γ(R) = V × T choose an open
neighbourhood U in V × T around h with compact closure. We find that
there exists t0 > 0 such that γ(t) /∈ U for |t| > t0. So we have h ∈ γ([−t0, t0]).
Since γ([−t0, t0]) is compact we conclude h ∈ γ([−t0, t0]). Thus, γ(R) ̸= γ(R)
implies v = 0 which leads to V = {0} since γ(R) has to be dense in V ×
T . □

Example 3.7. Consider X = Cz × Rs, T
1,0X = C · ( ∂

∂z
+ i∂φ

∂z
(z) ∂

∂s
) for

some function φ ∈ C∞(C,R). Then (X,T 1,0X) is a CR manifold and (t, (z, s))
7→ (z, s+ t) defines a transversal CR R-action. We observe that this action
is not induced by a CR torus action.

Corollary 3.8. Let (X,T 1,0X) be a connected strongly pseudoconvex CR
manifold equipped with a transversal CR R-action. We have that the R-
action comes from a CR torus action if and only if at least one of the fol-
lowing conditions is satisfied:
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a) there exists an orbit which is a non-closed subset of X,

b) there exists an orbit which is compact.

Proof. Using Theorem 3.5 we just need to construct an R-invariant Rieman-
nian metric on X. Let T denote the vector field induced by the R-action.
Since the action is transversal we have

CTX = CT ⊕ T 1,0X ⊕ T 0,1X.

Let P, P 1,0, P 0,1 be the projections which belong to the decomposition
above and denote by ω0 the real one form which satisfies ω0(T ) = −1 and
ω0(T

1,0X ⊕ T 0,1X) = 0. Since (X,T 1,0X) is strongly pseudoconvex we have
that i

2dω0 induces a Hermitian metric on T 1,0X. Now set

g = ω0 ⊗ ω0 +
i

2
dω0

(
P 1,0(·), P 0,1(·)

)
.

Identifying TX with 1⊗ TX ⊂ CTX we find that g defines a Riemannian
metric on X. Using BRT trivializations (see Section 2) one can check that
the Lie derivative of g with respect to T vanishes and hence that g is R-
invariant. Then the claim follows from Theorem 3.5. □

Corollary 3.9. Let (X,T 1,0X) be a connected CR manifold equipped with
a transversal CR R-action. Assume that L→ X is a rigid positive CR line
bundle over X. We have that the R-action comes from a CR torus action if
and only if at least one of the following conditions is satisfied:

a) there exists an orbit which is a non-closed subset of X,

b) there exists an orbit which is compact.

Proof. We have that L is an R-invariant Hermitian CR line bundle, which
implies that the fibrewise metric on L is R-invariant. Therefore its curvature,
which is a smooth (1, 1)-form RL on X, is R-invariant. Using the positiv-
ity of RL − 2sL, for some s ∈ R, we can proceed similar to the proof of
Corollary 3.8 replacing i

2dω0 by RL − 2sL. Thus, the Corollary follows from
Theorem 3.5. □

Remark 3.10. Note that we do not assume compactness of X in the corol-
laries above. When X is compact, at least one of the the conditions a) and
b) is automatically satisfied. Note that under the additional assumption that
X is compact the conclusion of Corollary 3.8 can be found in [15].
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From Corollary 3.8 and the equivariant embedding theorem established
in [5], we can prove

Theorem 3.11. Let X be a connected compact strongly pseudoconvex CR
manifold equipped with a transversal CR R-action η, η ∈ R: η : X → X,
x 7→ η ◦ x. Then, there exists N ∈ N, ν1, . . . , νN ∈ R and a CR embedding
Φ = (Φ1, . . . ,ΦN ) : X → CN such that

Φ(η ◦ x) = (eiν1ηΦ1(x), . . . , e
iνNηΦN (x))

holds for all x ∈ X and η ∈ R. In other words, Φ is equivariant with respect
to the holomorphic R-action η ◦ z = (eiν1ηz1, . . . , e

iνNηzN ) on CN .

Proof. By the assumptions we can apply Corollary 3.8. Since X is compact
we have that the R-action is a subaction of a CR torus action T r ↷ X
denoted by (eiτ1 , . . . , eiτr). We may assume that its rank r satisfies r > 1,
because otherwise we have that the R-action reduces to an S1-action.

Consider the vector fields T1, . . . , Tr on X given by

(Tj)x =
∂

∂τj
(1, . . . , 1, eiτj , 1, . . . , 1) ◦ x |τj=0 .

Let T denote the vector field induced by the R-action. We find T =
∑r

j=1 λjTj
for some real numbers λ1, . . . , λr ∈ R. By assumption, T is transversal and
hence we find λ̃1, . . . , λ̃r ∈ Q (λ̃j close to λj), such that T̃ =

∑r
j=1 λ̃jTj is

transversal. Since λ̃j ∈ Q, j = 1, . . . , r, we have that T̃ defines a transversal
CR S1-action on X and after rescaling T̃ we can achieve that the S1-action
can be represented by (eiθ, x) 7→ eiθ ◦ x with

Xreg :=
{
x ∈ X; eiθ ◦ x ̸= x, ∀θ ∈]0, 2π[

}
̸= ∅

We denote the rescaled vector field by T0. Choose a T r-invariant Hermitian
metric on X with

T 1,0X ⊥ T 0,1X, T0 ⊥ T 1,0X ⊕ T 0,1X and ∥T0∥ = 1.

Denote the space of CR functions for eigenvalue m ∈ N with respect to the
S1-action eiθ by H0

b,m(X), that is

H0
b,m(X) = {f ∈ C∞(X); ∂bu = 0, T0f = imf}

= {f ∈ C∞(X); ∂bf = 0, f(eiθ ◦ x) = eimθf(x), ∀x ∈ X, θ ∈ R}.
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The S1-action is transversal, so we have dimH0
b,m(X) <∞. Since [T0, Tj ] =

0 for j = 1, . . . , r (or in other words, the S1-action commutes with the T r-
action) we find a decomposition

H0
b,m(X) =

⊕

α∈Zr

Hb,(m,α)(X)(3.1)

where

H0
b,(m,α)(X) = {f ∈ H0

b,m(X), Tjf = iαjf, 1 ≤ j ≤ r}

= {f ∈ H0
b,m(X), f((eiτ1 , . . . , eiτr) ◦ x)

= eiα·τf(x), ∀x ∈ X, τ ∈ Rr}

with α · τ = α1τ1 + . . .+ αrτr. Furthermore, the decomposition (3.1) is or-
thogonal with respect to the L2 inner product coming from the T r-invariant
Hermitian metric. Given f ∈ H0

b,(m,α) we find f(η ◦ x) = ei(λ1α1+...+λrαr)ηf(x)

for all x ∈ X and η ∈ R because T =
∑r

j=1 λjTj and hence η ◦ x =

(eiλ1η, . . . , eiλrη) ◦ x. Choose an orthonormal basis {fj}
dm

j=1 of H0
b,m(X) with

respect to the decomposition (3.1) and define a CR map

Ψm : X → Cdm ,Ψm(x) = (f1(x), . . . , fdm
(x)).

By construction the map Ψm is R-equivariant, that is

Ψm(η · x) = (eiν1ηf1(x), . . . , e
iνdmηfdm

(x))

for some ν1, . . . , νdm
∈ R. Applying the embedding theorem in [5] there exist

m1, . . . ,mÑ ∈ N such that the map Φ := (Ψm1
, . . . ,ΨmÑ

) : X → CN is a CR
embedding where N ∈ N is some positive integer. Since Ψm is R-equivariant
the same is true for Φ which completes the proof. □

Let (X,T 1,0X) be a compact connected CR manifold with a transversal CR
R-action. Assume that X admits a rigid positive CR line bundle L. From
Theorem 3.5 and Corollary 3.9, we see that the R-action comes from a CR
torus action T d ↷ X denoted by (eiθ1 , . . . , eiθd). It should be mentioned that
CR torus action means that T d acts by CR automorphisms. In this work,
we need

Theorem 3.12. With the assumptions and notations above, we can find
local CR rigid trivializations of L defined on Dj, j = 1, . . . , N , such that
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X =
⋃N

j=1Dj, and

(3.2) Dj =
⋃

(eiθ1 ,...,eiθd )∈T d

(eiθ1 , . . . , eiθd) ◦Dj , j = 1, 2, . . . , N,

where (eiθ1 , . . . , eiθd) ◦Dj =
{
(eiθ1 , . . . , eiθd) ◦ x; x ∈ Dj

}
.

Proof. Fix p ∈ X. Assume first that

(3.3) (eiθ1 , 1, . . . , 1) ◦ p ̸= p, for some θ1 ∈]0, 2π[.

Put

A := {λ ∈ [0, 2π]; We can find a neighborhood W of p and ε > 0 such that

there is a local CR rigid trivializing section s defined on
⋃

θ1∈[0,λ+ε[(e
iθ1 , 1, . . . , 1) ◦W}.

It is clear that A is a non-empty open set in [0, 2π]. We claim that A is
closed. Let λ0 be a limit point of A. Consider the point q := (eiλ0 , 1, . . . , 1) ◦
p. From (3.3), it is not difficult to see that ∂

∂θ1
̸= 0 at q. We take local

coordinates x = (x1, . . . , x2n−1) defined on some neighborhood

D = {x = (x1, . . . , x2n−1); |xj | < 4δ, j = 1, . . . , 2n− 1} , δ > 0,

of q so that x(q) = 0, ∂
∂θ1

= ∂
∂x2n−1

on D. Let

D0 = {x = (x1, . . . , x2n−1); |xj | < δ, j = 1, . . . , 2n− 1} .

Then, D0 is an open neighborhood of q and

(eiθ1 , 1, . . . , 1) ◦ x = (x1, . . . , x2n−1 + θ1), ∀x ∈ D0, θ1 ∈ [0, δ].

It is clear that for some δ > ε1 > 0, ε1 small, there is a local CR trivializing
section s1 defined on

⋃

θ1∈]λ0−ε1,λ0+ε1[

(eiθ1 , 1, . . . , 1) ◦ Ŵ ⋐ D0,

where Ŵ is a small neighborhood of p. Since λ0 is a limit point of A, we can
find a local CR trivializing section s̃ defined on

⋃

θ1∈[0,λ0−
ε1
4
[

(eiθ1 , 1, . . . , 1) ◦ W̃ ,
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where W̃ is a small neighborhood of p. Since L is rigid, s̃ = gs1 on

⋃

θ1∈]λ0−ε1,λ0−
ε1
4
[

(eiθ1 , 1, . . . , 1)◦
(
Ŵ

⋂
W̃

)

for some rigid CR function g. Let

W =
{
(e−iλ0 , 1, . . . , 1) ◦ x; x = (x1, . . . , x2n−1) ∈ D0,

|xj | < γ, j = 1, . . . , 2n− 1
}
,

where 0 < γ < δ is a small constant so that W ⋐

(
Ŵ

⋂
W̃

)
. We consider g

as a function on ⋃

θ1∈]λ0−ε1,λ0−
ε1
4
[

(eiθ1 , 1, . . . , 1) ◦W.

We claim that g is independent of x2n−1. Fix

x = (x1, . . . , x2n−1) ∈
⋃

θ1∈]λ0−ε1,λ0−
ε1
4
[

(eiθ1 , 1, . . . , 1) ◦W ⋐ D0.

We have g(x) = g((ei(x2n−1+
ε1
2
), 1, . . . , 1) ◦ (x1, . . . , x2n−2,−

ε1
2 )). Note that

(x1, . . . , x2n−2,−
ε1
2
) ∈

⋃

θ1∈]λ0−ε1,λ0−
ε1
4
[

(eiθ1 , 1, . . . , 1) ◦W.

In view of Theorem 3.5, we see that γ(R) is the torus T d, we can find a se-
quence of real numbers tj , j = 1, 2, . . ., such that tj ◦ (x1, . . . , x2n−2,−

ε1
2 ) →

(ei(x2n−1+
ε1
2
), 1, . . . , 1) ◦ (x1, . . . , x2n−1,−

ε1
2 ) as j → ∞ and by Theorem 3.1,

(3.4) g(x) = lim
j→∞

g(tj ◦ (x1, . . . , x2n−2,−
ε1
2
)) = g(x1, . . . , x2n−2,−

ε1
2
).

The claim follows. Hence, we can extend g to
⋃

θ1∈[λ0−
ε1
4
,λ0+

ε1
8
[(e

iθ1 , 1, . . . , 1) ◦

W by

g :
⋃

θ1∈[λ0−
ε1
4
,λ0+

ε1
8
[

(eiθ1 , 1, . . . , 1) ◦W → C,

x 7→ g(x1, . . . , x2n−2,−
ε1
2
).

(3.5)
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Put s = s̃ on
⋃

θ1∈[0,λ0−
ε1
4
[(e

iθ1 , 1, . . . , 1) ◦W and s = gs1 on

⋃

θ1∈]λ0−ε1,λ0+
ε1
8
[

(eiθ1 , 1, . . . , 1) ◦W.

It is straightforward to check that s is well-defined as a local CR rigid triv-
ializing section on

⋃
θ1∈[0,λ0+

ε1
8
[(e

iθ1 , 1, . . . , 1) ◦W . Thus, λ0 ∈ A and hence

A = [0, 2π].
Now, assume that (eiθ1 , 1, . . . , 1) ◦ p = p, for all θ1 ∈ [0, 2π]. Let s be a

local CR rigid trivializing section of L defined on an open set U of p. Since
(eiθ1 , 1, . . . , 1) ◦ p = p, for all θ1 ∈ [0, 2π], we can find a small open set W of
p with

⋃

θ1∈[0,2π[

(eiθ1 , 1, . . . , 1) ◦W ⊂ U.

We conclude that there is a local CR rigid trivializing section of L defined
on

⋃

θ1∈[0,2π]

(eiθ1 , 1, . . . , 1) ◦W.

Assume that (1, eiθ2 , 1, . . . , 1) ◦ p ̸= p, for some θ2 ∈]0, 2π[. Put

B := {λ ∈ [0, 2π]; we can find a neighborhood W of p and ε > 0 such that

there is a local CR rigid trivializing section s defined on
⋃

θ1∈[0,2π],θ2∈[0,λ+ε[(e
iθ1 , eiθ2 , . . . , 1) ◦W}.

We can repeat the procedure above with minor change and conclude that
B = [0, 2π]. Assume that (1, eiθ2 , 1, . . . , 1) ◦ p = p, ∀θ2 ∈ [0, 2π]. It is clear
that we can find a neighborhood W of p such that there is a local CR
rigid trivializing section s defined on

⋃
θ1∈[0,2π],θ2∈[0,2π]

(eiθ1 , eiθ2 , . . . , 1) ◦W .
Continuing in this way, we conclude that for every p ∈ X, there is a local
CR rigid trivializing section s of L defined on

⋃

(eiθ1 ,...,eiθd )∈T d

(eiθ1 , . . . , eiθd) ◦W,

where W is an open set of p. Since X is compact, the theorem follows. □

Theorem 3.12 tells us that L is torus invariant. From Theorem 3.12, we
deduce



✐

✐

“6-Hsiao” — 2022/8/30 — 15:47 — page 227 — #35
✐

✐

✐

✐

✐

✐
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Corollary 3.13. With the assumptions and notations above, we can find
local CR rigid trivializations Dj of L, j = 1, . . . , N , such that X =

⋃N
j=1Dj,

and

(3.6) Dj =
⋃

t∈R

t ◦Dj , j = 1, 2, . . . , N,

where t ◦Dj = {t ◦ x; x ∈ Dj}.

We also need

Lemma 3.14. With the assumptions and notations above, let hL be any
rigid Hermitian fiber metric of L. Then, hL is T d-invariant.

Proof. By Theorem 3.12, we can find local CR trivializations Dj of L, j =

1, . . . , N , such that X =
⋃N

j=1Dj , and

Dj =
⋃

(eiθ1 ,...,eiθd )∈T d

(eiθ1 , . . . , eiθd) ◦Dj , j = 1, 2, . . . , N,

where (eiθ1 , . . . , eiθd) ◦Dj =
{
(eiθ1 , . . . , eiθd) ◦ x; x ∈ Dj

}
.

For each j = 1, . . . , N , let sj be a local rigid CR trivialization of L on Dj ,
|sj |

2
hLj = e−2ϕj . Then, ϕj is R-invariant. Fix (eiθ1 , . . . , eiθd) ∈ T d and x ∈ Dj .

In view of Theorem 3.5, we see that γ(R) is the torus T d and we can find
a sequence of R-action tk, k = 1, 2, . . ., such that tk ◦ x→ (eiθ1 , . . . , eiθd) ◦ x
as k → +∞ and by Theorem 3.1, we have

ϕj(x) = lim
k→∞

ϕj(tk ◦ x) = ϕj((e
iθ1 , . . . , eiθd) ◦ x).

Thus, hL is torus invariant. The lemma follows. □

4. The operator −iT

From now on, we let (X,T 1,0X) be a compact connected CR manifold of
dimension 2n− 1, n ⩾ 2, endowed with a locally free transversal CR R-
action η, η ∈ R: η : X → X, x 7→ η ◦ x, and let (L, hL) be a rigid CR line
bundle over X and assume that there is an open interval I ⊂ R, such that
RL − 2sL is positive definite on X, for every s ∈ I, where hL is a rigid
Hermitian metric on L and RL is the curvature of L induced by hL. For
simplicity, we assume that ]− δ, δ[⊂ I, where δ > 0. Hence RL is positive on
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X. Let ⟨ · | · ⟩ be the rigid Hermitian metric on CTX induced by RL such
that

T 1,0X ⊥ T 0,1X, T ⊥ (T 1,0X ⊕ T 0,1X), ⟨T |T ⟩ = 1.

The rigid Hermitian metric ⟨ · | · ⟩ on CTX induces a rigid Hermitian metric
⟨ · | · ⟩ on ⊕n−1

j=1T
∗0,jX. We denote by dvX the volume form induced by ⟨ · | · ⟩.

Let ( · | · )k be the L2 inner product on Ω0,q(X,Lk) induced by hL
k

and dvX
and let ∥·∥k be the corresponding norm. Let L2

(0,q)(X,L
k) be the completion

of Ω0,q(X,Lk) with respect to ( · | · )k. We extend ( · | · )k to L2
(0,q)(X,L

k).
Consider the operator

−iT : Ω0,q(X,Lk) → Ω0,q(X,Lk)

and we extend −iT to L2
(0,q)(X,L

k) space by

− iT : Dom (−iT ) ⊂ L2
(0,q)(X,L

k) → L2
(0,q)(X,L

k),

Dom(−iT ) =
{
u ∈ L2

(0,q)(X,L
k); −iTu ∈ L2

(0,q)(X,L
k)
}
.

Theorem 4.1. The operator

−iT : Dom (−iT ) ⊂ L2
(0,q)(X,L

k) → L2
(0,q)(X,L

k)

is self-adjoint.

Proof. Let (−iT )∗ : Dom (−iT )∗ ⊂ L2
(0,q)(X,L

k) → L2
(0,q)(X,L

k) be the

Hilbert adjoint of −iT with respect to ( · | · )k. Since ( · | · )k is rigid, we have

(−iTu | v )k = (u | − iTv )k, ∀u, v ∈ Ω0,q(X,Lk).

From this observation, it is easy to see that Dom (−iT )∗ ⊂ Dom(−iT ) and
−iTu = (−iT )∗u, for all u ∈ Dom(−iT )∗. Now, fix u ∈ Dom(−iT ). We want
to show that u ∈ Dom(−iT )∗ and −iTu = (−iT )∗u. Let g ∈ Dom(−iT ). By
the classical Friedrichs’ lemma, we can find gj ∈ Ω0,q(X,Lk), j = 1, 2, . . .,
such that ∥gj − g∥k → 0 as j → ∞ and ∥(−iTgj)− (−iTg)∥k → 0 as j → ∞.
Now,

(u | − iTg )k = lim
j→∞

(u | − iTgj )k = lim
j→∞

(−iTu | gj )k = (−iTu | g )k.

Hence, u ∈ Dom(−iT )∗ and −iTu = (−iT )∗u. The theorem follows. □
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From Theorem 3.5 and Corollary 3.9, we see that the R-action η comes
from a torus action T d ↷ X denoted by (eiθ1 , . . . , eiθd). By Theorem 3.12,
we see that X can be covered by torus invariant trivializations. By using
these torus invariant trivializations, the torus action on X lifts to Lk. In
view of Theorem 3.12 and Lemma 3.14, we see that L, hL and RL are torus
invariant and hence the Hermitian metric ⟨ · | · ⟩ and the L2 inner product
( · | · )k are torus invariant.

Note that T d ∈ AutCR(X). As in the S1-action case (see Section 2.3
in [12]), for u ∈ Ω0,q(X,Lk) and for any (eiθ1 , . . . , eiθd) ∈ T d , we define

(4.1) u((eiθ1 , . . . , eiθd) ◦ x) := (eiθ1 , . . . , eiθd)∗u(x) ∈ Ω0,q(X,Lk),

where

(eiθ1 , . . . , eiθd)∗ : T ∗0,q
x X → T ∗0,q

(e−iθ1 ,...,e−iθd )◦x
X

is the pull-back map of (eiθ1 , . . . , eiθd). For every (m1, . . . ,md) ∈ Zd, put

Ω0,q
m1,...,md

(X,Lk) : = {u ∈ Ω0,q(X,Lk); u((eiθ1 , . . . , eiθd) ◦ x)

= eim1θ1+···+imdθdu(x), ∀(eiθ1 , . . . , eiθd) ∈ T d}.

Let L2
(0,q),m1,...,md

(X,Lk) be the L2 completion of Ω0,q
m1,...,md

(X,Lk) with re-

spect to ( · | · )k. For (m1, . . . ,md) ∈ Zd, let

(4.2) Q
(q)
m1,...,md,k

: L2
(0,q)(X,L

k) → L2
(0,q),m1,...,md

(X,Lk)

be the orthogonal projection with respect to ( · | · )k. Form = (m1, . . . ,md) ∈

Zd, denote |m| =
√
m2

1 + · · ·+m2
d. By elementary Fourier analysis, it is

straightforward to see that for every u ∈ Ω0,q(X,Lk),

lim
N→∞

∑
m=(m1,...,md)∈Zd,|m|≤N

Q
(q)
m1,...,md,k

u = u in C∞ Topology,

∑

m=(m1,...,md)∈Zd,|m|≤N

∥∥∥Q(q)
m1,...,md,k

u
∥∥∥
2

k
≤ ∥u∥2k , ∀N > 0.

(4.3)

Thus, for every u ∈ L2
(0,q)(X,L

k),

lim
N→∞

∑
m=(m1,...,md)∈Zd,|m|≤N

Q
(q)
m1,...,md,k

u = u in L2
(0,q)(X,L

k),

∑

m=(m1,...,md)∈Zd,|m|≤N

∥∥∥Q(q)
m1,...,md,k

u
∥∥∥
2

k
≤ ∥u∥2k , ∀N > 0.

(4.4)



✐

✐

“6-Hsiao” — 2022/8/30 — 15:47 — page 230 — #38
✐

✐

✐

✐

✐

✐

230 H. Herrmann, C.-Y. Hsiao, and X. Li

For every j = 1, . . . , d, let Tj be the operator on Ω0,q(X) given by

(Tju)(x) =
∂

∂θj
u((1, . . . , 1, eiθj , 1, . . . , 1) ◦ x)|θj=0, ∀u ∈ Ω0,q(X).

Since L is torus invariant, we can also define Tju in the standard way, for
every u ∈ Ω0,q(X,Lk), j = 1, . . . , d. Note that Tj can be zero at some point
of X. Since the R-action η comes from T d, there exist real numbers βj ∈ R,
j = 1, . . . , d, such that

(4.5) T = β1T1 + · · ·+ βdTd.

Using the following remark we can assume that the βj ’s in (4.5) are linear
independent over Q.

Remark 4.2. Assume that β1, . . . , βd in (4.5) are linear dependent over
Q. Without loss of generality, we may assume that β1, . . . , βp are linear
independent over Q, where 1 ≤ p < d, and

(4.6) βj =

p∑

ℓ=1

rj,ℓβℓ, j = p+ 1, . . . , d,

where rj,ℓ ∈ Q, for every j = p+ 1, . . . , d, ℓ = 1, . . . , p. Consider the new
Torus action on X:

(eiθ1 , . . . , eiθp) ◦ x := (eiNθ1 , . . . , eiNθp , eiN
∑p

ℓ=1 rp+1,ℓθℓ , . . . , eiN
∑p

ℓ=1 rd,ℓθℓ) ◦ x,

where N ∈ N with rj,ℓ|N , for every j = p+ 1, . . . , d, ℓ = 1, . . . , p. For every

j = 1, . . . , p, let T̂j be the operator on C∞(X) given by

(T̂ju)(x) =
∂

∂θj
u((1, . . . , 1, eiθj , 1, . . . , 1) · x)|θj=0, ∀u ∈ C∞(X).

It is easy to check that the R-action η comes from the new torus action
(eiθ1 , . . . , eiθp) and

T =
β1
N
T̂1 + · · ·+

βp
N
T̂p.

Note that β1

N
, . . . , βp

N
are linear independent over Q. Hence, without loss of

generality we may assume that β1, . . . , βd are linear independent over Q.

Lemma 4.3. Fix (m1, . . . ,md) ∈ Zd. Then, L2
(0,q),m1,...,md

(X,Lk) ̸= 0.
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Proof. It is straightforward to see that we can find γ1 ∈ Q, . . . , γd ∈ Q such
that the vector field

T0 := γ1T1 + · · ·+ γdTd

induces a transversal CR S1 action eiθ on X with

Xreg :=
{
x ∈ X; eiθ ◦ x ̸= x, ∀θ ∈]0, 2π[

}
̸= ∅

and

(4.7) Ω̂0,q
mγ

(X,Lk) :=
{
u ∈ Ω0,q(X,Lk); T0u = imγu

}
= Ω0,q

m1,...,md
(X,Lk),

wheremγ := m1γ1 + · · ·+mdγd. Fix p ∈ Xreg and let x = (x1, . . . , x2n+1) =
(x′, x2n+1) be local coordinates of X centered at p defined on

D =
{
x = (x1, . . . , x2n+1) ∈ R2n+1;

∣∣x′
∣∣ < δ, |x2n+1| < ε

}

such that T0=
∂

∂x2n+1
, where δ>0, ε>0 are constants and x′=(x1, . . . , x2n).

Let s be a local CR rigid trivializing section of L on D. It is not difficult to
see that there is a small open set D0 ⋐ D of p such that for all (x′, 0) ∈ D0,
we have

(4.8) eiθ ◦ (x′, 0) /∈ D0, ∀θ ∈]ε, 2π − ε].

Let χ(x) ∈ C∞
0 (D0) with

(4.9)

∫
χ(x′, x2n+1)dx2n+1 ̸= 0.

Let u(x) := sk(x)⊗ χ(x)eimγx2n+1 ∈ C∞(X,Lk). From (4.8) and (4.9) we can
check that

1

2π

∫ 2π

0
u(eiθ ◦ (x′, 0))e−imγθdθ =

1

2π
sk(x)⊗

∫
χ(x′, x2n+1)dx2n+1 ̸= 0.

Since 1
2π

∫ 2π
0 u(eiθ ◦ x)e−imγθdθ ∈ Ω̂0,q

mγ
(X,Lk), we deduce that Ω̂0,q

mγ
(X,Lk) ̸=

{0}. From this observation and (4.7), the lemma follows. □

We need

Lemma 4.4. Assume that β1, . . . , βd in (4.5) are linear independent over
Q. Given p := (p1, . . . , pd) ∈ Zd we have that pβ :=

∑d
j=1 pjβj is an eigen-

value of −iT and the corresponding eigenspace is L2
(0,q),p1,...,pd

(X,Lk).
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Proof. Set

Epβ
:= {u ∈ Dom(−iT ); −iTu = pβu} .

Given u ∈ Ω0,q
p1,...,pd

(X,Lk) it is easy to check that

−iTu = −i
d∑

j=1

βjTju =

d∑

j=1

βjpju = pβu

and hence u ∈ Epβ
. We obtain Ω0,q

p1,...,pd
(X,Lk) ⊂ Epβ

.

Let g ∈ L2
(0,q),p1,...,pd

(X,Lk). Take gj ∈ Ω0,q
p1,...,pd

(X,Lk), j = 1, 2, . . ., such

that gj → g in L2
(0,q)(X,L

k) as j → +∞. Since −iTgj = pβgj , for every j,
we deduce that −iTg = pβg in the sense of distribution. Thus, g ∈ Epβ

. We
have proved that L2

(0,q),p1,...,pd
(X,Lk) ⊂ Epβ

.

We claim that L2
(0,q),p1,...,pd

(X,Lk) ⊃ Epβ
. If the claim is not true, we can

find a u ∈ Epβ
, ∥u∥k = 1, such that

(4.10) u ⊥ L2
(0,q),p1,...,pd

(X,Lk).

From (4.4), we have

(4.11) lim
N→∞

∑
m=(m1,...,md)∈Zd,|m|≤N

Q
(q)
m1,...,md,k

u = u in L2
(0,q)(X,L

k).

Note that for everym = (m1, . . . ,md) ∈ Zd, Q
(q)
m1,...,md,k

u is an eigenvector of

−iT with eigenvalue
∑d

j=1mjβj and since β1, . . . , βd are linear independent

over Q we have pβ =
∑d

j=1mjβj if and only if (p1, . . . , pd) = (m1, . . . ,md).
From this observations and (4.10), we conclude that

(4.12) (u |Q
(q)
m1,...,md,k

u )k = 0, ∀(m1, . . . ,md) ∈ Zd.

From (4.12), we see that for every N ∈ N, we have

∥∥∥∥∥∥
u−

∑

m=(m1,...,md)∈Zd,|m|≤N

Q
(q)
m1,...,md,k

u

∥∥∥∥∥∥

2

k

= ∥u∥2k +
∑

m=(m1,...,md)∈Zd,|m|≤N

∥∥∥Q(q)
m1,...,md,k

u
∥∥∥
2

k
.

(4.13)

From (4.13) and (4.11), we get a contradiction. The lemma follows. □
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Let Spec (−iT ) denote the spectrum of −iT . We can now prove

Theorem 4.5. Spec (−iT ) is countable and every element in Spec (−iT )
is an eigenvalue of −iT . Moreover, for every α ∈ Spec (−iT ), we can find

(m1, . . . ,md) ∈ Zd

such that α =
∑d

j=1 βjmj, where β1 ∈ R, . . . , βd ∈ R, are as in (4.5).

Proof. Let A =
{
α =

∑d
j=1mjβj ; (m1, . . . ,md) ∈ Zd

}
. From Lemma 4.4,

we see that A ⊂ Spec (−iT ) and every element in A is an eigenvalue of −iT .
For a Borel set B of R, we denote by E(B) the spectral projection of −iT
corresponding to the set B, where E is the spectral measure of −iT . Fix a
Borel set B of R with B

⋂
A = ∅ and let g ∈ RangeE(B) ⊂ L2

(0,q)(X,L
k).

Since B
⋂
A = ∅ and by Lemma 4.4, we see that

(4.14) ( g |Q
(q)
m1,...,md,k

g )k = 0, ∀(m1, . . . ,md) ∈ Zd.

From (4.14) and (4.4), we get

∥∥∥∥∥∥
g −

∑

m=(m1,...,md)∈Zd,|m|≤N

Q
(q)
m1,...,md,k

g

∥∥∥∥∥∥

2

k

= ∥g∥2k +
∑

m=(m1,...,md)∈Zd,|m|≤N

∥∥∥Q(q)
m1,...,md,k

g
∥∥∥
2

k

→ 0 as N → ∞.

Hence, g = 0. We have proved that A = Spec (−iT ). The theorem follows.
□

We will prove now that

H0
b,≤λ(X,L

k) :=
⊕

α∈Spec (−iT ),|α|≤λ

H0
b,α(X,L

k)

is finite dimensional, that is,H0
b,α(X,L

k)=0 for almost every α∈Spec (−iT ),
|α| ≤ λ.

Lemma 4.6. We have that dimH0
b,≤λ(X,L

k) <∞ and hence that

H0
b,≤λ(X,L

k) is closed.
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Proof. Consider the operator □b,k :=∂
∗
b∂b : C

∞(X,Lk)→C∞(X,Lk) where

∂
∗
b : Ω

0,1(X,Lk) → C∞(X,Lk)

is the formal adjoint of ∂b with respect to ( · | · )k (see Section 5 for a detailed
description). Consider

△k := □b,k − T 2 : C∞(X,Lk) → C∞(X,Lk)

and we extend △k to L2 space by △k : Dom△k ⊂ L2(X,Lk) → L2(X,Lk),
Dom△k =

{
u ∈ L2(X,Lk); △ku ∈ L2(X,Lk)

}
and △k = (□b,k − T 2)u, for

every u ∈ Dom△k. Let σ□b,k
and σT 2 denote the principal symbols of □b,k

and T 2 respectively. It is well-known (see the discussion after Proposition
2.3 in [7]) that there is a constant C > 0 such that

(4.15) σ□b,k
(x, ξ) + |⟨ ξ |ω0(x) ⟩|

2 ≥ C |ξ|2 , ∀(x, ξ) ∈ T ∗X.

Moreover, it is easy to see that

(4.16) σT 2(x, ξ) = − |⟨ ξ |ω0(x) ⟩|
2 , ∀(x, ξ) ∈ T ∗X.

From (4.15) and (4.16), we deduce that △k is elliptic. As a consequence
Spec (△k) is discrete and every element in Spec (△k) is an eigenvalue of △k.
For every µ ∈ Spec (△k), put Eµ(△k) := {u ∈ Dom△k; △ku = µu}. For ev-
ery λ ≥ 0, it is easy to see that

(4.17) H0
b,≤λ(X,L

k) ⊂ ⊕µ∈Spec (△k),|µ|≤λ2Eµ(△k).

From (4.17) and notice that dimEµ(△k) < +∞, for every µ ∈ Spec (△k),
the lemma follows. □

5. Szegő kernels and equivariant embedding theorems

In this section, we will prove Theorem 1.1 and Theorem 1.2. We first recall
some results in [10]. We refer the reader to Section 2.2 in [12] for some
notations in semi-classical analysis used here. Let

∂
∗
b : Ω

0,1(X,Lk) → C∞(X,Lk)
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be the formal adjoint of ∂b with respect to ( · | · )k. Since ⟨ · | · ⟩ and h are
rigid, we can check that

T∂
∗
b = ∂

∗
bT on Ω0,1(X,Lk), q = 1, 2, . . . , n− 1,

∂
∗
b : Ω

0,1
α (X,Lk) → C∞

α (X,Lk), ∀α ∈ Spec (−iT ),
(5.1)

where Ω0,1
α (X,Lk) =

{
u ∈ Ω0,1(X,Lk); −iTu = αu

}
. Put

(5.2) □b,k := ∂
∗
b∂b : C

∞(X,Lk) → C∞(X,Lk).

From (2.10) and (5.1), we have

T□b,k = □b,kT on C∞(X,Lk),

□b,k : C∞
α (X,Lk) → C∞

α (X,Lk), ∀α ∈ Spec (−iT ).
(5.3)

Let Πk : L2(X) → Ker□b,k be the orthogonal projection (the Szegő projec-
tor).

Definition 5.1. Let Ak : L2(X,Lk) → L2(X,Lk) be a continuous operator.
Let D ⋐ X. We say that □b,k has O(k−n0) small spectral gap on D with
respect to Ak if for every D′ ⋐ D, there exist constants CD′ > 0, n0, p ∈ N,
k0 ∈ N, such that for all k ≥ k0 and u ∈ C∞

0 (D′, Lk), we have

∥Ak(I −Πk)u∥k ≤ CD′ kn0

√
( (□b,k)pu |u )k .

Fix λ > 0 and let Πk,≤λ be as in (1.9).

Definition 5.2. Let Ak : L2(X,Lk) → L2(X,Lk) be a continuous opera-
tor. We say that Πk,≤λ is k-negligible away the diagonal with respect to Ak

on D ⋐ X if for any χ, χ1 ∈ C∞
0 (D) with χ1 = 1 on some neighborhood of

Suppχ, we have

(
χAk(1− χ1)

)
Πk,≤λ

(
χAk(1− χ1)

)∗
= O(k−∞) on D,

where
(
χAk(1− χ1)

)∗
: L2(X,Lk) → L2(X,Lk) is the Hilbert space adjoint

of χAk(1− χ1) with respect to ( · | · )k.

Fix δ > 0 and let Fk,δ be as in (1.8). Let s be a local rigid CR trivializing
section of L on an open set D of X. The localization of Fk,δ with respect to
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the trivializing rigid CR section s is given by

(5.4) Fk,δ,s : L
2
comp (D) → L2(D), Fk,δ,s = U−1

k,sFk,δUk,s,

where Uk,s is as in (1.13). The following is well-known

Theorem 5.3 ([10, Theorem 1.5]). With the notations and assump-
tions used above, let s be a local rigid CR trivializing section of L on a
canonical coordinate patch D ⋐ X with canonical coordinates x = (z, θ) =
(x1, . . . , x2n−1), |s|

2
hL = e−2Φ. Let δ > 0 be a constant so that RL

x − 2tLx is
positive definite, for every x ∈ X and |t| ≤ δ. Let Fk,δ be as in (1.8) and let
Fk,δ,s be the localized operator of Fk,δ given by (5.4). Assume that:

(I) □b,k has O(k−n0) small spectral gap on D with respect to Fk,δ.
(II) Πk,≤δk is k-negligible away the diagonal with respect to Fk,δ on D.
(III) Fk,δ,s −Bk = O(k−∞) : Hs

comp (D) → Hs
loc (D), ∀s ∈ N0, where

Bk =
k2n−1

(2π)2n−1

∫
eik⟨x−y,ξ⟩α(x, ξ, k)dη +O(k−∞)

is a classical semi-classical pseudodifferential operator on D of order 0 with

α(x, ξ, k) ∼
∑∞

j=0 αj(x, ξ)k
−j in S0

loc (1;T
∗D),

αj(x, ξ) ∈ C∞(T ∗D), j = 0, 1, . . . ,

and for every (x, ξ) ∈ T ∗D, α(x, ξ, k) = 0 if
∣∣⟨ ξ |ω0(x) ⟩

∣∣ > δ. Fix D0 ⋐ D.
Then

(5.5) Pk,δ,s(x, y) =

∫
eikφ(x,y,t)g(x, y, t, k)dt+O(k−∞) on D0 ×D0,

where φ(x, y, t) ∈ C∞(D ×D × (−δ, δ)) is as in (1.16) and

g(x, y, t, k) ∈ Sn
loc (1;D ×D × (−δ, δ)) ∩ C∞

0 (D ×D × (−δ, δ)),

g(x, y, t, k) ∼
∞∑

j=0

gj(x, y, t)k
n−j in Sn

loc (1;D ×D × (−δ, δ))

is as in (1.17), where Pk,δ,s is given by (1.14).

In view of Theorem 5.3, we see that to prove Theorem 1.1, we only need
to prove that (I) , (II) and (III) in Theorem 5.3 hold if δ > 0 is small enough.
By repeating the proof of Theorem 3.9 in [12], we see that (I) holds. We
only need to show that (II) and (III) hold.
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Recall that the R-action η comes from a CR torus action T d ↷ X which
we denote by (eiθ1 , . . . , eiθd) and L, hL, RL, the Hermitian metric ⟨ · | · ⟩ and
the L2 inner product ( · | · )k are torus invariant. For every j = 1, . . . , d, let
Tj be the operator on C∞(X) given by

(Tju)(x) =
∂

∂θj
u((1, . . . , 1, eiθj , 1, . . . , 1) ◦ x)|θj=0, ∀u ∈ C∞(X).

Since the R-action η comes from T d, there exist real numbers βj ∈ R, j =
1, . . . , d, such that

(5.6) T = β1T1 + · · ·+ βdTd.

Using Remark 4.2 we can assume that β1, . . . , βd are linear independent over
Q.

Let D ⊂ X be a canonical coordinate patch and let x = (x1, . . . , x2n−1)
be canonical coordinates on D. We identify D with W×]− ε, ε[⊂ R2n−1,
where W is some open set in R2n−2 and ε > 0. Until further notice, we work
with canonical coordinates x = (x1, . . . , x2n−1). Let ξ = (ξ1, . . . , ξ2n−1) be
the dual coordinates of x. Let s be a local rigid CR trivializing section of
L on D, |s|2hL = e−2Φ. Let Fk,δ,s be the localized operator of Fk,δ given by
(5.4). Put

(5.7) Bk =
k2n−1

(2π)2n−1

∫
eik⟨x−y,ξ⟩τδ(ξ2n−1)dξ,

where τδ ∈ C∞
0 ((−δ, δ)) is given by (1.7).

Lemma 5.4. We have

Fk,δ,s −Bk = O(k−∞) : Hs
comp (D) → Hs

loc (D), ∀s ∈ N0.

Proof. We also write y = (y1, . . . , y2n−1) to denote the canonical coordinates.
It is easy to see that on D,

Fk,δ,su(y) =
∑

(m1,...,md)∈Zd

τδ

(∑d
j=1mjβj

k

)
ei(

∑
d
j=1

mjβj)y2n−1

×

∫

T d

e−(im1θ1+···+imdθd)u((eiθ1 , . . . , eiθd) ◦ y′)dTd, ∀u ∈ C∞
0 (D),

(5.8)
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where y′ = (y1, . . . , y2n−2, 0), dTd = (2π)−ddθ1 · · · dθd and β1 ∈ R, . . . , βd ∈
R are as in (5.6). Recall that β1, . . . , βd are linear independent over Q. Fix
D′ ⋐ D and let χ(y2n−1) ∈ C∞

0 (]− ε, ε[) such that χ(y2n−1) = 1 for every
(y′, y2n−1) ∈ D′. Let Rk : C∞

0 (D′) → C∞(D′) be the continuous operator
given by

(Rku)(x) =

1

2π

∑

(m1,...,md)∈Zd

∫

T d

ei⟨x2n−1−y2n−1,ξ2n−1⟩+i(
∑

d
j=1

mjβj)y2n−1−im1θ1−···−imdθd

× τδ

(ξ2n−1

k

)
(1− χ(y2n−1))u((e

iθ1 , . . . , eiθd) ◦ x′)dTddξ2n−1dy2n−1,

(5.9)

where u ∈ C∞
0 (D′). We claim that

(5.10) Rk = O(k−∞) : Hs
comp (D

′) → Hs
loc (D

′), ∀s ∈ N0.

We only prove the claim (5.10) for s = 0. For any s ∈ N, the proof is similar.
Fix any g ∈ C∞

0 (D′). By using integration by parts with respect to y2n−1

and ξ2n−1 several times, it is straightforward to check that for every N ∈ N,
there is a constant CN > 0 independent of k such that

∫

X

|Rku|
2 (x)g(x)dvX(x)

≤ CNk
−2N

( ∑

(m1,...,md)∈Zd,(m1,...,md) ̸=(0,...,0)

( 1

m1β1 + · · ·+mdβd

)2N
+ 1

)

×

∫

X

∫

T d

∣∣∣u((eiθ1 , . . . , eiθd) ◦ x′)
∣∣∣
2
g(x)dTddvX(x).

(5.11)

It is clear that

∫

T d

∣∣∣u((eiθ1 , . . . , eiθd) ◦ x′)
∣∣∣
2
g(x)dTd =

∫

T d

∣∣∣u((eiθ1 , . . . , eiθd) ◦ x)
∣∣∣
2
g(x)dTd.
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From this observation, (5.11) and since dvX is T d-invariant, we conclude
that

∫

X

∫

T d

∣∣∣u((eiθ1 , . . . , eiθd) ◦ x′)
∣∣∣
2
g(x)dTddvX(x)

=

∫

X

∫

T d

∣∣∣u((eiθ1 , . . . , eiθd) ◦ x)
∣∣∣
2
g(x)dTddvX(x)

≤ C

∫

X

∫

T d

∣∣∣u((eiθ1 , . . . , eiθd) ◦ x)
∣∣∣
2
dTddvX(x)

≤

∫

X

|u(x)|2 dvX(x),

(5.12)

where C > 0 is a constant independent of k and u. From (5.12), (5.11) and
since ∑

(m1,...,md)∈Zd

( 1

m1β1 + · · ·+mdβd
)2N < +∞

if N is large enough, we get the claim (5.10).
Now, we claim that

(5.13) Bk +Rk = Fk,δ,s on C∞
0 (D′).

Let u ∈ C∞
0 (D′). From (5.7) and Fourier inversion formula, it is straightfor-

ward to see that

(5.14) Bku(x) =
1

2π

∑

(m1,...,md)∈Zd

∫
ei⟨x2n−1−y2n−1,ξ2n−1⟩τδ

(ξ2n−1

k

)
χ(y2n−1)

× ei(
∑

d
j=1

mjβj)y2n−1−im1θ1−···−imdθdu((eiθ1 , . . . , eiθd) ◦ x′)dTddy2n−1dξ2n−1.

From (5.14) and (5.9), we have

(5.15) (Bk +Rk)u(x) =
1

2π

∑

(m1,...,md)∈Zd

∫
ei⟨x2n−1−y2n−1,ξ2n−1⟩τδ

(ξ2n−1

k

)

× ei(
∑

d
j=1

mjβj)y2n−1−im1θ1−···−imdθdu((eiθ1 , . . . , eiθd) ◦ x′)dTddy2n−1dξ2n−1.

Note that the following formula holds for every α ∈ R,

(5.16)

∫
eiαy2n−1e−iy2n−1ξ2n−1dy2n−1 = 2πδα(ξ2n−1),

where the integral is defined as an oscillatory integral and δα is the Dirac
measure at α. Using (5.8), (5.16) and the Fourier inversion formula, (5.15)
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becomes

(Bk +Rk)u(x) =
∑

(m1,...,md)∈Zd

τδ

(∑d
j=1mjβj

k

)
ei(

∑
d
j=1

mjβj)x2n−1

×

∫

Td

e−im1θ1−···−imdθdu((eiθ1 , . . . , eiθd) ◦ x′)dTd

= Fk,δ,su(x).

(5.17)

From (5.17), the claim (5.13) follows. From (5.13) and (5.10), the lemma
follows. □

From Lemma 5.4, we see that the condition (III) in Theorem 5.3 holds.

Lemma 5.5. Let D ⊂ X be a canonical coordinate patch of X. Then,
Πk,≤δk is k-negligible away the diagonal with respect to Fk,δ on D.

Proof. Let χ, χ1 ∈ C∞
0 (D), χ1 = 1 on some neighbourhood of Suppχ. Let

u ∈ H0
b,≤kδ(X,L

k) with ∥u∥k = 1. We can repeat the proof of Theorem 2.4
in [11] and deduce that there is a constant C > 0 independent of k and u
such that

(5.18) |u(x)|2hk ≤ Ckn, ∀x ∈ X.

Let x = (x1, . . . , x2n−1) = (x′, x2n−1) be canonical coordinates onD and let s
be a rigid CR trivializing section of L onD, |s|2hL = e−2Φ. Put v = (1− χ1)u.
It is straightforward to see that on D,

(5.19) (2π)χFk,δ(1− χ1)u

=
∑

(m1,...,md)∈Zd,
|m1β1+···+mdβd|≤2kδ

∫
ei⟨x2n−1−y2n−1,ξ2n−1⟩χ(x)τδ

(ξ2n−1

k

)

× ei(
∑

d
j=1

mjβj)y2n−1−im1θ1−···−imdθdv((eiθ1 , . . . , eiθd) ◦ x′)dTd dξ2n−1 dy2n−1.

Let ε > 0 be a small constant so that for every (x1, . . . , x2n−1) ∈ Suppχ, we
have

(5.20) (x1, . . . , x2n−2, y2n−1) ∈ {x ∈ D; χ1(x) = 1} , ∀ |y2n−1 − x2n−1| < ε.
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Let ψ ∈ C∞
0 ((−1, 1)), ψ = 1 on

[
− 1

2 ,
1
2

]
. Put

I0(x) =

1

2π

∑

(m1,...,md)∈Zd,
|m1β1+···+mdβd|≤2kδ

∫
ei⟨x2n−1−y2n−1,ξ2n−1⟩

(
1− ψ

(x2n−1 − y2n−1

ε

))
χ(x)

× τδ

(ξ2n−1

k

)
ei(

∑
d
j=1

mjβj)y2n−1−im1θ1−···−imdθd

× v((eiθ1 , . . . , eiθd) ◦ x′)dTddξ2n−1dy2n−1,

(5.21)

I1(x) =

1

2π

∑

(m1,...,md)∈Zd

∫
ei⟨x2n−1−y2n−1,ξ2n−1⟩ψ

(x2n−1 − y2n−1

ε

)
χ(x)τδ

(ξ2n−1

k

)

× ei(
∑

d
j=1

mjβj)y2n−1−im1θ1−···−imdθd

× v((eiθ1 , . . . , eiθd) ◦ x′)dTddξ2n−1dy2n−1,

(5.22)

and

I2(x) =

1

2π

∑

(m1,...,md)∈Zd,
|m1β1+···+mdβd|>2kδ

∫
ei⟨x2n−1−y2n−1,ξ2n−1⟩ψ

(x2n−1 − y2n−1

ε

)
χ(x)τδ

(ξ2n−1

k

)

× ei(
∑

d
j=1

mjβj)y2n−1−im1θ1−···−imdθd

× v((eiθ1 , . . . , eiθd) ◦ x′)dTddξ2n−1dy2n−1.

(5.23)

It is clear that on D,

(5.24) χFk,δ(1− χ1)u(x) = I0(x) + I1(x)− I2(x).

On D, write Ij(x) = sk(x)⊗ Ĩj(x), Ĩj(x) ∈ C∞(D), j = 0, 1, 2. By using
integration by parts with respect to ξ2n−1 and y2n−1 several times and (5.18),
we conclude that for every N ≫ 1 and ℓ ∈ N, there is a constant CN,ℓ > 0
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independent of u and k such that

∥∥∥e−kΦ(x)Ĩ0(x)
∥∥∥
Cℓ(D)

≤ CN,ℓk
−2N

∑

(m1,...,md)∈Zd

( 1

m1β1 + · · ·+mdβd

)2N

≤ C̃N,ℓk
−2N ,

(5.25)

where C̃N,ℓ > 0 is a constant independent of u and k. Similarly, by using inte-
gration by parts with respect to y2n−1 several times and (5.18), we conclude
that for every N > 0 and ℓ ∈ N, there is a constant ĈN,ℓ > 0 independent of
u and k such that

(5.26)
∥∥∥e−kΦ(x)Ĩ2(x)

∥∥∥
Cℓ(D)

≤ ĈN,ℓk
−N .

We can check that

I1(x) =
1

2π

∫
ei⟨x2n−1−y2n−1,ξ2n−1⟩ψ

(x2n−1 − y2n−1

ε

)
χ(x)τδ

(ξ2n−1

k

)

× v(x′, y2n−1)dξ2n−1dy2n−1.

(5.27)

From (5.20) and (5.27), we deduce that

(5.28) Ĩ1(x) = 0 on D.

OnD, write χFk,δ(1− χ1)u = sk ⊗ h, h ∈ C∞(D). From (5.24), (5.25), (5.26)
and (5.28), we conclude that for every N > 0 and ℓ ∈ N, there is a constant
CN,ℓ > 0 independent of u and k such that

(5.29)
∥∥∥e−kΦ(x)h(x)

∥∥∥
Cℓ(D)

≤ ĈN,ℓk
−N .

Let {f1, . . . , fdk
} be an orthonormal basis forH0

b,≤kδ(X,L
k). OnD, write

χFk,δ(1− χ1)fj = sk ⊗ hj , hj ∈ C∞(D), j = 1, 2, . . . , dk.

From (5.18) and (5.29), it is not difficult to see that

(5.30)
dk∑
j=1

∣∣(∂αxhj)(x)e−kΦ(x)
∣∣2 = O(k−∞) on D, ∀α ∈ N2n−1

0 .

From (5.30), the lemma follows. □
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From Lemma 5.4 and Lemma 5.5, we see that the conditions (I) , (II)
and (III) in Theorem 5.3 holds. The proof of Theorem 1.1 is completed.

From Theorem 1.1, we can repeat the proof of Theorem 1.3 in [12] (see
Section 4 in [12]) and get Theorem 1.2. We omit the details.
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