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Embedding non-arithmetic hyperbolic

manifolds

Alexander Kolpakov, Stefano Riolo, and Leone Slavich

This paper shows that many hyperbolic manifolds obtained by

glueing arithmetic pieces embed into higher-dimensional hyper-

bolic manifolds as codimension-one totally geodesic submanifolds.

As a consequence, many Gromov–Pyatetski-Shapiro and Agol–

Belolipetsky–Thomson non-arithmetic manifolds embed geodesi-

cally. Moreover, we show that the number of commensurability

classes of hyperbolic manifolds with a representative of volume

≤ v that bounds geometrically is at least vCv, for v large enough.

1. Introduction

A complete finite-volume hyperbolic n-manifold M embeds geodesically if it

can be realised as a totally geodesic embedded submanifold of a complete

finite-volume hyperbolic (n+ 1)-manifold X.

There are two main tools known so far to prove that a given manifold

as above embeds: first, arithmetic techniques such as those used in [15, 16,

19, 23, 28], and, second, explicit geometric and combinatorial constructions

using Coxeter polytopes as in [17, 24, 25, 31, 32]. The manifolds which

are shown to embed geodesically in those papers are arithmetic. Some non-

arithmetic 3-manifolds which embed geodesically are produced in [20] by

means of a right-angled hyperbolic 4-polytope. In this paper we show that

many non-arithmetic manifolds of arbitrary dimension embed geodesically.

A piece P of a hyperbolic manifold M = Hn/Γ is a complete, connected

hyperbolic n-manifold with totally geodesic boundary obtained by cutting

M open along a collection of pairwise disjoint, embedded, totally geodesic

hypersurfaces S1, . . . , Sm.
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Let us fix a totally real number field k. Let Mj = Hn/Γj , j = 1, . . . , s

(possibly s = 1), be an arithmetic hyperbolic manifold of simplest type with

quadratic form fj defined over k (c.f. Section 2.1). Let Pj be a piece of Mj ,

and M be a complete finite-volume hyperbolic manifold obtained by glueing

the boundary components of P1, . . . , Ps in pairs via isometries.

We prove the following:

Theorem 1.1. If each Γj is contained in O(fj , k), then M embeds geodesi-

cally. If M is orientable, the manifold into which it embeds can be chosen to

be orientable.

Theorem 1.1 is an extension of the recent result by Reid and two of the

authors [19], where s = 1 and M = M1 = P1.

Under the hypothesis above, we say that M admits a decomposition

into arithmetic pieces. If such a decomposition has more than one piece,

the manifold M is usually non-arithmetic. Indeed, Theorem 1.1 applies to

many of the Gromov–Piatetski-Shapiro non-arithmetic manifolds [16] (sev-

eral explicit 2- and 3- dimensional examples can be constructed, c.f. [29] for

a 4-dimensional one) and their generalisations [15, 27, 28, 35], as well as

to the ones introduced by Agol [1] and Belolipetsky–Thomson [5] (c.f. also

[26]).

In the latter case M is always “quasi-arithmetic” (c.f. [26, 33, 34] for this

notion), in contrast to the former case [33]. In both cases, there are infinitely

many commensurability classes of such manifolds [28, 33], and thus we have:

Corollary 1.2. There are infinitely many pairwise incommensurable non-

arithmetic hyperbolic manifolds of any dimension n ≥ 2 that embed geodesi-

cally. They can be chosen to be closed or cusped, quasi-arithmetic or not, in

any combination.

A non-trivial property for manifolds which embed geodesically is to

bound geometrically. A complete (orientable) hyperbolic manifold M of fi-

nite volume bounds geometrically if it is isometric to ∂W , for a complete (ori-

entable) hyperbolic manifoldW of finite volume with totally geodesic bound-

ary. If M bounds geometrically a manifold W , it clearly embeds geodesically

in the double of W .
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Despite the fact that to bound geometrically is a very strong require-

ment [18, 22], for any n ≥ 2 there is a constant c > 0 such that the num-

ber βn(v) of n-dimensional geometric boundaries of volume ≤ v is at least

vcv, for v sufficiently big [11]. For n ≥ 4, the number µn(v) of all hyper-

bolic n-manifolds with volume ≤ v satisfies vcv ≤ µn(v) ≤ vdv for v large

enough [10], so that βn and µn have the same the growth rate (while usu-

ally µn(v) = ∞ for n = 2 or 3). The geometric boundaries constructed in

[11] are arithmetic. The same lower bound is provided for the number of

non-arithmetic 3-manifolds that bound geometrically, and for the number

of 4-manifolds with connected geodesic boundary by virtue of an explicit

construction [20].

Theorem 1.1 allows us to improve significantly such considerations on

geometrically bounding manifolds. Indeed, let Cn(v) denote the number of

commensurability classes of hyperbolic n-manifolds admitting a representa-

tive of volume ≤ v, and Bn(v) be the number of such classes represented by

a geometric boundary of volume ≤ v. Of course Bn(v) ≤ Cn(v) ≤ µn(v). As

shown by Gelander and Levit [15], for all n ≥ 2 we have Cn(v) ≥ vcv, for

v large enough. Following their arguments and applying Theorem 1.1, we

prove:

Theorem 1.3. For every n ≥ 2, there exists c > 0 such that Bn(v) ≥ vcv

for v sufficiently large.

Thus, there is plenty of geometric boundaries in any dimension, and for

n ≥ 4 the growth rate of their commensurability classes is roughly the same

of that of all hyperbolic n-manifolds. An analogous statement holds when

restricting the count to either cusped or closed manifolds. In the latter case,

it holds for with the extra requirement that each M geometrically bounds a

compact W .

The manifolds that we build in order to prove Theorem 1.3 are non-

arithmetic. Indeed, there is an upper bound of the form vb(log v)
ϵ

(and vb in

the compact case) for the growth rate of commensurabilty classes of arith-

metic hyperbolic manifolds of any dimension n ≥ 2 [2, 4]. In other words,

“most” hyperbolic manifolds are non-arithmetic.
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On the proof

The proof of Theorem 1.1 can be rougly resumed as follows: we embed the

pieces into which the n-manifold M decomposes into (n+ 1)-dimensional

pieces in such a way that the latter can be glued back together.

More precisely, let S1, . . . , Smj
be the hypersurfaces of Mj that produce

the piece Pj . We show that each Mj embeds geodesically in an (n+ 1)-

manifold Xj in such a way that Mj intersects in Xj orthogonally a fi-

nite collection of pairwise disjoint embedded totally geodesic hypersurfaces

Y1, . . . , Ymj
of Xj with Yi ∩Mj = Si (c.f. Figure 1, right).

By cutting Xj open along Y1, . . . , Ymj
, we obtain an (n+ 1)-dimensional

piece Qj in which Pj is totally geodesically embedded, and intersects ∂Qj

orthogonally with Pj ∩ ∂Qj = ∂Pj .

By carefully performing this construction for each j = 1, . . . , s, we can

ensure that the isometries between the boundary components of the original

pieces P1, . . . , Ps extend to isometries between the boundary components

of Q1, . . . , Qs. By glueing these pieces together according to the respective

isometries, we produce a hyperbolic (n+ 1)-manifold X into which M em-

beds geodesically. In both the present paper and in [19], the main difficulties

arise when proving that the manifolds considered embed without the need

to pass to a finite index cover.

The two main tools which we employ are the embedding theorem from

[19] (c.f. Theorem 2.2) for arithmetic hyperbolic manifolds of simplest type,

together with the crucial fact that arithmetic hyperbolic lattices of simplest

type are separable on geometrically finite subgroups (c.f. Theorem 2.1), as

follows from the work [7] by Bergeron, Haglund and Wise. We point out

that the separability Theorem 2.1 is used in [19] to prove the embedding

Theorem 2.2.

In order to use the results of [7], we need to show that the fundamental

group of the “abstract glueing” Mj ∪S1
Y1 ∪S2

. . . ∪Smj
Ymj

, contains a

geometrically finite subgroup in which π1(Mj) injects, once we pass to finite-

index subgroups of some π1(Yk), k = 1, . . . ,mj . We provide a geometric proof

of this fact, which requires a more careful argument than the one given in

[7, Lemma 7.1].

The counting of geometric boundaries in Theorem 1.3 basically follows

by applying Theorem 1.1 to the arguments of Gelander and Levit: we glue
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pieces as prescribed by some decorated graphs, whose number grows super-

exponentially in function of the bound on the number of vertices. The re-

sulting manifolds embed geodesically by Theorem 1.1. To conclude, we need

to show that each of these manifolds M can be chosen so to admit a fixed-

point-free, orientation-reversing, isometric involution ι. Indeed, if M embeds

geodesically in an orientable X, a priori we cannot ensure that M discon-

nects X (so that M bounds geometrically). If it is not the case, by cutting X

along M and quotienting out one of the two resulting boundary components

by ι, we have that M bounds geometrically.

Structure of the paper

In Section 2 we briefly review arithmetic manifolds of simplest type and state

Theorems 2.1 and 2.2. In Section 3 we prove Proposition 3.1, which is the

key ingredient for the proof of Theorems 1.1 and 1.3. The latter are proved in

Section 4. We conclude the paper by Section 5, with some comments about

manifolds that do not embed geodesically.

2. Preliminaries

With a slight abuse of notation, let Jn denote both the quadratic form

−x20 + x21 + · · ·+ x2n over Rn+1, as well as the associated diagonal matrix.

We identify the hyperbolic space Hn with the upper half-sheet {x ∈ Rn+1 :

Jn(x) = −1, x0 > 0} of the hyperboloid {x ∈ Rn+1 : Jn(x) = −1} and, by

letting O(n, 1) = {A ∈ GL(n+ 1,R) : AtJnA = Jn}, also identify Isom(Hn)

with the index two subgroup O+(n, 1) < O(n, 1) preserving the upper half-

sheet of the hyperboloid.

2.1. Arithmetic manifolds of simplest type

Let k be a totally real algebraic number field, together with a fixed embed-

ding into R which we refer to as the identity embedding. Let Rk denote the

ring of integers of k. Let V be an (n+ 1)-dimensional vector space over k (by

choosing a basis, we can assume V = kn+1), equipped with a non-degenerate

quadratic form f defined over k.
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We say that the form f is admissible if it has signature (n, 1) at the

identity embedding, and signature (n+ 1, 0) at all remaining Galois embed-

dings of k into R. Under the assumptions above, the form f is equivalent

over R to the quadratic form Jn, and for any non-identity Galois embedding

σ : k → R, the quadratic form fσ (obtained by applying σ to each coeffi-

cient of f) is equivalent over R to x20 + · · ·+ x2n. An arithmetic subgroup of

O(f,R) is a subgroup Γ < O(f,R) commensurable (in the wide sense) with

O(f,Rk).

In order to define arithmetic subgroups of O+(n, 1) we notice that, given

an admissible quadratic form f over k of signature (n, 1), there exists T ∈
GL(n+ 1,R) such that T−1O(f,R)T = O(n, 1). A subgroup Γ < O+(n, 1)

is called arithmetic of simplest type if Γ is commensurable with the image

in O(n, 1) of an arithmetic subgroup of O(f,R) under the conjugation map

above. A hyperbolic manifold M = Hn/Γ is called arithmetic of simplest

type if Γ is so.

2.2. Immersed hypersurfaces

Let us fix an admissible quadratic form f defined over k. By interpreting f as

a form of signature (n, 1) on Rn+1 = kn+1 ⊗ R, we identify the hyperbolic

space Hn with the appropriate half-sheet of the hyperboloid {x ∈ Rn+1 :

f(x) = −1}, and the group of isometries Isom(Hn) with O+(f,R). A vector

v in Rn+1 is said to be a k-vector if it lies in kn+1. Given a k-vector v,

we say that v is space-like if f(v) > 0. Given a space-like k-vector v, let us

denote by v⊥ the subspace {w ∈ Rn+1 : bf (w, v) = 0}, where bf denotes the

symmetric bilinear form associated with f . Let Hv denote the intersection

v⊥ ∩Hn, which is a totally geodesic subspace of Hn, isometric to Hn−1.

If Γ is an arithmetic subgroup of O(f,R), it is easy to see that the

stabiliser of Hv in Γ is itself an arithmetic group of simplest type acting on

Hv. We simply restrict the form f to v⊥ and notice that it is still admissible

and defined over the same field k. We call totally geodesic subspaces of Hn

of the form Hv, where v is a space-like k-vector, Γ-hyperplanes. If the group

Γ is torsion-free, so that M = Hn/Γ is a manifold, the image of Hv in M

will be a totally geodesic, properly immersed hypersurface with fundamental

group isomorphic to StabΓ(Hv). Vice versa, every properly immersed, totally
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geodesic hypersurface of M can be constructed in this way (c.f. [3, Corollary

5.11]).

2.3. Embedding and separability

In this section, we introduce two results about arithmetic manifolds of sim-

plest type that will be put to essential use later on. The first one, due to

Bergeron, Haglund and Wise [7], concerns separability of geometrically finite

subgroups in arithmetic lattices of simplest type.

Let Γ be a discrete subgroup of Isom(Hn). A finitely generated subgroup

G < Γ is separable in Γ if for every g ∈ Γ∖G there exists a finite-index

subgroup Γ′ < Γ such that G < Γ′ and g ̸∈ Γ′. The group Γ is geometrically

finite extended residually finite (“GFERF” for short) if any geometrically

finite subgroup G < Γ is separable in Γ.

Theorem 2.1. Hyperbolic arithmetic lattices of simplest type are GFERF.

Since all the groups we will deal with are finitely generated, we define a

geometrically finite group as one such that Vol(Nϵ(C(Γ))) < ∞, where C(Γ)

is the convex core of Hn/Γ. By [9, p. 289], this condition is equivalent to the

existence of a (possibly non-connected) finite-sided fundamental polyhedron

for the action of Γ on Hn.

Now, let M = Hn/Γ be an arithmetic manifold of simplest type, and let

H be a Γ-hyperplane. As mentioned previously, there exists a π1-injective

immersion of the manifold S = H/StabΓ(H) into M . The stabiliser of H in

Γ is easily seen to be geometrically finite subgroup of Γ, and is therefore

separable in Γ by Theorem 2.1. This fact was already well known without

need of Theorem 2.1; c.f. [6, 21]. As a consequence, there exists a finite-index

subgroup Γ′ < Γ such that StabΓ(H) < Γ′, and such that S lifts to a totally

geodesic embedded hypersurface in M ′ = Hn/Γ′.

The construction above provides an abundance of examples of hyperbolic

manifolds of simplest type that embed geodesically. This naturally suggests

to go the opposite way: we start with an arithmetic n-manifold of simplest

type, and we want to realise it as an embedded totally geodesic hypersurface

in an (n+ 1)-arithmetic manifold of simplest type. The second result shows

that this can often be done [19].
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Theorem 2.2. Let M = Hn/Γ be an arithmetic manifold of simplest type

whose form f is defined over a field k. If Γ < O(f, k) then, for any positive

q ∈ Q, the manifold M embeds geodesically in an arithmetic manifold X =

Hn+1/Λ of simplest type with form f ⊕ ⟨q⟩ and Λ < O(f ⊕ ⟨q⟩, k). If M is

orientable, X can be chosen to be orientable.

The technical point of the statement is that the fundamental group Γ of

M is required to be contained in the group O(f, k) of k-points of O(f,R).

However, this is not too restrictive. In even dimensions, all hyperbolic arith-

metic lattices are of simplest type, and lie in the group of k-points of the

corresponding orthogonal group (c.f. [8] and [12, Lemma 4.2]). In odd di-

mensions, if Γ < O(f,R) is arithmetic of simplest type, then the subgroup

Γ(2) = ⟨γ2 | γ ∈ Γ⟩ has finite index in Γ, and is contained in the group of

k-points O(f, k). Therefore, at worst a finite-index Abelian cover Hn/Γ(2) of

Hn/Γ embeds geodesically.

3. Embedding relative to hypersurfaces

The goal of this section is to prove the following:

Proposition 3.1. Let M = Hn/Γ be an arithmetic manifold of simplest

type whose form f is defined over k, and let S = {S1, . . . , Sm} be a finite

collection of pairwise disjoint, properly embedded, totally geodesic hypersur-

faces of M .

If Γ < O(f, k), then M embeds geodesically in a hyperbolic (n+ 1)-

manifold X containing m disjoint, properly embedded, totally geodesic hy-

persurfaces Y1, . . . , Ym that intersect M orthogonally, with Yi ∩M = Si for

all i = 1, . . . ,m. If M is orientable, X can be chosen to be orientable.

We prove Proposition 3.1 below in Section 3.1, assuming a technical

lemma whose proof is postponed to Section 3.4.

3.1. Proof of Proposition 3.1

By Theorem 2.2, M = Hn/Γ embeds geodesically in XΛ = Hn+1/Λ, for a

torsion-free arithmetic lattice Λ < O(g, k) of simplest type such that Γ < Λ,

with g = f ⊕ ⟨q⟩ for a positive q ∈ Q.
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Figure 1: A schematic picture of XΛ (left) and of its finite cover X (right)

with their horizontal and vertical hypersurfaces. A piece P of M embeds

“nicely” in a piece Q of X. Each Y ′
i finitely covers Yi.

We shall need more control on the embedding in the subsequent proof

(c.f. also Remark 3.2), and thus pass to a finite-index subgroup L < Λ such

that Γ < L, satisfying some additional properties described in the sequel.

For any finite-index subgroup L < Λ such that Γ < L, let πL : H
n+1 →

Hn+1/L = XL denote the canonical projection. We call horizontal hyper-

plane the L-hyperplane H of Hn+1 corresponding to the space-like vector

(0, . . . , 0, 1) in the quadratic space (Rn+2, g). The group Γ < L now acts

on all Hn+1, preserving the hyperplane H ∼= Hn without exchanging its two

sides. We have StabL(H) = Γ, and we call M = H/Γ ⊂ XL the horizontal

hypersurface of XL.

For each hypersurface S ∈ S of M , we now choose a Γ-hyperplane Hv

of H for an appropriate space-like vector v in the quadratic space (Rn+1, f)

such that Hv projects to S ⊂ M . Notice, that such v is not unique, while

any two choices differ only by an element of Γ. Now interpret each v as a

space-like vector in the quadratic space (Rn+2, g). We call the correspond-

ing L-hyperplane V ⊂ Hn+1 a vertical hyperplane, and Y = πL(V ) a vertical

hypersurface of XL. Let Y = {Y1, . . . , Ym} be the collection of vertical hy-

persurfaces, with Yi associated with Si for each i = 1, . . . ,m.

Each Y ∈ Y is the image of an immersion ι : V/StabL(V ) → XL, which

is not necessarily an embedding. Note also that the vertical hypersurfaces are

not necessarily pairwise disjoint. Moreover, since V ⊥ H and πL(V ∩H) =

S, each Y intersects M orthogonally in the corresponding S, but there might

be other intersections in XL between Y and M , or between two distinct

vertical hypersurfaces (c.f. Figure 1, left).
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Our goal is to produce a finite index subgroup L < Λ such that the

following properties hold (c.f. Figure 1, right):

1) the group L contains Γ (so that M lifts to XL, as already mentioned);

2) the vertical hypersurfaces of XL are all embedded and pairwise dis-

joint;

3) the intersection Yi ∩M equals Si for all i = 1, . . . ,m.

Let GL denote the subgroup of L generated by the stabiliser Γ =

StabL(H) of the horizontal hyperplane, together with the stabilisers

StabL(V1), . . ., StabL(Vm) of the vertical hyperplanes.

Remark 3.2. Since Γ < L, the group GL is independent of the particular

choice of the vertical hyperplanes V1, . . . , Vm with πL(Vi) = Yi. Indeed, if

πL(V ) = πL(V
′) ∈ Y then γ(V ) = V ′ for some γ ∈ Γ. Therefore StabL(V )

and StabL(V
′) are conjugate by γ, and they generate the same subgroup

together with Γ.

Consider now the abstract glueing

(1) A = M ∪S1
V1/StabL(V1) ∪S2

. . . ∪Sm
Vm/StabL(Vm).

The following lemma (which reminds of the Klein–Maskit combination the-

orem, c.f. also [7, Lemma 7.1]) will be proved in Section 3.4 by applying

Poincaré’s fundamental polyhedron theorem:

Lemma 3.3. There exists a finite-index subgroup L < Λ, with Γ < L, such

that GL is geometrically finite and A embeds π1-injectively into XL with

fundamental group GL.

Given that GL is geometrically finite, Theorem 2.1 implies that GL is

separable in L. A separability argument due to Scott [30] implies that there

exists a finite cover X → XL such that A embeds in X as follows: M and

each Vi/StabL(Vi) is a totally geodesic hypersurface of X, each Vi/StabL(Vi)

intersects M along Si orthogonally and any two distinct hypersurfaces of the

form Vi/StabL(Vi), i = 1, . . . ,m, are disjoint. Thus, the proof of Proposition

3.1 is complete up to Lemma 3.3.
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In order to prove Lemma 3.3, we will find L < Λ such that XL can be

obtained by pairing a finite number of thick convex cells in Hn+1 isometri-

cally along their facets, with each cell having a finite number of facets. This

easily implies that the group L admits a finite-sided fundamental polyhe-

dron, and is therefore geometrically finite. These cells will be obtained from

the Voronöı decomposition of XL with respect to an appropriate choice of a

finite set of points in the horizontal hypersurface M , as we now explain.

3.2. Relative Voronöı decompositions

Recall that, given a metric space (X, d) and a collection X of points, the

Voronöı decomposition of X with respect to X is the decomposition of X

into cells Cp = {x ∈ X | d(x, p) ≤ d(x, q) ∀q ∈ X , q ̸= p}, p ∈ X .

Let M = Hn/Γ be a hyperbolic manifold, πΓ : H
n → M the canonical

projection, X ⊂ M a finite set, and X̃ = π−1
Γ (X ). Consider the Voronöı de-

compositions of M and Hn with respect to X and X̃ , respectively. Each cell

C ⊂ Hn of the decomposition is a convex n-polytope which projects down

to a cell πΓ(C) of M . There is a unique x ∈ X̃ such that x ∈ C, called the

centre of C. Similarly, πΓ(x) is the centre of πΓ(C).

A finite-sided fundamental domain DM ⊂ Hn for the action of Γ can

be constructed by pairing together a finite number of such cells of Hn iso-

metrically along some of their facets. This domain naturally satisfies the

hypothesis of Poincaré’s fundamental polyhedron theorem; c.f. [13] for a

detailed exposition.

Let now S = {S1, . . . , Sm} be a finite collection of pairwise disjoint,

properly embedded, totally geodesic hypersurfaces of M . We will be inter-

ested in Voronöı decompositions that are “coherent” with respect to S .

Definition 3.4. Given M and S as above, we say that a finite set X ⊂
S1 ∪ . . . ∪ Sm is admissible with respect to S if in the Voronöı decomposition

of M associated with X each S ∈ S is covered only by the cells whose

centres lie in S.

In other words, we require the Voronöı decomposition of each S ∈ S

with respect to X ∩ S to coincide with the induced decomposition obtained

by intersecting the cells of the Voronöı decomposition of M with S.

A random choice of X may not be admissible, as shown in Figure 2.
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Figure 2: A non-admissible choice for a pair of points on a surface with two

disjoint geodesics (top), compared to an admissible choice (bottom). In the

non-admissible case, there are points of S2 which are closer to x ∈ S1 rather

than y ∈ S2. In the admissible case, all points of S1 are closer to x and all

points of S2 are closer to y.

Claim 3.5. Given M and S as above, with M of finite volume, there exists

an admissible set X .

Proof. First assume thatM is compact, which implies that the hypersurfaces

Si are compact as well. For each i = 1, . . . ,m, let δi > 0 be the minimum

distance between Si and
⋃

j ̸=i Sj . The set of open balls {Bx(δ/2) : x ∈ Si}
is an open covering of Si. By compactness, we can extract a finite cover,

which gives a finite set Xi = {x1, . . . , xmi
} ⊂ Si whose δ/2-neighbourhoods

cover Si. The set X =
⋃

i Xi of points of M is obviously admissible with

respect to S .

If M is non-compact, some δi might be zero. In this case, we change

our argument as follows: truncate the cusps of M , so that M decomposes

as the union of a compact set Mc and a finite number of cusps, each of the

form E × [0,∞), where E is a compact Euclidean manifold (the section of

the corresponding cusp). In this way, each Si is similarly decomposed as the

union of a compact set Si ∩Mc and a finite number of cusps (possibly none).

For every i, apply the above argument of the compact case to each Eu-

clidean cusp section E of M which Si intersects, in order to obtain a finite

set of points in E × {0}. The key property here is that, in the Voronöı de-

composition of E with respect to S ∩ (E × {0}), each set of the form
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Figure 3: Partitioning the facets of a tessellation of H2 into two types, with

those of the first type coloured red. The intersection of the cells with the

lifts of all the Si’s is coloured blue.

Si ∩ (E × {0}) will be covered by cells centred on Si. Let X ′
i be the set

of all points in Si obtained in this way over all cusps of M .

Now that we have dealt with the ends of M , we turn to the compact

part Mc. Apply once more the same argument of the compact case to each

set of the form Si ∩Mc in order to obtain another finite set of points X ′′
i

in Si ∩Mc. Set Xi = X ′
i ∪ X ′′

i , and X =
⋃

i Xi. The latter is admissible

with respect to S : the ends of each Si are covered by the cells centred on

X ′
i , while Si ∩Mc are covered by the cells centred on X ′′

i . □

Given a complete hyperbolic manifold M with a collection S of hyper-

surfaces and an admissible set X as above, it will be useful to partition the

facets of the cells of Hn into two types (c.f. Figure 3):

Definition 3.6. Let C be a cell of the Voronöı decomposition of Hn asso-

ciated with X , and F be a facet of C. We say that F is of the first type if

it intersects a lift S̃ of some S ∈ S . The facets of C that are not of the first

type are called facets of the second type.

The same terminology is adopted for the bounding hyperplanes of C,

depending on the type of the facet they contain.
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3.3. Nestedness of bounding hyperplanes

Let M = Hn/Γ be a hyperbolic manifold, and consider the Voronöı de-

composition of Hn associated with some finite set X ⊂ M . Given two dis-

crete subgroups G,G′ < Γ, let C,C ′ be two cells centred at the same point

x ∈ X̃ ⊂ Hn, and B,B′ two disjoint bounding hyperplanes for any of C

or C ′. There is a unique halfspace H (resp. H′) bounded by B (resp. B′)

containing x.

We say that B and B′ are nested if either H ⊂ H′ or H′ ⊂ H. The

halfspacesH andH′ cannot be disjoint, since both of them contain x. Clearly,

if both B and B′ bound the same cell C, they are not nested. Otherwise, it

is not clear a priori whether B and B′ are nested or not.

This is best explained by considering the simple case where H and V

are two non-orthogonal geodesics in H2 intersecting in a point x, as shown

in Figure 4, with each of the stabilisers GH and GV of H and V respectively

generated by a hyperbolic translation.

The endpoints of the geodesic V can lie outside of the Voronöı domain

(centred at x) for the translation H (c.f. Figure 4, left). If the translation

length along V is chosen large enough, the fundamental domain CH of GH

ends up being contained in the fundamental domain CV of GV . In this

situation some of the bounding hyperplanes for the two domains are nested.

If V and H are orthogonal (c.f. Figure 4, right), no matter how short

the translation along H is, if the translation length along V is chosen large

enough the bounding hyperplanes of CH and CV are disjoint, and CH ∩
CV is indeed a fundamental domain for the group G generated by the two

translations (a free group on two generators).

If we allow arbitrarily large translation length along H, then nesting

phenomena can be avoided even if V and H are not orthogonal, simply

because the endpoints of the H and V are distinct. However, in what follow

we will rather forego taking subgroups of GH .

3.4. Proof of Lemma 3.3

Let us fix R > 0. Since Γ is separable in Λ, there exists a finite-index sub-

group LR < Λ containing Γ such that every hyperbolic element g ∈ LR ∖ Γ

has translation length greater than R.
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Figure 4: The fundamental domains CH and CV for two translations along

two geodesics H and V in the plane. The bounding hyperplanes for CH are

drawn in red while those for CV are drawn in green. On the left, H and

V are not orthogonal, and the two fundamental domains are nested. The

intersection CH ∩ CV = CH is not a fundamental domain for G = ⟨GH , GV ⟩.
On the right, the H and V are orthogonal, so there is no nesting and CH ∩
CV is a fundamental domain for G.

If XΛ and XLR
are non compact, fix also an arbitrary truncation of the

cusps of XLR
. We can furthermore require that any parabolic element in

g ∈ LR ∖ Γ has Euclidean translation length (relative to the chosen cusp

truncation) greater than R.

Let us fix a set X of points in the horizontal hypersurface M of XLR

which is admissible with respect to S = {S1, . . . , Sm}. Consider the Voronöı
decomposition of the horizontal hyperplane H ⊂ Hn+1 into n-dimensional

convex cells, which is clearly preserved by the action of StabLR
(H). A (pos-

sibly disconnected) fundamental domain DM ⊂ H for the action of Γ on H

can be obtained by considering a set of cells of the Voronöı decomposition

of H.

Now, we extend orthogonally each bounding hyperplane of the decom-

position of H to a hyperplane in Hn+1, to get a decomposition of Hn+1

into (n+ 1)-dimensional convex cells. The fundamental domain DM ⊂ H

extends to a finite-sided fundamental domain DM ⊂ Hn+1 for the action of

StabLR
(H) on Hn+1. The facets of DM can be partitioned into two types,

which they inherit from those of DM .

The discussion above applies similarly to the vertical hypersurfaces as

follows. Let Y ∈ Y correspond to S ∈ S . The set X ∩ S is admissible for
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Y with respect to {S}. Consider the associated Voronöı decomposition of a

vertical hyperplane V associated with Y . We can again build a fundamental

domain DY for the action of StabLR
(V ) on V consisting of cells of the

Voronöı decomposition of V , and extend it to a fundamental domain DY

for the action of StabLR
(V ) on Hn+1. We do this in the following way:

for each cell of DM centred at a point x ∈ S̃, we require the cell of the

Voronöı decomposition of V centred at x to belong to DY . By doing so, we

obtain a one-to-one correspondence between the cells of the domain DY and

the cells of DM whose centres project down to S. Two corresponding cells

C ⊂ DM and C′ ⊂ DY are centred at the same point x ∈ Hn+1.

Notice that all bounding hyperplanes of the first type for the cells of

DY are also bounding hyperplanes of the first type for the cells of DM . The

pairing maps between such facets are the same both when viewed as facets

of DM and of DY . The finite set of convex cells obtained by considering only

the halfspaces bounded by the hyperplanes of the first type is a fundamental

domain for the action of the group StabLR
(S̃) on Hn+1. This group is clearly

a subgroup of both StabLR
(H) and StabLR

(V ).

This fact is the whole purpose of our careful choice of the admissible set

of points X : the Voronöı decompositions of M and Y agree on the corre-

sponding S. As a consequence the fundamental domains for the associated

groups of isometries of Hn+1 share the respective facets, and the pairing

maps on these facets agree.

Since the vertical hyperplanes are pairwise disjoint and all orthogonal

to the horizontal hyperplane H, there exists R0 > 0 and a lattice L = LR0

such that the following holds: if a bounding hyperplane B′ of a cell C′ of DY

intersects a bounding hyperplane B of a cell C of DM , then B′ is itself of

the first type and is therefore a bounding hyperplane of C. The bounding

hyperplanes of the second type for the cells of DY are disjoint from those

of the cells of DM . Moreover, the bounding hyperplanes of the first type for

the cells of DYi
and DYj

are disjoint whenever i ̸= j.

Let us prove the latter fact. Given a subset F of Hn, we denote by ∂∞F

its boundary at infinity, that is the intersection of the closure of F in H
n
=

Hn ∪ ∂∞Hn with ∂∞Hn. Consider a cell C for the domain DM , obtained by

extending orthogonally an n-dimensional cell C of H. Then ∂∞C consists

of two conformal copies C1, C2 of the cell C. The closest point projection

Cj → C is indeed conformal. The image in Cj of C ∩ S̃ lies on ∂∞V , for
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some V which projects down to the vertical hypersurface Y associated with

S. Because of this, we see that ∂∞V is disjoint from the boundary at infinity

of the facets of the second type of C. This property holds true only because

of orthogonality between the hyperplanes H and V .

The boundary at infinity of each bounding hyperplane of a cell of the

domain DY is a conformal (n− 1)-sphere in ∂∞Hn+1 centred on ∂∞V . As

R → ∞, these spheres remain the same if they correspond to facets of the

first type, while become arbitrarily small if they correspond to facets of the

second type. At the same time, the cells of the domain DM don’t change.

When the spheres become small enough, the facets of the second type of

DY become disjoint from those of DM , as shown in Figure 5. Also, since

V1, . . . , Vm are all orthogonal to H, then ∂∞V1, . . . , ∂∞Vm can touch only

in ∂∞H. Therefore, also the boundary hyperplanes of the first type for DYi

and DYj
, i ̸= j, eventually become disjoint.

This shows that, up to an appropriate choice of L = LR0
with sufficiently

large R0, the only intersections between the bounding hyperplanes for any

of the domains DM or DYi
will either happen between the bounding hyper-

planes belonging to cells in a single fundamental domain, or between the

bounding hyperplanes of the first type belonging to a cell of DM and a cell

in one of the domains DYi
(and in this case the bounding hyperplanes will

coincide).

Now we prove that since the hyperplaneH is orthogonal to each Vi, there

is no nesting between the bounding hyperplanes for a cell C of DM and a cell

C′ of DYi
with the same centre. Indeed, given a bounding hyperplane B of

C′, the centre y of the conformal sphere ∂∞B belongs to ∂∞Vi, and projects

down to a point in the interior of C under the closest point projection. More

importantly, y is contained in one of the two components of ∂∞C, and this

guarantees that B and any of the bounding hyperplanes of C are not nested.

Finally, consider the domain

D = DM ∩ DY1
∩ . . . ∩ DYm

⊂ Hn+1.

Each cell of D is the intersection of a cell C ⊂ DM with a cell C′ ⊂ DYi
,

with C and C′ centred at a common point x ∈ Hn+1. The domain D satisfies

the hypothesis of Poincaré’s fundamental polyhedron theorem, since each of

the domains DM and DYi
individually does, and there are no intersections
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Figure 5: A component of the boundary at infinity of a cell C of DM for

two different values of R (increasing from left to right). Its facets of the

first type are drawn in red. Its intersection with ∂∞V is drawn in blue. The

boundary at infinity of the supporting hyperplanes of the second type of a

cell C′ of DY with the same centre of C are drawn in green. As R increases,

the green spheres became smaller and smaller, and their number increases.

They eventually become disjoint from the facets of ∂∞C of the second type.

between the hyperplanes of the second type. Since disjoint bounding hyper-

planes for DM and DYi
are not nested, all the pairing maps for the facets

of these domains (which generate Γ = StabL(H) and StabL(Vi)) survive as

pairing maps between the facets of D.

The domain D is therefore a fundamental domain for GL, which is iso-

morphic to the amalgamated free product

π1(M) ∗π1(S1) π1(Y1) ∗π1(S2) . . . ∗π1(Sm) π1(Ym).

Since D is finite-sided, GL is geometrically finite, and the proof of

Lemma 3.3 is complete.

4. Proofs of the main theorems

We are ready to prove Theorems 1.1 and 1.3 opening this paper. As the

main result of the paper (Theorem 1.1) is established, it will follow that

there are “super-exponentially many” geometrically bounding manifolds and

their commensurability classes with respect to volume (Theorem 1.3).
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4.1. Proof of Theorem 1.1 (embedding hyperbolic glueings)

Let M = P1 ∪ . . . ∪ Ps satisfy the hypotheses of Theorem 1.1. Each piece Pj

is obtained from some hyperbolic n-manifold Mj of simplest type by cutting

it open along a finite collection Sj of pairwise disjoint, totally geodesic hy-

persurfaces. Each manifold Mj is arithmetic of simplest type with associated

quadratic form fj defined over k.

By Proposition 3.1, the manifold Mj embeds geodesically in a hyper-

bolic (n+ 1)-manifold Xj = Hn+1/Lj which contains a finite collection Yj

of properly embedded, pairwise disjoint totally geodesic “vertical” hypersur-

faces, with each Y ∈ Yj intersecting Mj orthogonally in the corresponding

S ∈ Sj . We choose Xj to be arithmetic of simplest type with associated

form gj = fj ⊕ ⟨q⟩ for some positive q ∈ Q which does not depend on j.

By cutting each Xj open along the vertical hypersurfaces, we obtain

some (n+ 1)-dimensional pieces Q1, . . . , Qs so that Pj is a totally geodesic

hypersurface of Qj orthogonal to ∂Qj , with Pj ∩ ∂Qj = ∂Pj . Each boundary

component of Qj is either isometric to a vertical hypersurface Y , if Y is

two-sided in Xj , or it is an index two cover of Y , otherwise. Without loss

of generality, we can assume that all vertical hypersurfaces are two-sided.

Recall the “abstract glueing” A from (1) in Section 3.1. We can replace the

fundamental groups of one-sided Yj ’s by the respective index-two subgroups,

and embed the new amalgamated product in a finite cover of Xj so that the

vertical hypersurfaces be two-sided.

Our goal is to show that it is possible to choose Xj so that the pair-

ing maps between the boundary components of P1, . . . , Ps producing M

extend to isometries between the corresponding boundary components of

Q1, . . . , Qs. In this way, by glueing these new pieces back together we will

obtain an (n+ 1)-manifold X into which M embeds geodesically.

Note that the boundary components of Q1, . . . , Qs are pairwise commen-

surable: in other words, they have a common finite cover. This holds since

we extend all the quadratic forms fj using the same rational number q. In-

deed, the forms associated with the glueing locus of the various blocks Pj

are pairwise projectively equivalent, and therefore so are their corresponding

extensions. The latter define the commensurability classes of the connected

components of ∂Q1, . . . , ∂Qs.
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Now we can ensure that the respective boundary components of Q1, . . . ,

Qs are pairwise isometric. In order to do this, introduce a new abstract

glueing A′
j obtained by attaching to Mj along each S ∈ Sj the respective

V/∆, where ∆ corresponds to a common finite index cover for the two

appropriate boundary components of Qj and Ql. The fundamental group of

A′
j is geometrically finite and therefore separable in Lj . So A′

j embeds in a

finite cover X ′
j of Xj corresponding to some finite index subgroup L′

j < Lj .

By cutting each X ′
j open along its vertical hypersurfaces, we obtain a

new collection of pieces Q′
j such that the pairing maps between P1, . . . , Ps

extend to the pairing maps for Q′
1, . . . , Q

′
s, as each Mj lifts to the respective

Q′
j . By glueing these new blocks together with the found pairing map, and

then doubling the resulting manifold with boundary (if such boundary is

non-empty), we finally produce an (n+ 1)-dimensional hyperbolic manifold

X into which M embeds geodesically.

Assume now that M is orientable. We still need some work to ensure

that the manifold X can be chosen to be orientable as well. Note that each

piece Pj is orientable. Let C ⊂ ∂Pj be a boundary component of Pj , and

D ⊂ ∂Qj the corresponding boundary component of Qj , which contains C

as a totally geodesic submanifold. The piece Qj (and so D) can be chosen to

be orientable. We furthermore require D to admit an orientation reversing

isometry which acts by fixing C pointwise and exchanging its two sides. This

can always be achieved up to considering an appropriate finite-index cover,

as we now show.

Let the vertical hypersurface Y ∈ Yj of Xj correspond to D ⊂ ∂Qj , and

S ∈ Sj correspond to C ⊂ ∂D. The hypersurfaces Mj and Y lift to two

orthogonal hyperplanes H and V , respectively, in the universal cover Hn+1

of Xj , with H ∩ V corresponding to the universal cover of S. Let g be the

reflection in H, and let ∆ < Isom(Hn+1) denote the fundamental group of

Y , which acts on Hn+1 by preserving V . Clearly g fixes H ∩ V pointwise

and preserves V .

We now consider the group ∆′ = ∆ ∩ g∆g−1. Since the hyperplane H is

a k-hyperplane, the reflection g lies in O(fj , k) and hence it commensurates

∆. Therefore the group ∆′ has finite index in ∆ and we denote by Y ′ the

associated finite-index cover of Y . Since g fixes V ∩H pointwise, it commutes

with all elements of π1(S) and therefore S lifts to Y ′. Moreover, g normalises

∆′ and this means that g corresponds to an orientation-reversing isometric
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involution of Y ′ which fixes the hypersurface S pointwise, while exchanging

its two sides.

Thus, in the abstract glueing A′
j we can require the vertical manifolds

V/∆ to admit such an orientation-reversing involution. We can therefore

freely prescribe the orientation class of the glueing maps between the bound-

ary components of the pieces Q1, . . . , Qs, without changing the manifold M

which we wish to embed.

In particular, we can make the resulting manifold X orientable, con-

taining M as a two-sided hypersurface, and the proof of Theorem 1.1 is

complete.

Remark 4.1. Our embedding procedure for non-arithmetic manifolds

clearly preserves their type: Gromov–Pyatetski-Shapiro manifolds embed

into Gromov–Pyatetski-Shapiro manifolds, and similarly for Agol–

Belolipetsky–Thomson manifolds.

4.2. Proof of Theorem 1.3 (counting geometric boundaries)

In this section we follow the idea by Gelander and Levit from [15].

Let k be either Q or Q(
√
2), depending on whether we want to consider

cusped or closed manifolds, respectively. Consider the quadratic form

fn(x) =

{

−2x20 + x21 + . . .+ x2n if k = Q ,

−
√
2x20 + x21 + . . .+ x2n if k = Q(

√
2).

Then, let fa±

, fb±

, fu and fv be six non-equivalent admissible quadratic

forms

fx(x) = fn−1(x) + px · x2n,

over k, where px ∈ Rk is a prime and x is any of the six symbols a±, b±, u, v.

There are infinitely many choices for such a collection of quadratic forms

[15, Lemma 4.11].

Now, let S′ = Hn−1/∆ be a non-orientable arithmetic manifold of sim-

plest type with associated form fn−1 and ∆ ⊂ O(fn−1, k). Notice that such

a manifold S′ certainly exists. Indeed, the lattice O(fn−1, Rk) clearly con-

tains orientation-reversing elements, such as the reflection in the orthogonal

hyperplane to any space-like vector in the standard basis of Rn+1. By [23,
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Theorem 1.2], O(fn−1, Rk) has a torsion-free subgroup Γ′ of finite index con-

taining an orientation-reversing element. Take now S to be the orientation

cover of the manifold S′ = Hn−1/Γ′, and ϕ an involution of S such that

S′ ∼= S/⟨ϕ⟩.

Proposition 4.2. For each symbol x ∈ {a±, b±, u, v}, there exists an arith-

metic manifold Mx = Hn/Γx of simplest type with associated form fx and

Γx ⊂ O(fx, k), from which one can carve a piece Px whose boundary consists

of 2 (resp. 4) copies of S if x ∈ {a±, b±} (resp. x ∈ {v, u}). Moreover, the

pieces of the form Pv can be chosen to be non-orientable.

Proof. By Theorem 2.2, for every x we can embed S geodesically into some

orientable arithmetic M ′
x = Hn/Γ′

x of simplest type with Γ′
x ⊂ O(fx, k). We

now apply [15, Proposition 4.3] in order to build orientable manifolds Mx

such that:

1) if x ∈ {a±, b±}, Mx contains a non-disconnecting copy of S;

2) the manifold Mu contains two disjoint copies of S such that their union

does not disconnect Mu;

3) the manifold Mv contains three disjoint copies of S such that their

union does not disconnect Mv.

In order to build the pieces of the form Px for x ∈ {a±, b±}, we simply cut

open Mx along S. The resulting manifold has two totally geodesic boundary

components. Similarly, in order to build Pu we cut Mu along the two copies

of S, thus obtaining a piece with four boundary components.

Finally, we build Pv in two steps. We first cut Mv open along the three

copies of S in order to obtain a manifold with six totally geodesic bound-

ary components, each isometric to S. We choose two boundary components

which are the result of cutting along a single copy of S in Mv and identify

them isometrically using the orientation-reversing isometry ϕ of S. By do-

ing so, we obtain a non-orientable piece Pv with four boundary components,

each isometric to S. □

Now, for every finite 4-regular rooted simple graph with edges labelled

by a± and b±, we put Pv at the root, Pu at all the other vertices, and Px at

each x-labelled edge, whenever x ∈ {a±, b±}.
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After pairing isometrically the boundary components of the various

pieces as prescribed by the graph (any identification of the boundary com-

ponents of the pieces with the edges of the graph and any pairing isometry

works), we get a hyperbolic manifold M ′ with empty boundary. Such man-

ifold is non-orientable because the piece Pv is non-orientable.

As follows from the proof of [15, Proposition 3.3], for m ∈ Z large enough

there are at least mcm such graph with at most m vertices, so the number of

manifolds M ′ of volume ≤ v produced in this way is at least vcv for v ≫ 0.

These manifolds are pairwise incommensurable [15, Section 4] and therefore

so are their orientable double covers.

For any manifold M ′ constructed above, we apply Theorem 1.1 to its

orientation coverM , and embed it geodesically into some orientableX. Since

M has an orientation-reversing fixed-point-free isometric involution, it also

bounds geometrically. The proof of Theorem 1.3 is complete.

5. Manifolds that do not embed geodesically

We conclude the paper with some additional observations on hyperbolic

manifolds that do not embed geodesically.

It can be easily shown that not all hyperbolic surfaces embed geodesi-

cally. Indeed, consider a finite-area surface S = H2/ΓS that embeds totally

geodesically into a finite-volume 3-manifold M = H3/ΓM . Up to conjuga-

tion, we can suppose that ΓS < ΓM , and thus for the trace fields we have

KS = Q[tr γ : γ ∈ ΓS ] ⊆ Q[tr γ : γ ∈ ΓM ] = KM .

As a consequence of the Mostow–Prasad rigidity, the trace field KM

has to be an algebraic number field. However, it is not hard to produce

a surface S with KS being transcendental. Nevertheless, as shown in [14],

those surfaces that embed geodesically form a countable dense subset of the

moduli space.

Except for the above, it is unknown if there exists an n-dimensional (n ≥
3) closed or cusped hyperbolic manifold that does not embed geodesically.

Notice that there are hyperbolic manifolds which embed geodesically but

do not bound geometrically. As suggested by Alan Reid to the authors, the

Seifert–Weber dodecahedral space geodesically embeds by Theorem 2.2, but

has non-integral η-invariant and therefore does not bound geometrically by

[22]. In particular, Long and Reid’s obstruction for bounding geometrically
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does not give any obstruction on embedding geodesically. See [18] for similar

examples of cusped 3- and 4-manifolds.

It would be also interesting to know if there exists a hyperbolic manifold

without finite covers that embed geodesically or, conversely, if all hyperbolic

manifolds do embed virtually.

In addition to the above list, at the moment we do not know if one of

β3(v) or B3(v) is finite for v sufficiently large (c.f. [20, Question 1.6]). Re-

call that β3(v) denotes the number of 3-dimensional hyperbolic geometric

boundaries of volume ≤ v up to isometry, and B3(v) is the number of com-

mensurability classes of 3-dimensional hyperbolic geometric boundaries of

volume ≤ v.
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