Duals of non-zero square

Hannah R. Schwartz

Abstract

In this short note, for each non-zero integer n, we construct a 4manifold containing a smoothly concordant pair of spheres with a common dual of square n but no automorphism carrying one sphere to the other. Our examples, besides showing that the square zero assumption on the dual is necessary in Gabai's and SchneidermanTeichner's versions of the 4D Light Bulb Theorem, have the interesting feature that both the Freedman-Quinn and Kervaire-Milnor invariant of the pair of spheres vanishes. The proof gives a surprising application of results due to Akbulut-Matveyev and Auckly-Kim-Melvin-Ruberman pertaining to the well-known Mazur cork.

1. Introduction and Motivation

We work throughout in the smooth, oriented category. Begin by considering a pair of homotopic 2 -spheres S and T embedded in a smooth 4-manifold X, with an embedded 2 -sphere $G \subset X$ intersecting both S and T transversally in a single point. Such a sphere is called a common dual of S and T. Recent work of Gabai [12] and Schneiderman-Teichner [25] has completely characterized the conditions under which the spheres S and T are isotopic, so long as their common dual G has square zero, i.e. a trivial normal bundle, in the 4-manifold X. We call such a dual standard, and non-standard otherwise.

Although recent results about standard duals are numerous (see [12], [25], [13], and [18] for instance), general results about isotopy in the presence of non-standard duals are of interest but not currently known. For instance, a "homotopy implies isotopy" result for spheres with common dual of square +1 would imply, by work of Melvin [22], the longstanding conjecture that the Gluck twist [14] of any sphere in S^{4} is standard. The Main Theorem of this note implies, however, that the assumption that there is a standard dual in the 4D light bulb theorems of [12] and [25] is a necessary one, in the absence of added assumptions.

Main Theorem. For each $n \neq 0$, there exists a 4-manifold X_{n} (either closed or bounded) containing smoothly concordant embedded spheres S_{n} and T_{n} with a common dual of square n such that there is no automorphism of X_{n} carrying one sphere to the other.

The proof of our Main Theorem gives a surprising application of wellstudied 4-dimensional objects called corks: compact contractible 4-manifolds C equipped with an orientation preserving diffeomorphism $h: \partial C \rightarrow \partial C$. The study of corks was initially motivated by the fact that the cork twist $X_{C, h}=(X-\operatorname{int}(C)) \cup_{h} C$ of an embedded cork $C \subset X$ is homeomorphic to X by Freedman [9, but need not be diffeomorphic to X by Akbulut [1]. Such an embedding of a cork is called non-trivial. Our construction builds upon examples given by Akbulut and Matveyev [3] of non-trivial embeddings of corks.

2. Warm-up

The first example of a cork with a non-trivial embedding was produced by Akbulut in [1] using as the cork a contractible manifold often called the "Mazur manifold" (named so for Mazur, who first built it using a single 1 and 2-handle in [21]). Now ubiquitous in the literature, the "AkbulutMazur cork" (W, τ) consists of the Mazur manifold W in Figure 1 , together with the involution τ on its boundary induced by a rotation of π around the indicated axis of symmetry. Many 4-manifolds are now known to admit non-trivial embeddings of the Mazur cork; we outline one such embedding due to Akbulut and Matveyev [3] as a warm-up to the proof of the Main Theorem.

Let X denote the compact 4-manifold shown on the left in Figure 2, built from the Mazur manifold W by adding a single 2 -handle. Note that X has a handlebody decomposition consisting of a single 1-handle, and two 2-handles each attached along knots in $S^{1} \times S^{2}$ with framings less than their maximum Thurston-Bennequin numbers, as illustrated on the bottom right of Figure 3. Therefore X is a compact Stein domain, by a result of Eliashberg [7]; see also [15] for more exposition. For a precise definition of what we mean by "compact Stein domain", refer to [2].

On the other hand, the cork twist $X_{W, \tau}$ contains an embedded 2-sphere of square -1 , seen in the diagram for $X_{W, \tau}$ in Figure 2 as the union of the shaded disk D and the core of the 2 -handle attached along ∂D. Therefore $X_{W, \tau}$ must not be a compact Stein domain. This follows from a result due to Lisca and Matić [20] that compact Stein domains embed in minimal, closed

Figure 1. The Akbulut-Mazur cork (W, τ).

Figure 2. The manifold X (left) and the cork twist $X_{W, \tau}$ (right).

Kähler surfaces, which contain no smoothly embedded 2-spheres of square -1 . This follows from results from [5], [8], and [11] that Kähler surfaces have non-vanishing Seiberg-Witten invariant, together with the fact due to [19] and [24] that surfaces in Kähler surfaces must satisfy the adjunction inequality. Therefore, X and $X_{W, \tau}$ are not diffeomorphic.

3. Main theorem

To contextualize our main result, we outline the previous results about common duals referred to in Section 1. By Gabai [12] and Schneiderman-Teichner [25], the existence of a common standard dual for homotopic spheres $S, T \subset$ X guarantees a smooth isotopy between S and T whenever the FreedmanQuinn invariant, a concordance invariant defined in [10], of the pair (S, T)

Figure 3. Identical handlebody structures for X, drawn with (left and middle) and without (right) the dotted circle notation for 1-handles from [16, Chapter I.2]. The Thurston-Bennequin framing of the attaching circle of each 2-handle is computed from the rightmost diagram using the usual formula (writhe) - (number of right cusps).
vanishes. Recent work of Gabai [13] and Kosanović - Teichner [18] (which extends to higher dimensional cases) shows that an analogous result holds for certain properly embedded disks with a common standard dual and vanishing Dax invariant, an isotopy invariant of properly embedded disks recently formulated by Gabai in [13] using homotopy theoretic work of Dax [6] from the 70 's. To guarantee even a smoothly embedded concordance between S and T when their common dual is non-standard, it is also required that their Kervaire-Milnor invariant, defined by Stong in [28], vanishes.
3.1. Remark. Recently, Klug and Miller [17, Example 7.2] pointed out that it is necessary that the dual have square zero for Gabai [12] and Schneiderman-Teichner [25] to achieve an isotopy, by presenting a pair of spheres whose common dual of square +1 , with vanishing Freedman-Quinn invariant but non-vanishing Kervaire-Milnor invariant. On the other hand, for each $n \neq 0$, the Main Theorem gives examples of pairs of spheres with dual of square n whose Freedman-Quinn invariant and Kervaire-Milnor invariants vanish, but that are not related by any automorphism of the ambient 4-manifold. Such an automorphism always exists for spheres when the common dual is standard by [26, Lemma 2.3], since in this case the common dual can be surgered (Gabai remarks after [13, Theorem 0.8] that by a similar proof, this also holds for properly embedded disks with a common standard dual).

Proof of Main Theorem. For $n \leq-1$, consider the 4 -manifold X_{n} pictured in Figure 4. Since X_{n} is simply-connected, the spheres S_{n} and T_{n} are not

Figure 4. The spheres S_{n} and T_{n} (blue) in X_{n}, with their common dual (red).
only homologous, but also homotopic. It is also immediate that the both the Kervaire-Milnor and Freedman-Quinn invariants of the pair (S_{n}, T_{n}) vanish, since these invariants are elements of $H_{1}\left(X_{n} ; \mathbb{Z}_{2}\right)$ and a quotient of $\mathbb{Z}\left[\pi_{1}(X)\right]$, respectively, which are both trivial in this case. Let R_{n} denote the sphere of square n gotten by capping off the red disk in Figure 4 with the core of the 2 -handle attached with framing n along its boundary. The sphere R_{n} is dual to both S_{n} and T_{n}, since S_{n} and T_{n} each pass once (geometrically) over the 2-handle with framing 1 in the topmost diagram of Figure 4. Therefore, by [10] and [28, the spheres S_{n} and T_{n} are smoothly concordant in $X_{n} \times I$.

The manifold X_{n} contains Akbulut and Matveyev's manifold X [3] discussed in Section 2. To show that there is no automorphism of X_{n} carrying S_{n} to T_{n}, we use an argument similar to one of Auckly-Kim-MelvinRuberman 4, Theorem A]; see in particular Figure 18 of their paper. For, blowing down S_{n} gives the bottom left manifold of Figure 5, which is not Stein since it contains an embedded sphere of square -1 , as in the argument from Section 2. On the other hand, blowing down T_{n} gives the bottom

Figure 5. Blowing down the spheres S_{n} and T_{n}
right manifold of Figure 5, which is Stein whenever $n \leq-1$ by [7], since all 2-handles are attached along Legendrian knots whose framings are strictly less than their Thurston-Bennequin numbers.

As the manifolds that result from blowing down S_{n} and T_{n} are not diffeomorphic, there can be no automorphism of X_{n} carrying one sphere to the other when $n \leq-1$. The result therefore also holds for $n \geq 1$, setting $X_{n}=-X_{-n}$ and considering the spheres $S_{n}, T_{n} \subset X_{n}$ that are the images of the spheres $S_{-n}, T_{-n} \subset X_{-n}$ under the (orientation reversing) identity map.

To prove the result in the closed case, note that for each n, the Stein manifold on the bottom right of Figure 5 embeds in a closed Kähler manifold by Lisca and Matić [20], with complement K_{n}. Copies of S_{n} and T_{n} sit naturally in the union $X_{n} \cup-K_{n}$, and are not smoothly isotopic: blowing down T_{n} is Kähler, whereas blowing down S_{n} gives a manifold that is not Kähler (as it contains the sphere of square -1).

Acknowledgements

The author is grateful to both Dave Gabai and Peter Teichner for their encouragement to write up this result, and for their thoughtful comments and advice.

References

[1] S. Akbulut, A fake compact contractible 4-manifold, J. Differential Geom. 33 (1991), no. 2, 335-356.
[2] S. Akbulut and R. Matveyev, A convex decomposition theorem for 4manifolds, Internat. Math. Res. Notices 7 (1998), 371-381.
[3] S. Akbulut and R. Matveyev, Exotic structures and adjunction inequality, Turkish J. of Math. 21 (1997), no. 1, 47-53.
[4] D. Auckly, H-J. Kim, P. Melvin and D. Ruberman, Stable isotopy in four dimensions, J. Lond. Math. Soc. 91 (2015), 439-463.
[5] R. Brussee, The Kähler class and the C1 properties of Kähler surfaces, New York Journal of Mathematics frm-e (1996).
[6] J. P. Dax, Étude homotopique des espaces de plongements, Ann. Sci. Ecole Norm. Sup. (4) 5 (1972), 303-377.
[7] Y. Eliashberg, A topological characterization of Stein manifolds of dimension > 2, International J. of Math. 1 (1990), no. 1, 29-46.
[8] R. Fintushel and R. Stern, Immersed spheres in 4-manifolds and the immersed Thom Conjecture, Proceedings of 3rd Gokova GeometryTopology Conference. (1994), 27-39.
[9] M. H. Freedman, The topology of four-dimensional manifolds, J. Diff. Geo. 17 (1982), 357-432.
[10] M. H. Freedman and F. Quinn, Topology of 4-manifolds, Princeton University Press, Princeton, 1990.
[11] R. Friedman and J. Morgan, Algebraic surfaces and Seiberg-Witten invariants, J. Algebraic Geom. 6 (1997), no. 3, 445-479.
[12] D. Gabai, The 4-Dimensional Lightbulb Theorem, J. AMS 33 (2020), 609-652.
[13] D. Gabai, Self-referential disks and the light bulb lemma, arXiv: 2006.15450, (2020).
[14] Herman Gluck, The embedding of two-spheres in the four-sphere, Transactions of the American Mathematical Society 104 (2) (1962), 308-333.
[15] B. Gompf, Constructing Stein manifolds after Eliashberg, arXiv:0810. 4511 [math. GT], (2008).
[16] R. C. Kirby, The topology of 4-manifolds, Lecture Notes in Mathematics, vol. 1374, Springer-Verlag, Berlin, 1989.
[17] M. Klug and M. Miller, Concordance of surfaces and the FreedmanQuinn invariant, arXiv:1912.12286 [math.GT], (2019).
[18] D. Kosanović and P. Teichner, A space level light bulb theorem for disks, arXiv:2105.13032, (2021).
[19] P. Kronheimer and T. Mrowka, On genus of embedded surfaces in the projective plane, Math. Res. Letters 1 (1994), 797-808.
[20] P. Lisca and G. Matić, Tight contact structures and Seiberg-Witten invariants, Invent. Math. 129 (1997), 509-525.
[21] B. Mazur, A note on some contractible 4-manifolds, Ann. of Math. 73 (1961), 221-228.
[22] P. Melvin, Blowing up and down in 4-manifolds, 1977, Ph. D. thesis, UC Berkeley.
[23] M. Miller, A concordance analogue of the 4-dimensional light bulb theorem, arXiv:1903.03055 [math.GT], (2019). To appear in Int. Math. Res. Notices IMRN.
[24] J. Morgan, Z. Szabo, and C.H. Taubes, A product formula for the Seiberg-Witten invariants and the generalized Thom conjecture, J. Diff. Geom. 44 (1996), no. 4, 706-788.
[25] R. Schneiderman and P. Teichner, Homotopy versus Isotopy: spheres with duals in 4-manifolds, arXiv:1904.12350 [math.GT], (2019).
[26] H. Schwartz, Equivalent non-isotopic spheres in 4-manifolds, J. of Top. 12 (2019), 1396-1412.
[27] S. Smale, A classification of immersions of the two-sphere, Trans. AMS (1957), 281-290.
[28] R. Stong, Existence of π_{1}-negligible embeddings in 4-manifolds: A correction to Theorem 10.5 of Freedman and Quinn, Proc. Amer. Math. Soc. 120 (1994), 1309-1314.

Department of Mathematics, Princeton University
Princeton, NJ 08544, USA
E-mail address: hs25@princeton.edu
Received December 27, 2020
Accepted June 1, 2021

