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Duals of non-zero square
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In this short note, for each non-zero integer n, we construct a 4-
manifold containing a smoothly concordant pair of spheres with a
common dual of square n but no automorphism carrying one sphere
to the other. Our examples, besides showing that the square zero
assumption on the dual is necessary in Gabai’s and Schneiderman-
Teichner’s versions of the 4D Light Bulb Theorem, have the inter-
esting feature that both the Freedman-Quinn and Kervaire-Milnor
invariant of the pair of spheres vanishes. The proof gives a surpris-
ing application of results due to Akbulut-Matveyev and Auckly-
Kim-Melvin-Ruberman pertaining to the well-known Mazur cork.

1. Introduction and Motivation

We work throughout in the smooth, oriented category. Begin by considering
a pair of homotopic 2-spheres S and T embedded in a smooth 4-manifold X,
with an embedded 2-sphere G ⊂ X intersecting both S and T transversally
in a single point. Such a sphere is called a common dual of S and T .
Recent work of Gabai [12] and Schneiderman-Teichner [25] has completely
characterized the conditions under which the spheres S and T are isotopic, so
long as their common dual G has square zero, i.e. a trivial normal bundle,
in the 4-manifold X. We call such a dual standard , and non-standard

otherwise.
Although recent results about standard duals are numerous (see [12],

[25], [13], and [18] for instance), general results about isotopy in the presence
of non-standard duals are of interest but not currently known. For instance,
a “homotopy implies isotopy” result for spheres with common dual of square
+1 would imply, by work of Melvin [22], the longstanding conjecture that
the Gluck twist [14] of any sphere in S4 is standard. The Main Theorem
of this note implies, however, that the assumption that there is a standard
dual in the 4D light bulb theorems of [12] and [25] is a necessary one, in the
absence of added assumptions.
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Main Theorem. For each n ̸= 0, there exists a 4-manifold Xn (either
closed or bounded) containing smoothly concordant embedded spheres Sn and
Tn with a common dual of square n such that there is no automorphism of
Xn carrying one sphere to the other.

The proof of our Main Theorem gives a surprising application of well-
studied 4-dimensional objects called corks: compact contractible 4-manifolds
C equipped with an orientation preserving diffeomorphism h : ∂C → ∂C .
The study of corks was initially motivated by the fact that the cork twist

XC,h = (X − int(C)) ∪h C of an embedded cork C ⊂ X is homeomorphic
to X by Freedman [9], but need not be diffeomorphic to X by Akbulut [1].
Such an embedding of a cork is called non-trivial . Our construction builds
upon examples given by Akbulut and Matveyev [3] of non-trivial embeddings
of corks.

2. Warm-up

The first example of a cork with a non-trivial embedding was produced by
Akbulut in [1] using as the cork a contractible manifold often called the
“Mazur manifold” (named so for Mazur, who first built it using a single
1 and 2-handle in [21]). Now ubiquitous in the literature, the “Akbulut-
Mazur cork” (W, τ) consists of the Mazur manifold W in Figure 1, together
with the involution τ on its boundary induced by a rotation of π around
the indicated axis of symmetry. Many 4-manifolds are now known to admit
non-trivial embeddings of the Mazur cork; we outline one such embedding
due to Akbulut and Matveyev [3] as a warm-up to the proof of the Main
Theorem.

Let X denote the compact 4-manifold shown on the left in Figure 2,
built from the Mazur manifold W by adding a single 2-handle. Note that
X has a handlebody decomposition consisting of a single 1-handle, and two
2-handles each attached along knots in S1 × S2 with framings less than their
maximum Thurston-Bennequin numbers, as illustrated on the bottom right
of Figure 3. ThereforeX is a compact Stein domain, by a result of Eliashberg
[7]; see also [15] for more exposition. For a precise definition of what we mean
by “compact Stein domain”, refer to [2].

On the other hand, the cork twist XW,τ contains an embedded 2-sphere
of square −1, seen in the diagram for XW,τ in Figure 2 as the union of the
shaded disk D and the core of the 2-handle attached along ∂D. Therefore
XW,τ must not be a compact Stein domain. This follows from a result due to
Lisca and Matić [20] that compact Stein domains embed in minimal, closed
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Figure 1. The Akbulut-Mazur cork (W, τ).
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Figure 2. The manifold X (left) and the cork twist XW,τ (right).

Kähler surfaces, which contain no smoothly embedded 2-spheres of square
−1. This follows from results from [5], [8], and [11] that Kähler surfaces
have non-vanishing Seiberg-Witten invariant, together with the fact due to
[19] and [24] that surfaces in Kähler surfaces must satisfy the adjunction
inequality. Therefore, X and XW,τ are not diffeomorphic.

3. Main theorem

To contextualize our main result, we outline the previous results about com-
mon duals referred to in Section 1. By Gabai [12] and Schneiderman-Teichner
[25], the existence of a common standard dual for homotopic spheres S, T ⊂

X guarantees a smooth isotopy between S and T whenever the Freedman-

Quinn invariant , a concordance invariant defined in [10], of the pair (S, T )
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Figure 3. Identical handlebody structures for X, drawn with (left and mid-
dle) and without (right) the dotted circle notation for 1-handles from [16,
Chapter I.2]. The Thurston-Bennequin framing of the attaching circle of
each 2-handle is computed from the rightmost diagram using the usual for-
mula (writhe) - (number of right cusps).

vanishes. Recent work of Gabai [13] and Kosanović - Teichner [18] (which
extends to higher dimensional cases) shows that an analogous result holds
for certain properly embedded disks with a common standard dual and van-
ishing Dax invariant , an isotopy invariant of properly embedded disks
recently formulated by Gabai in [13] using homotopy theoretic work of Dax
[6] from the 70’s. To guarantee even a smoothly embedded concordance be-
tween S and T when their common dual is non-standard, it is also required
that their Kervaire-Milnor invariant , defined by Stong in [28], vanishes.

3.1. Remark. Recently, Klug and Miller [17, Example 7.2] pointed out
that it is necessary that the dual have square zero for Gabai [12] and
Schneiderman-Teichner [25] to achieve an isotopy, by presenting a pair of
spheres whose common dual of square +1, with vanishing Freedman-Quinn
invariant but non-vanishing Kervaire-Milnor invariant. On the other hand,
for each n ̸= 0, the Main Theorem gives examples of pairs of spheres with
dual of square n whose Freedman-Quinn invariant and Kervaire-Milnor in-
variants vanish, but that are not related by any automorphism of the ambi-
ent 4-manifold. Such an automorphism always exists for spheres when the
common dual is standard by [26, Lemma 2.3], since in this case the com-
mon dual can be surgered (Gabai remarks after [13, Theorem 0.8] that by
a similar proof, this also holds for properly embedded disks with a common
standard dual).

Proof of Main Theorem. For n ≤ −1, consider the 4-manifold Xn pictured
in Figure 4. Since Xn is simply-connected, the spheres Sn and Tn are not
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Figure 4. The spheres Sn and Tn (blue) in Xn, with their common dual
(red).

only homologous, but also homotopic. It is also immediate that the both the
Kervaire-Milnor and Freedman-Quinn invariants of the pair (Sn, Tn) vanish,
since these invariants are elements ofH1(Xn;Z2) and a quotient of Z[π1(X)],
respectively, which are both trivial in this case. Let Rn denote the sphere of
square n gotten by capping off the red disk in Figure 4 with the core of the
2-handle attached with framing n along its boundary. The sphere Rn is dual
to both Sn and Tn, since Sn and Tn each pass once (geometrically) over the
2-handle with framing 1 in the topmost diagram of Figure 4. Therefore, by
[10] and [28], the spheres Sn and Tn are smoothly concordant in Xn × I.

The manifold Xn contains Akbulut and Matveyev’s manifold X [3] dis-
cussed in Section 2. To show that there is no automorphism of Xn carry-
ing Sn to Tn, we use an argument similar to one of Auckly-Kim-Melvin-
Ruberman [4, Theorem A]; see in particular Figure 18 of their paper. For,
blowing down Sn gives the bottom left manifold of Figure 5, which is not
Stein since it contains an embedded sphere of square −1, as in the argu-
ment from Section 2. On the other hand, blowing down Tn gives the bottom
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Figure 5. Blowing down the spheres Sn and Tn

right manifold of Figure 5, which is Stein whenever n ≤ −1 by [7], since all
2-handles are attached along Legendrian knots whose framings are strictly
less than their Thurston-Bennequin numbers.

As the manifolds that result from blowing down Sn and Tn are not
diffeomorphic, there can be no automorphism of Xn carrying one sphere to
the other when n ≤ −1. The result therefore also holds for n ≥ 1, setting
Xn = −X

−n and considering the spheres Sn, Tn ⊂ Xn that are the images of
the spheres S

−n, T−n ⊂ X
−n under the (orientation reversing) identity map.

To prove the result in the closed case, note that for each n, the Stein
manifold on the bottom right of Figure 5 embeds in a closed Kähler manifold
by Lisca and Matić [20], with complement Kn. Copies of Sn and Tn sit
naturally in the union Xn ∪ −Kn, and are not smoothly isotopic: blowing
down Tn is Kähler, whereas blowing down Sn gives a manifold that is not
Kähler (as it contains the sphere of square −1). □
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