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Instability of the solitary waves for the 1d

NLS with an attractive delta potential

in the degenerate case

Xingdong Tang and Guixiang Xu

In this paper, we show the orbital instability of the solitary waves
QΩe

iΩt of the 1d NLS with an attractive delta potential (γ > 0)

iut + uxx + γδu+ |u|p−1
u = 0, p > 5,

where Ω = Ω(p, γ) > γ2

4
is the critical oscillation number and de-

termined by

p− 5

p− 1

∫ +∞

arctanh

(

γ

2
√

Ω

)

sech
4

p−1 (y) dy =
γ

2
√
Ω

(
1− γ2

4Ω

)−
p−3

p−1

⇐⇒ d′′(Ω) = 0.

The classical convex method and Grillakis-Shatah-Strauss’s stabil-
ity approach in [2, 10] doesn’t work in this degenerate case, and
the argument here is motivated by those in [5, 16, 17, 22, 23]. The
main ingredients are to construct the unstable second order ap-
proximation near the solitary wave QΩe

iΩt on the level set M(QΩ)
according to the degenerate structure of the Hamiltonian and to
construct a refined Virial identity to show the orbital instability
of the solitary waves QΩe

iΩt in the energy space. Our result is the
complement of the results in [8] in the degenerate case.

1. Introduction

In this paper, we consider the 1d nonlinear Schrödinger with a delta potential

(1.1)

{
iut + uxx + γδu+ µ|u|p−1u = 0, (t, x) ∈ R+ × R,

u(0, x) = u0(x) ∈ H1(R),

where u is a complex-valued function of (t, x), γ ∈ R\{0}, δ is the Dirac delta
distribution at the origin, µ = ±1 and 1 < p <∞. For γ ̸= 0, (1.1) appears
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in various physical models with a point defect on the line, for instance,
nonlinear optics [9] and references therein. For the case γ < 0, it corresponds
to the repulsive delta potential, while for the case γ > 0 it is attractive.

There are many results about (1.1). Local well-posedness for (1.1) in the
energy space H1 (R) is well understood by Cazenave in [4], Fukuizumi, Ohta
and Ozawa in [8] and Masaki, Murphy and Segata in [20]. More precisely,
we have

Proposition 1.1 (Local well-posedness in H1 (R)). For any u0 ∈
H1 (R), there exists Tmax with 0 < Tmax ⩽ +∞ and a unique solution u ∈
C
(
[0, Tmax) , H

1 (R)
)
∩ C1

(
[0, Tmax) , H

−1 (R)
)
for (1.1) satisfying

either Tmax = +∞, or Tmax < +∞ and lim
t↗Tmax

∥∂xu (t)∥2 = +∞.

Moreover, the mass and the energy are conserved under the flow generated
by (1.1), i.e., for any t ∈ [0, Tmax), we have

M (u (t)) :=
1

2

∫

R

|u(t, x)|2dx = M(u0),(1.2)

E (u (t)) :=

∫

R

[
1

2
|ux (t, x)|2 −

γ

2
δ(x)|u (t, x)|2 − µ

p+ 1
|u(t, x)|p+1

]
dx(1.3)

= E (u0) .

By the Gagliardo-Nirenberg inequality and the conservation laws, we
have the global well-posedness of (1.1) in the energy space H1(R) for 1 <
p < 5.

In addition, for the repulsive potential case γ < 0, equation (1.1) is also
studied from the point of view of scattering. Banica and Visciglia proved the
global well-posedness and scattering result of the energy solution of (1.1) for
the defocusing mass-supercritical nonlinearity µ < 0, p > 5 in [3]. Ikeda and
Inui obtained the scattering result of the energy solution of (1.1) below
the ground state threshold for the focusing mass-supercritical nonlinearity
µ > 0, p > 5 in [13]. Masaki, Murphy and Segata showed the decay and
modified scattering result of the solution of (1.1) with small initial data
for p = 3 in a weighted space in [19], and recently established asymptotic
stability for all solitary waves under a suitable spectral assumption in [18].
One can also refer the instability of the solitary waves of (1.1) for p > 1 to
[7, 15, 25].

Such results are not expected for the attractive case γ > 0 because of
the existence of the eigenvalue −1

4γ
2 of the Schrödinger operator −∂2x − γδ

(see [6, 12, 20] and the references therein). In this paper, we will focus on
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the attractive delta potential (γ > 0) and the focusing nonlinearity (µ = 1)
and consider the stability/instability of the nonlinear solitary wave solutions
for (1.1) with the following form

u(t, x) = e iωtQω(x).

It is easy to verify that Qω satisfies

(1.4) −∂2xQω(x) + ωQω(x)− γδ(x)Qω(x)− |Qω(x)|p−1Qω(x) = 0.

For the case ω > γ2

4 , there exists a unique positive, radial symmetric solution
to (1.4) which can be explicitly described as following (see [7–9, 15, 20] )

(1.5) Qω(x) =

[
(p+ 1)ω

2
sech2(

(p− 1)
√
ω

2
|x|+ arctanh(

γ

2
√
ω
))

] 1

p−1

.

The stability of Qω is a crucial problem during the study of the dynamics
of the flow induced by (1.1). We firstly recall the definition of the orbital
stability/instability in order to show the orbital stability/instability of the
solitary waves in the energy space.

Definition 1.2. The solitary wave e iωtQω (x) of (1.1) is said to be orbitally
stable in H1 (R) if for any α > 0, there exists β = β(α) > 0 such that for
any solution u (t) to (1.1) with initial data u0 ∈ U (Qω , β), we have

u (t) ∈ U (Qω , α) , for any t ⩾ 0,

where

(1.6) U (Qω , α) =

{
u ∈ H1 (R)

∣∣∣∣ infθ∈R
∥u (·)−Qω (·) eiθ∥H1 < α

}
.

Otherwise, the solitary wave e iωtQω (x) is said to be orbitally unstable in
H1 (R).

For (1.1) with the cubic nonlinearity, Goodman, Holmes and Weinstein
showed the orbital stability of the solitary waves e iωtQω(x) with 4ω > γ2 in
the energy space H1 (R) in [9]. Later, by the Vakhitov-Kolokolov stability
criteria in [28] (see also [2, 10, 27]), Fukuizumi, Ohta and Ozawa generalized
the result to the case p > 1 in [8] (see also [15]). More precisely, the following
results hold:
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1) for any p ∈ (1, 5], the solitary waves e iωtQω(x) with ω > γ2

4 are or-
bitally stable in H1 (R);

2) for any p > 5, there exists Ω = Ω(p, γ) > γ2

4 , such that

• the solitary waves e iωtQω(x) with ω ∈ (γ
2

4 ,Ω) are orbitally stable
in H1 (R) ;

• the solitary waves e iωtQω(x) with ω > Ω are orbitally unstable in
H1 (R),

where Ω(p, γ) is determined by
(1.7)

p− 5

p− 1

∫ +∞

arctanh( γ

2
√

Ω
)
sech

4

p−1 (y) dy =
γ

2
√
Ω

(
1− γ2

4Ω

)− p−3

p−1

⇐⇒ d′′(Ω) = 0.

Above all, only the critical oscillation case ω = Ω(p, γ) for p > 5 is left
open, for which the Vakhitov-Kolokolov stability criteria breaks down be-
cause of the fact that d′′(Ω) = 0, i.e., the degeneracy of the second order
derivative of the function d(ω) = Sω(Qω) at ω = Ω(p, γ). Fukuizumi, Ohta
and Ozawa conjectured that the solitary wave e iωtQω(x) with ω = Ω(p, γ)
is orbitally unstable in [8]. The purpose of this paper is to prove this con-
jecture according to the observations in [5, 16, 17, 22, 23]. More precisely,
we have the main result as following.

Theorem 1.3. Let γ > 0, µ = 1, p > 5 and Ω > γ2

4 satisfy (1.7). The soli-
tary wave e iΩtQΩ(x) of (1.1) is orbitally unstable in the energy space H1(R).
More precisely, there exist α0 > 0 and λ0 > 0 such that if

u0 (x) = QΩ (x) + λ ϕΩ (x) + ρ̃ (λ) QΩ (x) ,

where 0 < λ < λ0, ϕΩ = ∂Qω

∂ω
|ω=Ω and ρ̃ (λ) = − ∥ϕΩ∥2

2

2∥QΩ∥2

2

λ2 + o
(
λ2
)
is chosen

by the implicit function theorem such that

M (u0) = M (QΩ) ,

then there exists t0 = t0(u0) such that the solution u (t) of (1.1) with initial
data u0 satisfies

inf
θ∈R

∥u(t0, ·)−QΩ (·) e i θ∥H1(R) ⩾ α0.

As stated above, the classical modulation analysis and the Virial type
identity doesn’t work once again in [10, 11, 26, 27, 29, 30] because of the
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degenerate property of d′′ (Ω), we now give more details about the refined
modulation decomposition and the refined Virial identity.

Firstly, we use the following decomposition

(1.8) u (x) = e− i θ

(
QΩ + λϕΩ + ρ(λ)QΩ + ε

)
(x) , ρ (λ) = − ∥ϕΩ∥22

2∥QΩ∥22
· λ2

for the function u in the η0-tube U (QΩ , η0) of QΩ (see (1.6) for the defini-
tion of the η0-tube of QΩ ), the above refined decomposition is related with
the landscape of the action functional Sω near QΩ.

1) By the variational characterization ofQΩ, the action functional Sω(u) =
E(u) + ωM(u) has the following properties

S
′
Ω (QΩ) = 0, S

′′
Ω (QΩ) = L,

where the null space of the linearized operator L is characterized by
Null (L) = span{ iQΩ}.

By the finite degenerate property of the function d (Ω) = SΩ (QΩ),
we know that

d′′(Ω) = 0, and d′′′(Ω) ̸= 0,

where the first equality means that the mass conservation quantity
M (u) = M (u) has the local equilibrium point QΩ along the curve
{QΩ+λ}λ∈R.

2) Up to the phase rotation invariances, the first order approximation of
u to QΩ comes from the tangent vector ϕΩ of the curve {QΩ+λ}λ∈R at
QΩ, and we have the following degenerate result

S
′′
Ω (QΩ) (ϕΩ, ϕΩ) = −⟨QΩ, ϕΩ⟩ = 0.(1.9)

3) Up to the phase rotation invariances, the second order approximation
of u to QΩ is the direction QΩ, which is the steepest descent direction
of the quantity M (u) at QΩ along the curve {QΩ+λ}λ∈R. At the same
time, we have the algebraic relations

S
′′
Ω (QΩ)ϕΩ = −QΩ, and S

′′′
Ω (QΩ) (ϕΩ, ϕΩ, ϕΩ) + 3 (ϕΩ, ϕΩ) = d′′′(Ω).

Now we take the approximation of the solution u(t, x) as follows

QΩ + λϕΩ + ρ(λ)QΩ,(1.10)
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up to the phase rotation invariances, where ρ (λ) can be ensured by
restriction of the solution on the level set M (QΩ) and indeed can be
determined by the implicit function theorem (see Lemma 2.6).

By the above approximation, we can characterize the landscape of
the function SΩ at QΩ along the perturbation λϕΩ + ρ(λ)QΩ,

SΩ (QΩ + λϕΩ + ρ(λ)QΩ) = SΩ (QΩ) +
1

6
d′′′(Ω) · λ3 + o

(
|λ|3
)
,

SΩ (QΩ + λϕΩ + ρ(λ)QΩ + ε) = SΩ (QΩ) +
1

6
d′′′(Ω) · λ3

+ S
′′
Ω (QΩ) (ε, ε) + o

(
|λ|3 + ∥ε∥2H1

)
,

which means that if the small remainder term ε can be ignored, SΩ
is a local monotone function with respect to λ under the special per-
turbation λϕΩ + ρ(λ)QΩ near QΩ , that is to say, the perturbation in
the direction ϕΩ can play the dominant role under this special per-
turbation. This definite property of SΩ helps us to show the orbital
instability of the solitary waves of (1.1) with a Virial argument in the
degenerate case.

4) The remainder ε in (1.8) is not only small, but also has some orthogonal
structures, which makes the linearized operator L = S′′Ω(QΩ) possess
almost coercivity to ensure the control of the remainder term ε, see
Lemma 2.12.

Secondly, in order to show the orbital instability of the solitary waves
QΩ (x) e i Ωt of (1.1), we now turn to the effective monotonicity formula. By
introducing the perturbation of ϕΩ in the subspace Null (L) to obtain the
cancelation effect in the quadratic term of (4.20) in λ, we can construct the
refined Virial type quantity in the remainder term ε(t)

(1.11) I (t) =

〈
i ε (t, x) , ϕΩ (x)− λ (t)

⟨ϕΩ, ϕΩ⟩
⟨QΩ, QΩ⟩

QΩ (x)

〉
,

which has the monotone property in some sense (see (4.34)), to show the
orbital instability of the solitary wave QΩ (x) e i Ωt of (1.1).

At last, the paper is organized as follows. In Section 2, we recall some
properties of the linear Schrödinger operator with the dirac potential, the
landscape of the action functional Sω at QΩ along the unstable direction ϕΩ,
and the refined modulation decomposition of the functions in the η-tube of
QΩ, and the coercivity property of the linearized operator L = S′′Ω (QΩ) on
the subspace with the finite co-dimensions; In Section 3, we deduce the
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equation obeyed by the remainder term ε (t, x), and show the dynamical
estimates of the parameters λ (t) and θ (t) by the geometric structures of
the remainder term. In Section 4, we first construct the solutions of (1.1)
near the solitary wave with the refined geometric structures, then show the
orbital instability of the solitary wave of (1.1) in the degenerate case by
the dynamical behaviors of the remainder term and the parameters, and the
refined Virial identity. In Appendix A, we calculate the third order derivative
d′′′(Ω) of d(ω) = Sω(Qω) at Ω.
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2. Preliminaries

We make some preparations in this section. From now on, we fix p > 5 and
Ω = Ω(p, γ) > γ2

4 is determined by (1.7). The Hilbert spaces L2 (R,C) and
H1 (R,C) will be denoted by L2 (R) and H1 (R) respectively. We denote

⟨u, v⟩ = ℜ
∫
u (x) v̄ (x) dx, for all u, v ∈ L2 (R)

be the inner product on the space L2 (R). For the simplification, we denote
the following functions:

f(z) = |z|p−1z, F (z) =
1

p+ 1
|z|p+1.

A direct computation implies that for any z0, z1, z2, z3 ∈ C, the following
estimates hold:

|f (z0 + z1)− f ′ (z0) z1| ⩽ C (|z0|)
(
|z1|2 + |z1|p

)
,(2.1)

|f (z0 + z1)− f ′ (z0) z1 −
1

2
f ′′ (z0) z1z1| ⩽ C (|z0|)

(
|z1|3 + |z1|p

)
,(2.2)



✐

✐

“9-Xu” — 2022/9/1 — 2:33 — page 292 — #8
✐

✐

✐

✐

✐

✐

292 X. Tang and G. Xu

where C (|z0|) is a constant which only depends on |z0|, and

f ′ (z0) z1 = |z0|p−1z1 + (p− 1) |z0|p−3ℜ (z0z1) z0,(2.3)

f ′′ (z0) z1z2 = (p− 1) |z0|p−3 [ℜ (z0z2) z1 + ℜ (z0z1) z2 + ℜ (z2z1) z0]

+ (p− 1) (p− 3) |z0|p−5ℜ (z0z1)ℜ (z0z2) z0,(2.4)

and

F ′ (z0) (z1) = ℜ [f (z0) z̄1] ,(2.5)

F ′′ (z0) (z1, z2) = |z0|p−3
[
pℜ (z0z̄1)ℜ (z0z̄2) + ℑ (z0z̄1)ℑ (z0z̄2)

]
,(2.6)

F ′′′ (z0) (z1, z2, z3) =
p2 − 1

4
|z0|p−3ℜ [z0 (z̄1z̄2z3 + z̄1z2z̄3 + z1z̄2z̄3)]

+
(p− 1) (p− 3)

4
|z0|p−5ℜ (z0z̄1z0z̄2z0z̄3) .(2.7)

2.1. Linear Schrödinger operator with a delta potential

We now recall some well-known properties for the linear Schrödinger opera-
tor− ∂2

∂x2 − γδ with γ ∈ [−∞,+∞), which were used in the physics literature.
In fact, the following self-adjoint operator:

−∆γ = − d2

dx2
with

D(−∆γ) =

{
ψ ∈ H1 ∩H2(R \ { 0 })

∣∣∣∣
dψ

dx
(0+)− dψ

dx
(0−) = −γψ(0)

}
.

gives the precise formulation of − ∂2

∂x2 − γδ, see for instance [1]. Moreover,
the essential spectrum of −∆γ coincides with [0,+∞). In addition, if γ > 0,

−∆γ has exactly one negative, simple eigenvalue, i.e. −γ2

4 with the positive

normalized eigenfunction
√

γ
2 e

− γ

2
|x|. Therefore, for any ψ ∈ H1(R) and any

γ > 0, we have

(2.8) −γ
2

4

∫

R

|ψ(x)|2 dx ⩽

∫

R

|ψ′(x)|2 dx− γ

∫

R

δ(x)|ψ(x)|2 dx.

As a consequence of the above inequality, we have

Lemma 2.1. For any ψ ∈ H1(R), the following inequality holds,

(2.9) |ψ(0)|2 ⩽ ∥ψ′∥2∥ψ∥2.
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Proof. For any ψ ∈ H1(R), since (2.8) holds for all γ > 0, one can rewrite
(2.8) as

∫
δ(x)|ψ(x)|2 dx ⩽

1

γ

∫
|ψ′(x)|2 dx+

γ

4

∫
|ψ(x)|2 dx, for all γ > 0,

which implies (2.9) by optimizing γ. □

2.2. Basic properties of the action functional Sω and d (ω)

For any u ∈ H1(R), we define the action functional Sω as follows:

(2.10) Sω(u) = E(u) + ωM(u),

where M(u) and E(u) are the mass and energy of u defined by (1.2) and
(1.3) respectively. Since p > 5, we have that Sω is a C3 functional on H1(R)
by (2.5), (2.6) and (2.7). In addition, we can obtain the following variational
characterization of Qω by the concentration-compactness argument in [7, 8,
15].

Proposition 2.2. Let ω satisfy 4ω > γ2. Then the function defined by (1.5)
is the unique positive, radial symmetric solution to (1.4). Moreover, the set{
Qωe

i θ
∣∣ θ ∈ R

}
coincides with all minimizers of the following minimiza-

tion problem:

(2.11) inf
{
Sω (ψ)

∣∣ ψ ∈ H1 (R) \ { 0 } , Kω (ψ) = 0
}
,

where Sω is the action functional defined by (2.10), and Kω is the scaling
derivative of Sω defined by

Kω(ψ) =
d

dλ
Sω(λψ)

∣∣∣∣
λ=1

=

∫
|ψ′(x)|2 + ω

∫
|ψ(x)|2

− γ

∫
δ(x)|ψ(x)|2 −

∫
|ψ(x)|p+1.

By the classical Weyl theorem in [24] and Proposition 2.2, one can give a
precise description of the spectrum of the linearized operator S′′ω (Qω), which
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is self-adjoint operator and has the following quadratic form

S
′′
ω (Qω) (f, g) =

∫ (
f ′1g1

′ + ωf1g1 − γδf1g1 − pQp−1
ω f1g1

)

+

∫ (
f ′2g2

′ + ωf2g2 − γδf2g2 −Qp−1
ω f2g2

)
,(2.12)

where f1, g1 are the real parts of f ∈ H1 (R), and g ∈ H1 (R) respectively,
and f2, g2 are the imaginary parts of f , and g respectively. By a varia-
tional argument, Fukuizumi and Jeanjean obtained the following orthogo-
nal decomposition about H1(R) according to the spectrum of the linearized
operator S′′ω (Qω) in [7] (See also [15]).

Proposition 2.3. Let γ > 0 and ω satisfy 4ω > γ2. Then the space H1 (R)
can be decomposed as the following direct sum

(2.13) H1 = N ⊕K ⊕ P,

according to the spectrum of the operator S′′ω (Qω), where

(i) the subspace N , which is spanned by the eigenvector corresponding
to the negative eigenvalue −µ2 of the operator S′′ω (Qω), and is one-
dimensional, i.e. for any f ∈ N with f ̸= 0, we have

S
′′
ω (Qω) (f, f) = −µ2 ⟨f, f⟩ ;

(ii) the subspace K is the kernel (null) space for the operator S′′ω (Qω),
which is

K = span { iQω } ;

(iii) the subspace P where the operator S′′ω (Qω) has the coercivity, that is,
for any f ∈ P , we have

S
′′
ω (Qω) (f, f) ⩾ c∥f∥2H1 ,

where c is a positive constant which does not depend on f .

Next, we turn to investigate some properties of

d (ω) = Sω (Qω)
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which is related to the landscape of the action functional Sω around Qω. By
Proposition 2.2 and (1.4), we have for all ω satisfying 4ω > γ2,

d′ (ω) =M (Qω) .(2.14)

Moreover, let

(2.15) ϕω (x) =
∂Qω

∂ω
(x) ,

we have

d′′ (ω) =
∂2

∂ω2
Sω (Qω)

= ⟨S′ω (Qω) ,
∂2

∂ω2
Qω⟩+ S

′′
ω (Qω)

(
∂

∂ω
Qω,

∂

∂ω
Qω

)
+ 2 ⟨Qω,

∂

∂ω
Qω⟩

= S
′′
ω (Qω) (ϕω, ϕω) + 2 ⟨Qω, ϕω⟩ ,(2.16)

where we used the fact that S′ω (Qω) = 0. Furthermore, we have

Lemma 2.4. Let p > 5, 4ω > γ2 and ϕω defined by (2.15), the following
result holds

(2.17) S
′′
ω (Qω) (ϕω, ψ) = −⟨Qω, ψ⟩ , for any ψ ∈ H1 (R) .

Proof. It is a well-known result and we can also refer to Lemma 2.7 in [7].
In fact, it suffices to check that the following facts hold

(
∂ϕω

∂x

)
(0+)−

(
∂ϕω

∂x

)
(0−) = −γϕω (0) ,(2.18)

and

−∂
2ϕω

∂x2
(x) + ωϕω(x)− pQω(x)

p−1ϕω(x) = −Qω(x), for all x ̸= 0.(2.19)

On the one hand, since Qω can be explicitly expressed by (1.5), a direct
computation implies that (2.18) holds. On the other hand, since Qω satisfies
(1.4), we can obtain (2.19) by taking derivative with respect to ω in (1.4). □

As a consequence of (2.16) and (2.17), we know that

(2.20) d′′ (Ω) = 0 ⇐⇒ ⟨ϕΩ, QΩ⟩ = 0.

It corresponds to the degenerate case, and the Vakhitov-Kolokolov stability
criterion in [28] (see also [2, 10, 27]) breaks down in this case. In fact, one can
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still consider the stability (or instability) of the solitary waves through the
non-degenerate behavior of higher order derivative of d (ω) as those in [17]
(see also [5, 16, 22, 23]). For this purpose, we first characterize the behavior
of d (ω) at the critical value Ω.

Lemma 2.5. Let p > 5 and Ω be defined by (1.7). Then we have the fol-
lowing results.

1) For the case γ2

4 < ω < Ω, we have d′′ (ω) > 0;

2) For the case ω = Ω, we have d′′ (Ω) = 0, and d′′′ (Ω) < 0;

3) For the case ω > Ω, we have d′′ (ω) < 0.

Furthermore, d′′′ (Ω) can be explicitly expressed as following

(2.21) d′′′ (Ω) = S
′′′
Ω (QΩ) (ϕΩ, ϕΩ, ϕΩ) + 3 ⟨ϕΩ, ϕΩ⟩ ,

where ϕΩ is defined by (2.15).

The proof of Lemma 2.5 is postponed in Appendix A.

2.3. Geometric decomposition of u and landscape of SΩ near QΩ

For the non-degenerate case, i.e. d′′ (ω) < 0 with ω > Ω, the first order ap-
proximation of the solitary wave in the unstable direction is enough to show
the instability of the solitary waves, while for the degenerate case d′′ (Ω) = 0
and d′′′(Ω) ̸= 0, we are going to consider the second order approximation of
the solitary waves QΩe

iΩt, up to the phase rotation invariance, on the level
set M(QΩ) to show its instability in the energy space.

Lemma 2.6. There exist a constant 0 < λ̃0 ≪ 1 and a C2 function ρ̃ :(
−λ̃0, λ̃0

)
7→ R such that for any λ ∈

(
−λ̃0, λ̃0

)
, we have

M (QΩ + λϕΩ + ρ̃ (λ)QΩ) = M (QΩ) ,

where the function ρ̃(λ) can be expressed as following:

(2.22) ρ̃ (λ) = − ∥ϕΩ∥22
2∥QΩ∥22

λ2 + o
(
λ2
)
, for any λ ∈

(
−λ̃0, λ̃0

)
.
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Proof. Essentially, the result is a consequence of the Implicit Function The-
orem. Let us define the function G(λ, ρ) as following:

G (λ, ρ) = M (QΩ + λϕΩ + ρQΩ)−M (QΩ) .

By the simple calculations, one can obtain that G (0, 0) = 0, and

(2.23)
∂G

∂λ
(0, 0) = 0,

∂G

∂ρ
(0, 0) = ∥QΩ∥22,

and

(2.24)
∂2G

∂λ2
(0, 0) = ∥ϕΩ∥22,

∂2G

∂λ∂ρ
(0, 0) = 0,

∂2G

∂ρ2
(0, 0) = ∥QΩ∥22,

then by the Implicit Function Theorem, there exist a λ̃0 with 0 < λ̃0 ≪ 1

and a C2 function ρ̃ :
(
−λ̃0, λ̃0

)
7→ R such that

(2.25) g (λ) = G (λ, ρ̃ (λ)) = 0, for all λ ∈
(
−λ̃0, λ̃0

)
.

Therefore, it follows from (2.25) that

0 =
dg

dλ
(0) =

∂G

∂λ
(0, 0) +

∂G

∂ρ
(0, 0)

dρ̃

dλ
(0) ,(2.26)

then by (2.23), we obtain

(2.27)
dρ̃

dλ
(0) = 0.

Again, by taking the second order derivative of the function g with respect
to λ at 0, we have

0 =
d2g

dλ2
(0) =

∂2G

∂λ2
(0, 0) + 2

∂2G

∂λ∂ρ
(0, 0)

dρ̃

dλ
(0) +

∂G

∂ρ
(0, 0)

d2ρ̃

dλ2
(0)(2.28)

By (2.24) and (2.27), we get

(2.29)
d2ρ̃

dλ2
(0) = −∥ϕΩ∥22

∥QΩ∥22
.

By the fundamental theorem of calculus, one can obtain the result. □
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From now on, we will take the function ρ(λ) as the main part of ρ̃(λ),
i.e.

(2.30) ρ (λ) = − ∥ϕΩ∥22
2∥QΩ∥22

λ2.

Now, we can show the refined modulational decomposition of the functions
around the solitary waves QΩ.

Lemma 2.7. There exists 0<η̃0≪1 and a unique C1 map (θ, λ) :U (QΩ, η̃0)
7→ R such that if u ∈ U (QΩ, η̃0) and εθ,λ(x) is defined by

εθ,λ (x) = u (x) e i θ − (QΩ + λϕΩ + ρ (λ)QΩ)(x)

where ρ(λ) is define by (2.30), then we have the following orthogonal struc-
ture

εθ,λ ⊥ iQΩ and εθ,λ ⊥ ϕΩ.

Moreover, there exists a constant C which is independent of θ, λ and u, such
that if u ∈ U (QΩ, η) with η < η̃0, then we have

∥εθ,λ∥H1 + |θ|+ |λ| ⩽ Cη.

Proof. It is also a consequence of the Implicit Function Theorem for the
functional

F(u; θ, λ) = (F 1(u; θ, λ), F 2(u; θ, λ)),

where

F 1(u; θ, λ) = ℜ
∫
εθ,λ iQΩ, F 2(u; θ, λ) = ℜ

∫
εθ,λ ϕΩ.

It suffices to verify the non-degeneracy of the following Jacobian matrix:

det
∂F

∂(θ, λ)
(QΩ, 0, 0) = det

(
⟨ iQΩ, iQΩ⟩ ⟨ iQΩ, ϕΩ⟩
− ⟨ϕΩ, iQΩ⟩ − ⟨ϕΩ, ϕΩ⟩

)

= −∥QΩ∥22∥ϕΩ∥22 ̸= 0.

We omit the details here. One can refer to [22, Lemma 2.6] for the analogue
proof as the derivative NLS case. □

The next lemma shows that one can obtain a refined estimate of the remain-
der term εθ,λ along the direction QΩ under the above refined modulational
decomposition.
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Lemma 2.8. There exist 0 < η̃1 ≪ 1 and 0 < λ̃1 ≪ 1, such that if |λ| ⩽ λ̃1
and any ε ∈ H1(R) with ∥ε∥H1 ⩽ η̃1, satisfy

M (QΩ + λϕΩ + ρ (λ)QΩ + ε) = M (QΩ) ,

where ρ(λ) is defined by (2.30), then we have

(2.31) |⟨ε,QΩ⟩| ⩽ C
(
∥ε∥2H1 + |λ|∥ε∥H1 + λ4

)
,

where C is a constant independent of λ and ε.

Proof. By M (QΩ + λϕΩ + ρ (λ)QΩ + ε) = M (QΩ) , we have

0 = M (QΩ + λϕΩ + ρ (λ)QΩ + ε)−M (QΩ)

= ⟨QΩ, λϕΩ + ρ (λ)QΩ + ε⟩

+
1

2
⟨λϕΩ + ρ (λ)QΩ + ε, λϕΩ + ρ (λ)QΩ + ε⟩ .(2.32)

which together with (2.20) and (2.30) implies that

⟨ε,QΩ⟩ =− λ ⟨ϕΩ, ε⟩ −
1

2
⟨ρ (λ)QΩ + ε, ρ (λ)QΩ + ε⟩

=− λ ⟨ϕΩ, ε⟩ −
ρ (λ)2

2
⟨QΩ, QΩ⟩ −

1

2
⟨ε, ε⟩ − ρ (λ) ⟨ε,QΩ⟩ .(2.33)

By (2.30) and the Cauchy-Schwarz inequality, we can obtain the result. □

The following two lemmas show that the landscape of the action functional
SΩ(u) along the unstable direction λϕΩ + ρ (λ)QΩ around the solitary wave
QΩ is definite. Firstly we have

Lemma 2.9. There exist 0 < λ̃2 ≪ 1, such that if 0 < |λ| < λ̃2, we have

(2.34) SΩ (QΩ + λϕΩ + ρ (λ)QΩ) = SΩ (QΩ) +
1

6
d′′′ (Ω) · λ3 + o

(
|λ|3
)
,

where ρ(λ) is defined by (2.30).

Proof. By the definition (2.30) of ρ(λ), λϕΩ + ρ (λ)QΩ is sufficiently small
in H1(R). Therefore, by taking the Taylor series expression of SΩ at QΩ, we
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have

SΩ (QΩ + λϕΩ + ρ (λ)QΩ)(2.35)

= SΩ (QΩ) +
1

2
S
′′
Ω (QΩ) (λϕΩ + ρ (λ)QΩ, λϕΩ + ρ (λ)QΩ)

+
1

6
S
′′′
Ω (QΩ) (λϕΩ + ρ (λ)QΩ, λϕΩ + ρ (λ)QΩ, λϕΩ + ρ (λ)QΩ)

+ o
(
∥λϕΩ + ρ (λ)QΩ∥3H1

)
.

Firstly, it follows from (2.6), (2.17), (2.20) and (2.30) that

1

2
S
′′
Ω (QΩ) (λϕΩ + ρ (λ)QΩ, λϕΩ + ρ (λ)QΩ)

=
1

2
λ3 ⟨ϕΩ, ϕΩ⟩+ o

(
|λ|3
)
.(2.36)

Secondly, by (2.30) again, one can get

S
′′′
Ω (QΩ) (λϕΩ + ρ (λ)QΩ, λϕΩ + ρ (λ)QΩ, λϕΩ + ρ (λ)QΩ)

= λ3S′′′Ω (QΩ) (ϕΩ, ϕΩ, ϕΩ) + o
(
|λ|3
)
,(2.37)

which together with (2.21), (2.35), (2.36) implies the result. □

Secondly, we have

Lemma 2.10. There exist 0 < λ̃3 ≪ 1 and 0 < η̃3 ≪ 1 such that if λ sat-
isfies 0 < |λ| < λ̃3 and ε ∈ H1(R) with ∥ε∥H1 ⩽ η̃3 satisfies

(2.38) |⟨ε,QΩ⟩| ⩽ C
(
∥ε∥2H1 + |λ|∥ε∥H1 + λ4

)
,

where C is a constant independent of λ and ε. then we have

SΩ (QΩ + λϕΩ + ρ (λ)QΩ + ε) = SΩ (QΩ) + S
′′
Ω (QΩ) (ε, ε)

+
1

6
d′′′ (Ω) · λ3 + o

(
|λ|3 + ∥ε∥2H1

)
,(2.39)

where ρ(λ) is defined by (2.30).
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Proof. By the Taylor series expansion of SΩ at QΩ and the fact that
S′Ω (QΩ) = 0, we have

SΩ (QΩ + λϕΩ + ρ (λ)QΩ + ε)− SΩ (QΩ)(2.40)

=
1

2
S
′′
Ω (QΩ) (λϕΩ + ρ (λ)QΩ + ε, λϕΩ + ρ (λ)QΩ + ε)

+
1

6
S
′′′
Ω (QΩ) (λϕΩ + ρ (λ)QΩ + ε, λϕΩ + ρ (λ)QΩ + ε,

λϕΩ + ρ (λ)QΩ + ε)

+ o
(
∥λϕΩ + ρ (λ)QΩ + ε∥3H1

)
.

Firstly, it follows from (2.17) (2.30), (2.36) and (2.38) that,

1

2
S
′′
Ω (QΩ) (λϕΩ + ρ (λ)QΩ + ε, λϕΩ + ρ (λ)QΩ + ε)

=
1

2
λ3 ⟨ϕΩ, ϕΩ⟩+

1

2
S
′′
Ω (QΩ) (ε, ε)

+ S
′′
Ω (QΩ) (λϕΩ + ρ (λ)QΩ, ε) + o

(
|λ|3
)

=
1

2
λ3 ⟨ϕΩ, ϕΩ⟩+

1

2
S
′′
Ω (QΩ) (ε, ε)

− λ ⟨QΩ, ε⟩+O
(
λ2∥ε∥H1

)
+ o

(
|λ|3
)

=
1

2
λ3 ⟨ϕΩ, ϕΩ⟩+

1

2
S
′′
Ω (QΩ) (ε, ε)

+ O
(
|λ|∥ε∥2H1 + λ2∥ε∥H1 + |λ|5

)
+ o

(
|λ|3
)

=
1

2
λ3 ⟨ϕΩ, ϕΩ⟩+

1

2
S
′′
Ω (QΩ) (ε, ε) + o

(
|λ|3 + ∥ε∥2H1

)
(2.41)

where we used the Cauchy-Schwarz inequality in the last identity.
Secondly, by (2.37) and (2.30), we get

1

6
S
′′′
Ω (QΩ) (λϕΩ + ρ (λ)QΩ + ε, λϕΩ + ρ (λ)QΩ + ε,

λϕΩ + ρ (λ)QΩ + ε)

=
λ3

6
S
′′′
Ω (QΩ) (ϕΩ, ϕΩ, ϕΩ) + o

(
|λ|3
)
+O

(
λ2∥ε∥H1 + ∥ε∥3H1

)

=
λ3

6
S
′′′
Ω (QΩ) (ϕΩ, ϕΩ, ϕΩ) + o

(
|λ|3 + ∥ε∥2H1

)
(2.42)

Lastly, by (2.40), (2.41), (2.42) and (2.21), we can obtain the result. □
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2.4. Properties of the linearized operator S′′

Ω
(QΩ)

As shown in Lemma 2.10, we now turn to estimate the quadratic term
S′′Ω (QΩ) (ε, ε), which in fact has some coercivity property under the condition
that the remainder term ε has some geometric orthogonal structure. It is the
task in this subsection and related to the spectral properties of the linearized
operator S′′Ω (QΩ).

To do so, we firstly introduce the following result.

Lemma 2.11. Let χ be the L2-normalized function of N defined by (2.13),
and ϕΩ be defined by (2.15). Then we have

(2.43) ⟨χ, ϕΩ⟩ ≠ 0.

Proof. We argue by contradiction, and assume that

(2.44) ⟨χ, ϕΩ⟩ = 0.

Since ϕΩ is real, it is easy to see that

(2.45) ⟨ϕΩ, iQΩ⟩ = 0.

On the one hand, by (2.44), (2.45) and Proposition 2.3, we have

(2.46) S
′′
Ω (QΩ) (ϕΩ, ϕΩ) ⩾ c∥ϕΩ∥2H1 > 0.

On the other hand, by (2.17) and (2.20), we get

S
′′
Ω (QΩ) (ϕΩ, ϕΩ) = −⟨QΩ, ϕΩ⟩ = 0,

which is in contradiction with (2.46). Therefore, (2.43) holds, and this com-
pletes the proof. □

After the above lemma, one can now show the following coercive property
of S′′Ω (QΩ) by the standard arguments in [10] [29], which is a consequence
of Proposition 2.3.
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Lemma 2.12. Let ε ∈ H1 (R) \ { 0 }. If

(2.47) ⟨ε, iQΩ⟩ = 0, ⟨ε, ϕΩ⟩ = 0 and ⟨ε,QΩ⟩ = 0,

then there exists a positive constant κ1 independent of ε, such that the fol-
lowing result holds,

(2.48) S
′′
Ω (QΩ) (ε, ε) ⩾ κ1∥ε∥2H1 .

Proof. It suffices to show that there exists a positive constant κ2 independent
of ε, such that the following estimate holds,

(2.49) S
′′
Ω (QΩ) (ε, ε) ⩾ κ2∥ε∥22.

In fact, assume that (2.49) holds, it follows from (2.12) and ∥QΩ∥∞ < +∞
that

∥ε′∥22 +Ω∥ε∥22 − γ|ε (0)|2 ⩽ S
′′
Ω (QΩ) (ε, ε) + C∥ε∥22,(2.50)

where C is a positive constant which only depends on ∥QΩ∥∞. Using (2.9),
the Cauchy-Schwarz inequality and the fact 4Ω > γ2, we have

LHS of (2.50) = ∥ε′∥22 +Ω∥ε∥22 − γ|ε (0)|2

⩾ ∥ε′∥22 +Ω∥ε∥22 −
1

2
∥ε′∥22 −

γ2

2
∥ε∥22

⩾
1

2
∥ε′∥22 −

γ2

2
∥ε∥22.(2.51)

Therefore, inserting (2.49) and (2.51) into (2.50), one immediately get

1

2
∥ε′∥22 ⩽

γ2

2
∥ε∥22 + S

′′
Ω (QΩ) (ε, ε) + C∥ε∥22

⩽

(
1 +

γ2 + 2C

2κ2

)
S
′′
Ω (QΩ) (ε, ε)

By taking κ1 =
κ2

2κ2+γ2+2C+1 , we can obtain (2.48).

Now let χ be the L2-normalized function in N . Firstly, for any nonzero
ε satisfying (2.47), one can take the following decomposition by (2.43):

ε = pε + aεϕΩ, aε = − ⟨ε, χ⟩
⟨ϕΩ, χ⟩

.
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On the one hand, a direct calculation implies that

⟨pε, χ⟩ = 0, and ⟨pε, iQΩ⟩ = 0,

which means that pε ∈ P , where P is defined by Proposition 2.3, therefore
we have

S
′′
Ω (QΩ) (pε, pε) ⩾ c∥pε∥22

= c ⟨ε− aεϕΩ, ε− aεϕΩ⟩
= c∥ε∥22 + c (aε)

2 ∥ϕΩ∥22
⩾ c∥ε∥22.(2.52)

On the other hand, by (2.17), (2.20) and (2.47), we have

S
′′
Ω (QΩ) (ε, ε) = S

′′
Ω (QΩ) (pε + aεϕΩ, pε + aεϕΩ) = S

′′
Ω (QΩ) (pε, pε) .(2.53)

Combining (2.52) and (2.53), we can obtain

S
′′
Ω (QΩ) (ε, ε) ⩾ c∥ε∥22.

This completes the proof of (2.49) with κ2 = c and the proof of Lemma 2.12.
□

As a consequence of Lemma 2.12, we have

Corollary 2.13. Let ε ∈ H1 (R) \ { 0 } and satisfy

(2.54) ⟨ε, iQΩ⟩ = 0 and ⟨ε, ϕΩ⟩ = 0,

then there exists a positive constant κ independent of ε, such that the fol-
lowing estimate holds,

(2.55) S
′′
Ω (QΩ) (ε, ε) ⩾ κ∥ε∥2H1 − 1

κ
⟨ε,QΩ⟩2 .

Proof. The proof is standard, we can refer the analogue proof as the non-
linear Schrödinger equation in [21, page 186]. □

Combining Lemma 2.8 and Corollary 2.13, we have
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Lemma 2.14. There exist 0 < η̃4 ≪ 1 and 0 < λ̃4 ≪ 1 such that if ε ∈
H1 (R) with ∥ε∥H1 ⩽ η̃4, and λ with |λ| ⩽ λ̃4 satisfy

⟨ε , iQΩ⟩ = 0 and ⟨ε , ϕΩ⟩ = 0,

and

M (QΩ + λϕΩ + ρ(λ)QΩ + ε) = M (QΩ) ,

where ρ(λ) is determined by (2.30), then we have

S
′′
Ω (QΩ) (ε, ε) ⩾

κ

2
∥ε∥2H1 + o

(
λ4
)
.

Proof. First, by Lemma 2.8, we have

⟨ε , QΩ⟩2 = C2

(
|λ|∥ε∥H1 + ∥ε∥2H1 + λ4

)2

⩽ 3C2
(
λ2∥ε∥2H1 + ∥ε∥4H1 + λ8

)
.(2.56)

It implies by taking |λ| and ∥ε∥H1 sufficiently small that

(2.57) ⟨ε , QΩ⟩2 = o
(
∥ε∥2H1

)
+ o

(
λ4
)
,

which together with (2.55) implies that

S
′′
Ω (QΩ) (ε, ε) ⩾ κ∥ε∥2H1 − 1

κ
⟨ε , QΩ⟩2

= κ∥ε∥2H1 + o
(
∥ε∥2H1

)
+ o

(
λ4
)

⩾
κ

2
∥ε∥2H1 + o

(
λ4
)
.

This completes the proof. □

3. The ε-variable equation and the dynamics of the

parameters

In this section, we derive the equation obeyed by the remainder term

(3.1) ε (t, x) = u (t, x) e i θ(t) − (QΩ (x) + λ (t)ϕΩ (x) + ρ (λ (t))QΩ (x)) ,

where u is the solution of (1.1) in H1(R), ϕΩ and ρ(λ) are determined by
(2.15) and (2.30) respectively, λ and θ are two C1 functions with respect
to t.

Firstly, we have
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Lemma 3.1. Let u(t) ∈ C
(
[0, T ), H1(R)

)
∩ C1

(
[0, T ) , H−1 (R)

)
be the so-

lution to (1.1) for some T > 0, and ε(t, x) be defined by (3.1), then we have

i εt = − iλt

(
ϕΩ +

dρ

dλ
(λ)QΩ

)
− (θt +Ω) (QΩ + λϕΩ + ρ (λ)Q+ ε)

+ L (λϕΩ + ρ (λ)QΩ + ε)

− 1

2
f ′′ (QΩ) (λϕΩ + ρ (λ)QΩ + ε, λϕΩ + ρ (λ)QΩ + ε)

− R (QΩ, λϕΩ + ρ (λ)QΩ + ε) ,(3.2)

where f ′ (QΩ), f
′′ (QΩ) is defined by (2.3), (2.4), the linearized operator L

and the higher order remainder term R are defined by

(3.3) Lg = S
′′
Ω (QΩ) g = −gxx +Ωg − γδg − f ′ (QΩ) g,

and

(3.4) R (QΩ, g) = f (QΩ + g)− f (QΩ)− f ′ (QΩ) g −
1

2
f ′′ (QΩ) (g, g) .

Proof. First, let v (t, x) = u (t, x) e i θ(t), then we have

(3.5) ut = (vt − i θtv) e
− i θ and uxx = vxxe

− i θ,

which together with (1.1) implies that

(3.6) i vt + θtv + vxx + γδv + f (v) = 0.

Next, let

(3.7) v (t, x) = QΩ (x) + g (t, x) .

By (3.6), we have

0 = i gt + θt (QΩ + g) + (QΩ + g)xx + γδ (QΩ + g) + f (QΩ + g) .

Since QΩ is the solution of (1.4), we have

0 = i gt + (θt +Ω) (QΩ + g) + gxx − Ωg + γδg + f (QΩ + g)− f (QΩ) .(3.8)
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By (3.3) and (3.4), we have

0 = i gt + (θt +Ω) (QΩ + g) + gxx − Ωg + γδg + f ′ (QΩ) g(3.9)

+
1

2
f ′′ (QΩ) (g, g) + R (QΩ, g) .

Finally, by taking g (t, x) = λ (t)ϕΩ (x) + ρ (λ (t))QΩ (x) in (3.9), we can
obtain (3.2), this ends the proof. □

By the orthogonal structure of the remainder term ε(t, x), we can obtain
the dynamical control of the parameters λ(t) and θ(t) as follows.

Lemma 3.2. Suppose T > 0. There exist 0 < η̃5 ≪ 1 and 0 < λ̃5 ≪ 1, such
that if for all t ∈ [0, T ), ε(t), θ(t), λ(t) satisfying (3.2), and

(3.10) ⟨ε (t) , iQΩ⟩ = 0 and ⟨ε (t) , ϕΩ⟩ = 0,

and

(3.11) ∥ε (t)∥H1 ⩽ η̃5, and |λ (t)| ⩽ λ̃5,

then for all t ∈ [0, T ), we have

(3.12) |λt|+ |θt +Ω| ⩽ C (|λ|+ ∥ε (t)∥H1) ,

where C is a constant which only depends on QΩ.

Proof. Multiplying (3.2) with QΩ and iϕΩ respectively, we have

λt ⟨ i
(
ϕΩ +

dρ

dλ
(λ)QΩ

)
, QΩ⟩(3.13)

+ (θt +Ω) ⟨(QΩ + λϕΩ + ρ (λ)Q+ ε) , QΩ⟩
= ⟨L (λϕΩ + ρ (λ)QΩ + ε) , QΩ⟩
− ⟨f (QΩ + λϕΩ + ρ (λ)QΩ + ε)− f (QΩ)

− f ′ (QΩ) (λϕΩ + ρ (λ)QΩ + ε) , QΩ⟩
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and

λt ⟨ i
(
ϕΩ +

dρ

dλ
(λ)QΩ

)
, iϕΩ⟩(3.14)

+ (θt +Ω) ⟨(QΩ + λϕΩ + ρ (λ)Q+ ε) , iϕΩ⟩
= ⟨L (λϕΩ + ρ (λ)QΩ + ε) , iϕΩ⟩

− ⟨f (QΩ + λϕΩ + ρ (λ)QΩ + ε)− f (QΩ)

− f ′ (QΩ) (λϕΩ + ρ (λ)QΩ + ε) , iϕΩ⟩.

Let

F(QΩ, λ, ε) = f (QΩ + λϕΩ + ρ (λ)QΩ + ε)− f (QΩ)

− f ′ (QΩ) (λϕΩ + ρ (λ)QΩ + ε) ,

then by (2.2) and (2.30), F(QΩ, λ, ε) is a polynomial of at least one degree
with respect to λ and ε. By (3.11), we have

|⟨F(QΩ, λ, ε), QΩ⟩| ⩽ C(QΩ) + |⟨F(QΩ, λ, ε), iϕΩ⟩|(3.15)

⩽ C(QΩ) (|λ|+ ∥ε (t)∥H1) .

In addition, by (2.30) and (3.11), we also have

|⟨L (λϕΩ + ρ (λ)QΩ + ε) , QΩ⟩|+ |⟨L (λϕΩ + ρ (λ)QΩ + ε) , iϕΩ⟩|(3.16)

⩽ C(QΩ) (|λ|+ ∥ε (t)∥H1) .

Combining (3.13), (3.14), (3.15) and (3.16), we can obtain the result. □

4. Proof of Theorem 1.3

Proof. We argue by contradiction and divide the proof of main theorem into
several steps.

Step 1. Preparation of the initial data. Firstly, we can choose 0 < λ0 < λ̃0 ≪ 1
sufficiently small such that M (u0) = M (QΩ) , where

(4.1) u0 (x) = QΩ (x) + λ0ϕΩ (x) + ρ̃ (λ0)QΩ (x) ,

and ρ̃(λ) is defined by (2.22). It is easy to check that

(4.2) ∥u0 −QΩ∥H1 = ∥λ0ϕΩ + ρ̃ (λ0)QΩ∥H1 < Cλ0.
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Assume that the solitary wave QΩe
i Ωt is orbitally stable in the energy

space. By Definition 1.2, for η0 > 0 to be determined later, there exists
sufficiently small λ0 such that the solution u(t) of (1.1) with initial data
u0 ∈ U (QΩ, Cλ0) is global, and u (t) ∈ U (QΩ, η0) for all t > 0.

Step 2. Geometric decomposition of the solution u (t) and regularity of the pa-
rameters λ and θ in t. Let ρ(λ) be defined by (2.30). By Lemma 2.7
and u(t) ∈ C

(
[0,∞), H1(R)

)
, there exist two continuous functions λ

and θ with respect to t such that the remainder term

(4.3) ε (t, x) = u (t, x) e i θ(t) −
(
QΩ (x) + λ (t)ϕΩ (x) + ρ(λ (t))QΩ (x)

)

has the following orthogonal structures

⟨ε (t), iQΩ⟩ = 0, ⟨ε (t), ϕΩ⟩ = 0, ∀ t ⩾ 0,

which together with u ∈ C
(
[0,∞) , H1 (R)

)
∩ C1

(
[0,∞) , H−1 (R)

)
∩

U (QΩ, η0), the difference characterization of the C1 function and the
limiting argument implies that the parameters λ and θ are in fact
C1 functions with respect to t. Therefore the remainder term ε (t, x)
satisfies the equation

i εt =− iλt

(
ϕΩ +

dρ

dλ
(λ)QΩ

)
− (θt +Ω) (QΩ + λϕΩ + ρ (λ)Q+ ε)

+ L (λϕΩ + ρ (λ)QΩ + ε)

− 1

2
f ′′ (QΩ) (λϕΩ + ρ (λ)QΩ + ε, λϕΩ + ρ (λ)QΩ + ε)

− R (QΩ, λϕΩ + ρ (λ)QΩ + ε) ,(4.4)

where f ′′ (QΩ) is defined by (2.4), L and R are defined by (3.3) and
(3.4) in Lemma 3.1, and for all t > 0, we have

⟨ε (t), iQΩ⟩ = 0, ⟨ε (t), ϕΩ⟩ = 0,(4.5)

and

∥ε (t)∥H1 + |λ (t)|+ |θ(t)| ⩽ Cη0.(4.6)

By choosing η0 sufficiently small such that

0 < max{1, C} η0 < min
{
η̃0, η̃1, λ̃1, η̃3, λ̃3, η̃4, λ̃4, η̃5, λ̃5

}
,
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and by Lemma 3.2, we have

(4.7) |λt|+ |θt +Ω| ⩽ C (|λ|+ ∥ε (t)∥H1) .

Next, by the conservation law of mass and (4.3), we have

(4.8) M

(
QΩ + λ (t)ϕΩ + ρ(λ (t))QΩ + ε (t)

)
= M (QΩ) ,

which together with Lemma 2.8 implies that

(4.9) |⟨ε (t) , QΩ⟩| ⩽ C
(
∥ε (t)∥2H1 + |λ (t)|∥ε∥H1 + λ (t)4

)
, for all t > 0.

Step 3. Estimates of the the remainder term ε (t) and the parameter λ (t).
Combining the above estimates, we have the following estimates of
remainder term ε (t) and the parameter λ (t) as a consequence of
Lemma 2.10.

Proposition 4.1. Let u0 be defined by (4.1) and ε (t) be defined by
(4.3). Then for all t > 0, we have

(4.10) λ (t) ⩾
1

2
λ0,

and

(4.11) ∥ε (t)∥2H1 ⩽ −2

κ
d′′′ (Ω)λ (t)3 ,

where κ is the constant defined in Corollary 2.13.

Proof. The proof is similar to that of [22, Proposition 4.1]. We give
the details for the reader’s convenience.

Firstly, as in the proof of Lemma 2.9, we have

SΩ (u0)− SΩ (QΩ)

= SΩ (QΩ + λ0ϕΩ + ρ̃ (λ0)QΩ)− SΩ (QΩ)

=
1

2
S
′′
Ω (QΩ) (λ0ϕΩ + ρ̃ (λ0)QΩ, λ0ϕ+ ρ̃ (λ0)QΩ)

+
1

6
S
′′′
Ω (QΩ) (λ0ϕΩ + ρ̃ (λ0)QΩ, λ0ϕΩ + ρ̃ (λ0)QΩ,

λ0ϕΩ + ρ̃ (λ0)QΩ)

+ o
(
∥λ0ϕΩ + ρ̃ (λ0)QΩ∥3H1

)
,(4.12)
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where we used the fact that S′Ω (QΩ) = 0. By (2.22) and the fact that
⟨QΩ , ϕ⟩ = 0, we have

S
′′
Ω (QΩ) (λ0ϕΩ + ρ̃ (λ0)QΩ, λ0ϕΩ + ρ̃ (λ0)QΩ)

= (λ0)
2
S
′′
Ω (QΩ) (ϕΩ, ϕΩ) + 2λ0ρ̃ (λ0) S

′′
Ω (QΩ) (ϕΩ, QΩ)

+ ρ̃ (λ0)
2
S
′′
Ω (QΩ) (QΩ, QΩ)

= − (λ0)
2 ⟨QΩ , ϕΩ⟩ − 2λ0ρ̃ (λ0) ⟨QΩ , QΩ⟩

+ ρ̃ (λ0)
2
S
′′
Ω (QΩ) (QΩ, QΩ)

= −2λ0ρ̃ (λ0) ⟨QΩ , QΩ⟩
+ ρ̃ (λ0)

2
S
′′
Ω (QΩ) (QΩ, QΩ)

= (λ0)
3 ⟨ϕΩ , ϕΩ⟩+ o

(
|λ0|3

)
,

which together with (4.12) and (2.21) implies that

SΩ (u0)− SΩ (QΩ)

=

(
1

2
⟨ϕΩ , ϕΩ⟩+

1

6
S
′′′
Ω (QΩ) (ϕΩ, ϕΩ, ϕΩ)

)
· (λ0)3

+ o
(
|λ0|3

)

=
1

6
d′′′(Ω) · (λ0)3 + o

(
|λ0|3

)
.(4.13)

Secondly, by Lemma 2.10 and Lemma 2.14, we know that for any
t ⩾ 0, there exists some κ > 0 such that

SΩ (u (t))− SΩ (QΩ) = SΩ (QΩ + λ (t)ϕΩ + ρ (λ (t))QΩ + ε (t))− SΩ (QΩ)

=
1

6
d′′′(Ω) · (λ (t))3 + S

′′
Ω (QΩ) (ε (t) , ε (t))

+ o
(
|λ (t)|3

)
+ o

(
∥ε (t)∥2H1

)

⩾
1

6
d′′′(Ω) · (λ (t))3 + κ

4
∥ε (t)∥2H1

+ o
(
|λ (t)|3

)
+ o

(
∥ε (t)∥2H1

)
.(4.14)

Finally, by the mass and energy conservation laws, we have

SΩ (u (t)) = SΩ (u0) , for any t ⩾ 0.
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Therefore, by (4.13), (4.14) and the fact that d′′′(Ω) < 0, we have

1

24
d′′′(Ω) · (λ0)3 ⩾

1

6
d′′′(Ω) · (λ0)3 + o

(
|λ0|3

)

⩾
1

6
d′′′(Ω) · (λ (t))3 + κ

4
∥ε (t)∥2H1

+ o
(
|λ (t)|3

)
+ o

(
∥ε (t)∥2H1

)

⩾
1

3
d′′′(Ω) · (λ (t))3 + κ

6
∥ε (t)∥2H1 ,

which implies that

λ (t) ⩾
1

2
λ0, and ∥ε (t)∥2H1 ⩽ −2

κ
d′′′(Ω) · (λ (t))3 .

This concludes the proof of Proposition 4.1. □

By (4.9) and (4.11), we have

(4.15) |⟨ε (t) , QΩ⟩| ⩽ Cλ(t)
5

2 ,

where C is a constant independent of ε (t) and λ (t).

Step 4. Monotonicity formula. Let us define

(4.16) Φ (t, x) = ϕΩ (x)− λ (t)
⟨ϕΩ, ϕΩ⟩
⟨QΩ, QΩ⟩

QΩ (x) ,

and the Virial type quantity as follows

(4.17) I (t) = ⟨ i ε (t) ,Φ (t)⟩ .
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By (4.4) and (4.5), we have the following estimates

d

dt
I (t) = ⟨ i ∂tε,Φ (t)⟩ − λt

⟨ϕΩ, ϕΩ⟩
⟨QΩ, QΩ⟩

⟨ i ε,QΩ⟩(4.18)

= ⟨ i ∂tε,Φ (t)⟩

=− λt ⟨ i
(
ϕΩ +

dρ

dλ
(λ(t))QΩ

)
,Φ (t)⟩(4.19)

− (θt +Ω) ⟨(QΩ + λ(t)ϕΩ + ρ (λ(t))QΩ + ε(t)) ,Φ (t)⟩(4.20)

+ ⟨L (λ(t)ϕΩ + ρ (λ(t))QΩ + ε(t)) ,Φ (t)⟩(4.21)

− 1

2
⟨f ′′ (QΩ) (λ(t)ϕΩ + ρ (λ(t))QΩ + ε(t))(4.22)

× (λ(t)ϕΩ + ρ (λ(t))QΩ + ε(t)) ,Φ (t)⟩
− ⟨R (QΩ, λ(t)ϕΩ + ρ (λ(t))QΩ + ε(t)) ,Φ (t)⟩ .(4.23)

Estimate of (4.19). By (1.5) and (2.15), we have the vanishing result

(4.19) =0.(4.24)

Estimate of (4.20). By (2.20) and (4.5), we have

⟨(QΩ + λ(t)ϕΩ + ρ (λ(t))QΩ + ε(t)) ,Φ (t)⟩
= ⟨(QΩ + λ(t)ϕΩ + ρ (λ(t))QΩ + ε(t)) , ϕΩ⟩

− λ(t)
⟨ϕΩ, ϕΩ⟩
⟨QΩ, QΩ⟩

⟨(QΩ + λ(t)ϕΩ + ρ (λ(t))QΩ + ε(t)) , QΩ⟩

=− λ(t)ρ (λ(t)) ⟨ϕΩ, ϕΩ⟩ − λ(t)
⟨ϕΩ, ϕΩ⟩
⟨QΩ, QΩ⟩

⟨ε(t), QΩ⟩ .

By (2.30) and (4.15), we obtain

(4.25) ⟨(QΩ + λ (t)ϕΩ + ρ (λ (t))QΩ + ε(t)) ,Φ (t)⟩ = O
(
λ (t)

7

2

)
.

Now, inserting (4.7) and (4.25) into (4.20), we can obtain

(4.26) (4.20) = o
(
λ (t)2

)
.
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Estimate of (4.21). Since L is a self-adjoint operator, we deduced
by Lemma 2.4, (2.30) and (2.20) that

⟨L (λϕΩ + ρ (λ)QΩ + ε) ,Φ (t)⟩
= ⟨L (λϕΩ + ρ (λ)QΩ + ε) , ϕΩ⟩

− λ
⟨ϕΩ, ϕΩ⟩
⟨QΩ, QΩ⟩

⟨L (λϕΩ + ρ (λ)QΩ + ε) , QΩ⟩

=
3

2
λ2⟨ϕΩ, ϕΩ⟩ − ⟨ε,QΩ⟩ − λρ (λ)

⟨ϕΩ, ϕΩ⟩
⟨QΩ, QΩ⟩

⟨LQΩ, QΩ⟩

− λρ (λ)
⟨ϕΩ, ϕΩ⟩
⟨QΩ, QΩ⟩

⟨LQΩ, ε⟩ .(4.27)

It follows from (2.30), (4.11) and (4.15) that

(4.28) (4.21) =
3

2
λ(t)2⟨ϕΩ, ϕΩ⟩+ o

(
λ(t)2

)
.

Estimate of (4.22). Note that

⟨f ′′ (QΩ) (λ(t)ϕΩ + ρ (λ(t))QΩ + ε(t))

× (λ(t)ϕΩ + ρ (λ(t))QΩ + ε(t)) ,Φ (t)⟩
= ⟨f ′′ (QΩ) (λ(t)ϕΩ + ρ (λ(t))QΩ + ε(t))

× (λ(t)ϕΩ + ρ (λ(t))QΩ + ε(t)) , ϕΩ⟩

− λ(t)
⟨ϕΩ, ϕΩ⟩
⟨QΩ, QΩ⟩

⟨f ′′ (QΩ) (λ(t)ϕΩ + ρ (λ(t))QΩ + ε(t))

× (λ(t)ϕΩ + ρ (λ(t))QΩ + ε(t)) , QΩ⟩
= λ(t)2 ⟨f ′′ (QΩ)ϕΩϕΩ, ϕΩ⟩
+ 2 ⟨f ′′ (QΩ) (λ(t)ϕΩ) (ρ (λ(t))QΩ + ε(t)) , ϕΩ⟩(4.29)

+ ⟨f ′′ (QΩ) (ρ (λ(t))QΩ + ε(t)) (ρ (λ(t))QΩ + ε(t)) , ϕΩ⟩(4.30)

− λ(t)
⟨ϕΩ, ϕΩ⟩
⟨QΩ, QΩ⟩

⟨f ′′ (QΩ) (λ(t)ϕΩ + ρ (λ(t))QΩ + ε(t))(4.31)

× (λ(t)ϕΩ + ρ (λ(t))QΩ + ε(t)) , QΩ⟩.

By (2.30) and (4.11), we have

(4.29) = O (λ(t)ρ (λ(t)) + λ(t)∥ε(t)∥H1) = o
(
λ(t)2

)
,

(4.30) = O
(
λ(t)4 + λ(t)2∥ε(t)∥H1 + ∥ε(t)∥2H1

)
= o

(
λ(t)2

)
,

(4.31) = O
(
λ(t)2 + λ(t)4 + ∥ε(t)∥2H1

)
= o

(
λ(t)2

)
,
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which implies that

(4.32) (4.22) = −1

2
λ(t)2 ⟨f ′′ (QΩ)ϕΩ, ϕΩ, ϕΩ⟩+ o

(
λ(t)2

)
.

Estimate of (4.23). By (2.30), (3.4) and (4.11), we have

(4.33) (4.23) = O
(
λ(t)3 + ∥ε(t)∥2H1

)
= o

(
λ(t)2

)
.

Therefore, by summing up (4.24), (4.26), (4.28), (4.32) and (4.33), we
obtain that

d

dt
I (t) =

λ(t)2

2

(
−⟨f ′′ (QΩ)ϕΩϕΩ, ϕΩ⟩+ 3⟨ϕΩ, ϕΩ⟩

)
+ o

(
λ(t)2

)
.

It follows from (2.7) and Lemma 2.5 that

(4.34)
d

dt
I (t) =

1

2
d′′′ (Ω)λ(t)2 + o

(
λ(t)2

)
.

Step 5. Conclusion. On the one hand, by (4.17) and (4.16), we obtain that
∥ε (t)∥H1 and ∥Φ (t)∥H1 are uniformly bounded with respect to t. There-
fore, by the Cauchy-Schwarz inequality, we have

(4.35) |I (t)| uniformly bounded with respect to t.

On the other hand, by d′′′ (Ω) < 0, (4.10) and (4.34), we have

d

dt
I (t) =

1

2
d′′′ (Ω)λ2 (t) + o

(
λ (t)2

)
⩽

1

4
d′′′ (Ω)λ (t)2 ⩽

1

16
d′′′ (Ω) (λ0)

2 ,

by integrating the above inequality over [0, t), we can obtain that

I (t) =I (0) +

∫ t

0
I

′ (s) ds ⩽ I (0) +
1

16
d′′′ (Ω) (λ0)

2 t,

which means that

lim
t→+∞

I (t) = −∞,

which is in contradiction with (4.35).
Above all, we complete the proof of Theorem 1.3. □
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Appendix A. Proof of Lemma 2.5

Proof of Lemma 2.5. (1) and (3) and the fact that d′′ (Ω) = 0 in (2) were
proved in [8]. Now we show (2). For the convenience of the readers, we will

give an alternative proof of the estimate d′′ (Ω) = 0. Since ω > γ2

4 , we denote

ω (λ) =
λ2γ2

4
, for λ > 1,

m (ω) = M (Qω) ,

where M (Qω) is defined by (1.2), and define

(A.1) g (λ) = m (ω (λ)) .

It follows from (2.14) that

(A.2) d′′ (ω) =
dm

dω
(ω) .

A direct computation implies that

d

dλ
g (λ) =

dm

dω
(ω)

dω

dλ
(λ) =

λγ2

2

dm

dω
(ω) ,(A.3)

d2

dλ2
g (λ) =

dm

dω
(ω)

d2ω

dλ2
(λ) +

d2m

dω2
(ω)

(
dω

dλ
(λ)

)2

=
γ2

2

dm

dω
(ω) +

λ2γ4

4

d2m

dω2
(ω) .(A.4)

Combining (A.2) with (A.3), we obtain that

d′′ (ω) = 0 if and only if d
dλ
g (λ) = 0.

By (1.5) and (A.1), we have

g (λ) =

∫ +∞

0

(
Qω(λ) (x)

)2
dx = C (p, γ)h (λ) q (λ) ,

where C (p, γ) =
(
p+1
8

) 2

p−1 4
p−1γ

4

p−1
−1

> 0,

h (λ) = λ
4

p−1
−1
, and q (λ) =

∫ +∞

arctanh( 1

λ
)
sech

4

p−1 (y) dy.
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A direct calculation implies that

d

dλ
g (λ) = C (p, γ)

(
dh

dλ
(λ) q (λ) +

dq

dλ
(λ)h (λ)

)

= C (p, γ)

(
5− p

p− 1
λ

4

p−1
−2
q (λ) + λ

4

p−1
−1

(
λ2 − 1

) 2

p−1
−1

λ
4

p−1

)
.

Therefore, d′′ (Ω) = 0 if and only if
(
d
dλ
g
)(

2
√
Ω

γ

)
= 0, i.e. 2

√
Ω

γ
satisfies

q

(
2
√
Ω

γ

)
=
p− 1

p− 5

(
2
√
Ω

γ

) p−5

p−1



(
2
√
Ω

γ

)2

− 1




3−p

p−1

=
p− 1

p− 5

(
2
√
Ω

γ

)−1+2 p−3

p−1



(
2
√
Ω

γ

)2

− 1




− p−3

p−1

,(A.5)

which coincides with the fact that (1.7), i. e. we have d′′ (Ω) = 0.
Next, we show that d′′′ (Ω) < 0. By (A.4), we have

d′′′ (Ω) < 0 if and only if

(
d2

dλ2
g

)(
2
√
Ω

γ

)
< 0.

Since

d2

dλ2
g (λ) = C (p, γ)

(
d2h

dλ2
(λ) q (λ) +

d2q

dλ2
(λ)h (λ) + 2

dh

dλ
(λ)

dq

dλ
(λ)

)
,

it suffices to show that

(
d2h

dλ2
q +

d2q

dλ2
h+ 2

dh

dλ

dq

dλ

)(
2
√
Ω

γ

)
< 0.
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By the direct computations, we have

d2h

dλ2
(λ) q (λ) +

d2q

dλ2
(λ)h (λ) + 2

dh

dλ
(λ)

dq

dλ
(λ)(A.6)

=

(
4

p− 1
− 1

)(
4

p− 1
− 2

)
λ

4

p−1
−3
q (λ)

+ λ
4

p−1
−1 3− p

p− 1

(
λ2 − 1

) 2

p−1
−2

2λ1−
4

p−1

− λ
4

p−1
−1 4

p− 1

(
λ2 − 1

) 2

p−1
−1
λ
−1− 4

p−1

+ 2

4
p−1 − 1

λ
4

p−1
−2 (λ2 − 1)

2

p−1
−1
λ
− 4

p−1

.

By inserting (A.5) into (A.6), we obtain

(
d2h

dλ2
q +

d2q

dλ2
h+ 2

dh

dλ

dq

dλ

)(
2
√
Ω

γ

)
=

6− 2p

p− 1

(
4Ω

γ2
− 1

) 2

p−1
−2

< 0,

since p > 5. Therefore, we obtain d′′′ (Ω) < 0.
Finally, by (2.16) and Lemma 2.4, we have

d′′′ (Ω) = S
′′′
Ω (QΩ) (ϕΩ, ϕΩ, ϕΩ) + 2S′′Ω (QΩ) (ϕΩ, ∂ΩϕΩ)

+ ⟨ϕΩ, ϕΩ⟩+ 2 ⟨ϕΩ, ϕΩ⟩+ 2 ⟨QΩ, ∂ΩϕΩ⟩
= S

′′′
Ω (QΩ) (ϕΩ, ϕΩ, ϕΩ) + 3 ⟨ϕΩ, ϕΩ⟩ .

This ends the proof of Lemma 2.5. □
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