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On the stability of the anomaly flow

Lucio Bedulli and Luigi Vezzoni

We prove that the parabolic flow of conformally balanced metrics
introduced in [13] is stable around Calabi-Yau metrics. The result
shows that the flow can converge on a Kähler manifold even if the
initial metric is not conformally Kähler.

1. Introduction

Anomaly flow is a geometric flow of Hermitian metrics studied in [3–5, 8–14].
The flow was originally considered in [10] on complex threefolds to study
the Strominger system [15] and involves a real parameter α′. The flow was
subsequently generalized to any complex dimension n ≥ 3 for α′ = 0 in [13].
The latter evolves an initial Hermitian metric ω0 on a compact complex
manifolds M of complex dimension n ≥ 3 with c1(M) = 0 by

(1) ∂
∂t(|Ω|ωω

n−1) = i∂∂̄ωn−2 , ω(0) = ω0 ,

where Ω is a fixed complex volume form and | · |ω is the pointwise norm with
respect to ω. By “complex volume form” we just mean a nowhere vanishing
(n, 0)-form, indeed for the purpose of the present paper we do not need to
assume Ω to be holomorphic.

The well-posedness of the flow is proved in [13, Theorem 1] under the
assumption on ω0 to be conformally balanced (in such a case the compo-
nents of ω(t) satisfy a parabolic system [13, Theorem 4]). Moreover, when
ω0 is conformally balanced, (1) is conformally equivalent to the Hermitian
curvature flow introduced by Ustinovskiy in [16] (see [4]).

The flow (1) can only converge when M is Kähler. The research of the
present paper is motivated by the following theorem about the long time

existence and convergence of the flow when |Ω|
1/(n−1)
ω0

ω0 is a Kähler metric:

Theorem 1.1 (Phong, Picard and Zhang [13, Theorem 2]). Let
(M,χ) be a compact Kähler manifold with vanishing first Chern class and
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let Ω be a complex volume form on M with constant norm with respect to
χ. Let ω0 be a Hermitian metric on M such that

|Ω|ω0
ωn−1
0 = χn−1 ,

then (1) starting from ω0 has a long-time solution which converges in C∞–
topology to the unique Ricci-flat Kähler metric ω∞ ∈ [χ] ∈ H1,1(M) .

The theorem gives an alternative proof of the Calabi-Yau theorem [17].
In [13] it is raised the problem of studying the convergence of the flow

in Kähler manifolds when |Ω|
1/(n−1)
ω0

ω0 is not Kähler, for instance when
|Ω|ω0

ωn−1
0 is just closed and [|Ω|ω0

ωn−1
0 ] = [χn−1], with χ Kähler. Here we

prove that (1) is stable around Calabi-Yau metrics χ with |Ω|χ constant. In
particular we have the convergence of (1), when |Ω|ω0

ωn−1
0 is just close to

the (n− 1)-th power of a Kähler metric.

Theorem 1.2. Let (M,χ) be a compact Kähler manifold with vanishing
first Chern class and let Ω be a complex volume form on M with constant
norm with respect to χ. For every ϵ > 0 there exists δ > 0 such that if ω0 is
a Hermitian metric on M satisfying

(2) ∥ |Ω|ω0
ωn−1
0 − χn−1∥C∞ < δ ,

then flow (1) has a long-time solution ω(t) ∈ C∞(M × [0,∞),Λ1,1
+ ) such

that

∥ |Ω|ω(t)ω(t)
n−1 − χn−1∥C∞ < ϵ , for every t ∈ [0,∞)

and |Ω|ω(t)ω(t)
n−1 converges in C∞–topology to a positive (n−1, n−1)-form

ωn−1
∞ with ω∞ astheno-Kähler.

If further ω0 satisifies the conformally balanced condition d(|Ω|ω0
ωn−1
0 ) =

0, then ω∞ is Kähler Ricci flat.

We prove Theorem 1.2 as follows:

after the change of variable |Ω|ωω
n−1 = ω̃n−1, equation (1) rewrites as

(3) ∂
∂t ω̃

n−1 = i∂∂̄(|Ω|−2
ω̃ ω̃n−2) ,

(see Lemma 3.1).
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If we set E(ω̃n−1) = i∂∂̄(|Ω|−2
ω̃ ω̃n−2), then the linearization DE(αn−1)

of E at any positive (n− 1, n− 1)-real form αn−1 satisfies

DE(αn−1)(ψ) = −
1

n− 1
|Ω|α□ψ + l.o.t.

for any closed ψ ∈ C∞(M,Λn−1,n−1
R

) (see Lemma 3.3) and the flow (3) fits
in Hamilton’s framework [6, Section 5 and 6] with integrability condition
L = d (this is analogous to the argument used in [13]). That in particular
implies the well-posedness of the flow (1) also when ω0 is not conformally
balanced.

Moreover if χ is Kähler, then

DE(χn−1)(ψ) = −
1

n− 1
|Ω|ω□ψ

for any closed ψ ∈ C∞(M,Λn−1,n−1
R

). This allows us to apply a general result
about the stability of second order geometric flows with an integrability
condition. We state this theorem in section 2 and we prove it in the last
section.

Notation.Given a vector bundle F on a manifoldM , we denote by C∞(M,F )
the space of smooth sections of F . If further I ⊂ R is an interval we denote
by C∞(M × I, F ) the space of smooth time depending sections of F . When
we write ∥f∥C∞ < δ, we mean that ∥f∥Ck < δ for every k ∈ N.

2. A stability result for second order geometric flows with

an integrability condition

In [6] Hamilton proved the following general result about the short-time
existence of second order geometric flows on compact manifolds.

Let M be an oriented compact manifold, F a vector bundle over M , U
an open subbundle of F and

E : C∞(M,U) → C∞(M,F )

a second order differential operator. Consider the geometric flow

(4)
∂f

∂t
= E(f) , f(0) = f0 ,

where f0 belongs to C∞(M,U). For f ∈ C∞(M,U), we denote by DE(f) :
C∞(M,F ) → C∞(M,F ) the linearization of E at f and by σDE(f) the
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principal symbol of DE(f). Following Hamilton’s paper we assume that
there exists a first order linear differential operator

L : C∞(M,F ) → C∞(M,G) ,

with values in another vector bundle G over M , such that

1. L(E(f)) = 0 for all f ∈ C∞(M,U);

2. for every f ∈ C∞(M,U) and for every (x, ξ) ∈ T ∗M all the eigenvalues
of σDE(f)(x, ξ) restricted to kerσL(x, ξ) have strictly positive real
part .

Because of the following result L is called an integrability condition for E.

Theorem 2.1 (Hamilton [6, Theorem 5.1] ). Under the above assump-
tions the geometric flow (4) has a unique short-time solution.

Remark 2.2. Theorem 5.1 in [6] is in fact more general since the integra-
bility condition L is allowed to smoothly depend on f ∈ C∞(M,U). This
generality is needed to prove the short time existence of the Ricci flow.

Using Theorem 2.1 we will be able to prove the following stability theo-
rem for geometric flows with an integrability condition L.

Theorem 2.3. Assume that E and L are as above. Let f̄ ∈ C∞(M,U) be
such that E(f̄) = 0. Let h̄ be a fixed metric along the fibers of F . Assume

(i) DE(f̄) : kerL→ kerL is symmetric and negative semidefinite with re-
spect to h̄;

(ii) E(f) is L2-orthogonal to kerDE(f̄) for every f ∈ C∞(M,U);

(iii) DE(f̄) : kerL→ kerL extends to an elliptic operator Φ : C∞(M,F ) →
C∞(M,F ).

Then for every ϵ > 0 there exists δ > 0 such that if f0 ∈ C∞(M,U) satisfies

∥f0 − f̄∥C∞ < δ,

then (4) has a long-time solution f ∈ C∞(M × [0,∞), U) such that

∥f(t)− f̄∥C∞ < ϵ, for every t ∈ [0,∞).
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Moreover, f(t) converges to f∞ ∈ C∞(M,U) in C∞–topology which satisfies
E(f∞) = 0.

3. Proof of Theorem 1.2

Let (M,ω0) be a compact n-dimensional Hermitian manifold with vanishing
first Chern class and let Ω be a fixed complex volume form.

Lemma 3.1. Let ω(t) be a solution to the geometric flow (1) on M ; then

ω̃ = |Ω|
1/(n−1)
ω ω satisfies

(5) ∂
∂t ω̃

n−1 = i∂∂̄(|Ω|−2
ω̃ ω̃n−2) .

Proof. Since

ω = |Ω|−1/(n−1)
ω ω̃ ,

we have
∂
∂t(ω̃

n−1) = i∂∂̄(|Ω|−(n−2)/(n−1)
ω ω̃n−2) .

Now in general for any conformal factor f ∈ C∞(M,R+) one has

|Ω|fω̃ = f−n/2|Ω|ω̃

and thus

|Ω|ω = (|Ω|−1/(n−1)
ω )−n/2|Ω|ω̃ = |Ω|n/(2n−2)

ω |Ω|ω̃

from which we deduce

|Ω|ω = |Ω|
(2n−2)/(n−2)
ω̃ ,

and the claim follows. □

Now we focus on the geometric flow (5) and we show that it fits in the
set-up of Theorem 2.3. The flow is governed by the operator

E : C∞(M,Λn−1,n−1
+ ) → C∞(M,Λn−1,n−1

R
)

defined by

(6) E(ωn−1) = i∂∂̄(|Ω|−2
ω ωn−2)

where Λn−1,n−1
+ is the bundle of positive real (n−1, n−1)-forms on M and

Λn−1,n−1
R

is the bundle of real (n−1, n−1)-forms.
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In order to study the linearization of E, we describe the principal part of
the operator □ in terms of the components of (n−1, n−1)-real forms on M .

Let ω be any Hermitian metric on M and ψ ∈ C∞(M,Λn−1,n−1
R

). Then
ψ writes in a unique way as

(7) ψ =
1

(n− 1)!
h0ω

n−1 −
1

(n− 2)!
h2 ∧ ω

n−2 ,

where h0 is a smooth function and h2 ∈ C∞(M,Λ1,1
R

) satisfies

h2 ∧ ω
n−1 = 0 .

Since

∗h2 = −
1

(n− 2)!
h2 ∧ ω

n−2 ,

the form ψ can be alternatively written as

ψ = ∗(h0ω + h2) .

Lemma 3.2. If ψ is closed, then

□ψ = ∂∂∗ψ = −
2i

(n− 2)!
∂∂̄h0 ∧ ω

n−2 +
i

(n− 3)!
∂∂̄h2 ∧ ω

n−3 + l.o.t.

where “l.o.t.” stands for “lower order terms” in ψ. Moreover if ω is Kähler
we have

□ψ = ∂∂∗ψ = −
2i

(n− 2)!
∂∂̄h0 ∧ ω

n−2 +
i

(n− 3)!
∂∂̄h2 ∧ ω

n−3 .

Proof. Since ψ is closed we have

□ψ = ∂∂∗ψ = −∂ ∗ ∂̄ ∗ ψ = −∂ ∗ (∂̄h0 ∧ ω)− ∂ ∗ ∂̄h2 + l.o.t.

On the other hand, from the closure of ψ, we deduce

∂̄h2 ∧ ω
n−2 =

1

n− 1
∂̄h0 ∧ ω

n−1 + l.o.t .

Now we use the well-known splitting of (1, 2)-forms as

γ = γ+ + γ−

where γ+ is of the form α ∧ ω with α a (0, 1)-form and γ− is such that
γ− ∧ ωn−2 = 0.
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The fact we use is that ∗γ+ = i
(n−2)!γ+ ∧ ωn−3 and ∗γ− = − i

(n−3)!γ− ∧ ωn−3.

Thus in our case, taking into account that (∂̄h2)+ = 1
n−1 ∂̄h0 ∧ ω + l.o.t., we

have

∗∂̄h2 =
i

(n− 1)!
∂̄h0 ∧ ω

n−2 −
i

(n− 3)!

(

∂̄h2 −
1

n− 1
∂̄h0 ∧ ω

)

∧ ωn−3 + l.o.t.

=
i

(n− 2)!
∂̄h0 ∧ ω

n−2 −
i

(n− 3)!
∂̄h2 ∧ ω

n−3 + l.o.t.

Therefore

□ψ = −
2i

(n− 2)!
∂∂̄h0 ∧ ω

n−2 +
i

(n− 3)!
∂∂̄h2 ∧ ω

n−3 + l.o.t.,

where these lower order terms vanish if ω is closed since they all come from
dω. □

Lemma 3.3. Let ω be a Hermitian metric onM and let ψ∈C∞(M,Λn−1,n−1
R

)
be closed; then

(8) DE(ωn−1)(ψ) = −
1

n− 1
|Ω|ω□ψ + l.o.t.

Moreover if we assume that ω is Kähler then we have

DE(ωn−1)(ψ) = −
1

n− 1
|Ω|ω□ψ .

Proof. Let ω(t), t ∈ (−ϵ, ϵ) be a smooth curve of Hermitian metrics with
ω(0) = ω on M and we assume that

ψ := ∂
∂t |t=0

ωn−1(t)

is closed. In order to simplify the notation we set

r(t) = |Ω|−2
ω(t) , r = r(0) , ṙ = ∂

∂t |t=0
r(t) , ω̇ = ∂

∂t |t=0
ω(t) .

We directly compute

∂
∂t |t=0

E(ω(t)n−1) = i∂∂̄(ṙ ωn−2 + (n− 2)r ω̇ ∧ ωn−3)

= i∂∂̄ṙ ∧ ωn−2 + (n− 2)ir ∂∂̄ω̇ ∧ ωn−3 + l.o.t.

We decompose ψ according to (7). Then [1, Lemma 2.5] implies

ω̇ =
h0

(n− 1)(n− 1)!
ω −

1

(n− 1)!
h2
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and using

ṙ =
nh0

(n− 1)(n− 1)!
r

we obtain

d
dt |t=0

E(ω(t)n−1) =
n

(n− 1)(n− 1)!
ir ∂∂̄h0 ∧ ω

n−2

+
n− 2

(n− 1)(n− 1)!
ir ∂∂̄h0 ∧ ω

n−2

−
n− 2

(n− 1)!
ir ∂∂̄h2 ∧ ω

n−3 + l.o.t. ,

i.e.

d
dt |t=0

E(ω(t)n−1) =
2

(n− 1)!
ir ∂∂̄h0 ∧ ω

n−2(9)

−
n− 2

(n− 1)!
ir ∂∂̄h2 ∧ ω

n−3 + l.o.t.

and Lemma 3.2 implies (8). Since the lower order terms in (9) vanish if ω is
closed, the claim follows. □

Proof of Theorem 1.2. Let (M,χ) be a compact Kähler manifold of complex
dimension n. Let Ω be a complex volume form on M with constant norm
with respect to χ and let E : C∞(M,Λn−1,n−1

+ ) → C∞(M,Λn−1,n−1
R

) be as
in (6). Then we have

E(χn−1) = 0 .

Now Lemma 3.3 and Hodge theory imply that all the assumptions of The-
orem 2.3 are satisfied when we consider

F = Λn−1,n−1
R

, U = Λn−1,n−1
+ ,

L = d : C∞(M,Λn−1,n−1
R

) → C∞(M,Λ2n−1
C

) .

Hence for every ϵ > 0 there exists δ > 0 such that if ω̃0 is a Hermitian metric
on M satisfying

(10) ∥ω̃n−1
0 − χn−1∥C∞ < δ ,

then there exists a smooth family of Hermitian metrics ω̃(t), t ∈ [0,∞), such
that

(11) ∥ω̃(t)n−1 − χ∥C∞ < ϵ , ∂
∂t ω̃ = i∂∂̄(|Ω|−2

ω̃ ω̃n−2) , ω̃(0) = ω̃0



✐

✐

“1-Bedulli” — 2022/9/4 — 19:06 — page 331 — #9
✐

✐

✐

✐

✐

✐

On the stability of the anomaly flow 331

and ω̃(t) converges in C∞–topology to a Hermitian metric ω̃∞ such that

(12) ∂∂̄(|Ω|−2
ω̃∞

ω̃n−2
∞ ) = 0 .

Now let ω0 be a Hermitian metric on M satisfying (2); then ω̃0 :=

|Ω|
1/(n−1)
ω0

ω0 satisfies (10). Thus there exists ω̃ ∈ C∞(M × [0,∞),Λ1,1
R

) sat-
isfying (11) and converging in C∞-topology to a ω̃∞ for which (12) holds.

Therefore ω = |Ω|
−2/(n−2)
ω̃ ω̃ is a solution to the anomaly flow (1) satisfying

∥|Ω|ω(t)ω(t)
n−1 − χ∥C∞ < ϵ ,

and |Ω|ω(t)ω(t)
n−1 converges in C∞-topology to

ωn−1
∞ = |Ω|

−2(n−1)/(n−2)
ω̃∞

ω̃n−1
∞ .

By a change of variable we obtain that ω∞ is astheno-Kähler, i.e.

∂∂̄(ωn−2
∞ ) = 0 ,

and the first part of the claim follows.

About the second part of the claim, we use that if ω0 satisfies the confor-
mally balanced condition d(|Ω|ω0

ωn−1
0 ) = 0, then d(|Ω|ω(t)ω(t)

n−1) = 0 for
every t and hence ω∞ satisfies

d(|Ω|ω∞
ωn−1
∞ ) = 0 , ∂∂̄(ωn−2

∞ ) = 0 .

In view of [13, Lemma 1] (see also [7]), ω∞ is Kähler-Einstein. □

4. Proof of Theorem 2.3

In this section we prove the general result about the stability of geometric
flows in Hamilton’s set-up described in section 2.

Proof. We adapt the proof of the main theorem in [2].
Fix a metric connection ∇ on (F, h̄) and a volume form on M . The space
C∞(M,F ) has the natural structure of tame Fréchet space given by the
Sobolev norms ∥.∥Hn induced by h̄, ∇ and the volume form of M .
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On C∞(M × [a, b], F ) we consider the grading

∥f∥n,[a,b] =
∑

2j≤n

∫ b

a
∥∂jt f(t)∥Hn−2j dt.

Hamilton in [6, sections 5 and 6] proved that, with respect to this grad-
ing, for any T > 0 the map

F : C∞(M × [0, T ], U) → C∞(M × [0, T ], F )× C∞(M,F )

F(f) = (∂f/∂t− E(f), f(0))

satisfies the assumptions of the Nash-Moser theorem, i.e. F is smooth tame,
DF(f) is bijective for every f ∈ C∞(M × [0, T ], U) and the family of the
inverses

C∞(M × [0, T ], U)× C∞(M × [0, T ], F )× C∞(M,F ) → C∞(M × [0, T ], F )

(f, (g, k)) 7→ DF(f)−1(g, k)

is a smooth tame map. Hence the Nash-Moser theorem can be applied and
F is locally invertible with smooth tame inverse. As a direct consequence,
arguing as in Proposition 5.3 in [2] we have the following

Claim 1. For all ϵ, T > 0, there exists δ′ > 0 such that if f0 ∈ C∞(M,U)
satisfies

∥f0 − f̄∥C∞ < δ′ ,

then (4) has a solution f ∈ C∞(M × [0, T ], U) and

∥f − f̄∥n,[0,T ] < ϵ

for all n ∈ N.

Then we show the following

Claim 2. For δ′ small enough the L2-norm of E(f) with respect to h̄
has an exponential decay.

Fix a small time τ > 0 arbitrary. By Claim 1 we have that there ex-
ists δ′ > 0 such that if ∥f0 − f̄∥C∞ < δ′, then problem (4) has a solution
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f ∈ C∞(M × [0, T + 2τ ], U) with ∥f − f̄∥l,[0,T+2τ ] bounded for every l. Now
since

∂

∂t
E(f) = DE(f)(E(f)) ,

we have

d

dt
∥E(f)∥2L2 = 2⟨

∂

∂t
E(f), E(f)⟩L2 = 2⟨DE(f)(E(f)), E(f)⟩L2 .

Moreover a general result for families of symmetric operators on Hilbert
spaces combined with the Sobolev Embedding theorem and elliptic regular-
ity of DE(f̄) (see [2] Corollary 5.6) imply that given a > 0 we can choose δ′

so small that we have

⟨DE(f)(E(f)), E(f)⟩L2 ≤ (1− a)⟨DE(f̄)(E(f)), E(f)⟩L2 + a∥E(f)∥2L2

for every time in the interval [0, T + τ ]. Now let λ be half the smallest
positive eigenvalue of −DE(f̄)| kerL. Take a = λ

2λ+1 so that

⟨DE(f)(E(f)), E(f)⟩L2 ≤
λ+ 1

2λ+ 1
⟨DE(f̄)(E(f)), E(f)⟩L2

+
λ

2λ+ 1
∥E(f)∥2L2 .

By assumption (i) and (ii) we have ⟨DE(f̄)(E(f)), E(f)⟩L2 ≤ −2λ∥E(f)∥2L2

thus

⟨DE(f)(E(f)), E(f)⟩L2 ≤ −λ∥E(f)∥2L2

which implies

d

dt
∥E(f)∥2L2 ≤ −2λ∥E(f)∥2L2 .

Using Gronwall’s lemma we get

∥E(f(t))∥2L2 ≤ e−2λt∥E(f0)∥
2
L2 , for all t ∈ [0, T + τ) ,

and the Claim 2 follows.
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By integrating the last formula we get

(13) ∥E(f)∥20,[t,T+τ ] =

∫ T+τ

t
∥E(f(s))∥2L2 ds ≤ ∥E(f0)∥

2
L2

e−2λt

2λ
.

Since using the parabolic Sobolev embedding theorem (see [2] Corollary 5.8)
there exist m and C > 0 such that for every t ∈ [0, T ]

∥E(f(t))∥Hn ≤ C∥E(f)∥m,[t,T+τ ] ,

we will need the following estimate in order to prove Hn-exponential decay.

Claim 3. Let τ0 ∈ (0, T ). For δ′ small enough we have that for every
m ∈ N there exists C > 0 such that

∥E(f)∥m,[t,T+τ ] ≤ C∥E(f)∥0,[t−τ0,T+τ ] ,

for every t ∈ [τ0, T ] .

We prove by induction on m that for every τ0 ∈ (0, T ) we can choose δ′

small enough such that there exists a positive C (depending on m, τ0 and an
upper bound on δ′) such that for every g ∈ C∞(M × [0, T + τ ], F ) solving

∂

∂t
g = DE(f)(g) ,

the following estimate holds

(14) ∥g∥m,[t,T+τ ] ≤ C∥g∥0,[t−τ0,T+τ ] ,

for every t ∈ [τ0, T ]. Then we deduce the claim by setting g = E(f).
For m = 0 the estimate (14) is trivial. We assume the above statement true
up tom = N . For a smooth family of linear second order differential operator
P we set

|[P ]|N =
∑

2j≤N

[ ∂
j

∂tjP ]N−2j

where [P ]N is the supremum of the norm of P and its space covariant deriva-
tives up to degree N . By [2, Lemma 6.10] for δ′ small enough there exists
C > 0, depending on T and an upper bound on δ′, such that for t ∈ [0, T + τ)
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and g ∈ C∞(M × [0, T + τ ], F ) we have

∥g∥N+2,[t,T+τ ] ≤ C
(

∥ ∂
∂tg −DE(f)(g)∥N,[t,T+τ ] + ∥g(t)∥HN+1

)

+ C|[DE(f)]|N
(

∥ ∂
∂tg −DE(f)(g)∥0,[t,T+τ ] + ∥g(t)∥H1

)

,

which implies

∥g∥N+2,[t,T+τ ] ≤ C(1 + |[DE(f)]|N )

×
(

∥ ∂
∂tg −DE(f)(g)∥N,[t,T+τ ] + ∥g(t)∥HN+1

)

.

Up to shrink δ′ we may assume

|[DE(f)]|N ≤ 1 + |[DE(f̄)]|N

in order to rewrite the last estimate as

∥g∥N+2,[t,T+τ ] ≤ C(2 + |[DE(f̄)]|N )(15)

×
(

∥ ∂
∂tg −DE(f)(g)∥N,[t,T+τ ] + ∥g(t)∥HN+1

)

.

Now assume that g satisfies

∂

∂t
g = DE(f)(g)

and let χ : R → [0, 1] be smooth and such that

{

χ(s) = 0 for s ≤ t− τ0
2

χ(s) = 1 for s ≥ t .

Then g̃ = χg satsfies

∂

∂t
g̃ = DE(f)(g̃) + χ̇g

and from (15) we deduce

∥g∥N+2,[t,T+τ ] ≤ ∥g̃∥N+2,[t−
τ0

2
,T+τ ]

≤ C(2 + |[DE(f̄)]|N )∥χ̇g∥N,[t−
τ0

2
,T+τ ] ≤ C ′∥g∥N,[t−

τ0

2
,T+τ ]

and the claim follows using the inductive hypothesis.
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Finally putting these together with (13) we have that for δ′ small enough
we have

(16) ∥E(f(t))∥Hn ≤ C∥E(f0)∥L2e−λt

for t ∈ [τ0, T ]. The constant C may depend on T, τ0 and an upperbound on
δ′, but not on t and f0.

Now we choose δ ≤ δ′ such that if ∥f0 − f̄∥C∞ ≤ δ then

(17) C∥E(f0)∥L2

e−λτ0

λ

∞
∑

j=0

e−λj(T−τ0) + ∥f(τ0)− f̄∥Hn ≤ δ′ .

Using (16) and (17) and working as in [2] we have that for any t ∈
[NT − (N − 1)τ0, (N + 1)T −Nτ0] with N ∈ N

∥f − f̄∥Hn ≤ C∥E(f0)∥L2

e−λτ0

λ

N
∑

j=0

e−λj(T−τ0) + ∥f(τ0)− f̄∥Hn ≤ δ′.

This allows us to conclude that the solution f is defined in M × [0,∞).
Now let f∞ = f0 +

∫∞
0 E(f)ds ∈ C∞(M,F ); since

lim
t→∞

∥f(t)− f∞∥Hn ≤ lim
t→∞

C∥E(f0)∥L2e−λt = 0 , for n large enough

f(t) converges to f∞ in C∞-topology. Possibly shrinking δ, we will have f∞ ∈
C∞(M,U). Using again [2, Proposition 5.7], we have that up to shrink δ,

∥f(t)− f̄∥C∞ < ϵ

for every t ∈ [0,∞).
Finally

E(f∞) = lim
t→0

E(f(t)) = 0

and the claim follows. □
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