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On the stability of the anomaly flow

Lucio BEDULLI AND LUIGI VEZZONI

We prove that the parabolic flow of conformally balanced metrics
introduced in [13] is stable around Calabi-Yau metrics. The result
shows that the flow can converge on a Kéhler manifold even if the
initial metric is not conformally Kéahler.

1. Introduction

Anomaly flow is a geometric flow of Hermitian metrics studied in [3H5] [8HI4].
The flow was originally considered in [I0] on complex threefolds to study
the Strominger system [I5] and involves a real parameter o’. The flow was
subsequently generalized to any complex dimension n > 3 for o/ = 0 in [13].
The latter evolves an initial Hermitian metric wy on a compact complex
manifolds M of complex dimension n > 3 with ¢; (M) = 0 by

(1) %(\mww”_l) = 00w 2 , w(0)=wp,

where (Q is a fixed complex volume form and | - |, is the pointwise norm with
respect to w. By “complex volume form” we just mean a nowhere vanishing
(n,0)-form, indeed for the purpose of the present paper we do not need to
assume {2 to be holomorphic.

The well-posedness of the flow is proved in [I3, Theorem 1] under the
assumption on wy to be conformally balanced (in such a case the compo-
nents of w(t) satisfy a parabolic system [I3, Theorem 4]). Moreover, when
wo is conformally balanced, is conformally equivalent to the Hermitian
curvature flow introduced by Ustinovskiy in [16] (see [4]).

The flow can only converge when M is Kéhler. The research of the
present paper is motivated by the following theorem about the long time
existence and convergence of the flow when |Q\01J{](n71)w0 is a Kéahler metric:
Theorem 1.1 (Phong, Picard and Zhang [13, Theorem 2]). Let
(M, x) be a compact Kdhler manifold with vanishing first Chern class and
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let ©Q be a complex volume form on M with constant norm with respect to
x- Let wg be a Hermitian metric on M such that

|Q‘wow8_1 = Xnil )

then starting from wgy has a long-time solution which converges in C'°°—
topology to the unique Ricci-flat Kihler metric we € [x] € HYY(M) .

The theorem gives an alternative proof of the Calabi-Yau theorem [17].
In [13] it is raised the problem of studying the convergence of the flow
in Kéhler manifolds when ]Q|i,{)(n71)w0 is not Kéhler, for instance when
19wt is just closed and [|Q]y,wg ] =[x, with x Kahler. Here we
prove that is stable around Calabi-Yau metrics x with €], constant. In
particular we have the convergence of (1)), when |Q|y,w( ™" is just close to

the (n — 1)-th power of a Kéhler metric.

Theorem 1.2. Let (M,x) be a compact Kdihler manifold with vanishing
first Chern class and let Q) be a complex volume form on M with constant
norm with respect to x. For every € > 0 there exists § > 0 such that if wo is
a Hermitian metric on M satisfying

(2) 1wy ™ = X"l <4,

then flow has a long-time solution w(t) € C*°(M X [0,00),A}r’1) such
that

1Qwpw (@) = X" e~ <€, for every t € [0,00)

and |Q,pHw(t)" "t converges in C*°~topology to a positive (n—1,n—1)-form
Wl with wee astheno-Kdhler.
If further wy satisifies the conformally balanced condition d(|Q,,wi ™)

0, then weo is Kdhler Ricci flat.

We prove Theorem as follows:

after the change of variable || ,w" ! = @™ !, equation rewrites as
(3) Gt =i00(|QI7%" ),

(see Lemma [3.1)).
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If we set E(@""!) = i00(|Q|;*@""2), then the linearization DE(a"1)
of E at any positive (n — 1,n — 1)-real form a™~! satisfies

DE(a™ 1) (1) = —ﬁmamw Flodt.

for any closed ) € C*°(M, Aﬂz—l’n_l) (see Lemma and the flow fits
in Hamilton’s framework [6l Section 5 and 6] with integrability condition
L = d (this is analogous to the argument used in [13]). That in particular
implies the well-posedness of the flow also when wy is not conformally
balanced.

Moreover if x is Kéhler, then

1

DE( () = ———

€2, O

for any closed ¢ € C*°(M, Aﬁfl’"fl). This allows us to apply a general result
about the stability of second order geometric flows with an integrability
condition. We state this theorem in section [2| and we prove it in the last
section.

Notation. Given a vector bundle F on a manifold M, we denote by C*° (M, F')
the space of smooth sections of F'. If further I C R is an interval we denote
by C*°(M x I, F) the space of smooth time depending sections of F'. When
we write || f||c= < d, we mean that || f||cr < § for every k € N.

2. A stability result for second order geometric flows with
an integrability condition

In [6] Hamilton proved the following general result about the short-time
existence of second order geometric flows on compact manifolds.

Let M be an oriented compact manifold, F' a vector bundle over M, U
an open subbundle of F' and

E: C®°(M,U) — C®(M, F)

a second order differential operator. Consider the geometric flow

(1 Vb, 10=n

where fy belongs to C*°(M,U). For f € C*(M,U), we denote by DE(f) :
C*®(M,F) — C®(M,F) the linearization of E at f and by cDE(f) the
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principal symbol of DE(f). Following Hamilton’s paper we assume that
there exists a first order linear differential operator

L: C®(M,F) — C™®(M,G),

with values in another vector bundle G over M, such that
1. L(E(f)) =0 for all f e C>®(M,U);

2. for every f € C*°(M,U) and for every (x,&) € T*M all the eigenvalues
of cDE(f)(x,§) restricted to ker o L(x,&) have strictly positive real
part .

Because of the following result L is called an integrability condition for E.

Theorem 2.1 (Hamilton [6, Theorem 5.1] ). Under the above assump-
tions the geometric flow has a unique short-time solution.

Remark 2.2. Theorem 5.1 in [6] is in fact more general since the integra-
bility condition L is allowed to smoothly depend on f € C*°(M,U). This
generality is needed to prove the short time existence of the Ricci flow.

Using Theorem we will be able to prove the following stability theo-
rem for geometric flows with an integrability condition L.

Theorem 2.3. Assume that E and L are as above. Let f€C®(M,U) be
such that E(f) = 0. Let h be a fivred metric along the fibers of F. Assume

(i) DE(f): ker L — ker L is symmetric and negative semidefinite with re-
spect to h;

(ii) E(f) is L%-orthogonal to ker DE(f) for every f € C®(M,U);

(iii) DE(f) : ker L — ker L extends to an elliptic operator ® : C°(M, F) —
C*(M,F).

Then for every € > 0 there exists § > 0 such that if fo € C°(M,U) satisfies
Ifo = flle= <6,
then has a long-time solution f € C*°(M x [0,00),U) such that

1£(#) = fllo= < €, for everyt € [0,0).
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Moreover, f(t) converges to foo € C°(M,U) in C*°—topology which satisfies

3. Proof of Theorem [1.2]

Let (M,wp) be a compact n-dimensional Hermitian manifold with vanishing
first Chern class and let 2 be a fixed complex volume form.

Lemma 3.1. Let w(t) be a solution to the geometric flow on M; then
~ 1/(n—1)
@ = Q]

w satisfies
(5) 2amt =4i00(19| %" ).
Proof. Since
w =" Va,
we have

2 (1) = i9(|Q|5 2/ =Dgn=2)

Now in general for any conformal factor f € C*°(M,R;) one has
Q5 = f7"?10s

and thus
QL = (1915 ) 20|, = Q2 0,

from which we deduce

and the claim follows. O

Now we focus on the geometric flow and we show that it fits in the
set-up of Theorem [2.3] The flow is governed by the operator

E: C®°(M, A = oo (M, Ap Y
defined by
(6) E(W"™) =i00(|Q|;% w"?)

where A" is the bundle of positive real (n—1,n—1)-forms on M and
A"V is the bundle of real (n—1,n—1)-forms.
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In order to study the linearization of E, we describe the principal part of
the operator [J in terms of the components of (n—1,n—1)-real forms on M.

Let w be any Hermitian metric on M and ¢ € C(M, A%~ """"). Then
1) writes in a unique way as

n—1

1 _
'hg/\w" 2,

(-2

where hg is a smooth function and hy € C*°(M, Aﬂlq{’l) satisfies

(7) Y=

1
(n— 1)!h0w

hg/\wnilzo.

Since
1
(n—2)!

the form v can be alternatively written as

xho = — ha A w2 ,

P = *(how + hg) .

Lemma 3.2. If ¢ is closed, then

21 ~ i _
O = 00" = ————00hg Aw™ 2 + ———00hy Aw" % + Lo.t.

v v (n—2)"° v +(n—3)! 2hwn mLo
where “l.o.t.” stands for “lower order terms” in . Moreover if w is Kdhler
we have

20

T T R S
04 = 80* = (n_z)!aahom +(n_3)!68h2/\w .

Proof. Since 1 is closed we have
Oy = 00*) = —0% 0% = —0 % (Ohg Aw) — O * Ohy + Lo.t.

On the other hand, from the closure of 1, we deduce

_ 1 -
Ohy A W2 = —18h0 Aw" P+ lot.
n —

Now we use the well-known splitting of (1, 2)-forms as
T=v + -

where 74 is of the form a Aw with a a (0,1)-form and ~_ is such that
Yo AW 2 =0.
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The fact we use is that xy, = ﬁ’w A w3 and xy_ = —ﬁy_ A wn 3,
Thus in our case, taking into account that (Ohs)4 = —50hg Aw + Lo.t., we

have

{ 7

_ _ _ 1
hy = ————0dh 2~ (dhy— ——0h =3 4 lo.t.
*Ohy (n_l)!8 o \w (n—3)! (82 n_la 0/\w>/\w + L.o
i - i
= Ohg AW 2 — ——Bhy Aw" 3 + Lot
(n—onto N T e AT e
Therefore
D¢——L65h Aw"‘2+L85h Aw™ 3 4+ Lot
T =2 (n—3)" *

where these lower order terms vanish if w is closed since they all come from
dw. O

Lemma 3.3. Let w be a Hermitian metric on M and let i € C°(M, Ap~ "1
be closed; then

1
(8) DE(W" ") (y) = — 19|,0¢ + Lo.t.

n—1

Moreover if we assume that w is Kdhler then we have
_ 1
DE(w" ™ ")(y) = —mm’wD?ﬁ-

Proof. Let w(t), t € (—¢,€) be a smooth curve of Hermitian metrics with
w(0) =w on M and we assume that

= wn_l(t)

Sl

|t=0

is closed. In order to simplify the notation we set

T‘(t) = |Q|;(2t) y = T(O) , = %Hzor(t) , w= %‘tzow(t) :

We directly compute
%lt:oE(w(t)”_l) = i00(rw" 2 + (n — 2)rw Aw3)
= i00r Aw" % 4+ (n — 2)ir 90w A w3 + Lo.t.
We decompose ¢ according to . Then [I, Lemma 2.5] implies

. h 1
YT - 1)(21— DY " =1y
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and using
;= n—hor
 (n—1)(n—1)!
we obtain
d n—1y _ n : 3 n—2
E“:OE(WG) ) = mﬂ“ 00hy N w
n—2 90 n—2
+ mzr 00ho N\ w
_ 2 _
- (Z_ 1),2'?" 90hy Aw"3 + Lot
i.e.
d n—1 2 . = n—2
(9) %\t:oE(W(t) ) = (n— 1)!17’ 00hy N\ w
— 2 _
- hir 90hy Aw" 3 + Lot

and Lemma implies . Since the lower order terms in @ vanish if w is
closed, the claim follows. O

Proof of Theorem[1.2] Let (M, x) be a compact Kéahler manifold of complex
dimension n. Let € be a complex volume form on M with constant norm
with respect to x and let E: C(M, A" 1) — 0°(M, A """ be as
in (@ Then we have

E(x"')=0.
Now Lemma and Hodge theory imply that all the assumptions of The-
orem [2.3] are satisfied when we consider

F = Aﬁfl,nfl 7 U = A?J”erl,nfl ,
L=d: C®(M, A" Y = C°(M, A2 Y.

Hence for every € > 0 there exists § > 0 such that if &g is a Hermitian metric
on M satisfying

(10) g~ = X" e < 4,

then there exists a smooth family of Hermitian metrics &(t), ¢ € [0, 00), such
that

(11) (@) = xXllex <€, So=1400(1Q]5%@" %), @(0) =&

w
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and w(t) converges in C*°—topology to a Hermitian metric & such that
(12) 90(|Q52 @ ?) =0.

Now let wy be a Herrrutlan metric on M satisfying , then @ :=
\Q|1/ n=1) wo satisfies . Thus there exists @ € C°°(M x [0,00), A} 1) sat-

isfying (11f) and convergmg in C°°-topology to a Wy for Wthh . ) holds.
Therefore w= \Q]_ /("2 is a solution to the anomaly flow (|1 satisfying

12lu@w®)" ™ = xlle= <,
and |Q|w(t)w(t)”_1 converges in C'*°-topology to

’Q|—2n 1/(n— 2)~n 1

By a change of variable we obtain that w., is astheno-Kahler, i.e.
09(wys ) =0,

and the first part of the claim follows.

About the second part of the claim, we use that if wq satisfies the confor-
mally balanced condition d(|Q|y,wh ™) =0, then d(|Q]gpw()" 1) =0 for
every t and hence w., satisfies

d(|Qw_ w1 =0, 90wWL? =0.
In view of [I3, Lemma 1] (see also [7]), weo is Kéhler-Einstein. O

4. Proof of Theorem 2.3

In this section we prove the general result about the stability of geometric
flows in Hamilton’s set-up described in section

Proof. We adapt the proof of the main theorem in [2].

Fix a metric connection V on (F,h) and a volume form on M. The space
C*°(M, F) has the natural structure of tame Fréchet space given by the
Sobolev norms ||.|| g~ induced by h, V and the volume form of M.
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On C*®(M x [a,b], F') we consider the grading

b .
W llgory = 3 / 107 £ (1)l go—ss .

2j<n @

Hamilton in [6 sections 5 and 6] proved that, with respect to this grad-
ing, for any T' > 0 the map

F: C®(M x [0,T),U) = C®(M x [0,T], F) x C®(M, F)

F(f) = (9f/0t = E(f), £(0))

satisfies the assumptions of the Nash-Moser theorem, i.e. F is smooth tame,
DF(f) is bijective for every f € C*°(M x [0,T],U) and the family of the
inverses

C(M x [0,T],U) x C=(M x [0,T], F) x C=(M, F) — C=(M x [0,T], F)

(f,(g.k)) = DF(f)" (g, k)

is a smooth tame map. Hence the Nash-Moser theorem can be applied and
F is locally invertible with smooth tame inverse. As a direct consequence,
arguing as in Proposition 5.3 in [2] we have the following

Claim 1. For alle, T > 0, there exists 6’ > 0 such that if fo € C*°(M,U)
satisfies

HfO - .]?HC‘X’ < 5/7
then has a solution f € C*(M x [0,T],U) and

”f - f”n,[(],T] <e€

for alln € N.
Then we show the following

Claim 2. For &' small enough the L?>-norm of E(f) with respect to h
has an exponential decay.

Fix a small time 7 > 0 arbitrary. By Claim 1 we have that there ex-
ists &’ > 0 such that if ||fo — f|lc~ < ¢, then problem has a solution
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feC®M x[0,T+27],U) with || f — f||l,[07T+27-} bounded for every I. Now
since
0

S E(f) = DE(f)(E(/)).

we have

0

CIB(PIE: = 20 B(), B( ) = 2DE(E(F), B()1e.

Moreover a general result for families of symmetric operators on Hilbert
spaces combined with the Sobolev Embedding theorem and elliptic regular-

ity of DE(f) (see [2] Corollary 5.6) imply that given a > 0 we can choose ¢’
so small that we have

(DE(f)(E(f), E(f))r2 < (1 = a)(DE(f)(E(f)), E(f))z2 + al E(f)IZ:

for every time in the interval [0,7'+ 7]. Now let A be half the smallest
positive eigenvalue of —DE(f)|ker - Take a = ﬁ so that

A+1
A+1

(DE(f)(E(f)), E(f))r:
IECH)IZ- -

(DE(f)(E(S), E(f))12 <

2
4

220 +1

By assumption ({il) and we have (DE(f)(E(f)), E(f))r2 < —2)\\|E(f)H%2
thus

(DE()(E(f)), E(f))r2 < =MIE(f)Z-

which implies
d 2 2
BN = =2XIE(HIL: -

Using Gronwall’s lemma we get
IE(f@)II7e < e ME(fo)l|Fe,  forallt € [0,T +1),

and the Claim 2 follows.
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By integrating the last formula we get

—2Xt

2\

2 e

T+t
(13)  NEIG e14m :/t IE(f()Z2 ds < [IE(fo)lIZ:

Since using the parabolic Sobolev embedding theorem (see [2] Corollary 5.8)
there exist m and C' > 0 such that for every ¢t € [0,T]

IEfE) I < CNE) it 144] >

we will need the following estimate in order to prove H"-exponential decay.

Claim 3. Let 79 € (0,T). For &' small enough we have that for every
m € N there exists C > 0 such that

LE I 1471 < CUE) 0, jt—r0,7+71 5

for every t € [19,T].

We prove by induction on m that for every 7y € (0,7") we can choose ¢’
small enough such that there exists a positive C' (depending on m, 79 and an
upper bound on ¢") such that for every g € C*°(M x [0, T + 7], F) solving

0
—g=DFE
£9=DE(/)(9).

the following estimate holds

(14) 91l 747) < Cllgllo,fe—ro, 747

for every t € [19,T]. Then we deduce the claim by setting g = E(f).

For m = 0 the estimate is trivial. We assume the above statement true
up tom = N. For a smooth family of linear second order differential operator
P we set

[Plly = > (& Pln—2

2j<N

where [P]y is the supremum of the norm of P and its space covariant deriva-
tives up to degree N. By [2, Lemma 6.10] for ¢’ small enough there exists
C > 0, depending on T and an upper bound on §’, such that for t € [0,7 + 1)
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and g € C*(M x [0,T + 7], F') we have

19l N2 14m < C (129 — DEF) ) Inprm + 19E) | rver)
+ CIIDE(f)lln (19 — DEF) (Do g + 9@ )

which implies

9l N+2,itm47 < CA+ [[DE(f)]|N)
x (159 = DEN) @ jria + lg(@)llver) -

Up to shrink ¢ we may assume

IDE(f)]lv < 1+I|[DE(S)]|n

in order to rewrite the last estimate as

(15)  lgllvszer4n < CE+IDE)]IN)
x (159 = DE) @ jeria + lg(®) | xe) -

Now assume that g satisfies

0

ag = DE(f)(9)

and let x: R — [0, 1] be smooth and such that

x(s)=0 fors<t—7
1 fors>t.

Then g = xg satsfies

and from we deduce

9l nt2, im0 < N9l N2, -0 7477
< C+HIDEWNNNMIXIIN - 717 < CllglIN -2 747

and the claim follows using the inductive hypothesis.
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Finally putting these together with we have that for ¢’ small enough
we have

(16) IEF )|z < CIE(fo)l|p2e™

for t € [19,T]. The constant C' may depend on T', 7y and an upperbound on
d’, but not on ¢t and fo.

Now we choose § < & such that if ||fo — f||c~ < & then

17 CIE(f) ||Lze Ze*W ) || f(r0) = Fllam <8

Using and and working as in [2] we have that for any ¢ €
[NT — (N — 1)79, (N +1)T — N7p] with N € N

1f = Flle < CUE()llze S Ze =) ) f(m0) = Fllan < 6.

This allows us to conclude that the solution f is defined in M X [0, c0).
Now let foo = fo+ [y~ E(f)ds € C°°(M, F); since

tli}m 1f(t) = foollmn < tli}m CIlE(fo)l|zze ™ = 0, for n large enough

f(t) converges to foo in C*>°-topology. Possibly shrinking , we will have fo, €
C*°(M,U). Using again [2, Proposition 5.7], we have that up to shrink 4,

1£(t) = flle= < e
for every t € [0, 00).
Finally
B(f0) = lim B(f (1)) = 0
—0
and the claim follows. O
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