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We prove that the tangent and the reflexivized cotangent sheaves
of any normal projective klt Calabi-Yau or irreducible holomor-
phic symplectic variety are not pseudoeffective, generalizing re-
sults of A. Höring and T. Peternell [21]. We provide examples of
Calabi-Yau varieties of small dimension with singularities in codi-
mension 2.
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1. Introduction

Complex algebraic varieties with trivial canonical class are of great impor-
tance in birational geometry. Indeed, they appear naturally as possible min-
imal models in the Minimal Model Program (MMP), and come in quite
diverse geometrical families. Since higher-dimensional MMP generally gives
rise to singular minimal models, understanding singular projective varieties
with trivial canonical class is particularly relevant. Recently, three papers
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[21, Thm.1.5], [13], [12] achieved a singular decomposition result for these
varieties :

Theorem 1.1. Let X be a normal projective variety with klt singularities,
with KX numerically trivial. Then there exists a normal projective variety
X̃ with at most canonical singularities, which comes with a quasiétale finite
cover f : X̃ → X and decomposes as a product:

X̃ ∼= A×
∏

i

Yi ×
∏

j

Zj ,

where A is a smooth abelian variety, the Yi are singular Calabi-Yau varieties
and the Zj are singular irreducible holomorphic symplectic (IHS) varieties,
as defined in Section 5.

May it seem an expected generalization of the smooth Beauville-
Bogomolov decomposition result [4], [3], this theorem however relies on seri-
ous results from each paper: [13] introduces algebraic holonomy and studies
infinitesimal decompositions of the tangent sheaf TX ; [12] deals with the
abelian part in the infinitesimal decomposition through a positive charac-
teristics argument, and proves an integrability criterion for the remaining
subsheaves of TX ; [21] establishes positivity results which add up to Druel’s
criterion to finish the proof. This proof was notably simplified by [7], short-
cutting the positive characterictics argument. Furthermore, the two recent
papers [8], [1] extend this decomposition result to the singular Kähler case
by subtle algebraic approximation considerations.

Interestingly enough, the singular decomposition for a klt variety X
may not be the same as the singular decomposition of its terminalisation.
The typical example is a singular Kummer surface, which resolves by 16
blow-ups into a smooth K3 surface, but has the Beauville-Bogomolov type
of an abelian surface. Other such intruiguing examples are given in [13,
Sect.14]. Compatibility of the singular Beauville-Bogomolov decomposition
with terminalisation nevertheless holds for some klt varieties with trivial
canonical class [12, Lem.4.6]. This license to terminalise is essential in the
current proof of [21, Thm.1.5], as it involves positivity results [21, Thm.1.1]
for klt varieties which are smooth in codimension 2: any klt variety is not,
but its terminalisation surely is.

Since these positivity results have a wider scope than the mere proof of
the singular decomposition theorem, it is worth extending them to normal
projective klt varieties. Our main theorem is:
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Theorem 1.2. Let X be a normal projective variety with klt singularities
and numerically trivial KX . If its tangent or reflexivized cotangent sheaf
is pseudoeffective, then there is a quasiétale finite cover X̃ → X such that
q(X̃) ̸= 0. Equivalently, the singular Beauville-Bogomolov decomposition of
X has an abelian factor of positive dimension.

In particular, if X is a singular Calabi-Yau or IHS variety in the sense

of Def.5.1, then neither TX nor its dual Ω
[1]
X is pseudoeffective.

Importantly enough, this theorem does not boil down to [21, Thm.1.6]
on a terminalisation of X; we inevitably have to deal with codimension 2
quotient singularities on X. In this perspective, we resort to the theory of
orbifold Chern classes. It has been developped in the late eighties in connec-
tion to the abundance problem for threefolds [23], and we will extensively
use some of its most recent developments, inter alia [28], [17], [18].

Let us present a brief outline of the proof, say for a variety X with
pseudoeffective tangent sheaf.

The fact that TX is pseudoeffective pullbacks and restricts to one factor
in the Beauville-Bogomolov decomposition ofX. Supposing by contradiction
that X has no abelian part, we can reduce to a Calabi-Yau or IHS factor
Z such that TZ is pseudoeffective. The work of [13] also establishes that
TZ and all its symmetric powers are stable of slope zero with respect to any
polarisationH. Finally, since Z is not abelian, its orbifold second Chern class
satisfies ĉ2(TZ) ·H

dimX−2 ̸= 0. This contradicts the following generalization
of [21, Thm.1.1]:

Theorem 1.3. Let X be a normal projective variety with klt singularities
of dimension n, H a Q-Cartier ample divisor on X. Consider E a reflexive
sheaf on X such that:

• ĉ1(E) ·H
n−1 = 0;

• the sheaves E and S[l]E, for some l ≥ 6, are H-stable;

• E is pseudoeffective.

Then ĉ1(E)
2 ·Hn−2 = ĉ2(E) ·H

n−2 = 0.
Moreover, there is a finite Galois covering ν : X̃ → X, étale in codi-

mension 1, such that ν [∗]E is locally-free, has a numerically trivial determi-
nant, and is Gal(X̃/X)-equivariantly flat on X̃, ie comes from a Gal(X̃/X)-
equivariant representation of π1(X̃). In particular, ν[∗]E is numerically flat,
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and, as symmetric multilinear forms on NS(X):

c1(ν
[∗]E) ≡ 0, c2(ν

[∗]E) ≡ 0.

The hard part here is the first assertion on the vanishing of orbifold
Chern classes, the rest follows from [28].

In Section 2, we recall and prove basics to reduce the proof of Thm.1.3
to working on a normal projective klt surface S. A crucial ingredient is that
orbifold Chern classes behave well under certain restrictions [17, Prop.3.11].
In Section 3, we introduce an unfolding p : Ŝ → S, obtained by gluing to-
gether local finite Galois quasiétale resolutions of the singularities of S. The
surface Ŝ may be as singular as S; importantly enough though, any reflexive
sheaf E on S reflexively pulls back to a locally-free sheaf Ê on Ŝ. We inves-
tigate the relationship of E and Ê . The key of the proof of Thm.1.3 is then
to establish the nefness of Ê , which yields the Chern classes vanishing for Ê ,
hence for E . Note that E may very well not be nef itself: see Remark 2.6.

As a conclusive remark, note that investigating pseudoeffectivity of the
tangent and reflexivized cotangent sheaves of a variety with trivial canoni-
cal class requires knowledge of its singular Beauville-Bogomolov decompo-
sition. To that extent, Thm.1.2 cannot be used on an explicit variety before
knowing a bare minimum about its geometry. In Section 6, we exhibit 2409
Calabi-Yau threefolds with singularities in codimension 2, among the 7555
wellformed quasismooth hypersurfaces of trivial canonical sheaf in weighted
projective 4-dimensional spaces classified by [25]. These examples stay out
of the range of the earlier pseudoeffectivity result of [21, Thm.1.6], but are
covered by our Thm.1.2.

2. Notation and basic facts

Finite morphisms. We will deal with various types of finite maps.

Definition 2.1. Unless otherwise stated, all finite morphisms we speak
about are surjective; we may well refer to them as finite coverings, without
saying anything about how étale they are. We refer say that a finite mor-
phism is quasiétale if it is étale in codimension 1. Following [15], we call a
finite morphism of normal varieties Y → X Galois if it is the quotient map
of Y by a finite group action.

Reflexive sheaves. Let E be a reflexive sheaf on a variety X. Recall
the reflexivization functor F 7→ F∗∗ enables to perform general algebraic
operations in the category of reflexive sheaves.
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Notably, we will denote by:

• S[l]E the reflexivization of the l-th symmetric power of E (for l ∈ N),

• ν [∗]E the reflexivization of the pullback of E (for ν : Y → X a mor-
phism).

Note that, by [19, Prop.1.6], reflexive sheaves are normal: if E is a reflex-
ive sheaf on X, then for all open sets V ⊂ U ⊂ X such that codimUU \ V ≥
2, the restriction map E(U) → E(V ) is an isomorphism. In particular, a
morphism between two reflexive sheaves which is an isomorphism when re-
stricted to a big open set (ie an open set whose complementary has codi-
mension at least 2) is a global isomorphism.

Lemma 2.2. Let p : X → Y be a finite morphism between normal projec-
tive varieties. The functor p[∗] from the category of reflexive sheaves on Y
to that of reflexive sheaves on X is left-exact.

Proof. Let 0 → E → F → G be an exact sequence of reflexive sheaves on Y ,
and denote by Z ⊂ Y a closed subscheme of codimension at least 2 such that
our reflexive sheaves are locally-free on Y \ Z ⊂ Yreg. Reflexive pullback a
priori only gives morphisms

p[∗]E → p[∗]F → p[∗]G,

whose composition is zero. By [33, Lem.31.12.7], the kernel K of the mor-
phism p[∗]F → p[∗]G is reflexive. There is a natural morphism from p[∗]E to
the kernel K, which restricts to an isomorphism over X \ p−1(Z). As both
sheaves are reflexive and p−1(Z) has codimension 2, they are isomorphic
over all X. □

2.1. Nefness and pseudoeffectivity

Let us recall that a coherent sheaf E on a normal variety X has a projec-
tivization P(E) with a canonical, so-called tautological, line bundle ζ on it
and a natural morphism p : P(E) → X with a natural sheaf quotient map:
p∗E ↠ ζ. An account on this set-up is given in [10, Chapt.4]. We simply re-
call the universal property of this construction: for any scheme q : C → X,
to give an X-morphism ν : C → P(E) is equivalent to giving a line bundle L
over C together with a sheaf surjection q∗E ↠ L.

Projectivizations are standardly used for generalizing positivity notions
of line bundles to coherent sheaves, as follows.
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Definition 2.3. Let E be a coherent sheaf on a normal variety X. It is
called nef if the tautological line bundle ζ on P(E) is nef.

Remark 2.4. This coincides with [27, Def.6.1.1] when the sheaf E is locally-
free. Note that for a torsion-free coherent sheaf E , the scheme P(E) may well
have several irreducible components. Somehow, several of these components
may be relevant for studying the positivity of E : not only the mere one
which is dominant onto X, but also components which may be contracted
to a non-zero dimensional locus of X. Such components don’t exist for a
reflexive sheaf on a normal projective surface: so in this case, nefness is
easier to study.

Proposition 2.5. We have the following properties:

• if Y ⊂ X is a normal subvariety, and E is a nef coherent sheaf on X,
then E|Y is nef;

• conversely, nefness of a coherent sheaf E is enough to be checked on
all curves of P(E);

• if f : Y → X is a finite dominant morphism of normal varieties and
E is a coherent sheaf on X, E is nef if and only if f∗E is;

• if f : Y → X is a proper birational morphism resolving the singularities
of a normal variety X and E is a coherent sheaf on X such that f∗E
is nef, then E is nef.

These are simple consequences of the universal property of P(E) and of the
fact [10, 4.1.3.1] that for a dominant morphism f : Y → X and a coherent
sheaf E in X,

P(f∗E) = P(E)×X Y.

Remark 2.6. Interestingly enough, the reflexive pullback of a non-nef re-
flexive sheaf may be nef, as shows the following example. Let X be a singular
Kummer surface, ie the finite quotient of an abelian surface A by the in-
volution i : a 7→ −a. Since p : A → X is a finite quasiétale cover and TX is
locally-free on a big open set, the reflexive sheaves p[∗]TX and TA are the
same. In particular,

p[∗]TX = OA ⊕OA is nef.

We are going to prove that TX itself is not nef. We first compute it.
Recalling [14, App.B], we consider the functor taking the invariant direct

image of a Z2-coherent sheaf on A: E 7→ p∗E
Z2 . It sends reflexive sheaves to
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reflexive sheaves, so that the following equality, which is clear on the big
open étale locus of p, extends to a global sheaf isomorphism:

for any E reflexive sheaf on X, p[∗]E(1)

is naturally Z2-equivariant and (p∗p
[∗]E)Z2 ∼= E .

Moreover, it is an exact functor. Still from [14, App.B], if E is a Z2-
equivariant coherent sheaf on A, then the sheaf p∗E

Z2 is a direct summand of
p∗E . Note that a given coherent sheaf E on A may have several structures of
Z2-equivariant object. For example, OA comes with a natural and a reversed
action, defined on an affine open set U by:

f ∈ OA(U) 7→ f ◦ i ∈ OA(i(U)),

f ∈ OA(U) 7→ −f ◦ i ∈ OA(i(U)).

So p∗OA is the direct sum of two reflexive sheaves of rank 1, OX (the invari-
ants by the natural action) and F (the invariants by the reversed action).

We know that TX ∼= p∗(OA ⊕OA)
Z2 with Eq.1. We note that the natural

Z2-equivariant structure on TA acts diagonally, and reversely on each trivial
summand. So TX ∼= F ⊕ F .

Let us finally check that F is not nef. We compute locally: let V ⊂
X,U = p−1(V ) ⊂ A be affine open sets with local coordinates (x, y) ∈ C2 ≃
U so that p|U ramifies only at (0, 0). The quotient map p : U → V rewrites:

C[u, v, w]/(uv − w2) ∼= OX(V ) → C[x, y] ∼= OA(U)

u, v, w 7→ x2, y2, xy,

so its image C[x2, y2, xy] identifies with the local ring OX(V ). Hence,

F(V ) ≃ {f ∈ C[x, y] | ∀x, y, f(x, y) = −f(−x,−y)}

= xC[x2, y2, xy]⊕ yC[x2, y2, xy],

so that F⊗2(V ) ≃ uOX(V )⊕ vOX(V )⊕ wOX(V ) = ISing(X)(V ). This iso-
morphism is actually global:

F⊗2 ∼= ISing(X).

Ideal sheaves are not nef, so F⊗2 is not nef, so by [26, Prop.2], F is not
nef. □
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Pseudoeffectivity is standardly defined for locally-free sheaves through
projectivisation too:

Definition 2.7. Le E be a locally-free sheaf on a normal projective variety
X. It is considered pseudoeffective if it satisfies one of the following equivalent
[12, Lem.2.7] conditions:

• the tautological line bundle on P(E) is pseudoeffective;

• there is an ample Cartier divisor H on X such that for all c > 0, there
are integers i, j such that i > cj > 0 and

h0(X, SymiE ⊗ OX(jH)) ̸= 0.

Generalizing this definition to any coherent sheaf is not obvious [20]. For
reflexive sheaves, we use [21, Def.2.1]: let X be a normal projective variety
and H an ample Cartier divisor on X. A reflexive sheaf E on X is said
pseudoeffective if, for all c > 0, there are numbers i, j ∈ N with i > cj such
that:

h0(X,S[i](E)⊗OX(jH)) ̸= 0.

Example 2.8. The sheaf TX in Remark 2.6 is pseudoeffective, as TX =
F ⊕ F with S[2]F ∼= OX .

Definition 2.9. Let E be a reflexive sheaf on a normal projective variety
X. Denote by P′(E) the normalization of the unique dominant component
of P(E) onto X. Let P be a resolution of P′(E), such that the birational
morphism r : P → P′(E) over X is an isomorphism precisely over the open
locus X0 ⊂ Xreg where E is locally-free.

Denoting by π the morphism P → P(E) and by OP (1) the pullback of
the tautological bundle of P(E) by π, [31, V.3.23] asserts that one can choose
(often not uniquely) an effective divisor Λ supported in the exceptional locus
of r such that

ζ := OP (1)⊗OP (Λ)

satisfies π∗ζ
⊗m ≃ S[m]E for all m ∈ N. Such ζ is called a tautological class of

E .
As said in [21, Lem.2.3], with the same notations as previously, ζ is

pseudoeffective on P if and only if E is pseudoeffective as a reflexive sheaf.

Proposition 2.10. Let X be a normal projective variety, H an ample Q-
Cartier divisor, E a pseudoeffective reflexive sheaf on X. Then for m big and
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divisible enough, for a general element D ∈ |mH|, the sheaf E|D is reflexive
and pseudoeffective.

Proof. Let U ⊂ Xreg be a big open set on which E is locally-free. For m big
and divisible enough and for a general element D in |mH|, U ∩D is a big
open set of D. By [15, Prop.5.1.2], we can assume D is a normal subvariety
of X and E|D is reflexive.

Let us fix a c > 0 and take i, j integers such that i > cj > 0 and
h0(X,S[i](E)⊗OX(jH)) > 0. Up to taking a smaller j (which may be neg-
ative if needed), we can assume that

h0(X,S[i](E)⊗OX((j −m)H)) = 0.

By normality of reflexive sheaves,

h0(D,S[i](E|D)⊗OD(jH)) = h0(U ∩D,Si(E|U∩D)⊗OU∩D(jH))

≥ h0(U, Si(E|U )⊗OU (jH))

− h0(U, Si(E|U )⊗OU ((j −m)H))

= h0(X,S[i](E)⊗OX(jH))

− h0(X,S[i](E)⊗OX((j −m)H))

> 0,

where the second equality comes from tensoring by Si(E|U )⊗OU (jH) and
going to cohomology in the following exact sequence:

0 → OU (−mH) → OU → OU∩D → 0. □

We will use several times the following result [20, Lem.3.15]:

Proposition 2.11. Let E be a reflexive sheaf on a normal projective vari-
ety X, and f : Y → X be a finite dominant morphism of normal projective
varieties. If E is pseudoeffective, then f [∗]E is.

Definition 2.12. Let D be a Q-Cartier divisor on a normal projective
variety X. We define its stable base locus:

B(D) :=
⋂

m∈M

Bs(mD),

where M ⊂ N is the set of all m such that mD is Cartier and Bs(mD) is
the base locus of the linear system |mD|.
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We then define its restricted base locus:

B−(D) :=
⋃

n∈N∗

B

Å
D +

1

n
A

ã
,

where A is an arbitrary very ample divisor. Note that the union is strictly
decreasing.

Of course, a nef Q-divisor has an empty restricted base locus. To that ex-
tent, the restricted base locus measures the non-nefness of a pseudoeffective
line bundle. However, not all curves of a restricted base locus B−(D) must
be D-non-positive, even in the simpler case where D is a line bundle on a
smooth surface and B−(D) is the negative part of its Zariski decomposition.

2.2. Stability

Let E be a torsion-free coherent sheaf on a normal projective variety X.
For any ample Q-Cartier divisor H on X, and for some m big and divisi-
ble enough, n− 1 general members of |mH| cut out a smooth curve C on
which E|C is locally-free. So the usual notions of slope stability and slope
semistability for E with respect to H make good sense.

A generalization of a well-known Mehta-Ramanathan result says that
stability behaves well under some well-chosen restrictions; we recall it as it
is stated in [21, Lem.2.11]:

Lemma 2.13. Let X be a normal projective variety of dimension n, and
H an ample Cartier divisor on X. Let E be a torsion-free coherent sheaf
on X, that is stable with respect to H. Then there is m0 such that, for all
m ≥ m0, and for D1, . . . , Dk general elements of |mH| with k ∈ [[1, n− 1]],
if we denote by Y the complete intersection D1 ∩ . . . ∩Dk, E|Y is stable with
respect to H|Y .

Remark 2.14. Note that the converse is clearly true.

Stability a priori weakens through finite Galois reflexive pullbacks:

Lemma 2.15. Let p : Y → X be a finite Galois cover of normal projective
varieties of dimension n, G its Galois group, H an ample Q-Cartier on X,
E be a reflexive sheaf on X. Let F := p[∗]E. Then, if E is H-stable, F is
p∗H-semistable.
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Proof. Suppose that E isH-stable. By Lemma 2.13, on a smooth curve C cut
out by n− 1 very general elements of the linear system defined by a suitable
multiple ofH, the now locally-free sheaf E|C is stillH|C-stable. In particular,
[27, Lem.6.4.12] applies; so the pullback sheaf F|p−1(C) is p

∗H|C-semistable.
Hence, F is H-semistable. □

Note that positivity and stability of a zero-slope locally-free sheaf are
related by Miyaoka’s result [30], [27, Prop.6.4.11]:

Proposition 2.16. Let E be a vector bundle on a smooth curve C. If E is
semistable and c1(E) = 0, then E is nef.

More subtle than the mere stability of E is the stability of E and some
of its symmetric powers:

Remark 2.17. We recall an interesting fact stated in [2, Cor.6, following
Rmk.]. If E is a locally-free stable sheaf on a smooth projective variety X,
then the following are equivalent:

• SrE is stable for some r ≥ 6 ;

• SrE is stable for any r ≥ 6.

Whether or not the stability of all S[l]E for l ∈ N could boil down to the
stability of some S[l]E for a finite amount of l’s remains an open question,
when asked about a reflexive sheaf E on a smooth projective variety X or
about a locally-free sheaf E on a normal projective variety X.

Nevertheless, this remark allows us to rewrite the key result [21, Prop.1.3]
in the following way:

Lemma 2.18. Let E be a locally-free sheaf on a smooth curve C. Assume
that E and SlE for some l ≥ 6 are stable and that c1(E) = 0. Denoting by ζ
the tautological bundle on P(E), ζ is nef and satisfies:

ζ dimZ · Z > 0,

for any closed proper subvariety Z ⊂ P(E).

Despite that the reflexive pullback p[∗]E of a H-stable reflexive sheaf E
by a finite dominant morphism p is merely p∗H-semistable and a priori not
stable (let alone his reflexive symmetric powers), the conclusive property of
Lemma 2.18 is preserved by p[∗]:
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Remark 2.19. Let E be a reflexive sheaf on a normal projective variety
X, and C ⊂ X a smooth curve such that E is locally-free in an analytical
neighborhood of C, such that the tautological bundle ζ on P(E|C) is nef and
such that it holds:

ζdimZ · Z > 0,

for any closed proper subvariety Z ⊂ P(E|C).
Let p : X̂ → X be a finite dominant morphism, where X̂ is a normal

projective variety. Denote Ĉ := p−1(C), Ê := p[∗]E and ζ̂ the tautological
bundle of P(Ê |

Ĉ
). If we have that p∗(E|C) = Ê |

Ĉ
, then the following diagram

is Cartesian with tautological compatibility ζ̂ = q∗ζ:

P(Ê |
Ĉ
)

π̂
��

q
// P(E|C)

π
��

Ĉ
p

// C

Hence, ζ̂ is nef and satisfies, for any closed proper subvariety Z ⊂ P(Ê |
Ĉ
):

ζ̂ dimZ · Z > 0.

Remark 2.20. The case in which this remark will be relevant for us is
when X is a normal projective surface with an ample Q-Cartier divisor H,
C is a smooth curve arising as a very general element of |mH|, for m big and
divisible enough, and p : X̂ → X is the morphism constructed in Section 2.3,
so that Ê is locally-free. In this set-up, [17, Prop.3.11.1] grants the additional
assumption p∗(E|C) = Ê |

Ĉ
.

2.3. Orbifold Chern classes

Here we recall a standard construction for orbifold first and second Chern
classes of a reflexive sheaf E on a normal projective variety X, whose sin-
gularities in codimension 2 are all quotient singularities. References for this
matter include [23], [28], [17], [18]. Note that normal projective klt varieties
fall into this framework by the classical result [32, Cor.1.14], [14, Prop.9.4].

Let X be a normal projective variety, whose singularities in codimension
2 are all quotient singularities. Let H be an ample Q-Cartier divisor and E
a reflexive sheaf on X. There are a normal quasiprojective subvariety Y
of X with codimX(X \ Y ) ≥ 3 admitting an orbifold structure, a normal
quasiprojective variety Ŷ , and a finite Galois morphism p : Ŷ → Y with
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Galois group G, such that Ê := p[∗]E is a locally-free G-equivariant sheaf on
Ŷ . Let us call the whole data (X,Y, Ŷ , p) an unfolding of X.

We can now define a first, respectively a squared first and a second
orbifold Chern class of E as multilinear forms on NS(X)n−1, respectively
NS(X)n−2 by:

ĉ1(E) ·H1 · · ·Hn−1 =
1

mn−1 · |G|
c1(Ê) · p

∗(mH1) · · · p
∗(mHn−1),

ĉ1
2(E) ·H1 · · ·Hn−2 =

1

mn−2 · |G|
c1(Ê)

2 · p∗(mH1) · · · p
∗(mHn−2),

ĉ2(E) ·H1 · · ·Hn−2 =
1

mn−2 · |G|
c2(Ê) · p

∗(mH1) · · · p
∗(mHn−2),

where H1, . . . , Hn−1 are ample Q-classes, and m is big and divisible enough
that general elements of p∗(mH1), . . . , p

∗(mHn−1) cut out a complete inter-
section smooth curve in Ŷ and general elements of p∗(mH1), . . . , p

∗(mHn−2)
a complete intersection normal surface in Ŷ .

As stated in [17, Thm.3.13.2], these orbifold Chern classes are compatible
with general restrictions, and so is the unfolding construction [17, Prop.3.11].

3. Restricting to a general surface

We prove the following proposition in Section 3.2:

Proposition 3.1. Let S be a normal projective klt surface, and H an ample
Q-Cartier divisor on S. Let E be a reflexive sheaf on S such that:

• ĉ1(E) ·H = 0;

• E and S[l]E, for some l ≥ 6, are stable with respect to H;

• E is pseudoeffective.

Then there is an unfolding p : Ŝ → S as in Section 2.3 on which the locally-
free sheaf Ê = p[∗]E is nef.

In Section 3.1, we explain how this result implies the first part of Theo-
rem 1.3, namely the vanishing of the squared first and second orbifold Chern
classes.
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3.1. Consequences of Proposition 3.1

We are going to combine Proposition 3.1 with this lemma:

Lemma 3.2. Let S be a normal projective surface, H an ample Q-Cartier
divisor on S and E a locally-free sheaf on S. Assume that E is nef and
c1(E) ·H = 0. Then:

c1(E)
2 = c2(E) = 0.

Proof. Let S̃
ε
→ S be the minimal resolution of S, H̃ = ε∗H. Writing Ẽ :=

ε∗E , we get a nef locally-free sheaf on a smooth surface. The functoriality
of Chern classes of locally-free sheaves by continuous pullbacks [29, XI-
Lem.1] guarantees ci(Ẽ) = ε∗ci(E) for i = 1, 2. In particular, c1(Ẽ) · H̃ = 0.
By nefness, c1(Ẽ)

2 ≥ 0. Hence, by Hodge Index Theorem, c1(Ẽ)
2 = 0 which

yields, by [9, Prop.2.1, Thm.2.5], c2(Ẽ) = 0. So we obtain:

c1(E)
2 = c2(E) = 0.

□

Proof of the first assertion in Theorem 1.3. Let a variety X, an ample Q-
Cartier divisor H, and a reflexive sheaf E be as in the asssumptions of
Theorem 1.3. By Proposition 2.10, Lemma 2.13 and [17, Prop.3.11], we can
consider an integer m big and divisible enough that n− 2 general members
of |mH| cut out a complete intersection normal projective klt surface S in
X on which:

• E|S and (S[l]E)|S , for some l ≥ 6, are still reflexive;

• as a consequence, S[l](E|S) = (S[l]E)|S ;

• both E|S and S[l](E|S) remain H|S-stable of zero slope;

• E|S is pseudoeffective.

Then, by Proposition 3.1, there is a finite Galois cover p : Ŝ → S such
that the reflexive pullback Ê := p[∗]E|S is a nef locally-free sheaf of zero slope.
Lemma 3.2 yields:

c1(Ê)
2 = c2(Ê) = 0,

so that, by construction, ĉ1
2(E|S) = ĉ2(E|S) = 0 and hence:

ĉ1
2(E) ·Hn−2 = ĉ2(E) ·H

n−2 = 0.

The first assertion in Theorem 1.3 is established. □
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3.2. Proof of Proposition 3.1

Let S be a normal projective klt surface, and H an ample Q-Cartier divisor
on S. Let E be a reflexive sheaf on S such that:

• ĉ1(E) ·H = 0;

• E and S[l]E , for some l ≥ 6, are stable with respect to H;

• E is pseudoeffective.

As in Section 2.3, we denote by p : Ŝ → S a finite Galois cover on which
the sheaf Ê = p[∗]E is locally-free. Let Ĥ := p∗H be an ample Q-Cartier
divisor on Ŝ, π̂ : P(Ê) → Ŝ be the natural map and ζ̂ be the tautological
bundle on P(Ê).

Abiding by [21, Sect.3.2], we prove two lemmas. The first lemma uses
the stability of E and of S[l]E , for some l ≥ 6, to prove the ampleness of ζ̂
on certain subvarieties of P(Ê).

Lemma 3.3. Keep the notations. For any closed proper subvariety Z ⊂
P(Ê) such that the image π̂(Z) is not a point in Ŝ, for m big and divisible
enough and for a very general curve Ĉ ∈ p∗|mH|, the restricted tautological
ζ̂|

Z∩π̂−1(Ĉ) is ample.

Proof. Let Z ⊂ P(Ê) be a closed proper subvariety whose image π̂(Z) has
dimension 1 or 2 in Ŝ. Since p is finite, p(π̂(Z)) has dimension 1 or 2 in
S. Hence, for m big and divisible enough, a very general curve C ∈ |mH|
satisfies:

• C is a smooth curve inside the locus S0 ⊂ Sreg where E is locally-free;

• Ĉ := p−1(C) is still very general in p∗|mH| and hence smooth too;

• consequentially, we have locally-free sheaf isomorphisms Ê |
Ĉ
= p∗E|C

and Sl(E|C) = (S[l]E)|C ;

• since mH is ample, Z ∩ π̂−1(Ĉ) ̸= ∅;

• since Z is proper in P(E), Z ∩ π̂−1(Ĉ) is proper in π̂−1(Ĉ);

• both E|C and S6(E|C) remain H|C-stable of zero slope, by Lemma
2.13.
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Apply now Lemma 2.18 and Remark 2.19: they establish that ζ̂|
π̂−1(Ĉ)

is nef and that, for any closed proper variety W ⊂ π̂−1(Ĉ) = P(Ê |
Ĉ
),

Ä
ζ̂|

π̂−1(Ĉ)

ädimW
·W > 0.

Using this formula for any closed subvarietyW of Z ∩ π̂−1(Ĉ), the Nakai-
Moishezon criterion shows that ζ̂|

Z∩π̂−1(Ĉ) is ample. □

The second lemma is set at the higher level of (Ŝ, Ê) directly. It uses the
pseudoeffectivity and Ĥ-semistability of the locally-free sheaf Ê , infered by
Proposition 2.11 and Lemma 2.15, but no other property of E .

Lemma 3.4. Keep the notations. If ζ̂ is not nef, then there is a closed
proper subvariety W of P(Ê) such that, for m big and divisible enough and
for a very general curve Ĉ ∈ p∗|mH|:

∅ ̸= W ∩ π̂−1(Ĉ) ⊊ π̂−1(Ĉ), ζ̂|
W∩π̂−1(Ĉ) is nef and not big.

This result essentially relies on [21, Lem.3.4].

Proof. Denote by µ : S̃ → Ŝ the minimal resolution of Ŝ, by Ẽ := µ∗Ê , by ζ̃
the tautological bundle of P(Ẽ). We have a Cartesian diagram with compat-
ibility of tautological bundles:

P(Ẽ)

π̃
��

µ′
// P(Ê)

π̂
��

S̃
µ

// Ŝ

Note that P(Ẽ) with its tautological ζ̃ is a smooth modification of P(Ê) just
as in Definition 2.9. Hence, ζ̃ is pseudoeffective.

Suppose that ζ̂ is not nef. In particular, ζ̃ is not nef, though it is π̃-
ample. Let Z ⊂ B−(ζ̃) be an irreducible component of maximal dimension.
Note that Z contains a ζ̃-negative curve N : its image µ′(N) must be a ζ̂-
negative curve, hence it is not in a fiber of π̂. So π̂(µ′(Z)) is not a point in
Ŝ. Moreover, since ζ̃ is pseudoeffective, Z ̸= P(Ẽ).

Now, for a very general curve Ĉ ∈ p∗|mH| form big and divisible enough,

• Ĉ ⊂ Ŝreg; in particular, µ is an isomorphism over Ĉ;

• ∅ ̸= Z ∩ µ′−1(π̂−1(Ĉ)) ⊊ µ′−1(π̂−1(Ĉ));
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• Ê|
Ĉ
is nef by Lem.2.13 and Prop.2.16 and it has Ĥ|

Ĉ
-slope zero;

• hence, ζ̃|
µ′−1(π̂−1(Ĉ)) is nef too, and moreover its top power is zero;

• hence, by [21, Lem.3.4] (which applies since Z was chosen with minimal
codimension):

0 =
Ä
ζ̃|

µ′−1(π̂−1(Ĉ))

ädimµ′−1(π̂−1(Ĉ))

≥
Ä
ζ̃|

Z∩µ′−1(π̂−1(Ĉ))

ädimZ∩µ′−1(π̂−1(Ĉ))
≥ 0.

As µ′ is an isomorphism over Ĉ, W := µ′(Z) works well as the closed
proper subvariety of P(Ê) we wanted to construct. □

We now combine these lemmas to establish Proposition 3.1.

Proof of Proposition 3.1. Suppose by contradiction that Ê is not nef. Then
Lemma 3.4 yields a closed proper subvariety W of P(Ê) which satisfies, for
m big and divisible enough and for a very general curve Ĉ ∈ p∗|mH|:

∅ ̸= W ∩ π̂−1(Ĉ) ⊊ π̂−1(Ĉ) and ζ̂|
W∩π̂−1(Ĉ) is nef and not big.

The first condition shows that π̂(W ) is not a point. So Lemma 3.3 applies,
hence ζ̂|

W∩π̂−1(Ĉ) is ample, contradiction! □

4. Proof of Theorem 1.3

As it follows from the discussion in Section 3.1, Theorem 1.3 is halfway. Here
is what remains to prove:

Theorem 4.1. Let X be a normal projective klt variety of dimension n
with an ample Q-Cartier divisor H. Let E be a reflexive sheaf on X, such
that:

• E is H-semistable;

• the following equalities hold:

ĉ1(E) ·H
n−1 = ĉ1

2(E) ·Hn−2 = ĉ2(E) ·H
n−2 = 0.

Then there is a finite Galois morphism ν : X̃ → X, étale in codimension 1,
such that ν[∗]E is a locally-free sheaf with numerically trivial determinant,
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and is Gal(X̃/X)-equivariantly flat. Consequentially, ν[∗]E is numerically
flat and its first and second Chern classes are numerically trivial.

Proof. We apply [28, Thm.1.4] to obtain a finite Galois morphism ν : X̃ →
X, étale over Xreg, such that ν [∗]E is locally-free with a numerically trivial
determinant and Gal(X̃/X)-equivariantly flat.

Let then ε : X̃ ′ → X̃ be a resolution of X̃ and E ′ := ε∗ν[∗]E , which is a
flat locally-free sheaf with a numerically trivial determinant on X̃ ′. As shown
in [21, Rmk.2.6], E ′ is then numerically flat and its Chern classes vanish (as
cohomological classes on X̃ ′). By Prop.2.5, ν [∗]E is nef, hence numerically
flat. Moreover, for any Q-Cartier divisors D1, . . . , Dn−2,

c2(ν
[∗]E) ·D1 · · ·Dn−2 = c2(E

′) · ε∗D1 · · · ε
∗Dn−2 = 0,

so the Chern classes of ν[∗]E are trivial, which completes the proof of the
theorem. □

5. Proof of Theorem 1.2

We give a few definitions along the lines of Theorem 1.1:

Definition 5.1. Let X be a normal projective canonical variety of dimen-
sion n ≥ 2. It is called:

• a Calabi-Yau variety if h0(Y,Ω
[q]
Y ) = 0 for all integers 1 ≤ q ≤ n− 1

and all quasiétale finite covers Y → X;

• an irreducible holomorphic symplectic (IHS) variety if there is a re-

flexive form σ ∈ H0(X,Ω
[2]
X ) such that, for any quasiétale finite cover

f : Y → X, the reflexive form f [∗]σ generates H0(X,Ω
[·]
Y ) as an algebra

for the wedge product.

We use the terms singular Calabi-Yau (resp. IHS) variety and Calabi-
Yau (resp. IHS) variety interchangeably, unless explicitly said otherwise.
They may both accidentally denote smooth varieties.

Definition 5.2. For the sake of a consistent terminology, let us call a sin-
gular K3 surface, or for short a K3 surface, a normal projective klt surface
which has no finite quasiétale cover by an abelian variety. Equivalently, it is
a Calabi-Yau variety or an IHS variety of dimension 2.
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Definition 5.3. For the sake of a convenient vocabulary, let us define the
augmented irregularity q̃(X) of a normal projective klt variety X with trivial
canonical class as the maximum of all irregularities q(Y ) of finite quasiétale
covers Y of X. Note that it is precisely the dimension of the abelian part in
the singular Beauville-Bogomolov decomposition of X.

Let us now proceed to prove Theorem 1.2.

Proof of Theorem 1.2. Let X be a normal projective klt variety of dimen-

sion at least 2 with trivial canonical class. Suppose that Ω
[1]
X is pseudoeffec-

tive (the same whole argument works just alike for the tangent sheaf TX)
and assume by contradiction that q̃(X) = 0.

The singular Beauville-Bogomolov decomposition then reads:

f : X̃ → X and X̃ ∼=
∏

i

Yi ×
∏

j

Zj ,

with the same notations as in Theorem 1.1.
Remember that f [∗]Ω

[1]
X = Ω

[1]

X̃
, since reflexive sheaves are normal and

there is a big open set over which f is just a finite étale cover. By Proposi-

tion 2.11, Ω
[1]

X̃
is pseudoeffective; it splits according to the product defining

X̃. So there is a factor Y (Calabi-Yau or IHS) of X̃ such that Ω
[1]
Y is pseu-

doeffective [21, inductive argument in Proof of Thm.1.6]. Now, Ω
[1]
Y satisfies

all hypotheses of Theorem 1.3, the stability assumptions coming from [16,
Prop.8.20] and [13, Rmk.8.3].

As a consequence, for some ample polarizationH on Y , ĉ2(Ω
[1]
Y )·HdimY =

0, so that Y has a finite quasiétale cover by an abelian variety by [28,
Thm.1.4], contradiction! □

Remark 5.4. This pseudoeffectiveness result can be considered as an in-
teresting improvement of the effectiveness result [13, Thm.11.1], which says

that q̃(X) = 0 if and only if, for all m ∈ N, h0(X,S[m]Ω
[1]
X ) = 0.

Examples for Theorem 1.2 are to search among normal projective klt
varieties with trivial canonical class singularities in codimension 2, which
are plethoric. But singular varieties whose decomposition is known are not
so numerous; and, for sure, one shall understand the Beauville-Bogomolov
type of a given variety before telling anything about the positivity of its
reflexivized cotangent sheaf.
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Example 5.5. A first example to which Theorem 1.2 applies is the fol-
lowing [13, Par.14.2.2]: let F be a Fano manifold on which a finite group G
acts freely in codimension 1. Suppose there is a smooth G-invariant element
Y in the linear system | −KF |. Then, Y is a smooth Calabi-Yau variety
with a G-action. If the volume form on Y is preserved by this action, then
X := Y/G is a normal projective klt variety with trivial canonical class, and
the morphism Y → X has no ramification divisor, hence it is quasiétale.
The fact that the decomposition of X consists of a smooth Calabi-Yau man-
ifold Y guarantees that X is a singular Calabi-Yau variety, as presented in
Definition 5.1.

Although X may well have singularities in codimension 2, they merely
stem from its global quasiétale quotient structure. In particular, [21, Thm.1.6]

actually proves the non-pseudoeffectiveness of TX and Ω
[1]
X , namely because

it applies to Y and converts onto X through Proposition 2.11. Hence, the
example is quite shallow: it has no real need for the machinery dealing with
singularities in codimension 2 that Theorem 1.2 is about.

In the next section, we present better examples for Theorem 1.2, namely
Calabi-Yau threefolds with singularities in codimension 2 that are not con-
structed as global quasiétale quotients of varieties which are smooth in codi-
mension 2.

6. Threefolds in Theorems 1.1 and 1.2

In Section 5, we defined singular Calabi-Yau and IHS varieties. They can
also be defined by means of their algebraic holonomy, an approach which [13]
uses thoroughly. This notably enables one to prove that IHS varieties must
have even dimension [13, Thm.12.1, Prop.12.10]. In particular, the singular
Beauville-Bogomolov decomposition for a normal projective klt variety X
of dimension 3 is quite simple: X̃ has to be one of the following:

• a smooth abelian variety;

• a product S × E, where S is a K3 surface as in Definition 5.2 and E
is a smooth elliptic curve;

• a Calabi-Yau variety.

The aforementioned [28, Thm.1.4] provides a criterion for identifying the
purely abelian case by computing ĉ2(X).

One is then left with two cases: the singular threefold X may arise from

a product S × E, in which case TX and Ω
[1]
X are pseudoeffective because of
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the abelian factor E; alternatively, X can be a genuine singular Calabi-Yau
threefold. This second possibility is hard to identify, but, when it happens,
it may give new examples for Theorem 1.2.

The next subsection is devoted to providing a necessary condition for a
normal projective klt threefold to be finitely quasiétaly covered by a product
S × E.

6.1. Products of a K3 surface and an elliptic curve

We are going to prove the following result:

Proposition 6.1. Let X be a normal projective klt threefold with trivial
canonical class. Suppose its Beauville-Bogomolov decomposition is of the
form

X̃ = S × E,

where S is a K3 surface and E a smooth elliptic curve. Then X has fibra-
tions:

X

��

// S/GS

E/GE

where GE and GS are finite subgroups of Aut(E) and Aut(S). In particular,
ρ(X) ≥ 2.

Let us first state a weak uniqueness result, guaranteeing that the state-
ment of Proposition 6.1 makes sense. It is straightforward from the proof of
the Beauville-Bogomolov decomposition theorem.

Proposition 6.2. Let X be a normal projective klt variety with trivial
canonical class. Then the number, types and dimensions of the factors of
a finite quasiétale covering X̃ → X as in Theorem 1.1 do not depend on the
choice of that covering.

A finite quasiétale morphism is not necessarily a quotient map by a finite
group action free in codimension 1. In the smooth case however, [3, Lem.p.9]
allows us to assume that the finite étale decomposition morphism p : X̃ → X
is Galois. Let us state a partial singular analog:
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Proposition 6.3. Let X be a normal projective klt variety with trivial
canonical class. Take a finite quasiétale covering f : X̃ → X as in Theo-
rem 1.1. Suppose that all Calabi-Yau factors of X̃ have even dimension.
Then there is a finite quasiétale Galois morphism f ′ : Z̃ → X, so that Z̃
splits into factors in the same number, types, and dimensions as X̃.

Proof. By [15, Thm.1.5], we can take a finite quasiétale Galois covering
g : Y → X such that any finite morphism Z → Y étale over Yreg is étale
over Y . By purity of the branch locus, any quasiétale morphism Z → Y is
then étale.

Note that Y is still a normal projective klt variety with trivial canonical
class, hence has a singular Beauville-Bogomolov decomposition h : Z → Y .
By Proposition 6.2, the factors of Z have the same type as those of X̃. It
writes:

Z = A×
∏

i

Yi ×
∏

j

Zj ,

where A is an abelian variety, Yi Calabi-Yau varieties and Zj IHS varieties.
Since all Yi and, of course, all Zj have even dimension, by [13, Cor.13.3],
they are simply connected.

Hence, finite étale fundamental groups equal: “π1(Z) ≃ “π1(A). That is to
say, any finite étale cover of Z actually stems from a finite étale cover of A.

We now use [15, Thm.3.16]: there is a finite Galois morphism γ : Z̃ → Z
such that Γ = g ◦ h ◦ γ : Z̃ → X is finite Galois and ramifies where g ◦ h
does. So Γ is still quasiétale, in particular h ◦ γ : Z̃ → Y is quasiétale too.
By construction of Y , h ◦ γ is then étale, so that γ is étale. By construction
of Z, one has:

Z̃ = A′ ×
∏

i

Yi ×
∏

j

Zj ,

where A′ is a finite étale cover of the abelian variety A. Finally, Γ : Z̃ → X
is finite Galois quasiétale, and Z̃ splits as mandated. □

Remark 6.4. The main obstacle for generalizing this proposition is the
fact that fundamental groups of odd-dimensional Calabi-Yau varieties are
poorly understood [13, Sect.13.2]; most notably, they may not be finite.

Here is the last ingredient for the proof of Proposition 6.1:
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Lemma 6.5. Let S be a K3 surface as in Definition 5.2, E a smooth elliptic
curve. Then:

Aut(S × E) ∼= Aut(S)×Aut(E).

Proof. Let S̃ be the minimal resolution of S. It is a smooth K3 surface, so
Aut(S̃) is discrete. Moreover, the uniqueness of minimal resolution implies
that any automorphism of S lifts to an automorphism of S̃, and this is
obviously an injection. Hence, Aut(S) is discrete.

Let us now copy the argument by [3, Lem.p.8]. Let u ∈ Aut(S × E).
Since the projection pE : S × E → E is the Albanese map of S × E, we can
factor pE ◦ u by it: there is v ∈ Aut(E) such that pE ◦ u = v ◦ pE . Hence,
there is a map w : E → Aut(S) which decomposes:

u : (s, e) ∈ S × E 7→ (we(s), v(e)).

Since Aut(S) is discrete, the map w is constant, so u = (w0, v). □

Proof of Proposition 6.1. LetX be a normal projective variety of dimension
3 with trivial canonical class. Suppose that there is a finite quasiétale cover
f : S × E → X, where S is a singular K3 surface and E a smooth elliptic
curve. By Proposition 6.3, we can assume that there is a finite group G
acting on S × E such that f is the induced quotient map. By Lemma 6.5,
G can be considered a subgroup of Aut(S)×Aut(E). As it acts diagonally,
we have the following diagram:

S × E
pS

//

pE
��

f

$$

S

$$

E

$$

X

��

// S/GS

E/GE

so that ρ(X) is at least 2. □

6.2. Calabi-Yau hypersurfaces in weighted projective spaces

The aim of this last part is to provide examples of Calabi-Yau threefolds
that are singular along curves, by establishing the following result:
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Proposition 6.6. Let P = P(w0, . . . , w4) be a weighted projective space and
d = w0 + . . .+ w4 such that there is a general wellformed quasismooth hy-
persurface X of degree d in P. Suppose that X contains no edge of P. Then
X is a singular Calabi-Yau in the sense of Definition 5.1.

A general exposition to complete intersections in weighted projective
spaces can be found in [22]. We stick to its terminology.

Let P = P(w0, . . . , w4) be a wellformed 4-dimensional weighted projec-
tive space. There is a ramified quotient map: p : Pn → P, by the finite diago-
nal group action of

⊕

i Zwi
on Pn. With homogeneous coordinates on either

side, we can write:

p : [x0 : . . . : xn] ∈ Pn 7→ [y0 = xw0

0 : . . . : yn = xwn

n ] ∈ P.

We denote by OP(1) the ample Q-Cartier divisor on P whose pullback by
p is OPn(1). If the linear system |OP(d)| contains a wellformed quasismooth
hypersurface, it actually contains a Zariski-open set of such hypersurfaces
and we write Xd for a general one.

Singularities of general quasismooth hypersurfaces of dimension 3.

Let X be a general quasismooth hypersurface of degree d and of dimension
3 in the weighted projective space P. Then X is a full suborbifold of P

(see [6, Def.5] for a definition, [11, Thm.3.1.6] for a proof). In particular,
Xsing = X ∩ Psing, and at any point x ∈ X ∩ Psing, writing that P is locally
isomorphic to a quotient C4/Gx, X is locally isomorphic to C3/Gx in a
compatible way with inclusions. Hence, X has only quotient singularities, so
it is klt. The locus Xsing is a finite union of curves and points, which may
be of various types:

• a vertex in P is a point with yi = 1 for a single i ∈ [[0, 4]] and yj = 0 for
all j ̸= i. If wi ̸= 1, this vertex is a singular point in P. It gives rise to
a singular point in X if and only if it lies in it, ie wi does not divide d.

• an edge in P is a line with equation yj = 0 for all j ∈ J , for a certain
J ⊂ [[0, 4]] of cardinal 3. If gcd(wj)j ̸∈J ̸= 1, the edge is in Psing. Recall
that X is taken general in its linear system. Hence, an edge in P lies
entirely in X if and only if (wj)j ̸∈J do not partition d, in Xsing if
and only if (wj)j ̸∈J do not partition d and have a non-trivial common
divisor. If an edge in Psing does not lie entirely in X, it gives a finite
amount of points in Xsing.

• a 2-face in P is a 2-plane with equation yj = 0 for all j ∈ J , for a
certain J ⊂ [[0, 4]] of cardinal 2. If gcd(wj)j ̸∈J ̸= 1, the 2-face is in Psing.
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By quasismoothness, no 2-face lies entirely in X. Hence, any 2-face
intersects X along an effective 1-cycle. In this way, 2-faces in Psing

may produce curves in Xsing.

Under the additional hypothesis that X contains no edge of P, we can
say more about singular loci.

Indeed, it is worth noticing that the restricted quotient map p−1(X) →
X is an unfolding ofX, as defined in Section 2.3; we may write X̂ for p−1(X).
For establishing Prop.6.6, we will prove the following:

Lemma 6.7. Let X be a general wellformed quasismooth hypersurface of
dimension 3 in a weighted projective space P not isomorphic to P4. Assume
that X has trivial canonical class and that it contains no edge of P. Then
ĉ2(X) · OX(1) > 0.

In the course of the proof of this lemma, we will use the fact that X con-
taining no edge of P, X̂ is smooth in codimension 2.

Remark 6.8. Note that the restricted finite map X̂ = p−1(X) → X is cer-
tainly ramified along divisors, so that X, in the lucky case where it happens
to be a singular Calabi-Yau threefold, is not at all constructed as a finite
quasiétale global quotient, contrarily to the unsatisfying Example 5.5.

The proof that X̂ is smooth in codimension 2 relies on the following
lemma and remark:

Lemma 6.9. Let X be a general quasismooth hypersurface of degree d in
the weighted projective space P = P(w0, . . . , w4). Suppose that it contains no
edge of P. Then the base locus Bs(OP(d)) has dimension 0.

Proof. Let Z be an irreducible component of the base locus of OP(d), let
us prove by induction on dimP that it is a point. Suppose we are at the
induction step where the ambient space P′ has local coordinates y0, y1, y2, . . .
and dimension 4, 3 or 2.

Denote by Hi the hyperplane {yi = 0} in P′, by P′
i the isomorphic

weighted projective space P′(. . . , ŵi, . . .). By [5, Prop.4.A.3], we have an iso-
morphism between the restriction OP′(d)⊗OHi

and the Q-Cartier divisor
OP

′

i
(d). This translates to global sections as a surjection:

(2) H0(P′,OP′(d)) ↠ H0(P′
i,OP

′

i
(d)),
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which is given by setting yi = 0 when considering the global sections as
certain polonomials in the local coordinates of P′.

The quasismoothness of X in P and the way the composite surjection

H0(P,OP(d)) ↠ H0(P′,OP′(d)),

writes in local coordinates yield a global section of OP′(d) of the form
yα0

0 yα1

1 yα2

2 . In particular, there is an i = 0, 1 or 2 such that Z ⊂ Hi ≃ P′
i.

Moreover, by Eq.2, Z sits in the base locus of OP
′

i
(d).

Induction propagates from P′ = P down to when we obtain that Z is con-
tained in an edgeHijk of P and in the base locus Bs(OPijk

(d)) ⊂ Bs(OP(d)) ⊂
X. Since X contains no edge of P, Z is in X ∩Hijk of dimension 0, so it is
a point. □

Remark 6.10. With the same notations and hypotheses, the intersection
of X with any 2-face of Psing is a reduced curve.

Proof. As in the proof of Lemma 6.9, the intersection is scheme-theoretically
defined by a general section of OPij

(d). We are to show that such general
section of OPij

(d) is quasismooth in the weighted projective space Pij , hence
it is a variety by [22, 3.1.6].

We use the arithmetical criterion for quasismoothness: since X contains
no edge of P, each pair wa, wb partitions d. We are left to check the criterion
for k = 1: fix any a ̸= i, j, we want to find b ̸= i, j such that wa divides
d− wb. It is clear that there is a b ∈ [[0, 4]] satisfying that. AsHij is a 2-face in
Psing, the greatest common divisor of all weights except wi, wj is non-trivial,
divides d but neither wi nor wj (by wellformedness). In particular, since this
greatest common divisor divides wb = d− αwa, b ̸= i, j, as wished. □

We can now deduce:

Proposition 6.11. Let X be a general quasismooth hypersurface of degree
d in a weighted projective space P = P(w0, . . . , w4), p the natural quotient
P4 → P, X̂ = p−1(X). Suppose that X contains no edge of P. Then X̂ is
smooth in codimension 2.

Proof. The threefold X̂ is general in the linear system p∗|OP(d)|, whose base
locus has dimension 0 by Lemma 6.9. By Bertini’s theorem, X̂ is smooth in
codimension 2. □

Remark 6.12. The converse of Proposition 6.11 does not hold: for in-
stance, the general quasismooth X7 in P(1, 1, 1, 2, 2) contains the edge of



✐

✐

“2-Gachet” — 2022/9/8 — 21:24 — page 365 — #27
✐

✐

✐

✐

✐

✐

Positivity of the cotangent sheaf of singular Calabi-Yaus 365

equation y0 = y1 = y2 = 0, but its unfolding is nevertheless smooth in codi-
mension 2.

Example 6.13. The hypothesis of Proposition 6.11 is not that X contains
no edge of Psing, but that it contains no edge of P at all: for instance, con-
sider the general X = X56 in P(2, 4, 9, 13, 28). It contains a single edge of
P, namely e of equation y0 = y1 = y4 = 0. This edge does not actually lie
in Psing, as 9 and 13 are coprime, but one can check that X̂ has the curve
p−1(e) in its singular locus (by computing the derivatives of the equation
defining X̂ in P4 along the curve p−1(e)).

Example 6.14. The general wellformed quasismooth hypersurface X =
X1734 in P(91, 96, 102, 578, 867) contains no edge of P. In particular, X̂ is
smooth in codimension 2 by Proposition 6.11.

Moreover, the curves of Xsing are precisely the intersections of X with
all 2-faces of Psing, which we can list:

• y0 = y1 = 0 of type 1
17(6, 11),

• y0 = y3 = 0 of type 1
3(1, 2),

• y0 = y4 = 0 of type 1
2(1, 1).

It is possible to check the type of singularities of a general hypersurface
of a given degree in a given weighted projective space by a simple computer
program.

Proof of Proposition 6.6. As we said before, the main ingredient in the
proof is Lemma 6.7.

Proof of Lemma 6.7. Let p : P4 → P be the natural quotient map. Writing
P = P(w0, . . . , w4) with (w0, . . . , w4) not colinear to (1, . . . , 1), the morphism
p has degree w0 · · ·w4, which we denote by N , and X has degree w0 +
. . .+ w4, which we denote by d. We may also write s for the symmmetric
elementary polynomial of degree 2 in the weights and q for the sum of their
squares: d2 = q + 2s.

Since X is a full suborbifold of P, X̂ := p−1(X) → X is an unfolding
of X as defined in Section 2.3. Applying the left-exact functor of reflexive
pullback (see Lemma 2.2) to the exact sequence:

0 → TX → TP|X → −KP,
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we get another exact sequence:

0 → p[∗]TX → p[∗]TP|X → p[∗](−KP) → Z → 0,

where the coherent sheaf Z is supported on the locus p−1(SingX) ⊂ X̂ of
codimension at least 2.

Because of the last surjection, dimk(p)Z ⊗Op ≤ 1 for any closed point

p ∈ X̃.
By Proposition 6.11, the unfolding X̂ is smooth in codimension 2, so the

usual second Chern class c2(Z) makes sense. Since usual Chern classes are
additive, and c1(TX) = 0, c1(Z) = 0:

ĉ2(TX) · OX(1) = ĉ2(TP|X) · OX(1) +
1

N
c2(Z) · O

X̂
(1).

By the Miyaoka-Yau inequality [18, Thm.1.5], we have a positive contri-
bution:

ĉ2(TP|X) · OX(1) = ĉ2(TP) · (−KP) · OP(1) ≥
4

10
(−KP)

3 · OP(1) =
4d3

10N
.

Let us estimate the other summand. Take m big and divisible enough
that O

X̂
(m) is very ample and S a general element in |O

X̂
(m)|. By [23,

Lem.10.9],

c2(Z) · O
X̂
(1) =

1

m
c2(Z|S) = −

1

m
deg(Z|S)

Denote by C1, . . . Ck the curves in Xsing. By Lemma 6.15, we can bound:

deg(Z|S) ≤ Card

(

S ∩

k
⋃

i=1

p−1(Ci)

)

=

k
∑

i=1

NOX(m) · Ci

≤ NmOX(1)3
∑

0≤i<j≤4

wiwj

= mNs(−KP) · OP(1)
3

= msd.
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Finally putting the positive and negative part together,

ĉ2(X) · OX(1) >
4d3 − 10sd

10N

=
d(4q − 2s)

10N

=
d

10N

∑

0≤i<j≤4

(wi − wj)
2 > 0.

□

Lemma 6.15. Let X be a general wellformed quasismooth hypersurface of
dimension 3 in a weighted projective space P. Assume that X has trivial
canonical class and contains no edge of P. Then there are at most 10 curves
in Xsing, with different cohomological classes in the list of the

[OX(wi) · OX(wj)] ∈ H4(X;Q), for 0 ≤ i < j ≤ 4.

Proof of Lemma 6.15. By Remark 6.10, each curve in Xsing is scheme-
theoretically the complete intersection of X with a 2-face Hij of Psing. This
association being bijective, there are as many curves in Xsing as 2-faces in
Psing, so at most 10. The curve that corresponds to the 2-face Hij has coho-
mological class [OX(wi) · OX(wj)]. □

Now we can finally establish Proposition 6.6:

Proof. Consider X a general wellformed quasismooth hypersurface of de-
gree d = w0 + . . .+ w4 in a weighted projective space P = P(w0, . . . , w4).
Suppose that X contains no edge of P. If P is P4, X is smooth and there is
nothing to prove. Let us assume P ̸∼= P4. By Lemma 6.7, ĉ2(X) · OX(1) ̸= 0,
hence by [28, Thm.1.4], X is not a finite quotient of an abelian threefold.
Moreover, one has Pic(X) ≃ Z [11, Thm.3.2.4(i)], so Proposition 6.1 applies
to X: it is not covered by a product of a K3 surface and an elliptic curve,
hence its Beauville-Bogomolov decomposition consists of a single Calabi-
Yau factor. By Lemmma 6.16, so X itself is a Calabi-Yau variety, in the
sense of Definition 5.1. In particular, X has canonical (and not merely klt)
singularities. □

Lemma 6.16. Let X be a general quasismooth hypersurface in a weighted
projective space P. Then any finite quasiétale cover X ′ of X is trivial.

Proof. Let X ′ be a finite quasiétale cover of X of degree d; note that by
Zariski purity of branch locus, it is étale over Xreg. Let C

∗
X ⊂ Cn+1 \ {0} be
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the smooth cone over X, with the projection q : C∗
X → X. The morphism

C ′ = X ′ ×
X
C∗
X → C∗

X is finite of degree d and étale over the big open set

q−1(Xreg) ⊂ C∗
X . Normalizing, the map C̃ ′ → C∗

X has degree d and is étale
over a big open set as well. As C∗

X is smooth, this map is actually finite

étale; by [11, Lem.3.2.2(ii)], πét1 (C∗
X) = {1} so d = 1. □

Examples for Proposition 6.6. General wellformed quasismooth hy-
persurfaces with trivial canonical class in 4-dimensional weighted projective
spaces are classified in [25]. There is an explicit exhaustive list of the 7555 of
them. In this list, 7238 elements are not smooth in codimension 2, and 2409
elements that are not smooth in codimension 2 also contain no edge of their
ambient weighted projective space. These elements fulfill the hypotheses for
Proposition 6.6, just as Example 6.14 did: so they are singular Calabi-Yau
threefolds to which Theorem 1.2 applies.

The exhaustive enumerations of elements of the [25] classification satisfy-
ing additional properties were done by running a simple computer program
on the database [24].

Remark 6.17. For the reader misguided by variations in terminology, the
arXiv version of this paper proves the elementary fact that the varieties
studied in [25] are the same as general quasismooth wellformed hypersurfaces
of trivial canonical class in a 4-dimensional weighted projective space.
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Parc Valrose 06108 Nice Cedex 2, France

E-mail address: gachet@unice.fr

Received November 27, 2020

Accepted February 23, 2021

https://stacks.math.columbia.edu/tag/0AVT
https://stacks.math.columbia.edu/tag/0AVT


✐

✐

“2-Gachet” — 2022/9/8 — 21:24 — page 372 — #34
✐

✐

✐

✐

✐

✐


	Introduction
	Notation and basic facts
	Restricting to a general surface
	Proof of Theorem 1.3
	Proof of Theorem 1.2
	Threefolds in Theorems 1.1 and 1.2
	References

