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Semiclassical resolvent bounds for weakly

decaying potentials

Jeffrey Galkowski and Jacob Shapiro

In this note, we prove weighted resolvent estimates for the semi-
classical Schrödinger operator −h2∆+ V (x) : L2(Rn) → L2(Rn),
n ̸= 2. The potential V is real-valued, and assumed to either de-
cay at infinity or to obey a radial α-Hölder continuity condition,
0 ≤ α ≤ 1, with sufficient decay of the local radial Cα norm toward
infinity. Note, however, that in the Hölder case, the potential need
not decay. If the dimension n ≥ 3, the resolvent bound is of the

form exp
(

Ch−1−
1−α
3+α [(1− α) log(h−1) + c]

)

, while for n = 1 it is

of the form exp(Ch−1). A new type of weight and phase function
construction allows us to reduce the necessary decay even in the
pure L∞ case.

1. Introduction and statement of results

Let ∆ .
.=

∑n
j=1 ∂

2
j ≤ 0 be the Laplacian on Rn, n ̸= 2. In this article, we

study the semiclassical Schrödinger operator

P (h) .
.= −h2∆+ V : L2(Rn) → L2(Rn), h > 0,

where V ∈ L∞(Rn;R). We assume either that V satisfies a radial α-Hölder
continuity condition, 0 ≤ α ≤ 1, or that it is only L∞ but decaying. When
n ≥ 3, we use
(r, θ) = (|x|, x/|x|) ∈ (0,∞)× Sn−1 to denote polar coordinates on Rn \ {0}.

When V is only L∞, we assume

(1.1) |V | ≤ c1⟨r⟩
−2m(r),

for some

(1.2) c1 > 0, 0 < m(r) ≤ 1, m(r)⟨r⟩−1/2 ∈ L2(0,∞),

and where ⟨x⟩ = ⟨r⟩ .
.= (1 + r2)1/2.
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Since V ∈ L∞(Rn;R), by the Kato-Rellich Theorem, P (h) is self-adjoint
L2(Rn) → L2(Rn) with respect to the domain H2(Rn). Therefore, the re-
solvent (P − z)−1 is bounded L2(Rn) → L2(Rn) for all z ∈ C \ R, and we
obtain

Theorem 1. Let n ≥ 3, m as in (1.2), c1 > 0 and E > 0. Then there are

C > 0 and h0 ∈ (0, 1] so that for all s > 1/2, there is Cs > 0 such that for

all V ∈ L∞(Rn;R) satisfying (1.1),

(1.3) g±s (h, ε) ≤ Cs exp
(

h−
4

3 (C log h−1 + Cs)
)

, ε > 0, h ∈ (0, h0],

where

(1.4) g±s (h, ε)
.

.= ∥⟨x⟩−s(P (h)− E ± iε)−1⟨x⟩−s∥L2(Rn)→L2(Rn).

When V has some radial α-Hölder regularity, 0 ≤ α ≤ 1, we need not
assume that V decays towards infinity. Instead, we suppose
(1.5)

V ∈ L∞, sup
θ∈Sn−1

lim sup
y→0+

sup
r

|V (rθ)− V ((r + y)θ)|

|y|α
⟨r⟩3m−2(r) ≤ c2,

for some c2 > 0. We also define

V∞ .
.= lim sup

r→∞
sup

θ∈Sn−1

V (rθ),(1.6)

0 < δV .
.= inf

{

y > 0 | sup
θ∈Sn−1

sup
r

|V (rθ)− V ((r + y)θ)|

|y|α
⟨r⟩3m−2(r) > 2c2

}

,

(1.7)

and for E > V∞,

RE,V
.
.= sup

{

r | sup
θ∈Sn−1

V (rθ) >
E + 3V∞

4

}

.(1.8)

Remark: Note that when α = 0 and (1.5) holds, V is still only L∞, but the
magnitude of its fluctuations are decaying faster than those in (1.1).

In this Hölder regular case, we obtain

Theorem 2. Let n ≥ 3, m as in (1.2), c2 > 0, RE > 0, CV , E∞ ∈ R, and

E > E∞. Then there is C > 0 such that for all δ1 > 0, there is h0 ∈ (0, 1]
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so that for all s > 1/2, there is Cs > 0 so that for V ∈ L∞(Rn;R) obeying

supRn V ≤ CV , V∞ ≤ E∞, δ1 ≤ δV , RE,V ≤ RE, and (1.5) for some 0 ≤ α ≤
1,

(1.9) g±s (h, ε) ≤ Cs exp
(

h−1−σα(Cσα log h
−1 + Cs)

)

, ε > 0, h ∈ (0, h0],

where

σα :=
1− α

3 + α
.

In the one-dimensional case, (1.5) can be relaxed further to

(1.10) lim sup
y→0

sup
x

|V (x)− V (x+ y)|

m0(|x|)
≤ c0,

for some

(1.11) c0 > 0, 0 < m0(r) ≤ 1, m0 ∈ L1(0,∞).

We then define

(1.12) 0 < δ0,V .
.= inf{y > 0 | sup

x

|V (x)− V (x+ y)|

m0(|x|)
> 2c0}.

Then we have the following one dimensional result.

Theorem 3. Let n = 1, m0 as in (1.11), c0 > 0, RE > 0, CV , E∞ ∈ R and

E > E∞. Then there is C > 0 such that for all δ0 > 0, there is h0 ∈ (0, 1]
so that for all s > 1/2, there is Cs > 0 so that for V ∈ L∞(R;R) obeying

δ0 ≤ δ0,V , supR V ≤ CV , V∞ ≤ E∞, RE,V ≤ RE, and (1.10),

(1.13) g±s (h, ε) ≤ Cs exp
(

Ch−1
)

, ε > 0, h ∈ (0, h0].

Bounds on g±s are known to hold under various geometric, regularity,
and decay assumptions. Burq [1, 2] showed g±s ≤ eCh−1

for V smooth and
decaying sufficiently fast near infinity, and also for more general perturba-
tions of the Laplacian. Cardoso and Vodev [3] extended Burq’s estimate to
infinite volume Riemannian manifolds which may contain cusps.

In lower regularity and n ̸= 2, Datchev [4] showed g±s ≤ eCh−1

, provided
V, ∂rV ∈ L∞(Rn;R) and have long-range decay. The second author [8] ob-
tained the same bound for n = 2, and under the same assumptions, except
with ∂rV replaced by ∇V [8]. On the other hand, Vodev [10] showed that, if
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n ≥ 3 and V ’s radial α-Hölder moduli are O(hν⟨r⟩−κ), where ν > 0, κ > 1,
and α ≥ 1− 2ν, then g±s ≤ eCh−ℓ

, where

ℓ = max

{

0,
2(1− ν − α)

1− α

}

< 1.

If V ∈ L∞
comp(R

n;R), n ≥ 2, it was previously shown [7, 9] that g±s ≤

eCh−4/3 log(h−1). This same bound was extended to short range potentials on
Rn [11, 13], and then to short range potentials on a large class of asymptot-
ically Euclidean manifolds [14]. If n = 1, g±s ≤ eCh−1

, even if V ∈ L1(R;R)
[6].

Theorems 1 and 2 improve upon the existing literature in several ways.
First, in the pure L∞ case (1.1), Theorem 1 reduces the required decay for
V from that in [11, 13]. While we are still unable to obtain estimates when
V is an arbitrary short range L∞ potential without an additional loss of
powers of h in log(g±s (h, ε)), the decay assumed in (1.1) appears to improve
on the existing literature by one order in r. Secondly, the assumptions for
Theorem 2 (1.5) allow for non-decaying potentials provided some control on
the local oscillations of the potential V (even if V is not Hölder continuous
for any positive α). Finally, as the Hölder constant of the potential varies
between 0 and 1, the results interpolate between those in the L∞ and Lips-
chitz cases, with the bound on g±s (h, ε) agreeing with the existing estimates
at both endpoints.

Next, Theorem 3 seems to be the first semiclassical resolvent estimate in
one dimension that does not require V or ∂xV to belong to L1(R;R). Again,
by imposing some condition on the oscillations of V , we are able to handle
even non-decaying potentials.

In dimension n ≥ 2, it is an open problem to determine the optimal h-
dependence of the resolvent for V ∈ L∞ or V satisfying (1.5). In contrast,
it is well known that the bound eCh−1

cannot be improved in general. See,
for instance, [5] and the references cited there.

To prove Theorems 1, 2 and 3, we adapt the Carleman estimates proved
in [11] and [6]. In addition to the modifications necessary to take advantage
of the Hölder regularity of V , the main improvement in our argument is to
determine φ and w from the logarithmic derivatives of respectively φ′ and
w. This dramatically simplifies the computations necessary to construct the
requisite phases and weights. See (2.9) and (2.10) for the main quantities
one must estimate.

In the final stages of writing this note, we learned of the article [12], in
which Vodev uses a somewhat different weight and phase construction to
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study Hölder potentials analogous to ours. However, the assumed decay in
that article is stronger than what we need here. On the other hand, Vodev’s
article gives the local Carleman estimates necessary to handle dimension
n = 2 as well as the case where Rn is replaced by the exterior of a smooth
obstacle.

2. Preliminary Calculations and Lemmata

Notation: In dimension n ≥ 3, “prime” notation denotes differentiation
with respect the radial variable r, e.g., u′ .

.= ∂ru. In dimension n = 1, u′

indicates differentiation with respect to the real variable x. Throughout, we
let w and φ be a weight and phase, respectively, such that w, w′, φ′ > 0.
When n ≥ 3, w and φ are functions of the radial variable only, while if n = 1
they are functions of x. We will precisely specify w and φ in the course of
our proof.

As in most previous proofs of resolvent estimates for low regularity po-
tentials, the backbone of the proof is a Carleman estimate. We start from
the identity

r
n−1

2 (−∆)r−
n−1

2 = −∂2r + Λ,

where

(2.1) Λ .
.=

1

r2

(

−∆Sn−1 +
(n− 1)(n− 3)

4

)

≥ 0,

and ∆Sn−1 denotes the negative Laplace-Beltrami operator on Sn−1.
Then, we form the conjugated operator

P±
ϕ (h) .

.= eϕ/hr
n−1

2 (P (h)− E ± iε) r−
n−1

2 e−ϕ/h

= −h2∂2r + 2hφ′∂r + h2Λ + V − (φ′)2 + hφ′′ − E ± iε.
(2.2)

Now, let Vh ∈ C∞((0,∞)r;L
∞(Sn−1

θ )) be a smoothed approximation to
V , and define

(2.3) Rh := V − Vh.

For n ≥ 3 and u ∈ eϕ/hr(n−1)/2C∞
comp(R

n), we define a spherical energy func-
tional F [u](r),

(2.4) F (r) = F [u](r) .
.= ∥hu′(r, ·)∥2−⟨(h2Λ+Vh−(φ′)2−E)u(r, ·), u(r, ·)⟩,
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where ∥ · ∥ and ⟨·, ·⟩ denote the norm and inner product on L2(Sn−1
θ ), re-

spectively. The derivative of F , in the sense of distributions on (0,∞), is

F ′ = 2Re⟨h2u′′, u′⟩ − 2Re⟨(h2Λ + Vh − (φ′)2 − E)u, u′⟩

+ 2r−1⟨h2Λu, u⟩+ ((φ′)2 − Vh)
′∥u∥2

= −2Re⟨P±
ϕ (h)u, u′⟩+ 2r−1⟨h2Λu, u⟩+ ((φ′)2 − Vh)

′∥u∥2

+ 4h−1φ′∥hu′∥2 ∓ 2ε Im⟨u, u′⟩+ 2Re⟨(Rh + hφ′′)u, u′⟩.

Thus (wF )′, as a distribution on (0,∞), is given by

(wF )′ = w′F + wF ′

= w′∥hu′∥2 − w′⟨(h2Λ + Vh − (φ′)2 − E)u, u⟩

− 2wRe⟨P±
ϕ (h)u, u′⟩+ 2wr−1⟨h2Λu, u⟩+ w((φ′)2 − Vh)

′∥u∥2

+ 4h−1wφ∥hu′∥2 ∓ 2εw Im⟨u, u′⟩+ 2wRe⟨(Rh + hφ′′)u, u′⟩

= −2Rew⟨P±
ϕ (h)u, u′⟩ ∓ 2εw Im⟨u, u′⟩+ (2wr−1 − w′)⟨h2Λu, u⟩

+ (4h−1wφ′ + w′)∥hu′∥2 + (w(E + (φ′)2 − Vh))
′∥u∥2

+ 2wRe⟨(Rh + hφ′′)u, u′⟩.

(2.5)

Using (2.1) when n ≥ 3, we will need

(2.6) 2wr−1 − w′ ≥ 0,

to control the term involving Λ. It is the absence of this condition which
allows for the improved estimate in dimension one. Using (2.6) together
with 2ab ≥ −(γa2 + γ−1b2) for all γ > 0, we find

(2.7)

w′F + wF ′ ≥ −
3w2

h2w′
∥P±

ϕ (h)u∥2 ∓ 2εw Im⟨u, u′⟩

+
1

3
(w′ + 4h−1φ′w)∥hu′∥2

+ (w(E + (φ′)2 − Vh))
′∥u∥2

−
3(w(h−1|Rh|+ φ′′))2

w′ + 4h−1φ′w
∥u∥2.

In dimension n = 1, rather than the spherical energy (2.4), we use the
pointwise energy

F (x) = F [u](x) .
.= |hu′(x)|2 − (Vh(x)− (φ′(x))2 − E)|u(x)|2.
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Exactly the same computations then lead to

w′F + wF ′ ≥ −
3w2

h2w′
|P±

ϕ (h)u|2 ∓ 2εw Imuu′ +
1

3
(w′ + 4h−1φ′w)|hu′|2

+ (w(E + (φ′)2 − Vh))
′|u|2 −

3(w(h−1|Rh|+ φ′′))2

w′ + 4h−1φ′w
|u|2.

Thus, the main goal of the estimates below will be to construct φ and
w such that

(w(E + (φ′)2 − Vh))
′ −

3(w(h−1|Rh|+ φ′′))2

w′ + 4h−1φ′w
≥
E − E∞

2
w′.

Putting

A(r) := (w(E + (φ′)2 − Vh))
′, B(r) :=

(w(h−1|Rh|+ φ′′))2

w′ + 4h−1φ′w
,

our goal is thus, for K > 0 fixed and h small enough, to find w and φ such
that

(2.8) A(r)−
K

2
B(r) ≥

E − E∞

2
w′(r).

Now, we will assume throughout that w′, φ′ > 0. Therefore, putting

(2.9) Φ :=
φ′′

φ′
= (logφ′)′, W :=

w

w′
=

1

(logw)′
,

we calculate

A(r)−
K

2
B(r)

= w′(E + (φ′)2 − Vh) + w(2φ′φ′′ − V ′
h)−

K

2

(w(h−1|Rh|+ φ′′))2

w′ + 4h−1φ′w

= w′
[

E + (φ′)2 − Vh +W(2φ′φ′′ − V ′
h)−

K

2

(w(h−1|Rh|+ φ′′))2

w′2 + 4h−1φ′ww′

]

= w′
[

E + (φ′)2(1 + 2WΦ)− Vh −WV ′
h −

K

2
W2 ((h

−1|Rh|+ φ′′))2

1 + 4h−1φ′W

]

≥ w′
[

E + (φ′)2(1 + 2WΦ)− Vh −WV ′
h −KW2h

−2|Rh|
2 + (φ′′)2

1 + 4h−1φ′W

]

.
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Finally,

(2.10)
A(r)−

K

2
B(r) ≥ w′

[

E + (φ′)2(1 + 2WΦ−KWΦ2min(W, h
4ϕ′ ))

− Vh −WV ′
h −KWh−2|Rh|

2min(W, h
4ϕ′ )

]

.

The key improvement in this article is that, to prove the main estimates
(3.5) and (4.4), we work with W and Φ rather than directly with w and φ.
This simplifies the calculations dramatically and points the way to a new
choice of phase function allowing us to weaken the decay requirements on V .
The condition (2.6) for n ≥ 3 translates simply to W ≥ r/2. The remainder
of the article focuses on constructing appropriate W and Φ such that (2.8)
holds.

Before proceeding with the construction of W and Φ, we need a few
elementary lemmata:

Lemma 2.1. Let

Φ(s) = −
1

s+ 1 + Φ1(s)
,

with

(2.11) 0 ≤ (s+ 1)−2Φ1(s) ∈ L1(0,∞).

Then,

− log(r + 1) ≤

∫ r

0
Φ(s)ds ≤ − log(r + 1) + ∥(s+ 1)−2Φ1(s)∥L1(0,∞).

Proof. First, note that

log(r + 1) +

∫ r

0
Φ(s)ds =

∫ r

0

1

1 + s
−

1

s+ 1 + Φ1(s)
ds

=

∫ r

0

Φ1(s)

(s+ 1)(s+ 1 + Φ1(s))
ds.

Next, note that

0 ≤

∫ r

0

Φ1(s)

(s+ 1)(s+ 1 + Φ1(s))
ds ≤ ∥(s+ 1)−2Φ1(s)∥L1(0,∞),

which implies

− log(r + 1) ≤

∫ r

0
Φ(s)ds ≤ − log(r + 1) + ∥(s+ 1)−2Φ1(s)∥L1(0,∞).

□
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In the proof of Theorem 2, we will need to approximate V by smooth
functions Vh. In the case (1.1), we simply approximate V by 0, defining
Vh ≡ 0. On the other hand, when we assume (1.5), we make a non-trivial
approximation to V . In the spirit of [10, Section 2], let

(2.12) χ ∈ C∞
comp((0, 1); [0, 1]),

∫

χ(s)ds = 1,

and define

V (rθ; γ) .
.=

∫ ∞

0
V ((r + γs)θ)χ(s)ds

= γ−1

∫ ∞

0
V (sθ)χ(γ−1(s− r))ds, 0 < γ ≤ 1.

Then set

Vh(rθ) .
.= V (rθ;hρ),

for ρ > 0 to be chosen later, depending on α.

Lemma 2.2. Suppose 0 ≤ α ≤ 1, V satisfies (1.5), and δV is as in (1.7).

Then there exists Cχ > 0 depending only on χ so that, for all h ∈ (0, δ
1/ρ
V ],

(2.13)
Vh(rθ) ≤ sup

s∈[r,r+hρ]
V (sθ),

|V ′
h(rθ)| ≤ Cχc2h

−ρ(1−α)⟨r⟩−3m2(r), |Rh(rθ)| ≤ 2c2h
ρα⟨r⟩−3m2(r).

Proof. First observe that
(2.14)

V (rθ; γ) =

∫ ∞

0
[V ((r + γs)θ)− inf

t∈[r,r+γ]
V (tθ)]χ(s)ds+ inf

t∈[r,r+γ]
V (tθ)

≤ ( sup
s∈[r,r+γ]

V (sθ)− inf
t∈[r,r+γ]

V (tθ))

∫

χ(s)ds+ inf
t∈[r,r+γ]

V (tθ)

= sup
s∈[r,r+γ]

V (sθ)

where in the third line we use implicitly that χ ≥ 0 and for s ∈ suppχ,
[V ((r + γs)θ)− inft∈[r,r+γ] V (tθ)] ≥ 0.
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Next, from
∫

χ′dr = 0,

|V ′(rθ; γ)| =

∣

∣

∣

∣

γ−2

∫ ∞

0
V (sθ)χ′(γ−1(s− r))ds− γ−1V (rθ)

∫ 1

0
χ′(s)ds

∣

∣

∣

∣

=

∣

∣

∣

∣

γ−1

∫ 1

0
[V ((r + γs)θ)− V (rθ)]χ′(s)ds

∣

∣

∣

∣

≤

∣

∣

∣

∣

γ−1+α

∫ 1

0
sα

(V ((r + γs)θ)− V (rθ))χ′(s)

γαsα
ds

∣

∣

∣

∣

.

In particular, by (1.5) and the definition (1.7) of δV , we have, for 0 < γ ≤ δV ,
(2.15)

|V ′(rθ; γ)| ≤ 2c2γ
−1+α⟨r⟩−3m2(r)

∫ 1

0
|sαχ′(s)|ds ≤ Cχc2γ

−1+α⟨r⟩−3m2(r).

Finally, using (1.5) again,

|V (rθ)− V (rθ; γ)| =

∣

∣

∣

∣

∫ ∞

0
[V (rθ)− V ((r + γs)θ)]χ(s)ds

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ ∞

0
γαsα

V (rθ)− V ((r + γs)θ)

γαsα
χ(s)ds

∣

∣

∣

∣

≤ 2c2γ
α⟨r⟩−3m2(r),

(2.16)

for 0 < γ ≤ δV . The lemma is proved by setting γ = hρ, h ∈ (0, δ
1/ρ
V ], in

(2.14), (2.15), and (2.16). □

3. Proof of the main estimates (n ≥ 3)

Recall the definitions of Φ and W from (2.9), and put

φ(r) = h−σφ0(r), σ ≥ 0, φ0(0) = 0, φ′
0(0) = τ0 ≥ 1,

w(0) = 0, w′(0) = 1,
(3.1)

so that

(3.2) Φ = (logφ′
0)

′, W =
1

(logw)′
.

We also set

(3.3) σ =
1− α

3 + α
, ρ =

2

3 + α
.
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Finally, let

(3.4) a = a0h
−M , a0 ≥ 1, M > 0.

Each of the parameters τ0, a0, and M will be fixed shortly.
The main result of this section is Proposition 3.1. In its statement and

proof, we use C for a positive constant that may change from line to line, but
depends only on K, CV , c1, c2, E, E∞, RE , and m. We also reuse constants
h0 ∈ (0, 1] and Cη > 0; they depend only on the same quantities as C, except
that h0 also depends on δ1 > 0, while Cη > 0 also depends on 0 < η < 1. In
particular, C and h0 are independent of α, h and η, and Cη is independent
of α and h.

Proposition 3.1. Fix K > 0. Let V as in Theorem 1 or 2, σ and ρ be

given by (3.3), E > E∞ and 0 < η < 1. Then there exist τ0 as in (3.1), a0
andM as in (3.4), radial functions W and Φ continuous except at r = a, and
their corresponding w and φ determined by (3.1) and (3.2), and constants

C,Cη > 0, h0 ∈ (0, 1] so that

(3.5) A(r)−
K

2
B(r) ≥

E − E∞

2
w′(r), r ̸= a, h ∈ (0, h0],

φ0 satisfies,

(3.6) |φ0(r)| ≤ C
[ 1− α

(1− η
2 )(3 + α)

log h−1 +
1

η

]

,

and w satisfies

w(r) ≤ Cηh
− 4(1−α)

(2−η)(3+α) ,(3.7)

w′(r) ≥ (r + 1)−1−η, r ̸= a,(3.8)

w(r)2

w′(r)
≤ Cηh

− 4(1−α)

(2−η)(3+α) (1 + r)1+η, r ̸= a.(3.9)

3.1. Small r region

We start by working with 0 < r ≤ a. Let ω ∈ C∞
comp((−3/4, 3/4); [0, 1]) with

ω = 1 near [−1/2, 1/2]. In this region, define W and Φ by

(3.10) W =
r(1 + ω(r))

2
, Φ = −

1

r + 1 + Φ1(r)
, 0 < r ≤ a.
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where Φ1(s) obeying (2.11) is to be chosen as needed. With these conditions
on Φ1, by Lemma 2.1,

(3.11)
τ0

r + 1
≤ φ′

0(r) ≤
e∥⟨s⟩

−2Φ1(s)∥L1 τ0
r + 1

, 0 < r ≤ a.

In this region, we work separately on the cases (1.1) and (1.5),
Case (1.1), α = 0: In this case, we have σ = 1

3 , Vh = V ′
h = 0, Rh = V , and

V∞ = 0. Therefore, using (1.1), (2.10), and (3.11),

A−
K

2
B

≥ w′(E + h−2σ(φ′
0)

2(1 + r(1 + ω)Φ−K(8τ0)
−1h1+σr(r + 1)(1 + ω)Φ2)

− CKτ−1
0 h−1+σr(r + 1)⟨r⟩−4m2)

≥ w′ 1

τ0(r + 1)2
(h−2στ30 (

1 + Φ1 − rω

r + 1 + Φ1
)− CKτ−1

0 h−1+σm2)

+ (E −Kτ0e
2∥⟨s⟩−2Φ1(s)∥L1h1−σ)w′, h > 0.

(3.12)

So, putting

(3.13) Φ1 = max(Φ2, 0), where Φ2 solves 4
1 + Φ2 − rω(r)

r + 1 + Φ2
= m2,

and then choosing τ0 = τ0(C,K,m) ≥ 1 large enough, we obtain,

A−
K

2
B ≥ (E −Kτ0e

2∥⟨s⟩−2Φ1(s)∥L1h1−σ)w′ ≥
E

2
w′,(3.14)

0 < r ≤ a, h ∈ (0, h0],

for h0 = h0(K, τ0, E,m) ∈ (0, 1] small enough. This proves the claimed in-
equality (3.5) for
0 < r ≤ a.
Case (1.5), 0 ≤ α ≤ 1: Recall that RE,V and δV are given by (1.8) and (1.7)
respectively. Because RE,V ≤ RE , and δV ≥ δ1, the first estimate in (2.13)
implies
(3.15)

sup
θ∈Sn−1

Vh(rθ) ≤
E + 3V∞

4
≤
E + 3E∞

4
=: Ẽ, r ≥ RE , h ∈ (0, δ

1/ρ
1 ].
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Next, let ψ ∈ C∞
comp((−1, RE + 1); [0, 1]) with ψ ≡ 1 on [0, RE ]. Then,

supRn V ≤ CV and (2.13) yield

Vh ≤ CV ψ(r) + Ẽ, h ∈ (0, δ
1/ρ
1 ].

Using (2.10), (2.13), and (3.15), we have the following modified version

of the estimate (3.12) for h ∈ (0, δ
1/ρ
1 ],

A−
K

2
B

≥ w′
(

E + h−2σ(φ′
0)

2(1 + r(1 + ω)Φ−K(8τ0)
−1h1+σr(r + 1)(1 + ω)Φ2)

− CV ψ − Ẽ − Ch−ρ(1−α)r⟨r⟩−3m2

− CKτ−1
0 h−1+2ρα+σr(r + 1)⟨r⟩−6m4

)

≥
w′

(r + 1)2

(

h−2στ20 (
1 + Φ1 − rω

r + 1 + Φ1
)− CKτ−1

0 h−1+2ρα+σ⟨r⟩−2m4

− Ch−ρ(1−α)m2 − CV (RE + 2)2ψ
)

+ (34(E − E∞)−Kτ0e
2∥⟨s⟩−2Φ1(s)∥L1h1−σ)w′.

To get the second inequality, we have used

K(8τ0)
−1h1−σ(φ′

0)
2r(r + 1)(1 + ω)Φ2 ≤ Kτ0e

2∥⟨s⟩−2Φ1(s)∥L1h1−σ,

Ch−ρ(1−α)r⟨r⟩−3m2 ≤ Ch−ρ(1−α)(r + 1)−2m2,

as well as

CKτ−1
0 h−1+2ρα+σr(r + 1)⟨r⟩−6m4 ≤ CKτ−1

0 h−1+2ρα+σ(r + 1)−2⟨r⟩−2m4.

By (3.3), we have 0 ≤ σ ≤ 1/3. Using also (3.13), ⟨r⟩−2m4 ≤ m2 and
choosing τ0 = τ0(C,K,CV , RE ,m) ≥ 1 large enough, we arrive at

A−
K

2
B ≥ (34(E − E∞)−Kτ0e

2∥⟨s⟩−2Φ1(s)∥L1h1−σ)w′

≥
E − E∞

2
w′, 0 < r ≤ a, h ∈ (0, h0]

(3.16)

for h0 = h0(K, τ0, E,E∞, δ1,m) ∈ (0, 1] small enough. Here, to see that

h0 is independent of α, we observe that 1/2 ≤ ρ ≤ 2/3 and hence δ
1/ρ
1 ≥

min{δ21 , δ
3/2
1 }.
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3.2. Large r region

In the region r > a, we handle the cases (1.1) and (1.5) together, taking
the worst of the estimates on Rh, Vh, and V ′

h. For notational convenience,
set δ1 = ρ = 1 in the case (1.1). Then if either (1.1) or (1.5) holds, for h ∈

(0, δ
1/ρ
1 ],

Vh(rθ) ≤ CV ψ(r) + Ẽ, |V ′
h| ≤ Ch−ρ(1−α)⟨r⟩−3m2(r),

|Rh| ≤ C⟨r⟩−2m(r).

Define W and Φ for r > a by

(3.17) W =
(r + 1)1+η

2
, Φ = −

1 + η

r + 1
, 0 < η < 1, r > a.

Then,

φ′
0(r) = φ′

0(a)e
∫ r

a
Φ(s)ds = φ′

0(a)
(a+ 1)1+η

(r + 1)1+η
, r > a.

Therefore, from (3.11),

(3.18)
τ0(a+ 1)η

(r + 1)1+η
≤ φ′

0(r) ≤
τ0e

∥⟨s⟩−2Φ1(s)∥L1 (a+ 1)η

(r + 1)1+η
, r > a.

We have, again by (2.10),

A−
K

2
B ≥ w′

[

E + h−2σ(φ′
0)

2[1− (1 + η)(r + 1)η

− 8−1Kh1+σ(r + 1)1+ηΦ2(φ′
0)

−1]

− CV ψ(r)− Ẽ − Ch−ρ(1−α)(r + 1)1+η⟨r⟩−3m2

− CK(r + 1)1+ηh−1+σ+2ρα⟨r⟩−4m2(φ′
0)

−1
]

≥ −w′
[

C(1 + τ20 +Kτ−1
0 )h−2σ⟨r⟩−2+2η(a+ 1)−η

]

+ (34(E − E∞)− CKτ0h
1−σ)w′, h ∈ (0, δ

1/ρ
1 ].

To get the second inequality, we have used

h−2σ(φ′
0)

2(1 + η)(r + 1)η ≤ Cτ20h
−2σ⟨r⟩−2+2η(a+ 1)−η,

8−1Kh1−σφ′
0(r + 1)1+ηΦ2 ≤ CKτ0h

1−σ,

Ch−ρ(1−α)(r + 1)1+η⟨r⟩−3m2 ≤ Ch−2σ⟨r⟩−2+2η(a+ 1)−η,
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as well as

CKh−1+σ+2ρα(r + 1)η⟨r⟩−4m2(φ′
0)

−1 ≤ CKτ−1
0 h−2σ⟨r⟩−2+2η(a+ 1)−η.

Now, in (3.4), fix

(3.19) M =
2σ

2− η
=

2(1− α)

(2− η)(3 + α)
.

Then taking a0 = a0(C,K, τ0, E,E∞) ≥ 1 large enough,

A−
K

2
B ≥ (34(E − E∞) + CKτ0h

1−σ)w′

≥
E − E∞

2
w′, r > a ≥ RE + 1, h ∈ (0, h0],

(3.20)

for h0 = h0(K, τ0, E,E∞, δ1,m) ∈ (0, 1] small enough. Combining (3.14),
(3.16), and (3.20) establishes (3.5) in either case (1.1) or (1.5).

3.3. Determination of w and ϕ0

Lemmas 3.2 and 3.3 complete the proof of Proposition 3.1.

Lemma 3.2. With W determined by (3.10) and (3.17), and with initial

conditions as in (3.1), we have

(3.21) w =











r 0 < r ≤ 1
2 ,

1
2e

∫ r

1/2
2

s(1+ω(s))
ds 1

2 < r ≤ a,

w(a)e
2

η
((a+1)−η−(r+1)−η) r > a,

and the estimates (3.7), (3.8), and (3.9) hold.

Proof. Recalling the definition (3.2) of w in terms of W, for 0 < ε ≤ r,

(3.22) w(r) = w(ε)e
∫ r

ε
1

W(s)
ds
.

Now, if 0 ≤ r ≤ 1/2, W(r) = r, therefore,

w(r) =
w(ε)

ε
r, 0 < ε ≤ r ≤

1

2
.

Sending ε→ 0+ and using w′(0) = 1, w(0) = 0, we have

w(r) = r, 0 ≤ r ≤ 1
2 ,
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as claimed. The remaining formulae for w in (3.21) now follow easily from
(3.22) with ε = 1/2.

To see (3.7), note that w′ = w/W ≥ 0, so we need only compute
lim supr→∞w(r). For this, observe that ω ≡ 0 on r ≥ 1. Therefore, for 1 ≤
r ≤ a,

w(r) = w(1)r2.

In particular, since

w(1) ≤
1

2
e
∫ 1

1/2
2s−1ds = 2,

w(a) = w(1)a2 ≤ 2a2. Thus (using a ≥ 1),

lim sup
r→∞

w(r) = lim sup
r→∞

w(a)e
2

η
((a+1)−η−(r+1)−η)

≤ 2a2e
2

η
(a+1)−η

≤ Cηa
2 ≤ Cηh

− 4(1−α)

(2−η)(3+α) ,

as claimed.
For (3.8), we first note that w′(r) = 1 on 0 ≤ r ≤ 1/2. Then, using 0 ≤

W ≤ (r + 1)1+η/2, we compute

w′(r) =
w(r)

W(r)
≥ (r + 1)−1−ηe

∫ r
1
2

1

W(s)ds ≥ (r + 1)−1−η, r ≥
1

2
, r ̸= a.

Finally, to see (3.9), we observe using (3.7),

w2

w′
= Ww ≤ Cηh

− 4(1−α)

(2−η)(3+α) (r + 1)1+η.
□

Lemma 3.3. With Φ given by (3.10) and (3.17), and with initial conditions

as in (3.1), we have

(3.23) φ′
0(r) =

{

τ0e
−

∫ r

0
1

s+1+Φ1(s)
ds

0 < r ≤ a,

φ′
0(a)

(a+1)1+η

(r+1)1+η r > a.

and the estimate (3.6) holds.
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Proof. The formula (3.23) follows directly from (3.2), (3.10) and (3.17).
Then, by (3.11) and (3.18),

0 ≤ φ′
0(r) ≤







τ0e
∥⟨·⟩−2Φ1(·)∥

L1

(r+1) 0 ≤ r ≤ a,

τ0e
∥⟨·⟩−2Φ1(·)∥L1 (a+1)η

(r+1)1+η r > a.

Using that a = a0h
−M , with M as in (3.19), we have, for h ∈ (0, 1],

(3.24)

|φ0(r)| ≤

∫ a

0

τ0e
∥⟨·⟩−2Φ1(·)∥L1

s+ 1
ds+

∫ ∞

a
τ0e

∥⟨·⟩−2Φ1(·)∥L1
(a+ 1)η

(s+ 1)1+η
ds

≤ τ0e
∥⟨·⟩−2Φ1(·)∥L1 [log(a+ 1) +

1

η
]

= τ0e
∥⟨·⟩−2Φ1(·)∥L1 [log(a0h

− 2(1−α)

(2−η)(3+α) + 1) +
1

η
]

≤ τ0e
∥⟨·⟩−2Φ1(·)∥L1

[ 1− α

(1− η
2 )(3 + α)

log h−1 + log(a0 + 1) +
1

η

]

.

□

4. The one dimensional case

The key feature we exploit in the one dimensional case is the disappearance
of the term involving the operator Λ (see (2.1)). This removes the require-
ment that W ≥ r/2, allowing much more flexibility in the choice of weight
function (see (4.9) below).

In one dimension we are also able to simplify the approximation of the
potential. For V obeying (1.10), and χ satisfying (2.12), we take

Vh(x) .
.=

∫ ∞

−∞
V (x+ hy)χ(y)dy.

We again define Rh := V − Vh. The following lemma, whose proof follows
that of Lemma 2.2, gives bounds on Vh, V

′
h and Rh in one dimension.

Lemma 4.1. Suppose V satisfies the assumptions of Theorem 3. Then there

exists Cχ > 0 depending only on χ so that, for all h ∈ (0, δ0,V ],

Vh(x) ≤ sup
y∈[x,x+h]

V (y),(4.1)

|V ′
h(x)| ≤ Cχc0h

−1m0(|x|),(4.2)

|Rh(x)| ≤ c0m0(|x|).(4.3)
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Similar to the n ≥ 3 case, the constants C > 0 and h0 ∈ (0, 1] which
appear in the ensuing estimates may change from line to line, but depend
only on K,CV , c0, E, E∞, RE , δ0 and m0. The constant Cη > 0 may also
depend on 0 < η < 1. In particular, C and h0 are independent of h and η,
and Cη is independent of h.

The main result of this section is

Proposition 4.2. Fix K > 0 and let V satisfy the assumptions of Theo-

rem 3. Let E > E∞ and 0 < η < 1. Then there exist functions W,Φ : R →
[0,∞), and corresponding functions w and φ0 determined by and (3.2), along
with C, Cη > 0 and h0 ∈ (0, 1] such that

(4.4) A(x)−
K

2
B(x) ≥

E − E∞

2
w′(x), h ∈ (0, h0],

and

(4.5) |φ(x)| ≤ C,

and w satisfies,

w(x) ≤ 1,(4.6)

w′(x) ≥ Cηe
−C/h(|x|+ 1)−1−η,(4.7)

w(x)2

w′(x)
≤ Cη(|x|+ 1)1+η.(4.8)

Proof. We assume without loss of generality thatm0(|x|) ≥ (1 + |x|[log(|x|+
1)]2)−1. Then, put

(4.9) Φ = −
2 sgn(x)

|x|+ 1
, W =

δh

m0(|x|)
.

for δ > 0 to be chosen later. We replace the initial conditions (3.1) with

w(0) = e−
1

δh

∫ ∞

0
m0(s)ds, φ(0) = 0, φ′(0) = τ0 ≥ 1,

where we fix τ0 below. We find

φ′ =
τ0

(|x|+ 1)2
, w = e−

1

δh

∫ ∞

x
m0(|s|)ds.
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Recall from (2.10) that

A−
K

2
B ≥ w′(E + (φ′)2(1 + 2WΦ−KWΦ2min(W, h

4ϕ′ ))

− Vh −WV ′
h −KWh−2|Rh|

2min(W, h
4ϕ′ )).

(4.10)

Let ψ ∈ C∞
comp(R; [0, 1]) with ψ ≡ 1 on |x| ≤ RE and suppψ ⊆ (−RE − 1,

RE + 1). Then, by (4.1),

Vh ≤
E + 3V∞

4
≤
E + 3E∞

4
, |x| ≥ RE ≥ RE,V .

Combining this with (4.2), (4.3), the choice of Φ and W in (4.9), and (4.10),
we have

A−
K

2
B ≥ w′(E + τ20 (|x|+ 1)−4(1− 4hδm−1

0 (|x|+ 1)−1

−Kh2δ2m−2
0 (|x|+ 1)−2)

− CV ψ − E+3E∞

4 − Cδ − CKδ2),

for h ∈ (0, δ0]. First taking τ0 =
√

max(CV , 1)(RE + 2)4, and then taking
δ > 0 small enough (depending on C, K, E, E∞, τ0, and m0), we obtain

A−
K

2
B ≥

E − E∞

2
w′, h ∈ (0, δ0].

To obtain the estimates (4.5), (4.6), (4.7), and (4.8), observe

φ = τ0 sgn(x)

(

1−
1

|x|+ 1

)

,

and

w′ =
m0(|x|)

δh
w(x),

and note that m0(|x|) ≥ Cη(|x|+ 1)−1−η. □

5. Carleman estimates

Our goal in this section is to prove the Carleman estimates needed to es-
tablish (1.3), (1.9) and (1.13). As above, we use C > 0 to denote a constant
that may change from line to line, but depends only supV , c1, c2, E, E∞ RE

and m (n ≥ 3) or supV , c0, E, E∞, RE , and m0 (n = 1). Besides depending
on the same quantities as C does, h0 ∈ (0, 1] depends only on δ1 (n ≥ 3) or
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δ0 (n = 1), and Cη > 0 depends only on 0 < η < 1. So in particular, C,Cη,
and h0 are independent of α, h and ε ≥ 0.

Lemma 5.1. Let 0 < η < 1 and suppose that the assumptions of one of

Theorem 1, 2, or 3 hold. Then with φ and w and h0 ∈ (0, 1] as in the state-

ment of Proposition 3.1 and 4.2 respectively in n ≥ 3 and n = 1, we have

∥⟨x⟩−
1+η

2 eϕ/hv∥2L2 ≤ Cηe
C/h∥⟨x⟩

1+η

2 eϕ/h(P (h)− E ± iε)v∥2L2(5.1)

+ Cηe
C/hε∥eϕ/hv∥2L2 .

for all ε ≥ 0, h ∈ (0, h0], and v ∈ C∞
comp(R

n).

Remark: Throughout the proof of Lemma 5.1, we abuse notation slightly.
In dimension n ≥ 3, we put ∥u(r)∥ = ∥u(r, ·)∥L2(Sn−1

θ ), while we put ∥u(x)∥ =

|u(x)| when n = 1. If n ≥ 3,
∫

r,θ denotes the integral over (0,∞)× Sn−1 with

respect to the measure drdθ, while if n = 1,
∫

r,θ u(x) denotes
∫∞
0 u(r)dr −

∫∞
0 u(−r)dr =

∫

R
u(x)dx.

Proof. Since ⟨x⟩−(1+η)/2 ≤ 1, without loss of generality, we may assume 0 ≤
ε ≤ 1.

The proof begins from (2.7). Then, applying (3.5) or (4.4), it follows
that for h ∈ (0, h0],

w′F + wF ′ ≥ −
3w2

h2w′
∥P±

ϕ (h)u∥2 ∓ 2εw Im⟨u, u′⟩+
1

3
w′∥hu′∥2(5.2)

+
E − E∞

2
w′∥u∥2.

Now we integrate both sides of (5.2). For n ≥ 3, we integrate
∫∞
0 dr

and use wF, (wF )′ ∈ L1((0,∞); dr), and wF (0) = wF (∞) = 0, hence
∫∞
0 (wF )′dr = 0. In dimension n = 1, we instead integrate

∫

R
dx and ob-

serve that
∫

R
(wF )′dx = 0. Using also (3.7), (3.8) and (3.9) when n ≥ 3, or

(4.6), (4.7) and (4.8) when n = 1, yields, for h ∈ (0, h0],

∫

r,θ
(r + 1)−1−η

(

|u|2 + |hu′|2
)

≤ Cηe
C/h

∫

r,θ
(r + 1)1+η|P±

ϕ (h)u|2(5.3)

+ εCηe
C/h

∫

r,θ
|u|2 + |hu′|2.
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Moreover,

Re

∫

r,θ
(P±

ϕ (h)u)u =

∫

r,θ
|hu′|2 +Re

∫

r,θ
2hφ′u′u+

∫

r,θ
(h2Λu)u

+

∫

r,θ
hφ′′|u|2 +

∫

r,θ

(

V − E − (φ′)2
)

|u|2,

(5.4)

and

(5.5)

∫

r,θ
hφ′′|u|2 = −Re

∫

r,θ
2φ′hu′u.

These two identities, together with the facts that Λ ≥ 0 and |V − E − (φ′)2|
≤ eC/h for h ∈ (0, 1], imply,

∫

r,θ
|hu′|2 ≤ eC/h

∫

r,θ
|u|2 +

γ

2

∫

r,θ
(r + 1)−1−η|u|2

+
1

2γ

∫

r,θ
(r + 1)1+η|P±

ϕ (h)(u)|2, h ∈ (0, 1], γ > 0.

(5.6)

To finish, we substitute (5.6) into the right side of (5.3), recall 0 ≤ ε ≤ 1,
and then choose γ > 0 small enough (depending on h but independent of ε),
to get

∫

r,θ
(r + 1)−1−η(|u|2 + |hu′|2) ≤ Cηe

C/h

∫

r,θ
(r + 1)1+η|P±

ϕ (h)u|2

+ εCηe
C/h

∫

r,θ
|u|2, h ∈ (0, h0].

(5.7)

The estimate (5.1) is now an easy consequence of (5.7). □

6. Resolvent estimates

In this section, we deduce the resolvent estimates in Theorems 1, 2 and 3
from the Carleman estimate (5.1). This same argument has been presented
before, see, e.g., [4, 8, 9, 11, 13]. But we include it here for the reader’s
convenience and for the sake of completeness.

The constants C, h0, and Cη continue to have the same dependencies as
in Section 5.

Proof of Theorems 1, 2 and 3. Since increasing s in (1.4) decreases the re-
solvent norm, to prove (1.3), (1.9) and (1.13), we may assume without loss
of generality that 0 < 2s− 1 < 1.
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Fix η = 2s− 1. When n ≥ 3, let σ = σα be as in (3.3). Let φ, w, and
h0 ∈ (0, 1] be as in Proposition 3.1 (n ≥ 3) or as in Proposition 4.2 (n = 1).
Then, Lemma 5.1 holds. Put Cϕ = Cϕ(h) .

.= 2maxφ. By (5.1), for some
C,Cs = Cη > 0,

e−Cφ/h∥⟨x⟩−sv∥2L2 ≤ Cse
C/h∥⟨x⟩s(P (h)− E ± iε)v∥2L2(6.1)

+ εCse
C/h∥v∥2L2 ,

for all v ∈ C∞
comp(R

n), ε ≥ 0, and h ∈ (0, h0]. Moreover, for any γ > 0,

2ε∥v∥2L2 = −2 Im⟨(P (h)− E ± iε)v, v⟩L2

≤ γ−1∥⟨x⟩s(P (h)− E ± iε)v∥2L2 + γ∥⟨x⟩−sv∥2L2 .
(6.2)

Setting γ = C−1
s e−(C+Cφ)/h, and using (6.2) to estimate ε∥v∥2L2 from above

in (6.1), we absorb the ∥⟨x⟩−sv∥L2 term that now appears on the right of
(6.1) into the left side. Multiplying through by 2eCφ/h, and applying (3.6)
(n ≥ 3) we arrive at

∥⟨x⟩−sv∥2L2 ≤ Cse
h−1−σα( Cσα

3−2s
log(h−1)+Cs)∥⟨x⟩s(P (h)− E ± iε)v∥2L2 ,(6.3)

ε ≥ 0, h ∈ (0, h0].

In the case n = 1, we apply instead (4.5) to obtain
(6.4)

∥⟨x⟩−sv∥2L2 ≤ Cse
Ch−1

∥⟨x⟩s(P (h)− E ± iε)v∥2L2 , ε ≥ 0, h ∈ (0, h0].

The final task is to use (6.3) and (6.4) to obtain the corresponding
resolvent estimates to show
(6.5)

∥⟨x⟩−s(P (h)− E ± iε)−1⟨x⟩−sf∥2L2 ≤ Cse
h−1−σα( Cσα

3−2s
log(h−1)+Cs)∥f∥2L2 ,

ε > 0, h ∈ (0, h0], f ∈ L2, (n ≥ 3)

∥⟨x⟩−s(P (h)− E ± iε)−1⟨x⟩−sf∥2L2 ≤ Cse
Ch−1

∥f∥2L2 ,

ε > 0, h ∈ (0, h0], f ∈ L2, (n = 1)

from which Theorems 1, 2 and 3 follow. To establish (6.5), we prove a sim-
ple Sobolev space estimate and then apply a density argument that relies
on (6.3).
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The operator

[P (h), ⟨x⟩s]⟨x⟩−s =
(

−h2∆⟨x⟩s − 2h2(∇⟨x⟩s) · ∇
)

⟨x⟩−s

is bounded H2 → L2. So, for v ∈ H2 such that ⟨x⟩sv ∈ H2,

∥⟨x⟩s(P (h)− E ± iε)v∥L2 ≤ ∥(P (h)− E ± iε)⟨x⟩sv∥L2

+ ∥[P (h), ⟨x⟩s]⟨x⟩−s⟨x⟩sv∥L2

≤ Cε,h∥⟨x⟩
sv∥H2 ,

(6.6)

for some constant Cε,h > 0 depending on ε and h.
Given f ∈ L2, the function ⟨x⟩s(P (h)− E ± iε)−1⟨x⟩−sf ∈ H2 because

⟨x⟩s(P (h)− E ± iε)−1⟨x⟩−sf

= (P (h)− E ± iε)−1f + [⟨x⟩s, (P (h)− E ± iε)−1]⟨x⟩−sf

= (P (h)− E ± iε)−1f + (P (h)− E ± iε)−1[P (h), ⟨x⟩s](P (h)

− E ± iε)−1⟨x⟩−sf.

Now, choose a sequence vk ∈ C∞
comp such that

vk → ⟨x⟩s(P (h)− E ± iε)−1⟨x⟩−sf

in H2. Define
ṽk .

.= ⟨x⟩−svk. Then, as k → ∞,

∥⟨x⟩−sṽk − ⟨x⟩−s(P (h)− E ± iε)−1⟨x⟩−sf∥L2

≤ ∥vk − ⟨x⟩s(P (h)− E ± iε)−1⟨x⟩−sf∥H2 → 0.

Also, applying (6.6),

∥⟨x⟩s(P (h)− E ± iε)ṽk − f∥L2

≤ Cε,h∥vk − ⟨x⟩s(P (h)− E ± iε)−1⟨x⟩−sf∥H2 → 0.

We then achieve (6.5) by replacing v by ṽk in (6.3) and sending k → ∞. □

Acknowledgements

We would like to thank the anonymous referee for their pertinent remarks
to help improve this paper. This material is based upon work supported
by the National Science Foundation under Grant No. 1440140, while the



✐

✐

“3-Shapiro” — 2022/9/6 — 13:18 — page 396 — #24
✐

✐

✐

✐

✐

✐

396 J. Galkowski and J. Shapiro

authors were in residence at the Mathematical Sciences Research Institute
in Berkeley, California, during the Fall semester of 2019. J. Shapiro was
also supported in part by the Australian Research Council through grant
DP180100589.

References
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