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Construction of counterexamples to the

2−jet determination Chern-Moser

Theorem in higher codimension

Jan Gregorovič and Francine Meylan

We first construct a counterexample of a generic quadratic subman-
ifold of codimension 5 in C

9 which admits a real analytic infinites-
imal CR automorphism with homogeneous polynomial coefficients
of degree 4. This example also resolves a question in the Tanaka
prolongation theory that was open for more than 50 years. Then we
give sufficient conditions to generate more counterexamples to the
2−jet determination Chern-Moser Theorem in higher codimension.
In particular, we construct examples of generic quadratic subman-
ifolds with jet determination of arbitrarily high order.

1. Introduction

Let M be a real-analytic submanifold of CN of codimension d. Consider the
set of germs of biholomorphisms F at a point p ∈ M such that F (M) ⊂ M .
By the work of Cartan [12], Tanaka [29] and Chern and Moser [13], if the
codimension d = 1, every such F is uniquely determined by its first and
second derivatives at p provided that its Levi map at p is non-degenerate.

Theorem 1. [13] Let M be a real-analytic hypersurface through a point
p in CN with non-degenerate Levi form at p. Let F , G be two germs of
biholomorphic maps preserving M . Then, if F and G have the same 2-jets
at p, they coincide.

Note that the result becomes false without any hypothesis on the Levi
form (See for instance [9]). A generalization of this Theorem to real-analytic
submanifolds M of higher codimension d > 1 has been proposed by Be-
loshapka in [5] (and quoted many times by several authors) under the hy-
pothesis that M is Levi generating (or equivalently of finite type with 2 the
only Hörmander number) with non-degenerate Levi map. Unfortunately, an
error has been discovered and explained in [9].

399



✐

✐

“4-Meylan” — 2022/9/8 — 21:15 — page 400 — #2
✐

✐

✐

✐

✐

✐

400 J. Gregorovič and F. Meylan

In the first part of the paper, inspired by the technics developed in [23]
and [10], we construct an example of a generic (Levi generating with non-
degenerate Levi map) quadratic submanifold that admits an element in its
stability group which has the same 2−jet as the identity map but is not the
identity map. See (1). In addition, this example is Levi non-degenerate in
the sense of Tumanov. We point out that if M is strictly pseudoconvex, that
is Levi non-degenerate in the sense of Tumanov with a positivity condition,
then by a recent result of Tumanov[31], the 2-jet determination result holds
in any codimension.

Moreover, this example solves an open question in the Tanaka prolon-
gation theory that is related to the weighted order of infinitesimal auto-
morphisms. Roughly speaking, the question is to understand how large the
positive depth of the Tanaka prolongation of a negatively graded nilpo-
tent Lie algebra of finite depth can be. (See [14] for a precise statement).
For more than 50 years, only examples with positive weighted order less or
equal in absolute value than minimum negative weighted order were known.
Very recently, a preprint of Doubrov and Zelenko [14] has appeared with
a counterexample. Let us emphasize that the example in the first part is
also a counterexample to this open problem, and that it was announced in
the preprint of the second author [27] shortly before the counterexample of
Doubrov and Zelenko.

In the second part of the paper, we use different technics than in the first
part. More precisely, we consider the Tanaka prolongation theory to obtain
sufficient conditions to generate new examples, specifying the number of jets
needed to determine the given biholomorphisms. In particular, we obtain a
second counterexample of a generic quadratic submanifold of codimension
4 in C10 which admits a real analytic infinitesimal CR automorphism with
homogeneous polynomial coefficients of degree 3. With the help of these two
counterexamples, we construct a family of generic quadratic submanifolds
with jet determination of arbitrarily high order. We point out that in codi-
mension two, 2-jet determination holds [10]. The authors do not know if
2-jet determination also holds in codimension 3.

We also mention that finite jet determination problems for submanifolds
has attracted much attention. We refer in particular to the papers of Zaitsev
[32], Baouendi, Ebenfelt and Rothschild [3], Baouendi, Mir and Rothschild
[11], Ebenfelt, Lamel and Zaitsev [17], Lamel and Mir [24], Juhlin [20], Juhlin
and Lamel [21], Mir and Zaitsev [28] in the real analytic case, Ebenfelt [15],
Ebenfelt and Lamel [16], Kim and Zaitsev [22], Kolar, the author and Zaitsev
[23] in the C∞ case, Bertrand and Blanc-Centi [6], Bertrand, Blanc-Centi and
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the second author [7], Bertrand and the second author [8], Tumanov [31] in
the finitely smooth case.

The paper is organized as follows: In Section 2, we give the construction
of the counterexample, as it was described in [27]. In Section 3, we recall
the necessary definitions and properties needed in the sequel. In particular,
we recall the definitions of non-degenerate Levi Tanaka Lie algebras and
their Tanaka prolongations. In Section 4, we state and prove the theorem
generating counterexamples. (See Proposition 12 and Theorem 14). In Sec-
tion 5, we construct examples of generic quadratic submanifolds with jet
determination of arbitrarily high order.(See Theorem 18).

2. The Example

Let M ⊆ C9 be the real submanifold of (real) codimension 5 through 0 given
in the coordinates (z, w) = (z1, . . . , z4, w1, . . . , w5) ∈ C9, by

(1)































Imw1 = P1(z, z̄) = z1z2 + z2z1

Imw2 = P2(z, z̄) = −iz1z2 + iz2z1

Imw3 = P3(z, z̄) = z3z2 + z4z1 + z2z3 + z1z4

Imw4 = P4(z, z̄) = z1z1

Imw5 = P5(z, z̄) = z2z2

The matrices corresponding to the P ′
is are

A1 =









0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0









A2 =









0 −i 0 0
i 0 0 0
0 0 0 0
0 0 0 0









A3 =









0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0









A4 =









1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0









A5 =









0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0









Lemma 2. The following holds:
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1) the A′
is are linearly independent,

2) the A′
is satisfy the condition of Tumanov, that is, there is c ∈ Rd such

that det
∑

cjAj ̸= 0.

Proposition 3. The real submanifold M given by (1) is Levi generating
at 0, that is, of finite type with 2 the only Hörmander number, and its Levi
map is non-degenerate.

Proof. This follows for instance from Proposition 8, Lemma 3 and Remark
4 in [9]. □

Remark 4. The following identity between the P ′
is holds:

(2) P1
2 + P2

2 − 4P4P5 = 0.

The following holomorphic vectors fields are in hol(M, 0), the set of germs
of real-analytic infinitesimal CR automorphisms at 0.

1) X := i(z1
∂

∂z3
+ z2

∂

∂z4
)

2) Y := i(−iz1
∂

∂z3
+ iz2

∂

∂z4
)

3) Z := i(z1
∂

∂z4
)

4) U := i(z2
∂

∂z3
)

Lemma 5. Let P = (P1, . . . , P4). The following holds:

1) X(P ) = (0, 0, iP1, 0, 0)

2) Y (P ) = (0, 0, iP2, 0, 0)

3) Z(P ) = (0, 0, iP4, 0, 0)

4) U(P ) = (0, 0, iP5, 0, 0).

Lemma 6. The following identities hold:

1) P1(−Y (P )) + P2(X(P ) = 0

2) P1X(P ) + P2(Y (P ) + P5(−2Z(P )) + P4(−2U(P )) = 0
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3) P2(−2Z(P )) + P4(2Y (P ) = 0

4) P2(−2U(P )) + P5(2Y (P ) = 0

With the help of the Lemmata, one obtains

Theorem 7. The holomorphic vector field T defined by

(3) T = −
1

2
w1

2Y +
1

2
w2

2Y + w1w2X − 2w2w5Z − 2w2w4U + 2w4w5Y

is in hol(M, 0).
Hence 2−jet determination does not hold for germs of biholomorphisms

sending M to M.

Remark 8. We will see in Section 4 that the number of jets needed to
characterize germs of biholomorphisms sending M to M is 4.

Remark 9. Notice that the bound for the number k of jets needed to
determine uniquely any germ of biholomorphism sending M to M is

k = (1 + codim M),

M beeing a generic (Levi generating with non-degenerate Levi map) real-
analytic submanifold: see Theorem 12.3.11, page 361 in [2]. We point out
that Zaitsev obtained the bound k = 2(1 + codim M) in [32].

3. Quadric models and Tanaka prolongation

In this section, we will work with quadric models M0 ⊂ Cn+k that are 2-
degree polynomial submanifolds given by the following system of equations

(4) Imw1 = zH1z
∗, · · · , Imwk = zHkz

∗,

where z ∈ Cn, w ∈ Ck, 1 ≤ k ≤ n2 and eachHj is a n× n Hermitian matrix,
i.e., H∗

j = Hj holds for the conjugate transpose denoted by ∗.
Recall that a (Levi) non–degenerate quadric model in the sense of [4] is

given by defining equations (4) satisfying the following conditions:

1) the Hermitian matrices Hj are linearly independent, and
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2) the common kernel of all Hermitian matricesHj is trivial, i.e., zHjz
∗ =

0 for all j implies z = 0.

The non–degenerate quadric models have many special properties. Firstly,
they are weighted homogeneous for integral weights

[zj ] = 1, [wj ] = 2.

Further, they have a special infinitesimal CR automorphism

E :=
∑

j

zj
∂

∂zj
+ 2

∑

j

wj
∂

∂wj

called the Euler field or grading element. The Euler field (grading element)
provides the structure of a graded Lie algebra to the Lie algebra of in-
finitesimal CR automorphisms of non–degenerate quadric models that is a
decomposition g = ga ⊕ ga+1 . . . gb−1 ⊕ gb, compatible with Lie bracket in
the sense

[gc, gd] ⊂ gc+d

(assuming ge = 0 for e < a or e > b). Finally, the negative part g−2 ⊕ g−1

of the grading of Lie algebra of infinitesimal CR automorphism of non–
degenerate quadric models is (infinitesimally) transitive, i.e., the real span
of the real parts of these vector fields on M0 is TM0. In particular,

g−2 = {
∑

qj
∂

∂wj

}

g−1 = {
∑

pj
∂

∂zj
+ 2i

∑

k

zHkp
∗ ∂

∂wk

},

where p ∈ Cn, q ∈ Rk.

Definition 10. A non–degenerate Levi Tanaka algebra (of a nondegenerate
quadric model) is a graded Lie algebra m = g−2 ⊕ g−1 together with complex
structureJ on g−1 satisfying

1) [g−1, g−1] = g−2,

2) [X, g−1] = 0, X ∈ g−1, implies X = 0

3) [J(X), J(Y )] = [X,Y ] for all X,Y ∈ g−1.

It is simple to check that the negative part g−2 ⊕ g−1 of the Lie algebra of
infinitesimal CR automorphism with the Lie bracket taken with the opposite
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sign defines a non–degenerate Levi Tanaka algebra (at z = 0, w = 0) of the
nondegenerate quadric model with J induced by multiplication by i. We
emphasize that the opposite sign is due to the difference of bracket of left
and right invariant vector fields. In particular, the Lie bracket in the non–
degenerate Levi Tanaka algebra of a nondegenerate quadric model given by
defining equations (4) is

[(q, p), (q̃, p̃)] = (2i(−pHj p̃
∗ + p̃Hjp

∗), 0)

in the above coordinates (q, p) of g−2 ⊕ g−1.
Conversely, for every non–degenerate Levi Tanaka algebra m = g−2 ⊕

g−1 we can reconstruct uniquely up to holomorphic linear change of coordi-
nates a non–degenerate quadric model by formula

Imw :=
1

4
[J(z), z],

see [19, Lemma 3.3]. Indeed, in the above situation Imwj =
1
2 i(−izHjz

∗ +
zHj(iz)

∗) = zHjz
∗, because J(z) = iz.

Recall that der0(m) is the space of the grading preserving derivations of
m, that is, the linear maps f : g−i −→ g−i, i = 1, 2, such that f([X,Y ]) =
[f(X), Y ] + [X, f(Y )].

Setting

(5) g0 := {f ∈ der0(m)|f(J(Y )) = J(f(Y )) for all Y ∈ g−1},

the infinitesimal CR automorphisms of the Levi nondegenerate quadric mod-
els with the Levi–Tanaka algebra (m, J) can be computed by the so called
Tanaka prolongation from [30]. Let us recall that Tanaka prolongation of
m⊕ g0, where g0 is defined by 5, is the maximal nondegenerate graded Lie
algebra g(m, g0) containing the graded algebra m⊕ g0, that is,

1) gi(m, g0) = gi, i ≤ 0.

2) If X ∈ gi with i > 0, satisfies [X, g−1] = 0, then X = 0.

3) g(m, g0) is the maximal graded Lie algebra satisfying (1) and (2).

The result of [30] is that for i > 0,

gi = {f ∈ ⊕j<0g
∗
j ⊗ gj+i : f([X,Y ]) = [f(X), Y ] + [X, f(Y )]

for all X,Y ∈ m}
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holds for the Tanaka prolongation g of m⊕ g0. Let us emphasize that f ∈
gi, i > 0, is uniquely determined by the component of f in g∗−1 ⊗ gi−1, be-
cause m is generated by g−1. In [30], Tanaka proves the following result.

Theorem 11. [30] If (m, J) is a non–degenerate Levi–Tanaka algebra, then
gs = 0 for all s large enough and the Tanaka prolongation g of (m, J) is a
finite dimensional Lie algebra.

Let us recall following [19, Section 3.4], how to construct the holomorphic
vector fields corresponding to elements Xb ∈ gb of the Tanaka prolongation g

of the non–degenerate quadric model given by defining equations (4). For this
we have to consider the adjoint representation ad given by the Lie bracket on
the complexification gC of g and identify the abelian subalgebra n−2 ⊕ n−1

of gC with our coordinates (w, z), where n−2 is the complexification of g−2

and n−1 is the i–eigenspace of J in complexification of g−1. In this notation
we get formula

∑

c+2d=b+1, c,d≥0

(−1)c+d

(c+ d)!
(ad(z)c(ad(w)d(Xb)))n

−1,j
∂

∂zj

+
∑

c+2d=b+2, c,d≥0

(−1)c+d

(c+ d)!
(ad(z)c(ad(w)d(Xb)))n

−2,j
∂

∂wj

(6)

the holomorphic vector fields corresponding to elements Xb ∈ gb, where n
−i,j

means the projection from gC to jth–component of n−i (along the −i–
eigenspace of J in complexification of g−1). Indeed, since c+ 2d = b+ i,
we project elements of complexification of g−i.

We denote by R the radical of the Tanaka prolongation g of (m, J).
Let us recall that the Levi decomposition Theorem (see for instance[18])
ensures that the semisimple Lie algebra g/R is isomorphic to a (not neces-
sarily unique) subalgebra s ⊂ g, i.e., g = s⊕ρ R, where ρ : s → gl(R) is the
representation induced by the Lie bracket [s, R] ⊂ R. Medori ad Nacinovich
show in [25, Theorem 3.27] that we can choose s ⊂ g such that [E, s] ⊂ s,
where E is the Euler field compatible with the complex structure J on g−1.
More precisely, they show that

s = s−2 ⊕ s−1 ⊕ s0 ⊕ s1 ⊕ s2

R = R−2 ⊕ · · · ⊕Rb,

with J(s−1) ⊂ s−1 and J(R−1) ⊂ R−1. We emphasize that {−2, . . . , b} are
the weights of the vectors fields.
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4. The construction of Examples

Let us return to Levi decomposition g = s⊕ρ R and describe, how it is re-
flected in the defining equations (4) (in the compatible coordinates). Firstly,
dimR(s−2 ⊕R−2) > 0 is the codimension and dimC(s−1 ⊕R−1) > 0 is the
complex dimension of (Levi) non–degenerate quadric model and we decom-
pose the coordinates to coordinates w corresponding to s−2, w

′ correspond-
ing to R−2, z corresponding to s−1 and z′ corresponding to R−1. Since
[s−1, R−1] ⊂ R−2, we see that

Imw′
j = Re(zPj(z

′)∗) + z′Qj(z
′)∗,

where zP (z′)∗ := −2ρ(z)(z′) and Qj are a Hermitian matrices completely
determined by the bracket [R−1, R−1] ⊂ R−2.

Further, we see that if dimR(s−2) > 0, then the equations

Imwj = zHjz
∗

are completely determined by the bracket [s−1, s−1] ⊂ s−2 which does not
depend on z′. In particular, we can decompose the equations according to
simple factors si of s. For each simple factor si = si−2 ⊕ si−1 ⊕ si0 ⊕ si1 ⊕ si2
with dimR(s

i
−2) > 0 the equations Imwji = zHjiz

∗ define a real submanifold
Msi in complex space with complex dimension dimC(s

i
−1) > 0 and codimen-

sion dimR(s
i
−2) > 0 with Lie algebra of infinitesimal CR automorphisms si.

Since real submanifolds Msi are classified in [1, 26], we can consider them
as the starting point of our investigation. If there are simple factors si of
s with dimR(s

i
−2) = 0 and dimC(s

i
−1) > 0, then the corresponding z vari-

ables do not appear in the equations Imwji = zHjiz
∗, but only in equations

Imw′
j = Re(zPj(z

′)∗) + z′Qj(z
′)∗.

Now, in addition to Euler field (grading element) E, there are elements
Esi ∈ si providing the grading on si. We set

Es :=
∑

i

Esi .

Since ρ(Es) acts diagonalizably (as an element of Cartan subalgebra) on
V , we can decompose V according to its eigenvalues. We obtain the follow-
ing result that allow us to estimate the jet determination in terms of the
eigenvalues of ρ(Es).



✐

✐

“4-Meylan” — 2022/9/8 — 21:15 — page 408 — #10
✐

✐

✐

✐

✐

✐

408 J. Gregorovič and F. Meylan

Proposition 12. Let g = s⊕ρ R be the Levi decomposition compatible with
grading of the Lie algebra of infinitesimal CR automorphisms of a nondegen-
erate quadric model. Suppose Es ∈ s is the element providing the grading on
s. Suppose W is an irreducible subrepresentation of ρ in R decomposing as
W = W−2 ⊕ · · · ⊕Wc w.r.t. eigenvalues of the Euler vector field E. Then:

1) the eigenvalue Kmax of highest weight vector is the largest eigenvalue
of ρ(Es) on W and the eigenvalue Kmin of lowest weigh vector is the
smallest eigenvalue of ρ(Es) on W .

2) Wi is the i+Kmin + 2 eigenspace of ρ(Es) in W and c = Kmax −
Kmin − 2.

3) Infinitesimal CR automorphisms in Wc have weighted degree Kmax −
Kmin − 2 and are at least K–jet determined, where K is Kmax−Kmin

2
rounded down.

Proof. Since W is irreducible, it is generated from single highest weight vec-
tor by actions of elements of ρ(s−2 ⊕ s−1 ⊕ s0) or from single lowest weight
vector by actions of elements of ρ(s2 ⊕ s1 ⊕ s0). Therefore, the grading W =
W−2 ⊕ · · · ⊕Wc is completely determined by eigenvalues of ρ(Es) on W up
to a shift. If Kmax is the largest eigenvalue of ρ(Es) on W and Kmin is the
smallest eigenvalue of ρ(Es) on W , then clearly W−2 is the Kmin eigenspace
of ρ(Es) and the shift is Kmin + 2. Therefore c+Kmin + 2 = Kmax and
the first two claims follow. The second claim is consequence of [19, Corol-
lary 3.6]. □

Remark 13. The proposition suggests, where to start:

1) We have to restrict our selves to the irreducible subrepresentation

V = V−2 ⊕ · · · ⊕ Vc

of R with largest

c = Kmax −Kmin − 2,

because only here we have an a priory estimate on jet determinacy in
the eigenvalues of ρ(Es).

2) Since c does not depend on the Lie bracket on V , we can assume that

[V, V ] = 0
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without changing jet determination of the example.

3) Since we want to start with the known examples Ms from [1, 26], we
assume that

s = s−2 ⊕ s−1 ⊕ s0 ⊕ s1 ⊕ s2

is simple and dimR(s−2) > 0. So we start with defining equations

Imwj = zHjz
∗

for Ms and Euler field Es.

4) So we want to add equations

Imw′
j = Re(zPj(z

′)∗),

corresponding to an irreducible K–representation (real, complex or
quaternionic representation for K = R,C or H) ρ : s → gl(V,K) such
that

Kmax −Kmin > 5

holds for the minimal/maximal eigenvalues of ρ(Es) on V .

5) We can define abstractly the Euler field (grading element) E as Es up
to shift by Kmin + 2 on V and define

g−2 := s−2 ⊕ V−2, g−1 := s−1 ⊕ V−1

w.r.t. to eigenvalues of E.

The assumptions in (1)–(5) for general representation ρ do not ensure
that we get an example with high jet determinacy, because there does not
have to be complex structure J on V−1 that would make g−2 ⊕ g−1 into
Levi Tanaka algebra, i.e., zP (z′)∗ := −2ρ(z)(z′) is not well–defined with-
out the conjugation provided by the complex structure. Further, even if
(g−2 ⊕ g−1, J) is Levi–Tanaka algebra then s⊕ρ V does not have to be con-
tained in Lie algebra of infinitesimal CR automorphisms of the correspond-
ing quadric model given by the above equations. The following Theorem
provides sufficient conditions for resolving these problems.

Theorem 14. Let s, ρ,Kmax,Kmin, V = V−2 ⊕ · · · ⊕ VKmax−Kmin−2 satisfy
the assumptions as in the above (1)–(5). If
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1) V−1 is a complex representation of s0 and the corresponding complex
structure J on g−1 is satisfying

ρ(J(X)(J(Y ) = ρ(X)(Y )

for all X ∈ s−1, Y ∈ V−1,

2) V0 acts complex linearly as a map from s−1 to V−1,

then (g−2 ⊕ g−1, J) is a non–degenerate Levi Tanaka algebra and the nonde-
generate quadric model M defined as above has Lie algebra s⊕ρ V ⊕K of in-
finitesimal CR automorphisms, where K acts as 0 of s and by scalar multipli-
cation on V . In particular, infinitesimal CR automorphisms in VKmax−Kmin−2

have weighted degree Kmax −Kmin − 2 and are at least K–jet determined,
where K is Kmax−Kmin

2 rounded down.

Proof. The condition (1) implies that (g−2 ⊕ g−1, J) is a non–degenerate
Levi Tanaka algebra. The condition (2) implies that s⊕ρ V is contained in
the Tanaka prolongation of the Levi–Tanaka algebra (g−2 ⊕ g−1, J). Then
from the Schur’s Lemma follows, that s⊕ρ V ⊕K is the Tanaka prolongation
of the Levi–Tanaka algebra (g−2 ⊕ g−1, J).

The construction in [19, Lemma 3.3] provides the above realization of
the Levi–Tanaka algebra (g−2 ⊕ g−1, J) as a nondegenerate quadric model
with Lie algebra s⊕ρ V ⊕K of infinitesimal CR automorphisms. Proposition
above provides the claim on jet determinacy. □

The examples in this paper were obtained using this Theorem 14. The
codimension 4 example was obtained as follows:

We considered the codimension 3 submanifold M0 in C6 given by the
following defining equations:

Imw1 = −iz1z̄2 + iz2z̄1

Imw2 = −iz2z̄3 + iz3z̄2

Imw3 = −iz1z̄3 + iz3z̄1

that has |2|–graded Lie algebra s = so(3, 5) of infinitesimal CR automor-
phisms. Let us check that the real irreducible representation V of so(3, 5)
with the highest weight λ3 + λ4 (where λi is the i–th fundamental weight)
satisfies all the conditions (1)–(2) of Theorem 14. Firstly, Kmax = 3,Kmin =
−3, V = V−2 ⊕ · · · ⊕ V4 and V−1 is a standard complex representation of
g0 = sl(3,R)⊕ C. If we look on the weights of the complexification of s⊕ρ V ,
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then we observe that the additional equation corresponding to ρ(z)(z′) is

Imw′
1 = z1z̄

′
1 + z′1z̄1 + z2z̄

′
2 + z′2z̄2 + z3z̄

′
3 + z′3z̄3,

where z1, z2, z3 ∈ g−1 ⊗ C and z′1, z
′
2, z

′
3 ∈ V−1 ⊗ C. Therefore the condition

(1) is satisfied. Similarly, we see from the weight spaces in V0 ⊗ C that V0

acts complex linearly as a map from s−1 to V−1.
Therefore, all the conditions of Theorem 14 are fulfilled and we obtain

that the following submanifold in C10 given by the following defining equa-
tions

Imw1 = −iz1z̄2 + iz2z̄1

Imw2 = −iz2z̄3 + iz3z̄2

Imw3 = −iz1z̄3 + iz3z̄1

Imw′
1 = z1z̄

′
1 + z′1z̄1 + z2z̄

′
2 + z′2z̄2 + z3z̄

′
3 + z′3z̄3

has infinitesimal CR automorphism in V4 that has weighted order 4 and is
3–jet determined. The formula (6) provides the following formula for the
corresponding holomorphic vector field:

− w1w3(iz3
∂

∂z′1
+ iz1

∂

∂z′3
) + w2w3(iz2

∂

∂z′1
+ iz1

∂

∂z′2
)

− w1w2(iz3
∂

∂z′2
+ iz2

∂

∂z′3
) + iw2

3(z1
∂

∂z′1
)

+ iw2
2(z2

∂

∂z′2
) + +iw2

1(z3
∂

∂z′3
),

where the vector fields in the braces are rigid holomorphic vector fields that
are elements of V0.

The codimension 5 example was obtained as follows:
We considered the codimension 4 submanifold M0 in C6 given by the

following defining equations:

Imw1 = z1z̄2 + z2z̄1

Imw2 = −iz1z̄2 + iz2z̄1

Imw3 = z1z̄1

Imw4 = z2z̄2
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that has |2|–graded Lie algebra s = su(2, 3) of infinitesimal CR automor-
phisms. Let us check that the real irreducible representation V of su(2, 3)
with the highest weight λ2 + λ3 (where λi is the i–th fundamental weight)
satisfies all the conditions (1)–(2) of Theorem 14. Firstly, Kmax = 4,Kmin =
−4, V = V−2 ⊕ · · · ⊕ V6 and V−1 is a standard complex representation of
g0 = gl(2,C). If we look on the weights of the complexification of s⊕ρ V ,
then we observe that the additional equation corresponding to ρ(z)(z′) is

Imw′
1 = z1z̄

′
2 + z′2z̄1 + z2z̄

′
1 + z′1z̄2,

where z1, z2 ∈ g−1 ⊗ C and z′1, z
′
2 ∈ V−1 ⊗ C. Therefore the condition (1) is

satisfied. Similarly, we see from the weight spaces in V0 ⊗ C that V0 acts
complex linearly as a map from s−1 to V−1.

Therefore, all the conditions of Theorem 14 are fulfilled, and we obtain
that the following submanifold in C9, that was given in the first part of the
paper,

Imw1 = z1z̄2 + z2z̄1

Imw2 = −iz1z̄2 + iz2z̄1

Imw3 = z1z̄1

Imw4 = z2z̄2

Imw′
1 = z1z̄

′
2 + z′2z̄1 + z2z̄

′
1 + z′1z̄2

has infinitesimal CR automorphism in V6 that has weighted order 6 and is
4–jet determined. The formula (6) provides the following formula for the
corresponding holomorphic vector field:

(−3w4
1 − 6w2

1w
2
2 + 24w2

1w3w4 − 3w4
2 + 24w2

2w3w4 − 48w2
3w

2
4)

∂

∂w′
1

+ (2w3
1 + 2w1w

2
2 − 8w1w3w4)(2w1

∂

∂w′
1

+ z1
∂

∂z′1
+ z2

∂

∂z′2
)

+ (2w2
1w2 + 2w3

2 − 8w2w3w4)(2w2
∂

∂w′
1

− iz1
∂

∂z′1
+ iz2

∂

∂z′2
)

+ (−4w2
1w3 − 4w2

2w3 + 16w2
3w4)(2w4

∂

∂w′
1

+ z2
∂

∂z′1
)

+ (−4w2
1w4 − 4w2

2w4 + 16w3w
2
4)(2w3

∂

∂w′
1

+ z1
∂

∂z′2
),

where the vector fields in the braces are non rigid holomorphic vector fields
that are elements of V0.
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It is simple to produce counterexamples of higher codimension k > 5 by
adding further equations

w4+j = z2+j z̄2+j

for j = 1, . . . , k − 5 with Lie algebra of infinitesimal CR automorphisms
(su(2, 3)⊕ρ V ⊕ R)⊕

⊕

j su(1, 2). We then obtain the following Theorem

Theorem 15. For any codimension k > 5, there is a generic quadratic
submanifold M in C2k−1 of codimension k such that 4−jets are required
(and not less) to determine uniquely germs of biholomorphisms sending M
to M.

Remark 16. The CR dimension can clearly be arbitrarily enlarged by tak-
ing quadric in larger space, however, the jet determination of the examples
remains still 4.

Remark 17. The question of 2-jet determination in codimension 3 remains
still open.

5. Examples of jet determination of arbitrarily high order

In this section, we use the Theorem 14 to show that for any n, there are
examples of codimension depending quadraticaly on n, that have n-jet de-
termination of infinitesimal CR automorphisms.

We considered the codimension (n−1)n
2 submanifold M0 in C

n(n+1)

2 given
by the following defining equations:

Imw1 = −iz1z̄2 + iz2z̄1
...

Imwn−1 = −izn−1z̄n + iznz̄n−1

Imwn = −iz1z̄3 + iz3z̄1
...

Imw (n−1)n

2

= −iz1z̄n + iznz̄1

that has |2|–graded Lie algebra s = so(n, n+ 2) of infinitesimal CR auto-
morphisms. The example in the previous section is a special case for n = 3.
Let us check that the real irreducible representation V of so(3, 5) with the
highest weight λn + λn+1 (where λi is the i–th fundamental weight) satisfies
all the conditions (1)–(2) of Theorem 14. Firstly, Kmax = n,Kmin = −n,
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V = V−2 ⊕ · · · ⊕ V2n−2 and V−1 is a standard complex representation of
g0 = sl(n,R)⊕ C. If we look on the weights of the complexification of s⊕ρ V ,
then we observe that the additional equation corresponding to ρ(z)(z′) is

Imw′
1 =

n
∑

j=1

zj z̄
′
j + z′j z̄j ,

where z1, . . . , zn ∈ g−1 ⊗ C and z′1, . . . , z
′
n ∈ V−1 ⊗ C. Therefore the condi-

tion (1) is satisfied. Similarly, we see from the weight spaces in V0 ⊗ C that
V0 acts complex linearly as a map from s−1 to V−1.

Therefore, all the conditions of Theorem 14 are fulfilled and we obtain

that the following submanifold in C
(n+2)(n+1)

2 given by the following defining
equations

Imw1 = −iz1z̄2 + iz2z̄1
...

Imwn−1 = −izn−1z̄n + iznz̄n−1

Imwn = −iz1z̄3 + iz3z̄1
...

Imw (n−1)n

2

= −iz1z̄n + iznz̄1

Imw′
1 =

n
∑

j=1

zj z̄
′
j + z′j z̄j

has infinitesimal CR automorphism in V2n−2 that has weighted order 2n−
2 and is n–jet determined. The formula (6) is now too long to provide a
reasonable formula for the infinitesimal CR automorphism in V2n−2.

The second example extends to higher ranks as follows for even n = 2m:
We considered the codimension m2 submanifold M0 in Cm+m2

given by
the following defining equations:

Imw1 = z1z̄2 + z2z̄1
...

Imwm−1 = zm−1z̄m + zmz̄m−1

Imwn = z1z̄3 + z3z̄1
...
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Imw (m−1)m

2

= z1z̄m + zmz̄1

Imw (m−1)m

2
+1 = −iz1z̄2 + iz2z̄1

...

Imw (m−1)m

2
+m−1 = −izm−1z̄m + izmz̄m−1

Imw (m−1)m

2
++m

= −iz1z̄3 + iz3z̄1

...

Imw(m−1)m = −iz1z̄m + izmz̄1

Imw(m−1)m+1 = z1z̄1
...

Imwm2 = zmz̄m

that has |2|–graded Lie algebra s = su(m,m+ 1) of infinitesimal CR auto-
morphisms. The example in previous section is special case for m = 2. Let
us check that the real irreducible representation V of su(m,m+ 1) with the
highest weight λm + λm+1 (where λi is the i–th fundamental weight) satis-
fies all the conditions (1)–(2) of Theorem 14. Firstly, Kmax = n,Kmin = −n,
V = V−2 ⊕ · · · ⊕ V2n−2 and V−1 is a standard complex representation of
g0 = gl(m,C). If we look on the weights of the complexification of s⊕ρ V ,
then we observe that the additional equation corresponding to ρ(z)(z′) is

Imw′
1 =

m
∑

j=1

zj z̄
′
m+1−j + z′m+1−j z̄j ,

where z1, . . . , zm ∈ g−1 ⊗ C and z′1, . . . , z
′
m ∈ V−1 ⊗ C. Therefore the condi-

tion (1) is satisfied. Similarly, we see from the weight spaces in V0 ⊗ C that
V0 acts complex linearly as a map from s−1 to V−1.

Therefore, all the conditions of Theorem 14 are fulfilled, and we obtain
that the following submanifold in C(m+1)2 , that was given in the first part
of the paper,

Imw1 = z1z̄2 + z2z̄1
...
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Imwm−1 = zm−1z̄m + zmz̄m−1

Imwn = z1z̄3 + z3z̄1
...

Imw (m−1)m

2

= z1z̄m + zmz̄1

Imw (m−1)m

2
+1 = −iz1z̄2 + iz2z̄1

...

Imw (m−1)m

2
+m−1 = −izm−1z̄m + izmz̄m−1

Imw (m−1)m

2
+m

= −iz1z̄3 + iz3z̄1

...

Imw(m−1)m = −iz1z̄m + izmz̄1

Imw(m−1)m+1 = z1z̄1
...

Imwm2 = zmz̄m

Imw′
1 =

m
∑

j=1

zj z̄
′
m+1−j + z′m+1−j z̄j

has infinitesimal CR automorphism in V2n−2 that has weighted order 2n− 2
and is n–jet determined. The formula (6) is again too long to provide a
reasonable formula for the infinitesimal CR automorphism in V2n−2.

With the possible addition of further quadrics in new variables, we then
obtain the following theorem for jet determination of arbitrarily high order,
which can be seen as an analogous result to Theorem 15.

Theorem 18. For any even n = 2m and any k > m2, there is a generic
quadratic submanifold M in C2k−m2+2m−1 of codimension k such that n−jets
are required (and not less) to determine uniquely germs of biholomorphisms
sending M to M.

For any odd n and any k > (n−1)n
2 , there is a generic quadratic subman-

ifold M in C
2k− 1

2
n2+ 5

2
n−1 of codimension k such that n−jets are required

(and not less) to determine uniquely germs of biholomorphisms sending M
to M.
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Remark 19. The CR dimension can clearly be arbitrarily enlarged by tak-
ing quadric in larger space, however, the jet determination of the examples
remains still n.
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[23] M. Kolář, F. Meylan, D. Zaitsev, Chern-Moser operators and polyno-
mial models in CR geometry, Adv. Math. 263 (2014), 321–356.

[24] B. Lamel, N. Mir, Finite jet determination of CR mappings, Adv. Math.
216 (2007), 153–177.

[25] C. Medori and M. Nacinovich, Levi-Tanaka algebras and homogeneous
CR manifolds. Compositio Math. 109 (1997), no. 2, 195–250.



✐

✐

“4-Meylan” — 2022/9/8 — 21:15 — page 419 — #21
✐

✐

✐

✐

✐

✐

2−jet determination Chern-Moser Theorem 419

[26] C. Medori and M. Nacinovich, Classification of semisimple Levi-Tanaka
algebras. Ann. Mat. Pura Appl. (4) 174 (1998), 285–349.

[27] F. Meylan, A counterexample to the 2−jet determination Chern-Moser
Theorem in higher codimension. arXiv:2003.11783, (2020).

[28] N. Mir, D. Zaitsev, Unique jet determination and extension of germs
of CR maps into spheres, Trans. Amer. Math. Soc. 374 (2021), no. 3,
2149–2166.

[29] Tanaka, N. On the pseudo-conformal geometry of hupersurfaces of the
space of n complex variables. J. Math. Soc. Japan 14 (1962), 397–429.

[30] N. Tanaka, On differential systems, graded Lie algebras and pseu-
dogroups. J. Math. Kyoto Univ. 10 (1970), 1–82.

[31] A. Tumanov, Stationary Discs and finite jet determination for CR map-
pings in higher codimension, Adv. Math. 371 (2020).

[32] D. Zaitsev: Germs of local automorphisms of real analytic CR structures
and analytic dependence on the k-jets. Math. Res. Lett. 4(6) 823–842,
1997.

Faculty of Science, University of Hradec Králové
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