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We explain that any closed immersion between Shimura varieties
defined by morphisms of Shimura data extends to some closed
immersion between their projective smooth toroidal compactifica-
tions, up to refining the choices of cone decompositions. We also
explain that the same holds for many closed immersions between
integral models of Shimura varieties and their toroidal compactifi-
cations available in the literature.
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1. Introduction

Given any closed immersion between Shimura varieties or their integral mod-
els defined by some morphism of Shimura data (and some additional data,
in the case of integral models), it is natural to ask whether it extends to
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a closed immersion between their toroidal compactifications. Since the con-
struction of toroidal compactifications depends on the choices of some com-
patible collections of cone decompositions, part of the question is whether
this can be achieved by some good choices of them, which we might want to
be refinements of some given ones.

This question is not as trivial as it seems to be. Already in characteristic
zero, the analogous question for minimal compactifications is subtle. In fact,
in Scholze’s groundbreaking work [27], for Hodge-type Shimura varieties,
his “perfectoid minimal compactifications” at infinite levels were first con-
structed using the closures in the minimal compactifications of Siegel mod-
ular varieties, rather than the minimal compactifications of the Hodge-type
Shimura varieties themselves; but the morphism from the minimal compact-
ification of the Shimura variety to the closure in the minimal compactifica-
tion of the Siegel modular variety is generally not even injective on geometric
points. As for toroidal compactifications, if the ambient toroidal compactifi-
cation is prescribed, then the closure of the Shimura subvariety is generally
not normal (and hence cannot be a toroidal compactification by itself), and
it might also happen that there exists no morphism that is injective on geo-
metric points from any toroidal compactification of the Shimura subvariety.
(See Remarks 4.1 and 4.2 for a related counter-example.)

In this article, we shall show that, under reasonable assumptions, there
exist compatible collections of cone decompositions, up to refinements, such
that the morphisms between the associated toroidal compactifications are
indeed closed immersions (see Theorem 2.2, and Propositions 4.9 and 4.10).
We expect this to be useful for studying cycles of Shimura varieties defined by
special subvarieties (see Section 5 for some examples). As an application, we
shall generalize the construction of “perfectoid toroidal compactifications”
from the Siegel case in [25, Appendix] to all Hodge-type cases, and verify
[9, Hypothesis 2.18] (see Section 6).

2. Main results

Let us assume we are in one of the following cases:

Assumption 2.1. 1) For each i = 0, 1, let

(Gi,Di)
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be a Shimura datum (see [8, 1.2.1]), where Di is a Gi(R)-conjugacy
class of a homomorphism hi : ResC/RGm,C → Gi,R. Let

ρ : G0 → G1

be an injective homomorphism of algebraic groups over Q such that

(

ρ(R)
)

(D0) ⊂ D1.

Let Hi ⊂ Gi(A
∞) be neat (see [26, 0.6]) open compact subgroups, for

i = 0, 1, such that

H0 =
(

ρ(A∞)
)−1

(H1).

Let F denote a subfield of C containing the reflex field of (G0,D0)
(which then also contains that of (G1,D1) by [8, 2.2.1]), and let

S0 := Spec(F ).

For each i = 0, 1, let Xi denote the base change to F of the canonical
model of the Shimura variety associated with (Gi,Di) at level Hi. Then
we have a canonical morphism

f : X0 → X1

over S0, which we assume to be a closed immersion. (This can be
achieved up to replacing H1 with a finite index subgroup still containing
(

ρ(A∞)
)

(H0), by [7, 1.15].)

2) For each i = 0, 1, let

(Oi, ⋆i, Li, ⟨ · , · ⟩i, hi)

be an integral PEL datum (see [18, Definition 1.1.1.1]). Assume that
O1 is a subring of O0 preserved by ⋆0, that ⋆1 = ⋆0|O1

, and that

(L0, ⟨ · , · ⟩0, h0) ∼= (L1, ⟨ · , · ⟩1, h1)

as PEL-type O1-lattices (see [16, Definition 1.2.1.3]). For each i = 0, 1,
let Gi denote the associated group functor over Spec(Z), as in [16, Def-
inition 1.2.1.6], so that we have a canonical injective homomorphism

ρ : G0 → G1
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by definition. Let F denote a subfield of C that is a finite extension
of the reflex field F0 of (O0, ⋆0, L0, ⟨ · , · ⟩0, h0) (see [16, Definition
1.2.5.4]) (which is also the reflex field of (G0⊗

Z
Q,G0(R) · h0), and

hence also that of F1 of (O1, ⋆1, L1, ⟨ · , · ⟩1, h1) or (G1⊗
Z
Q,G1(R) · h1),

by [8, 2.2.1]). Let ✷ be a set of rational primes (see [16, Notation
and Convetions]) that are good (see [16, Definition 1.4.1.1]) for both
(Oi, ⋆i, Li, ⟨ · , · ⟩i, hi), for i = 0, 1, and let

S0 := Spec(OF,(✷)).

Let Hi ⊂ Gi(A
∞,✷) be neat (see [16, Definition 1.4.1.8]) open compact

subgroups, for i = 0, 1, such that

H0 =
(

ρ(A∞,✷)
)−1

(H1).

For each i = 0, 1, let MHi
denote the (smooth) moduli scheme over

Spec(OFi,✷)

associated with (Oi, ⋆i, Li, ⟨ · , · ⟩i, hi) at Hi (see [16, Definition 1.4.1.4,
Theorem 1.4.1.11, and Corollary 7.2.3.10]). By restricting the O0-
endomorphism structures parameterized by MH0

to O1-endomorphism
structures, we obtain a canonical morphism

MH0
⊗

OF0,✷

OF,(✷) → MH1
⊗

OF1,✷

OF,(✷).

Then we take X0 and X1 to be open-and-closed subschemes of MH0
⊗

OF0,✷

OF,(✷) and MH1
⊗

OF1,✷

OF,(✷), respectively, such that the above mor-

phism induces a morphism

f : X0 → X1

over S0, which we assume to be a closed immersion.

3) For i = 0, 1, suppose that we have integral PEL data

(Oi, ⋆i, Li, ⟨ · , · ⟩i, hi)

(for which p might not be good), together with some suitable choices of

(Oi, ⋆i, Li,j, ⟨ · , · ⟩i,j, hi,j)
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and a shared choice of a collection of auxiliary integral PEL data

{(Oaux, ⋆aux, Lj,aux, ⟨ · , · ⟩j,aux, hj,aux)}j∈J

(for which p is good), as in [17, Sections 2 and 4]; and that

(O1, ⋆1, L1, ⟨ · , · ⟩1, h1)

also serves as a choice of an auxiliary integral PEL datum for

(O0, ⋆0, L0, ⟨ · , · ⟩0, h0)

(but without requiring that p is good for either of these two). Then we
have homomorphisms

G0
ρ→ G1

ρj,aux→ Gj,aux,

for all j ∈ J. Suppose that we have neat open compact subgroups H0 ⊂
G(Ẑ), H1 ⊂ G(Ẑ), and Hj,aux ⊂ Gj,aux(Ẑ

p) such that

H0 =
(

ρ(A∞)
)−1

(H1)

and such that the images of H1 under G1(Ẑ)→ Gj,aux(Ẑ
p) are neat and

contained in Hj,aux, for all j ∈ J. Let F denote a subfield of C that is a
finite extension of the reflex field of (O0, ⋆0, L0, ⟨ · , · ⟩0, h0), and hence
also those of (O1, ⋆1, L1, ⟨ · , · ⟩1, h1) and (Oaux, ⋆aux, Lj,aux, ⟨ · , · ⟩j,aux,
hj,aux), for all j ∈ J. With the above data, we have associated moduli
problems MH0

and MH1
over Spec(F ), and associated auxiliary moduli

problems MHj,aux
over

S0 := Spec(OF,(p)),

together with canonical finite morphisms

MH0
→ MH1

→
∏

j∈J

MHj,aux
⊗
Z
Q

over Spec(F ), which extend to canonical finite morphisms

M⃗H0
→ M⃗H1

→
∏

j∈J

MHj,aux
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over S0 by taking normalizations as in [17, Section 4]. Then we take
X0 and X1 to be open-and-closed subschemes of M⃗H0

and M⃗H1
, respec-

tively, such that M⃗H0
→ M⃗H1

induces a morphism

f : X0 → X1

over S0, which we assume to be a closed immersion.

4) Suppose that we have a morphism of Shimura data

(G0,D0)→ (G1,D1)

defined by some injective homomorphism

ρ : G0 → G1

as in (1), and suppose that we have a Siegel embedding

(G1,D1) →֒ (Gaux,Daux)

defined by some injective homomorphism

G1 → Gaux,

with Gaux
∼= GSp2g,Q, for some g ≥ 0. Suppose that we have neat

open compact subgroups H0 ⊂ G0(A
∞), H1 ⊂ G1(A

∞), and Haux ⊂
Gaux(A

∞,p) such that

H0 =
(

ρ(A∞)
)−1

(H1)

and such that the image of H1 under G1(A
∞)→ Gaux(A

∞,p) is neat
and contained in Haux. Let F denote a subfield of C that is a finite
extension of the reflex field of (G0,D0), and hence also that of (G1,D1).
Let X0 and X1 be integral models over

S0 := Spec(OF,(p))

of the Shimura varieties associated with (G0,D0) and (G1,D1) at lev-
els H0 and H1, respectively, defined by taking normalizations of the
characteristic zero models over F (which are base changes of the corre-
sponding canonical models to F ) over the Siegel moduli over Spec(Z(p))
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associated with (Gaux,Daux) and the prime-to-p level Haux, as in [24,
Introduction]. Then we have a canonically induced morphism

f : X0 → X1

over S0, which we assume to be a closed immersion.

We shall say that we are in Cases (1), (2), (3), or (4) depending on
the case we are in Assumption 2.1. In each case, we have good toroidal
compactifications Xi →֒ Xtor

i,Σi
associated with some compatible collections of

cone decompositions Σi, for i = 0, 1, whose properties we will review in more
detail in the next section.

Our main result is the following:

Theorem 2.2. Let

f : X0 → X1

be as in Assumption 2.1. Then there exist toroidal compactifications

Xi →֒ X
tor
i,Σi

,

for i = 0, 1, associated with some compatible collections Σi of projective
smooth cone decompositions (see [2, 3, 26] in Case (1); see [16, Theorems
6.4.1.1 and 7.3.3.4] in Case (2); see [19, Theorem 6.1] in Case (3); and see
[24, Theorem 4.1.5 and Remark 4.1.6] in Case (4)) such that f extends to
a closed immersion

f torΣ0,Σ1
: Xtor

0,Σ0
→ X

tor
1,Σ1

.

Moreover, if we denote by IΣi
the OXtor

i,Σi
-ideal defining the boundary Xtor

i,Σi
−

Xi (with its reduced subscheme structure), for i = 0, 1, then we may require
that

f tor,∗Σ0,Σ1
(IΣ1

) ∼= IΣ0

as OXtor
0,Σ0

-ideals. We may require that Σ0 and Σ1 refine any finite number of
prescribed compatible collections of cone decompositions.

The proof of Theorem 2.2 will be completed in Section 4.

Remark 2.3. 1) In Cases (2) and (3), for example, we can take Xi to
be the schematic closure of the base change to Spec(F ) of the canoni-
cal model of the Shimura variety associated with the Shimura datum
(Gi⊗

Z
Q,Gi(R) · hi) (see [14, Section 8], [15, Section 2], and [23, Section
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1.2]), for i = 0, 1, when Gi⊗
Z
Q is connected and (Gi⊗

Z
Q,Gi(R) · hi)

qualifies as a Shimura datum.

2) In Case (2), in order to show that f : X0 → X1 is indeed a closed im-
mersion, we often have to resort to the moduli interpretations of MH0

and MH1
.

3) In Case (3), when the levels H0 and H1 differ at p from the stabilizers
of L0 and L1, it is generally more difficult to verify that the morphism
f : X0 → X1 defined abstractly by taking normalizations is a closed
immersion. Practically, when the levels are parahoric at p (and satisfies
some technical assumptions), we can still define X0 and X1 using some
explicit moduli problems—see, for example, [17, Examples 2.4 and
13.12, and Remark 16.5]. However, we do not (yet) have a method to
study higher levels in general.

4) In Case (4), the similar verification that f : X0 → X1 is a closed im-
mersion is subtle already when the levels are hyperspecial at p as in
[13].

5) Nevertheless, Theorem 2.2 provides closed immersions f torΣ0,Σ1
: Xtor

0,Σ0
→

Xtor
1,Σ1

as long as the input f : X0 → X1 is a closed immersion, and we
included all four cases (which in theory allows arbitrarily high levels
at p in Cases (3) and (4)) even when the assumption of being a closed
immersion cannot be easily verified in general.

6) Certainly, we expect Theorem 2.2 to extend to integral models of
abelian-type Shimura varieties, generalizing those constructed in Cases
(2), (3), and (4) in Assumption 2.1, as soon as the their toroidal com-
pactifications are constructed and shown to have desired properties as
in Propositions 3.1 and 3.4 below. However, we do not expect it to be
any easier to verify that f : X0 → X1 is indeed a closed immersion.

Remark 2.4. In Theorem 2.2, the main reason to consider the projectivity
of the cone decompositions is that it ensures that the toroidal compactifica-
tions we obtained are schemes rather than merely algebraic spaces.

Remark 2.5. In Theorem 2.2, the assertion that f tor,∗Σ0,Σ1
(IΣ1

) ∼= IΣ0
does

not follow from the assertion that f torΣ0,Σ1
is a closed immersion. (See Exam-

ple 5.1 below.)

Remark 2.6. Since base changes of closed immersions are still closed im-
mersions, by using [20, Theorem 2.3.2], Theorem 2.2 implies similar results
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for partial toroidal compactifications of well-positioned subschemes of base
changes of integral models of Shimura varieties. We shall leave the precise
statements to interested readers.

3. Morphisms between toroidal compactifications

In all cases in Assumption 2.1, we have good toroidal and minimal compact-
ifications Xtor

i,Σi
→ S0 and Xmin

i → S0, for i = 0, 1, whose qualitative prop-
erties we shall summarize as follows, based on the constructions in [2–
4, 16, 17, 19, 26] (as in [21, Proposition 2.2] and [20, Propositions 2.1.2
and 2.1.3, and Corollary 2.1.7] and their proofs):

Proposition 3.1. For each i = 0, 1, there is a canonical minimal compact-
ification

Jmin
i : Xi →֒ X

min
i

over S0, together with a canonical collection of toroidal compactifications

J tor
i,Σi

: Xi →֒ X
tor
i,Σi

over S0, labeled by certain compatible collections Σi of cone decompositions,
satisfying the following properties:

1) For each Σi, there is a proper surjective structural morphism

∮

i,Σi
: Xtor

i,Σi
→ Xmin

i ,

compatible with Jmin
i and J tor

i,Σi
in the sense that Jmin

i =
∮

i,Σi
◦J tor

i,Σi
.

2) The scheme Xmin
i admits a stratification by locally closed subschemes

Zi flat over S0, each of which is isomorphic to a finite quotient of
an analogue of Xi. (Nevertheless, in Cases (2) and (3), we can still
identity each Zi with an analogue of Xi.)

3) Each Σi is a set {ΣZi
}Zi

of cone decompositions ΣZi
with the same

index set as that of the strata of Xmin
i . (In [16], the elements of this

index set was called cusp labels.) For simplicity, we shall suppress
such cusp labels and denote the associated objects with subscripts given
by the strata Zi.

4) For each stratum Zi, the cone decomposition ΣZi
is a cone decom-

position of some PZi
, where PZi

is the union of the interior P+
Zi

of
a homogenous self-adjoint cone (see [3, Chapter 2]) and its rational
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boundary components, which is admissible with respect to some arith-
metic group ΓZi

acting on PZi
(and hence also on ΣZi

). Then ΣZi
has

a subset Σ+
Zi

forming a cone decomposition of P+
Zi
. If τ is a cone in

ΣZi
that is not in Σ+

Zi
, then there exist a stratum Z′

i of Xmin
i , whose

closure in Xmin
i contains Zi, and a cone τ ′ in Σ+

Z′
i
, whose ΓZ′

i
-orbit is

uniquely determined by the ΓZi
-orbit of τ .

We may and we shall assume that Σi is smooth, and that, for each
Zi and each σ ∈ Σ+

Zi
, the stabilizer ΓZi,σ of σ in ΓZi

is trivial.

5) For each Σi, the associated Xtor
i,Σi

admits a stratification by locally closed

subschemes Zi,[σ] flat over S0, labeled by the strata Zi of X
min
i and the

orbits [σ] ∈ Σ+
Zi
/ΓZi

. The stratifications of Xtor
i,Σi

and Xmin
i are compati-

ble with each other in a precise sense, which we summarize as follows:
The preimage of a stratum Zi of Xmin

Hi
is the (set-theoretic) disjoint

union of the strata Zi,[σ] of X
tor
i,Σi

with [σ] ∈ Σ+
Zi
/ΓZi

. If τ is a face of
a representative σ of [σ], which is identified (as in the property (4)
above) with the ΓZ′

i
-orbit [τ ′] of some cone τ ′ in Σ+

Z′
i
, where Z′

i is a

stratum whose closure in Xmin
i contains Zi, then Zi,[σ] is contained in

the closure of Z′
i,[τ ′].

6) For each stratum Zi of X
min
i , there is a proper surjective morphism

CZi
→ Zi

(whose precise description is not important for our purpose), together
with a morphism

ΞZi
→ CZi

of schemes which is a torsor under the pullback of a split torus EZi

with some character group SZi
over Spec(Z), so that we have

ΞZi
∼= Spec

OCZi

(

⊕
ℓ∈SZi

ΨZi
(ℓ)

)

,

for some invertible sheaves ΨZi
(ℓ). (Each ΨZi

(ℓ) can be viewed as the
subsheaf of (ΞZi

→ CZi
)∗OΞZi

on which EZi
acts via the character ℓ ∈

SZi
.) This character group SZi

admits a canonical action of ΓZi
, and

its R-dual

S∨
Zi,R := HomZ(SZi

,R)

canonically contains the above sets PZi
and P+

Zi
as subsets with com-

patible ΓZi
-actions.
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7) For each σ ∈ ΣZi
, consider the canonical pairing ⟨ · , · ⟩ : SZi

×S∨
Zi,R
→

R and

σ∨ := {ℓ ∈ SZi
: ⟨ℓ, y⟩ ≥ 0, ∀y ∈ σ},

σ∨0 := {ℓ ∈ SZi
: ⟨ℓ, y⟩ > 0, ∀y ∈ σ},

and

σ⊥ := {ℓ ∈ SZi
: ⟨ℓ, y⟩ = 0, ∀y ∈ σ} ∼= σ∨/σ∨0 .

Then we have the affine toroidal embedding

ΞZi
→֒ ΞZi

(σ) := Spec
OCZi

(

⊕
ℓ∈σ∨

ΨZi
(ℓ)

)

.

The scheme ΞZi
(σ) has a closed subscheme ΞZi,σ defined by the ideal

sheaf corresponding to ⊕
ℓ∈σ∨

0

ΨZi
(ℓ), so that

ΞZi,σ
∼= Spec

OCZi

(

⊕
ℓ∈σ⊥

ΨZi
(ℓ)

)

.

Then ΞZi
(σ) admits a natural stratification by locally closed subschemes

ΞZi,τ (i.e., the closed subscheme as above of the open subscheme ΞZi
(τ)

of ΞZi
(σ)), where τ runs over all the faces of σ in ΣZi

.

8) For each given Σi, and for each Zi, consider the full toroidal embedding

ΞZi,ΣZi
= ∪

σ∈ΣZi

ΞZi
(σ)

defined by the cone decomposition ΣZi
(cf. [16, Theorem 6.1.2.8 and

Section 6.2.5]), and consider the formal completion

XZi,ΣZi
:= (ΞZi,ΣZi

)∧ ∪
τ∈Σ

+
Zi

ΞZi,τ

of ΞZi,ΣZi
along its closed subscheme ∪

τ∈Σ+
Zi

ΞZi,τ . Consider, for each

σ ∈ Σ+
Zi
, the formal completion

X
◦
Zi,σ :=

(

ΞZi
(σ)

)∧

ΞZi
(σ)+

of ΞZi
(σ) along its closed subscheme

ΞZi
(σ)+ := ∪

τ∈Σ+
Zi
, τ⊂σ

ΞZi,τ .
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Then XZi,ΣZ
admits an open covering by X

◦
Zi,σ

for σ running through

elements of Σ+
Zi
, and we have canonical flat morphisms

X
◦
Zi,σ →֒ XZi,ΣZi

→ X
tor
i,Σi

(of locally ringed spaces) inducing isomorphisms

(3.2) X
◦
Zi,σ

∼→ (Xtor
i,Σi

)∧ ∪
τ∈Σ

+
Zi

, τ⊂σ

Zi,[τ]

and

(3.3) XZi,ΣZi
/ΓZi

∼→ (Xtor
i,Σi

)∧ ∪
[τ]∈Σ

+
Zi

/ΓZi

Zi,[τ]
.

More precisely, for each σ ∈ Σ+
Zi
, and for each affine open formal

subscheme W = Spf(R) of X◦
Zi,σ

, under the canonically induced (flat)

morphisms W := Spec(R)→ Xtor
i,Σi

and Spec(R)→ ΞZi
(σ) induced by

(3.2), the stratification of W induced by that of Xtor
i,Σi

coincides with
the stratification of W induced by that of ΞZi

(σ). In particular, the
preimages of Xi and ΞZi

coincide as an open subscheme W 0 of W .

As for the morphism f : X0 → X1, we have the following:

Proposition 3.4. Assume slightly more generally (than in Assumption 2.1)
that

(

ρ(A∞)
)

(H0) ⊂ H1

and hence that the morphism

f : X0 → X1

is finite. Then there exists a canonical finite morphism

fmin : Xmin
0 → X

min
1

such that fmin ◦ Jmin
0 = Jmin

1 ◦ f over S0, together with a canonical collection
of proper morphisms

f torΣ0,Σ1
: Xtor

0,Σ0
→ X

tor
1,Σ1

such that f torΣ0,Σ1
◦ J tor

0,Σ0
= J tor

1,Σ1
◦ f and fmin ◦

∮

0,Σ0
=

∮

1,Σ1
◦f torΣ0,Σ1

over S0,
labeled by certain pairs (Σ0,Σi) of compatible collections of cone decompo-
sitions that are compatible with each other in a sense that we shall explain
below, satisfying the following properties:
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1) For each stratum Z0 of X
min
0 , there exists a (unique) stratum Z1 of X

min
1

such that fmin(Z0) ⊂ Z1 (as subsets of Xmin
1 ). Moreover, Z0 is both

open and closed in (fmin)−1(Z1), and f
min induces a finite morphism

Z0 → Z1.

2) Over any Z0 → Z1 as above, we have a finite morphism

CZ0
→ CZ1

,

over which we have a finite morphism

ΞZ0
→ ΞZ1

,

which induces a finite morphism

ΞZ0
→ ΞZ1

×
CZ1

CZ0

which is equivariant with the pullback of a group homomorphism of
tori

EZ0
→ EZ1

with finite kernel over Spec(Z) that is dual to a homomorphism

SZ1
→ SZ0

of character groups with finite cokernel. The R-dual of this last homo-
morphism is an injective homomorphism

S∨
Z0,R →֒ S∨

Z1,R

of R-vector spaces, inducing a Cartesian diagram of injective maps

P+
Z0

� �
//

� _

��

P+
Z1� _

��

PZ0

� �
// PZ1

.

All the above maps from objects associated with Z0 to the correspond-
ing ones associated with Z1 are equivariant with a canonical homomor-
phism

ΓZ0
→ ΓZ1

.
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If ℓ1 ∈ SZ1
is mapped to ℓ0 ∈ SZ0

under SZ1
→ SZ0

, then the invertible
sheaf ΨZ0

(ℓ0) over CZ0
is canonically isomorphic to the pullback of the

invertible sheaf ΨZ1
(ℓ) over CZ1

under the above morphism CZ0
→ CZ1

.

When H0 =
(

ρ(A∞)
)−1

(H1), the homomorphism SZ1
→ SZ0

is sur-
jective, and hence the dual homomorphism EZ0

→ EZ1
is a closed im-

mersion.

3) If the image of σ ∈ ΣZ0
under PZ0

→֒ PZ1
is contained in some τ ∈

ΣZ1
, then we have a canonical morphism

ΞZ0
(σ) = Spec

OCZ0

(

⊕
ℓ∈σ∨

ΨZ0
(ℓ)

)

→ ΞZ1
(τ) = Spec

OCZ1

(

⊕
ℓ∈τ∨

ΨZ1
(ℓ)

)

extending ΞZ0
→ ΞZ1

, and inducing a canonical morphism

ΞZ0
(σ)→ ΞZ1

(τ) ×
CZ1

CZ0

which is equivariant with the pullback of EZ0
→ EZ1

. Moreover, there
is an induced morphism

ΞZ0,σ = Spec
OCZ0

(

⊕
ℓ0∈σ⊥

ΨZ0
(ℓ0)

)

→ ΞZ1,τ = Spec
OCZ1

(

⊕
ℓ1∈τ⊥

ΨZ1
(ℓ1)

)

.

4) We say that the collections Σ0 = {ΣZ0
}Z0

and Σ1 = {ΣZ1
}Zi

are com-

patible with each other or simply compatible if, when Z0 is
mapped to Z1 as above, the image of each σ ∈ Σ+

Z0
under the map

P+
Z0
→֒ P+

Z1
is contained in some τ ∈ Σ+

Z1
. We say that Σ0 is induced

by Σ1 if each σ ∈ Σ+
Z0

is exactly the preimage of some τ ∈ Σ+
Z1
. (If Σ0

is induced by Σ1, then they are necessarily compatible.)

5) The morphism f : X0 → X1 extends to a proper (resp. finite) morphism

f torΣ0,Σ1
: Xtor

0,Σ0
→ X

tor
1,Σ1

as above if and only if Σ0 and Σ1 are compatible (resp. Σ0 is induced
by Σ1). When Σ0 and Σ1 are compatible, if the image of σ ∈ Σ+

Z0
under

P+
Z0
→֒ P+

Z1
is contained in τ ∈ Σ+

Z1
, then the morphism f torΣ0,Σi

induces
a morphism

Z0,[σ] → Z1,[τ ]

(which is not necessarily proper), which can be canonically identified
with the morphism ΞZ0,σ → ΞZ1,τ above. For each τ ∈ Σ+

Z1
, the preim-

age of Z1,[τ ] is the (set-theoretic) disjoint union of the strata Z0,[σ]
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labeled by σ ∈ Σ+
Z0

that are mapped into τ under P+
Z0
→֒ P+

Z1
. If there

is a unique such σ, which is the case exactly when σ is the preimage
of τ , then the induced morphism Z0,[σ] → Z1,[τ ] is finite.

6) Suppose that Σ0 and Σ1 are compatible. Then there is a proper mor-
phism

ΞZ0,ΣZ0
→ ΞZ1,ΣZ1

,

whose formal completion gives a proper morphism

(3.5) XZ0,ΣZ0
→ XZ1,ΣZ1

.

These two morphisms are equivariant with the homomorphism ΓZ0
→

ΓZ1
and induces a proper morphism

XZ0,ΣZ0
/ΓZ0

→ XZ1,ΣZ1
/ΓZi

,

which can be identified (via isomorphisms as in (3.3)) with

(Xtor
0,Σ0

)∧ ∪
[σ]∈Σ

+
Z0

/ΓZ0

Z0,[σ]
→ (Xtor

1,Σ1
)∧ ∪
[τ]∈Σ

+
Z1

/ΓZ1

Z1,[τ]
.

If the image of σ ∈ Σ+
Z0

under P+
Z0
→ P+

Z1
is contained in some τ ∈

Σ+
Z1
, we have an induced morphism

X
◦
Z0,σ → X

◦
Z1,τ ,

which can be identified (via isomorphisms as in (3.2)) with

(Xtor
0,Σ0

)∧ ∪
σ′∈Σ

+
Z0

, σ′⊂σ

Z0,[σ′]
→ (Xtor

1,Σ1
)∧ ∪
τ′∈Σ

+
Z1

, τ′⊂τ

Z1,[τ′]
.

For a fixed τ ∈ Σ+
Zi
, the pullback of (3.5) to the open formal subscheme

X
◦
Z1,τ

on the target gives a proper morphism

(3.6) ∪
σ∈Σ+

Z0
, (PZ0

→PZ1
)(σ)⊂τ

X
◦
Z0,σ → X

◦
Z1,τ .

Suppose moreover that Σ0 is induced by Σ1. Then both morphisms
(3.5) and (3.6) are finite. For each τ ∈ Σ+

Z1
as above, with σ ∈ Σ+

Z0
the

preimage of τ , which is the unique element in Σ+
Z0

such that (P+
Z0
→֒

P+
Z1
)(σ) ⊂ τ ; and for each affine open formal subscheme W1 = Spf(R1)

of X
◦
Z1,σ

, let W0 = Spf(R0) denote its pullback to X
◦
Z0,σ

. Under the
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morphisms W1 := Spec(R1)→Xtor
1,Σ1

, W1→ΞZ1
(τ), W0 := Spec(R0)→

Xtor
0,Σ0

, and W0 → ΞZ0
(σ) induced by morphisms as in (3.2), the preim-

ages of X1 and ΞZ1
coincide as an open subscheme W 0

1 of W1, and
their further preimages in W0 coincide with the preimages of X0 and
ΞZ0

as an open subscheme W 0
0 .

Proof. Except for the first assertion in (5), these follow from the same argu-
ments as in [24, Sections 2.1.28 and 4.1.12] (which are based on [26, Sections
4.16, 6.25, and 12.4] and [11, Section 3.3]) in Cases (1) and (4), and as in [17,
Sections 8–11] and [20, the proof of Proposition 2.1.3] in Cases (2) and (3).
As for the first assertion in (5), it follows from the universal or functorial
properties of toroidal compactifications in terms of the associated cone de-
compositions, as in [2, 3, Chapter II, Section 7], [26, Proposition 6.25], [16,
Theorem 6.4.1.1(6)], [19, Theorem 6.1(6)], and [24, Proposition 4.1.13]. □

Corollary 3.7. In Proposition 3.4, suppose that Σ0 is induced by Σ1. Let
Z1 be a stratum of Xmin

1 , and let {Z0,j}j be all the strata of Xmin
0 such that

fmin(Z0,j) ⊂ Z1 (as subsets of Xmin
1 ). Consider any τ ∈ Σ+

Z1
. For each j, let

σj := (P+
Z0,j
→֒ P+

Z1
)−1(τ) ∈ Σ+

Z0,j
.

Then the pullback of the finite morphism

f torΣ0,Σ1
: Xtor

0,Σ0
→ X

tor
1,Σ1

under the composition of the canonical morphisms

X
◦
Z1,τ

∼→ (Xtor
1,Σ1

)∧ ∪
τ′∈Σ

+
Z1

, τ′⊂τ

Z1,[τ′]

(as in (3.2)) and

(Xtor
1,Σ1

)∧ ∪
τ′∈Σ

+
Z1

, τ′⊂τ

Z1,[τ′]
→ X

tor
1,Σ1

can be identified with the finite morphism

∐

j

X
◦
Z0,j ,σj

→ X
◦
Z1,τ

(defined by combining morphisms as in (3.6)).

Proof. This follows from (1) and (6) of Proposition 3.4. □
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Corollary 3.8. In Corollary 3.7, with any τ ∈ Σ+
Z1

there inducing σj ∈
Σ+
Z0,j

, for each j, we have a commutative diagram of canonical morphisms

(3.9) EZ0,j

� �
//

��

EZ0,j
(σj)

��

EZ1

� �
// EZ1

(τ)

over Spec(Z), in which the horizontal morphisms are affine toroidal embed-
dings, which are open immersions, and where the vertical morphisms are
finite. Let x1 be any point of Xtor

1,Σ1
that lies on the stratum Z1,[τ ]. Then,

étale locally at x1, the commutative diagram

X0

f

��

Jtor
0,Σ0

// Xtor
0,Σ0

f tor
Σ0,Σ1

��

X1
Jtor
1,Σ1

// Xtor
1,Σ1

can be identified with a commutative diagram

(3.10)
∐

j

(

EZ0,j
×

Spec(Z)
CZ0,j

)

� �
//

��

∐

j

(

EZ0,j
(σj) ×

Spec(Z)
CZ0,j

)

��

EZ1
×

Spec(Z)
CZ1

� �
// EZ1

(τ) ×
Spec(Z)

CZ1

induced by taking fiber products of some translations of the vertical mor-
phisms in the diagram (3.9) by sections of EZ1

and of the canonical mor-
phisms CZ0,j

→ CZ1
. More precisely, there exists an étale neighborhood

U1 → X
tor
1,Σ1

of x1 and an étale morphism

(3.11) U1 → EZ1
(τ) ×

Spec(Z)
CZ1

,

which induce by pullback under the finite morphisms

f torΣ0,Σ1
: Xtor

0,Σ0
→ X

tor
1,Σ1
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and
∐

j

(

EZ0,j
(σj) ×

Spec(Z)
CZ0,j

)

→ EZ1
(τ) ×

Spec(Z)
CZ1

(as in (3.10)) some étale morphisms

U0 → X
tor
0,Σ0

and

U0 →
∐

j

(

EZ0,j
(σj) ×

Spec(Z)
CZ0,j

)

,

respectively, such that the preimage U1 of X1 in U1 coincides with the preim-
age of EZ1

, and such that the preimage U0 of U1 in U0 coincides with the
preimages of X0 and of

∐

j

(

EZ0,j
×

Spec(Z)
CZ0,j

)

. Therefore, the pullback of

X
tor
0,Σ0
− X0

(with its reduced subscheme structure) to U0 coincides (as a subscheme) with
the pullback of

∐

j

(

∂EZ0,j
(σj) ×

Spec(Z)
CZ0,j

)

,

where

∂EZ0,j
(σj) := EZ0,j

(σj)− EZ0,j

(with its reduced subscheme structure), for each j; and the pullback of

X
tor
1,Σ1
− X1

(with its reduced subscheme structure) to U1 coincides (as a subscheme) with
the pullback of

∂EZ1
(τ) ×

Spec(Z)
CZ1

,

where

∂EZ1
(τ) := EZ1

(τ)− EZ1

(with its reduced subscheme structure).

Proof. These follow from Corollary 3.7 and Artin’s approximation (see [1,
Theorem 1.12, and the proof of the corollaries in Section 2]) as in the proofs
of [21, Proposition 2.2(9) and Corollary 2.4], [20, Corollary 2.1.7], and [22,
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Proposition 5.1], which are applicable because we only need to approximate
finitely many formal schemes finite over X◦

Z1,τ
, and because the formation of

Henselizations of semi-local rings is compatible with base change under finite
morphisms by [10, IV-4, 18.6.8]; and from the fact that all the torus torsors
are already Zariski locally trivial, as in the proof of [21, Lemma 2.3]. (Note
that the torus torsors might be trivialized by incompatible sections. Hence,
we need to allow the canonical morphisms EZ0,j

→ EZ1
to be translated by

some possibly different sections of EZ1
, when there are more than one j.) □

Remark 3.12. In Proposition 3.4, and in Corollaries 3.7 and 3.8, we
only need the weaker assumption that

(

ρ(A∞)
)

(H0) ⊂ H1. When H0 =
(

ρ(A∞)
)−1

(H1), we already know in Proposition 3.4(2) that the morphism
EZ0,j

→ EZ1
in (3.9) is a closed immersion, without assuming that f is a

closed immersion; but it is generally not true that the morphism EZ0,j
(σj)→

EZ1
(τ) is a closed immersion when EZ0,j

→ EZ1
is (cf. Remark 4.1 below),

regardless of whether f is.

We shall reinstate the full Assumption 2.1 from now on.

4. Conditions on cone decompositions

Motivated by Corollary 3.8, with the goal of proving Theorem 2.2 in mind,
we would like to show the existence of collections Σ0 and Σ1 such that Σ0 is
induced by Σ1 as in Proposition 3.4(4) and such that, for each σ ∈ Σ+

Z0
that

is the preimage under P+
Z0
→ P+

Z1
of some τ ∈ Σ+

Z1
, the canonical morphism

EZ0
(σ)→ EZ1

(τ)

(cf. (3.9)) is a closed immersion.

Remark 4.1. This condition of being a closed immersion is not satisfied in
general. For example, it is possible to choose the linear algebraic data such
that

SZ1
∼= Z⊕3

↠ SZ0
∼= Z⊕2

corresponds to the projection to the first two factors, in which case

S∨
Z0,R
∼= R⊕2 →֒ S∨

Z1,R
∼= R⊕3

is the inclusion of the first two coordinates, and such that we have the
following:
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• τ ⊂ S∨
Z1,R

is R>0-spanned by {(0, 0, 1), (−1, 0, 2), (1, 1,−2)}, in which
case τ∨ is Z≥0-spanned by the Z-basis {(−1, 1, 0), (0, 1, 0), (2, 0, 1)} of
Z⊕3.

• σ ⊂ S∨
Z0,R

is R>0-spanned by {(1, 1), (0, 1)}, in which case σ∨ is Z≥0-

spanned by the Z-basis {(−1, 1), (1, 0)} of Z⊕2.

• σ = (S∨
Z0,R
→֒ S∨

Z1,R
)−1(τ). However, τ∨ → σ∨ is not surjective, be-

cause the Z≥0-span of {(−1, 1), (0, 1), (2, 0)} cannot contain (1, 0).

• The morphism EZ0
(σ)→ EZ1

(τ) is given by the morphism

Spec(Z[σ∨])→ Spec(Z[τ∨])

induced by τ∨ → σ∨, and hence is not a closed immersion.

Remark 4.2. In fact, in Remark 4.1, even the induced map EZ0
(σ)(C)→

EZ1
(τ)(C) on C-points is not injective: For ? = ±1, if x? : Z[σ∨]→ C is the

ring homomorphism sending (−1, 1) and (1, 0) in σ∨ to 0 and ?, respectively,
then the induced homomorphism y : Z[τ∨]→ C sends (−1, 1, 0), (0, 1, 0), and
(2, 0, 1) to 0, 0, and 1, respectively. That is, both the C-points defined by
x1 and x−1 are sent to the same C-point defined by y. This shows that, al-
ready in characteristic zero, the induced morphism EZ0

(σ)→ EZ1
(τ) is not

universally injective, and hence cannot induce a universal homeomorphism
between the source and its image in the target. Moreover, for any ratio-
nal polyhedral cone σ′ ⊂ σ, the induced morphism EZ0

(σ′)→ EZ1
(τ) is not

universally injective either.

Nevertheless, we have the following:

Lemma 4.3. Let σ ⊂ S∨
Z0,R

and τ ⊂ S∨
Z1,R

be any rational polyhedral cones
such that

τ = (S∨
Z0,R →֒ S∨

Z1,R)(σ).

Then the canonical morphism

EZ0
(σ) ∼= Spec(Z[σ∨])→ EZ1

(τ) ∼= Spec(Z[τ∨])

is a closed immersion.

Proof. Given an arbitrary ℓ0 ∈ σ∨, take any lift ℓ1 of it in SZ1
, which exists

because SZ1
→ SZ0

is surjective. Given an arbitrary y1 ∈ τ , by assumption,
there exists some y0 ∈ σ such that y1 = (S∨

Z0,R
→֒ S∨

Z1,R
)(y0), and so that
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⟨ℓ1, y1⟩ = ⟨ℓ0, y0⟩ ≥ 0. Consequently, ℓ1 ∈ τ∨, and τ∨ → σ∨ is surjective, as
desired. □

Lemma 4.4. In Lemma 4.3, let us identify S∨
Z0,R

with a subspace of S∨
Z1,R

for simplicity, so that τ = σ under this identification; and let

S∨ := S∨
Z1
∩ (R · σ)

and

S := HomZ(S
∨,Z),

so that we have surjective homomorphisms

SZ1
↠ SZ0

↠ S

corresponding to injective homomorphisms of tori

E →֒ EZ0
→֒ EZ1

.

For the sake of clarity, let us denote by ς the same cone σ in S∨
R = R · σ.

Let E, E⊥
Z0
, and E⊥

Z1
be the split tori over Spec(Z) with character groups S,

S⊥
Z0

:= ker(SZ0
↠ S),

and

S⊥
Z1

:= ker(SZ1
↠ S),

respectively. Let us pick any splitting

SZ1
∼= S⊕ S⊥

Z1

(as Z-modules) which induces a splitting

SZ0
∼= S⊕ S⊥

Z0
.

Then these splittings are dual to compatible fiber products

EZ1
∼= E ×

Spec(Z)
E⊥

Z1

and

EZ0
∼= E ×

Spec(Z)
E⊥

Z0
,

respectively; and the canonical injective homomorphism EZ0
→֒ EZ1

factors
as a fiber product of the identity homomorphism of E with the canonical
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injective homomorphism

E⊥
Z0
→֒ E⊥

Z1

dual to

S⊥
Z1

↠ S⊥
Z0
.

Moreover, these splittings extend to compatible fiber products

EZ1
(τ) ∼= E(ς) ×

Spec(Z)
E⊥

Z1

and

EZ0
(σ) ∼= E(ς) ×

Spec(Z)
E⊥

Z0
,

respectively; and the canonical closed immersion EZ0
(σ) →֒ EZ1

(τ) factors
as the fiber product of the identity morphism of E(ς) with the same injec-
tive group homomorphism E⊥

Z0
→֒ E⊥

Z1
as above. Furthermore, any closed

immersion EZ0
(σ) →֒ EZ1

(τ) that is a translation of the canonical one by
some section of EZ1

can be identified with the product of an isomorphism
E(ς)

∼→ E(ς) that is the translation of the identity morphism on E(ς) by
some section of E with a closed immersion E⊥

Z0
→֒ E⊥

Z1
that is the transla-

tion of the canonical one by some section of E⊥
Z1
.

Proof. These follow from the identification τ∨ = (SZ1
↠ SZ0

)−1(σ∨) in the
proof of Lemma 4.3, and from the various definitions introduced in this
lemma. □

Lemma 4.5. In Lemma 4.3, let

∂EZ0
(σ) := EZ0

(σ)− EZ0

and

∂EZ1
(τ) := EZ1

(τ)− EZ1
,

as reduced closed subschemes of EZ0
(σ) and EZ1

(τ), respectively. Then the
canonical morphism EZ0

(σ)→ EZ1
(τ) induces a canonical morphism

∂EZ0
(σ)→ ∂EZ1

(τ)

and a canonical isomorphism

∂EZ0
(σ)

∼→ ∂EZ1
(τ) ×

EZ1
(τ)
EZ0

(σ)
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If we denote by Iσ (resp. Iτ ) the OEZ0 (σ)
-ideal (resp. OEZ1 (τ)

-ideal) defining
∂EZ0

(σ) (resp. ∂EZ1
(τ)), then

Iσ ∼=
(

EZ0
(σ)→ EZ1

(τ)
)∗
(Iτ )

as OEZ0
(σ)-ideals.

Proof. In the setting of Lemma 4.4, consider the reduced closed subscheme

∂E(ς) := E(ς)− E

of E(ς). Since E⊥
Z0

is smooth as a torus, ∂EZ0
(σ) coincides with the pullback

of ∂E(ς) under the first projection in the fiber product

EZ0
(σ) ∼= E(ς) ×

Spec(Z)
E⊥

Z0

as reduced subschemes of EZ0
(σ), because they coincide as subsets. Similarly,

∂EZ1
(τ) coincides with the pullback of ∂E(ς) under the first projection in

the fiber product

EZ1
(τ) ∼= E(ς) ×

Spec(Z)
E⊥

Z1

as reduced subschemes of EZ1
(τ). Since these two fiber products are com-

patible with each other, ∂EZ0
(σ) coincides with the pullback of ∂EZ1

(τ) as
subschemes, and the lemma follows. □

These justify the following:

Definition 4.6. We say that two compatible collections Σ0 and Σ1 of cone
decompositions as in Proposition 3.4(4) are strictly compatible with

each other or simply strictly compatible if, for each Z0 → Z1 as in
Proposition 3.4(1), the image of each σ ∈ Σ+

Z0
under P+

Z0
→֒ P+

Z1
is exactly

some τ ∈ Σ+
Z1
.

Remark 4.7. Certainly, if Σ0 and Σ1 are strictly compatible as in Defini-
tion 4.6, then Σ0 is induced by Σ1, and they are compatible, as in Proposi-
tion 3.4(4).
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Lemma 4.8. Under the assumption that f : X0 → X1 is a closed immer-
sion, the morphism

∐

j

(

EZ0,j
×

Spec(Z)
CZ0,j

)

→ EZ1
×

Spec(Z)
CZ1

in Corollary 3.8 is a closed immersion over the open image of U1 under
(3.11). Since EZ0,j

and EZ1
are separated group schemes with sections which

are closed immersions, CZ0,j
→ CZ1

(and hence ΞZ0,j
→ ΞZ1

) are also closed
immersions over the further image of U1 in CZ1

, for all j. Moreover, if Σ0

and Σ1 are strictly compatible as in Definition 4.6, then the morphism

∐

j

(

EZ0,j
(σj) ×

Spec(Z)
CZ0,j

)

→ EZ1
(τ) ×

Spec(Z)
CZ1

in Corollary 3.8 is also a closed immersion over the open image of U1 under
(3.11).

Proof. The first two assertions follow immediately from Corollary 3.8. By
Lemma 4.3, the morphism

EZ0,j
(σj) ×

Spec(Z)
CZ0,j

→ EZ1
(τ) ×

Spec(Z)
CZ1

is a closed immersion over the open image of U1, for each j. It remains to
show that any point x in the image of U1 and in the image of

∐

j

(

EZ0,j
(σj) ×

Spec(Z)
CZ0,j

)

→ EZ1
(τ) ×

Spec(Z)
CZ1

lies on at most one of the images of the above closed immersions. Suppose
to the contrary that there are two distinct indices j and j′, together with
points y and y′ of

EZ0,j
(σj) ×

Spec(Z)
CZ0,j

and

EZ0,j′
(σj′) ×

Spec(Z)
CZ0,j′

,

respectively, which are mapped to the point x of EZ1
(τ) ×

Spec(Z)
CZ1

. Then x,

y, and y′ have the same image z in CZ1
, which is also in the images of the
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closed immersions from CZ0,j
and CZ0,j′

, and we obtain (by pullback to z)
closed immersions

ϕj : EZ0,j
(σj)z → EZ1

(τ)z

and

ϕj′ : EZ0,j′
(σj′)z → EZ1

(τ)z

over z, which are translations of the canonical ones by some sections of
(EZ1

)z, whose images overlap at x (also viewed as a point of EZ1
(τ)z). By

Lemma 4.4, in the notation there, ϕj and ϕj′ are, respectively, fiber products
over z of some isomorphisms

E(ς)z
∼→ E(ς)z

that are translations of the identity morphism of E(ς)z by some sections of
Ez with closed immersions

ψj : (E
⊥
Z0,j

)z → (E⊥
Z1
)z

and

ψj′ : (E
⊥
Z0,j′

)z → (E⊥
Z1
)z

that are translations of the canonical ones by some sections of (E⊥
Z1
)z. The

images of ψj and ψj′ overlap at the image x of x in (E⊥
Z1
)z, exactly because

the images of ϕj and ϕj′ do at x, regardless of the above translations of
the identity morphism of E(ς)z by sections of Ez. Hence, the images of the
restrictions

(EZ0,j
)z → (EZ1

)z

and

(EZ0,j′
)z → (EZ1

)z

of ϕj and ϕj′ , respectively, overlap at all points of the preimage W of x
in (EZ1

)z. When canonically viewed as a subset of EZ1
(τ) ×

Spec(Z)
CZ1

, this

W contains x in its closure. Since x is a point of the open image of U1 by
assumption,W must overlap with the open image of U1 at some point in the
open image of U1. Thus, we obtain a contradiction with the first assertion
of this lemma, as desired. □

By Corollary 3.8 and Lemmas 4.5 and 4.8, we obtain the following:
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Proposition 4.9. If there exist compatible collections Σ0 and Σ1 that are
strictly compatible as in Definition 4.6, then the induced morphism

f torΣ0,Σ1
: Xtor

0,Σ0
→ X

tor
1,Σ1

as in Proposition 3.4 is a closed immersion extending f : X0 → X1. More-
over, if we denote by IΣi

the OXtor
i,Σi

-ideal defining the boundary Xtor
i,Σi
− Xi

(with its reduced subscheme structure), for i = 0, 1, then we have

f tor,∗Σ0,Σ1
(IΣ1

) ∼= IΣ0

as OXtor
i,Σ0

-ideals.

In order to prove Theorem 2.2, it remains to establish the following:

Proposition 4.10. There exist compatible collections Σ0 and Σ1 that are
strictly compatible as in Definition 4.6, which we may assume to be projective
and smooth and satisfy the condition that, for i = 0, 1, and for each Zi and
each σ ∈ Σ+

Zi
, the stabilizer ΓZi,σ of σ in ΓZi

is trivial. Moreover, we may
assume that Σ0 and Σ1 refine any finite number of prescribed compatible
collections of cone decompositions.

Proof. Let us temporarily ignore the assumption on projectivity and smooth-
ness, and take Σ0 to be induced by Σ1 as in Proposition 3.4(4) (cf. [11, Sec-
tion 3.3]). Note that, given any Z1 and any [τ ] ∈ Σ+

Z1
/ΓZ1

, there exist only
finitely many Z0 mapped to Z1; and for each such Z0, there exist only finitely
many [σ] ∈ Σ+

Z0
/ΓZ0

mapped to [τ ] under the map Σ+
Z0
/ΓZ0

→ Σ+
Z1
/ΓZ1

(sim-
ply because there are only finitely many possible Z0 and [σ]). Since Σ0 is
induced by Σ1, for any τ ∈ Σ+

Z1
representing some [τ ] as above, each [σ] that

is mapped to [τ ] as above is represented by some σ ∈ Σ+
Z0

that is the preim-
age of τ under the injection S∨

Z0,R
→֒ S∨

Z1,R
as in Proposition 3.4(2). In this

case, the image of σ is the intersection of τ with the image of S∨
Z0,R
→֒ S∨

Z1,R
.

As a result, up to refining each such τ by intersections with finitely many
hyperplanes, and up to refining all the finitely many σ involved accordingly,
we may assume that Σ0 and Σ1 are strictly compatible (but still not neces-
sarily projective and smooth). We may also refine both of them, and assume
that they refine any finite number of prescribed compatible collections and
satisfy the condition in the end of the first sentence of the proposition. Fi-
nally, up to further refinements, we may assume that Σ0 and Σ1 are both
projective and smooth, because as soon as Σ0 and Σ1 are strictly compatible
and satisfy the last condition of the proposition, any further refinements will
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remain so; and because, when Σ0 and Σ1 are strictly compatible, both the
projectivity and smoothness of Σ1 are automatically inherited by Σ0, and
hence it suffices to refine Σ1. (However, note that such an inheritance is not
necessarily true in general, when Σ0 is merely induced by Σ1.) □

The proof of Theorem 2.2 is now complete.

5. Some examples

Example 5.1. In Case (1), suppose that

G0 = GL2,Q

and

G1 := GL2,Q ×
Gm,Q

GL2,Q,

where the two structure morphisms in the fiber product are both the deter-
minant homomorphism. Then G1 is naturally a subgroup scheme of G0×G0,
and the diagonal morphism of G0 factors through a homomorphism

ρ : G0 → G1.

Let H+ and H− denote the Poincaré upper and lower half-planes, respec-
tively, and let i denote the

√
−1 in H+. Let

h0 : ResC/RGm,C → G0,R = GL2,R

be defined by

a+ bi 7→
(

a −b
b a

)

,

and let h1 the composition of h0 with ρR : G0,R → G1,R. Then

G0(R) · h0 = H± = H+

∐

H−,

and

G1(R) · h1 = (H+×H+)
∐

(H−×H−).

Let H0 ⊂ G0(A
∞) = GL2(A

∞) be a principal congruence subgroup of some
level n ≥ 3, and let

H1 := (H0×H0) ∩G1(A
∞).
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Then X0 is the modular curve of principal level n over S0 = Spec(Q), and
X1 is an open-and-closed subscheme of X0×

S0

X0. In this case, the morphism

f : X0 → X1

is the closed immersion induced by the diagonal morphism of X0, and all
possible maps PZ0

→ PZ1
can be identified with either {0} → {0} or the

diagonal map R≥0 → R2
≥0. There is a unique choice of Σ0, and Xtor

0,Σ0
is the

usual compactified modular curve. Let Σ′
1 denote the compatible collection

of cone decompositions for X1 induced by Σ0×Σ0, which is given by either
{0} or the faces of the whole cone R2

>0. Then Xtor
1,Σ′

1
is an open-and-closed

subscheme of Xtor
0,Σ0
×
S0

Xtor
0,Σ0

, and the morphism

f torΣ0,Σ′
1
: Xtor

0,Σ0
→ X

tor
1,Σ′

1

is the closed immersion induced by the diagonal morphism of Xtor
0,Σ0

. However,

Σ0 and Σ′
1 are not strictly compatible, and the pullback of IΣ′

1
is I⊗2

Σ0
rather

than IΣ0
(which means the image of f torΣ0,Σ′

1
does not meet the boundary of

Xtor
1,Σ′

1
transversally). (See Remark 2.5.) Nevertheless, by Theorem 2.2, there

exists a refinement Σ1 of Σ′
1 such that

f torΣ0,Σ1
: Xtor

0,Σ0
→ X

tor
1,Σ1

is a closed immersion and such that the pullback of IΣ1
is IΣ0

. In practice,
the difference between Σ′

1 and its refinement Σ1 is given by some subdivisions
of cones of the form R2

>0, which correspond to (possibly repeated) blowups
at some possibly nonreduced closed subschemes over products of cusps, after
which the image of f torΣ0,Σ1

meets the boundary of Xtor
1,Σ1

transversally.

Example 5.2. In Case (2), suppose that we have the following:

1) O0 = Z×Z and O1 = Z is diagonally embedded in O0, and ⋆0 and ⋆1
are trivial.

2) L1 = Z⊕4, with the first (resp. second) factor of O0 = Z×Z acting
naturally on the first and third (resp. second and fourth) factors of
L1 = Z⊕4 and trivially on the remaining factors.

3) Let

⟨ · , · ⟩1 : L1×L1 → Z(1)
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be the self-dual pairing defined by composing the standard symplectic
pairing

(

(x1, x2, x3, x4), (y1, y2, y3, y4)
)

7→ x1y3 + x2y4 − x3y1 − x4y2

with a fixed choice of isomorphism 2πi : Z→ Z(1), where i is the
√
−1

in H+ as in Example 5.1, and let h1(a+ bi) act on L1,R
∼= R⊕4 via

the left multiplication by

(

a −b
b a

)

on the first and third factors, and

similarly on the second and fourth factors.

Then (G0⊗
Z
Q,G0(R) · h0) is the same as the (G1,G1(R) · h1) in Exam-

ple 5.1, and

(G1⊗
Z
Q,G1(R) · h1) = (GSp4,Q,H2,±),

where H2,± is the union of the Siegel upper and lower half-spaces of genus
two. In both cases, the reflex field is Q, so that we can take F = Q, and
there are no bad primes for the integral PEL data.

LetH1 ⊂ G1(Ẑ
✷) be a principal congruence subgroup of some level n ≥ 3

that is prime-to-✷, and let H0 := H1 ∩G0(Ẑ
✷). Then the moduli problem

defined by (O1, ⋆1, L1, ⟨ · , · ⟩1, h1) and H1 is a smooth integral model X1 of
the Siegel threefold over S0 = Spec(Z(✷)) parameterizing principally polar-
ized abelian surfaces with symplectic principal level-n structures; and the
moduli problem defined by (O0, ⋆0, L0, ⟨ · , · ⟩0, h0) and H0 is the closed mod-
uli subscheme X0 of X1 parameterizing principally polarized abelian surfaces
of the form (E1×

S
E2, λ1×

S
λ2), where (E1, λ1) and (E2, λ2) are canonically

principally polarized elliptic curves, with principal level-n structures satisfy-
ing some conditions. At the level of connected components, X0 can be viewed
as the product of two smooth integral models of modular curves of principal
level n. In this case, we have a closed immersion

f : X0 →֒ X1,

and Theorem 2.2 guarantees the existence of some closed immersion of
toroidal compactifications

f torΣ0,Σ1
: Xtor

0,Σ0
→֒ X

tor
1,Σ1

extending f , defined by some collections Σ0 and Σ1 of cone decompositions
that are strictly compatible.
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The map

P
+
Z0

:= (P+
Z0
− {0})/R×

>0 → P
+
Z1

:= (P+
Z1
− {0})/R×

>0

can be from the empty set to the empty set; from a single point to a single
point; or from the vertical half-line iR>0 to H+ (up to some identifications).
In the last case, ΓZ0

acts trivially on iR>0 because of neatness, while ΓZ1
acts

via a neat congruence subgroup of SL2(Z) on H+ (with trivial stabilizers).
Then Σ+

Z0
gives a subdivision of iR>0, while Σ+

Z1
gives a triangularization

of H+ that is compatible with ΓZ1
and descends to a triangularization of

H+/ΓZ1
. Note that any nontrivial subdivision of iR>0 means, when we view

the connected components of X0 as products of those of two smooth integral
models of modular curves, we have (possibly repeated) blowups at some
subschemes over products of cusps. (This is the end of Example 5.2.)

Example 5.3. In Case (2), suppose that we have the following:

1) n ≥ 2 is any integer.

2) K is an imaginary quadratic extension of Q, with maximal order OK .

3) O0 = OK ×OK and O1 = OK is diagonally embedded in O0, and ⋆0
and ⋆1 are the complex conjugations (simultaneously on both factors
of O0).

4) L1 = O⊕n+1
K , with the first (resp. second) factor of O0 = OK ×OK

acting naturally on the first n factors (resp. last factor) of L1 = O⊕n+1
K

and trivially on the remaining factors.

5) Let ε ∈ Diff−1
OK/Z be any element in the inverse different that is invari-

ant under the complex conjugation, and let

⟨ · , · ⟩1 : L1×L1 → Z(1)

be the pairing defined by composing the pairing

(

(x1, x2, . . . , xn+1), (y1, y2, . . . , yn+1)
)

7→ TrOK/Z

(

ε · (−x1y1 + x2y2 + · · ·+ xn+1yn+1)
)

with a fixed choice of isomorphism 2π
√
−1 : Z→ Z(1), and let h1(z)

act on L1,R
∼= C⊕n+1 via the left multiplication by the complex conju-

gate z on the first factor, and by z itself on the remaining factors.
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Then

G0⊗
Z
R ∼= G(Un−1,1×U1) ∼= GUn−1,1 ×

Gm,R

GU1,

where the two structure morphisms in the fiber product are similitude ho-
momorphisms; and

G1⊗
Z
R ∼= GUn,1 .

In both cases, the reflex field isK because n ≥ 2, so that we can take F = K;
and the bad primes are those ramified in K and divides TrOK/Z(ε), and we
can take ✷ to be any set of rational primes that are not bad. Let us choose
H0 and H1 suitably, so that we have smooth integral models X0 and X1 over
S0, with a closed immersion

f : X0 → X1,

which can be interpreted as mapping a smooth integral model of a GUn−1,1

Shimura variety to a smooth integral model of a GUn,1 Shimura variety
defined by taking fiber products of the universal abelian scheme with some
CM elliptic curves (which explains the U1 part). (It is perhaps better to
work with abelian-type Shimura varieties and arrange G0⊗

Z
R→ G1⊗

Z
R to

be Un−1,1 → Un,1, but the difference is on the centers and hence unimportant
for our purpose.)

By Theorem 2.2, there exists some closed immersion of toroidal com-
pactifications

f torΣ0,Σ1
: Xtor

0,Σ0
→֒ X

tor
1,Σ1

extending f , defined by some strictly compatible collections Σ0 and Σ1 of
cone decompositions. But note that we have no choice to make for Σ0 and
Σ1. All possible maps PZ0

→ PZ1
can be identified with either {0} → {0}

or R≥0 → R≥0, and in all cases the cone decompositions are uniquely deter-
mined and trivial (and satisfy all the usual conditions we impose). Hence,
Theorem 2.2 just says that the canonical morphism

f tor : Xtor
0 → X

tor
1

between smooth integral models of toroidal compactifications over S0, where
all the collections of cone decompositions are now justifiably omitted from
the notation, is a closed immersion.

Nevertheless, such a discussion is not completely meaningless. The fact
that smooth toroidal compactifications of X0 and X1 uniquely exist is well
known, but the fact that closed immersions f : X0 → X1 extend as above to
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closed immersions f tor : Xtor
0 → Xtor

1 is probably less so. Also, as soon as we
have such a f tor, we can consider the closed immersion

(IdX0
, f) : X0 → X0×

S0

X1,

which then extends to the closed immersion

(IdXtor
0
, f tor) : Xtor

0 → X
tor
0 ×

S0

X
tor
1 ,

which provides the justification for some usual geometric considerations re-
lated to the Gan–Gross–Prasad conjecture.

We have similar assertions in Case (3). (This is the end of Example 5.3.)

Example 5.4. In Case (1), suppose that G0 is the special orthogonal group
over Q defined by a quadratic space V0 of signature (n− 1, 2) at∞, for some
n ≥ 2, and let G1 be the special orthogonal group over Q defined by

V1 := (Q · e)
⊥
⊕V0,

where the quadratic form is defined to have value +1 on the additional basis
vector e. Then

G0⊗
Q
R ∼= SOn−1,2

and

G1⊗
Q
R ∼= SOn,2 .

Let i be the same
√
−1 as in Example 5.1. Up to suitable choices of the

above isomorphisms, we can arrange that h0 and h1 are defined by mapping

Gm,C → SO2,R : r(cos θ + i sin θ) 7→
(

cos 2θ − sin 2θ
sin 2θ cos 2θ

)

into the second factors of the diagonally embedded compact subgroups

SOn−1,R× SO2,R

and

SOn,R× SO2,R

of SOn−1,2 and SOn,2, respectively. Then the reflex fields of both Shimura
data (G0,G0(R) · h0) and (G1,G1(R) · h1) are Q, and we can take F to be
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Q (or any field extension in C). Let H0 and H1 be chosen such that

f : X0 → X1

is a closed immersion over S0 = Spec(F ). Then P
+
Z0
→ P

+
Z1

can be either
from the empty set to the empty set; from a single point to a single point;
or from the hyperbolic (n− 1)-space to the hyperbolic n-space (equivariant
with SOn−1,1 → SOn,1, up to some identifications). (The map iR>0 → H+

in Example 5.2 can be viewed as a special case of the last possibility, with
n = 2.) By Theorem 2.2, there exists some closed immersion of toroidal
compactifications

f torΣ0,Σ1
: Xtor

0,Σ0
→֒ X

tor
1,Σ1

extending f , for some strictly compatible Σ0 and Σ1.
We have similar assertions in Cases (1) and (4) if we replace special

orthogonal groups above with the corresponding general spin groups, with
suitable associated Shimura data and Siegel embeddings. (This is the end of
Example 5.4.)

6. Perfectoid toroidal compactifications

Finally, as an application, let us verify [9, Hypothesis 2.18]. As explained
in [9], this allows for a substantial simplification of the proof of the main
theorems in [9].

Let us explain how [9, Hypothesis 2.18] fits into our setting. In Case (1),
suppose that G1 = GSp2g,Q, for some g ≥ 0, so that ρ : G0 → G1 induces a
Siegel embedding

(G0,D0) →֒ (G1,D1),

making (G0,D0) a Hodge-type Shimura datum. We shall fix the choice of a
rational prime p > 0, and assume that the base field F = C is the completion
of an algebraic closure of Qp. Let Hp

1 ⊂ G1(A
∞,p) be a neat open compact

subgroup, and let

Hp
0 :=

(

ρ(A∞,p)
)−1

(Hp
1).

For each r ≥ 0, consider the principal congruence subgroup

H(r)
1,p := ker

(

GSp2g(Zp)→ GSp2g(Z/p
r)
)

at p, and let

H(r)
1 := Hp

1H
(r)
1,p.
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Let

H(r)
0,p :=

(

ρ(Qp)
)−1

(H(r)
1,p)

and

H(r)
0 := Hp

0H
(r)
0,p =

(

ρ(A∞)
)−1

(H(r)
1 ).

Then we have morphisms between the associated Shimura varieties

f (r) : X
(r)
0 → X

(r)
1

at levels H(r)
0 and H(r)

1 , respectively, which are compatible with each other

when we vary r. We shall similarly denote other objects at H(r)
0 and H(r)

1

with superscripts “(r)”. By [13, Lemma 2.1.2], up to replacing Hp
1 with a

finite index subgroup, we may assume that f (r) is a closed immersion, for
all r ≥ 0.

By Proposition 4.10, there exist collections Σ
(0)
0 and Σ

(0)
1 for X

(0)
0 and

X
(0)
1 , respectively, that are strictly compatible with each other as in Defi-

nition 4.6, which we assume to be projective and smooth and satisfy the

condition that, for i = 0, 1, and for each Z
(0)
i and each σ ∈ Σ+

Z
(0)
i

, the sta-

bilizer Γ
Z

(0)
i ,σ of σ in Γ

Z
(0)
i

is trivial. Note that Proposition 3.4 can also be
applied to morphisms between Shimura varieties associated with the same

Shimura datum, but with possibly different levels. For each r ≥ 0, let Σ
(r)
0

and Σ
(r)
1 denote the induced collections at levels H(r)

0 and H(r)
1 , respectively.

Then they are projective and satisfy the analogue of the above condition
on stabilizers, and are strictly compatible with each other. Since the levels

H(r)
1,p at p are principal, for all r ≥ 0, and since H(r)

0,p =
(

ρ(Qp)
)−1

(H(r)
1,p), the

canonical homomorphisms

S
Z

(0)
i
→ S

Z
(r)
i

can be identified with

S
Z

(0)
i
→֒ 1

prSZ
(0)
i
,

for i = 1, 2. In particular, the smoothness condition on cone decompositions

remains the same when we vary r ≥ 0. Thus, Σ
(r)
0 and Σ

(r)
1 are also smooth,

and we have verified all the conditions we would like to impose on these
collections. By Proposition 3.4(5), the canonical morphisms

X
(r),tor

i,Σ
(r)
i

→ X
(r′),tor

i,Σ
(r′)
i

,

for i = 1, 2 and r ≥ r′ ≥ 0, are all finite. Note that each such finite morphism
is automatically flat (by [10, IV-3, 15.4.2 e′)⇒b)]) and therefore universally
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open (by [10, IV-2, 2.4.6]), because both its source and target are smooth
and of the same equi-dimension.

For simplicity, we shall omit the subscripts “Σ
(r)
i ” in the following. We

shall change the font from X to X when we denote the associated adic spaces.
The case i = 0 of the following proposition verifies [9, Hypothesis 2.18]:

Proposition 6.1. For i = 0, 1, there is a perfectoid space X (∞),tor
i over C

such that

X (∞),tor
i ∼ lim←−

r

X (r),tor
i ,

where “∼” has the same meaning as in [28, Definition 2.4.1].

Proof. We shall imitate the proof of [27, Theorem 4.1.1(i)]. Recall that the

assertion X (∞),tor
i ∼ lim←−r

X (r),tor
i means there are compatible morphisms

X (∞),tor
i → X (r),tor

i

inducing a homeomorphism of topological spaces

|X (∞),tor
i | ∼→ lim←−

r

|X (r),tor
i |,

as well as an open covering of X (∞),tor
i by affinoid adic spaces

Spa(R
(∞)
i , R

(∞),+
i )

inducing a homomorphism

lim−→ R
(r)
i → R

(∞)
i

with dense image, where the direct limit runs over all r ≥ 0 and all affinoid
open subspaces

Spa(R
(r)
i , R

(r),+
i ) ⊂ X (r),tor

i

through which the compositions of Spa(R
(∞)
i , R

(∞),+
i ) →֒ X (∞),tor

i → X (r),tor
i

factor.
By [25, Corollary A.19 and its proof], the above holds when i = 1, and

we may assume that each member Spa(R
(∞)
1 , R

(∞),+
1 ) in the open covering of

X (∞),tor
1 is affinoid perfectoid and is the preimage of some Spa(R

(r)
1 , R

(r),+
1 ),
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for all sufficiently large r. Since

f (r),tor : X
(r),tor
0 → X

(r),tor
1

is a closed immersion by Proposition 4.9 (and the constructions of Σ
(r)
0 and

Σ
(r)
1 ), the associated morphism

X (r),tor
0 → X (r),tor

1

is a closed immersion of adic spaces. Hence, we have

X (r),tor
0 ×

X
(r),tor
1

Spa(R
(r)
1 , R

(r),+
1 ) ∼= Spa(R

(r)
0 , R

(r),+
0 )

for some Huber pair (R
(r)
0 , R

(r),+
0 ) such that R

(r)
1 → R

(r)
0 is surjective. Let

I(r) denote the kernel of this homomorphism. Let Z(r) denote the Zariski

closed subset of Spa(R
(∞)
1 , R

(∞),+
1 ), as in [27, Definition 2.2.1], defined by

the image of I(r) in R
(∞)
1 . By comparing definitions, we can identify Z(r)

with

| Spa(R(r)
0 , R

(r),+
0 )| ×

| Spa(R
(r)
1 ,R

(r),+
1 )|

| Spa(R(∞)
1 , R

(∞),+
1 )|

as closed subsets of | Spa(R(∞)
1 , R

(∞),+
1 )|. By [27, Lemma 2.2.2], there is

a canonical affinoid perfectoid space Spa(R
(∞),(r)
0 , R

(∞),(r),+
0 ), with a mor-

phism

Spa(R
(∞),(r)
0 , R

(∞),(r),+
0 )→ Spa(R

(∞)
1 , R

(∞),+
1 ),

induced by a canonical homomorphism

R
(∞)
1 → R

(∞),(r)
0

with dense image, inducing a homeomorphism

| Spa(R(∞),(r)
0 , R

(∞),(r),+
0 )| ∼→ Z(r).

Moreover, by the construction in the proof of [27, Lemma 2.2.2], the composi-

tion of R
(r)
1 → R

(∞)
1 → R

(∞),(r)
0 factors through R

(r)
1 → R

(r)
0 . By the univer-

sal property explained in [27, Remark 2.2.3], for all r′ ≥ r, we have compati-

ble canonical homomorphisms (R
(∞),(r)
0 , R

(∞),(r),+
0 )→ (R

(∞),(r′)
0 , R

(∞),(r′),+
0 )

over (R
(∞)
1 , R

(∞),+
1 ).
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Let

(R
(∞)
0 , R

(∞),+
0 )

denote the p-adic completion of

lim−→
r

(R
(∞),(r)
0 , R

(∞),(r),+
0 ),

where the direct limit runs over all sufficiently large r such that (R
(∞),(r)
0 ,

R
(∞),(r),+
0 ) are defined as above, which is canonically a Huber pair over

(R
(∞)
1 , R

(∞),+
1 ). Since the homomorphisms R

(∞)
1 → R

(∞),(r)
0 have dense im-

ages, so does the composition of

R
(∞)
1 → lim−→

r

R
(∞),(r)
0 → R

(∞)
0 .

Since the p-th power homomorphism R
(∞),+
0 /p→ R

(∞),+
0 /p is surjective be-

cause the p-th power homomorphisms R
(∞),(r),+
0 /p→ R

(∞),(r),+
0 /p are, R

(∞)
0

is a perfectoid C-algebra, by [12, Proposition 3.6.2]. Thus, we have obtained

an affinoid perfectoid space Spa(R
(∞)
0 , R

(∞),+
0 ) over Spa(R

(∞)
1 , R

(∞),+
1 ). More-

over, for all sufficiently large r, we have compatible homomorphisms

R
(r)
0 → R

(∞)
0 ,

and the composition of

lim−→
r

R
(r)
1 → R

(∞)
1 → R

(∞)
0

factors through the induced homomorphism

lim−→
r

R
(r)
0 → R

(∞)
0 .

Since the homomorphisms lim−→r
R

(r)
1 → R

(∞)
1 → R

(∞)
0 have dense images, so

do their composition and the induced homomorphism lim−→r
R

(r)
0 → R

(∞)
0 .

The corresponding morphisms of adic spaces induce homeomorphisms of
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topological spaces

| Spa(R(∞),(r)
0 , R

(∞),(r),+
0 )| ∼→ lim←−

r

| Spa(R(∞),(r)
0 , R

(∞),(r),+
0 )|

∼→ lim←−
r

(

| Spa(R(r)
0 , R

(r),+
0 )| ×

| Spa(R
(r)
1 ,R

(r),+
1 )|

| Spa(R(∞)
1 , R

(∞),+
1 )|

)

.

Since the induced map

| Spa(R(∞)
i , R

(∞),+
i )| → lim←−

r

| Spa(R(r)
i , R

(r),+
i )|

is a homeomorphism when i = 1, the same is true when i = 0, by canonically

identifying these topological spaces as subspaces of
∏

r | Spa(R
(r)
1 , R

(r),+
1 )|.

Thus, the affinoid perfectoid space Spa(R
(∞)
0 , R

(∞),+
0 ) satisfies

Spa(R
(∞)
0 , R

(∞),+
0 ) ∼ lim←−

r

Spa(R
(r)
0 , R

(r),+
0 ).

By gluing such Spa(R
(∞)
0 , R

(∞),+
0 ) using [28, Propositions 2.4.3 and 2.4.5]

over an open covering of X (∞),tor
1 by affinoid perfectoid spaces Spa(R

(∞)
1 ,

R
(∞),+
1 ) as above, we obtain a perfectoid space X (∞),tor

0 over C such that

X (∞),tor
0 ∼ lim←−

r

X (r),tor
0 ,

as desired. □
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