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In this paper, we prove the Shafarevich conjecture for proper hy-
perbolic polycurves, which is a higher dimensional analogue of that
for proper hyperbolic curves. We prove this by using the good re-
duction criterion for proper hyperbolic polycurves established in
[19], which gives a new proof of the main theorem of [7] for canon-
ically polarized surfaces smooth proper over curves. Our theorem
is a generalization of the result of Javanpeykar [7] in the follow-
ing two points: (i) We treat proper smooth models which are not
necessarily canonically polarized. (ii) We treat higher dimensional
varieties, that is, proper hyperbolic polycurves of any dimension.
This paper also contains a generalization of the moduli theory of
Kodaira fibrations due to Jost and Yau [13].

0. Introduction

The Shafarevich conjecture for proper hyperbolic curves, which was proved
by Faltings, states the finiteness of isomorphism classes of proper hyper-
bolic curves of fixed genus over a fixed number field admitting good re-
duction away from a fixed finite set of finite places. In [9], Javanpekyar
and Loughran conjectured that the Shafarevich conjecture holds for more
general families of varieties. Moreover, they showed that if the Lang-Vojta
conjecture on integral points of hyperbolic varieties holds, then the Sha-
farevich conjectures for hypersurfaces and complete intersections of general
type ([9, Theorem 1.5]) hold. There are many references on the Shafare-
vich conjectures for several classes of varieties (e.g. del Pezzo surfaces ([21]),
certain Fano theefolds ([10]), certain surfaces of general type ([11]), canoni-
cally polarized smooth fibered surfaces ([7]) (see also Remark 0.2), algebraic
groups ([8]), K3 surfaces ([1], [22], [23]), Enriques surfaces ([24]), bielliptic
surfaces ([25]), hypersurfaces in projective spaces ([15]), certain weighted hy-
per surfaces ([12]), and hypersurfaces in abelian varieties ([14])). However,
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such finiteness for more general families of varieties are still open (see [10,
Section 5] for counterexamples).

In this paper, as a generalization of the result in [7], we shall prove the
Shafarevich conjecture for the class of proper hyperbolic polycurves, that is,
varieties X which admit a structure of successive smooth fibrations (called
a sequence of parametrizing morphisms (cf. Definition 1.1))

(S) : X = Xn → Xn−1 → · · · → X1 → X0 = SpecK

whose fibers are proper hyperbolic curves. Let F be a number field, p a finite
place of F , and OF, p the valuation ring of F at p. For any proper hyperbolic
polycurve X over F , we say that X has good reduction at p if X admits a
smooth proper model over OF, p (cf. Definition 1.4). Our main theorem is
the following:

Theorem 0.1 (see Theorem 3.4 for a more general statement).
Let F be a number field, and S a finite set of finite places of F . Let χ be
an integer, and n a positive integer. Then there exist only finitely many
isomorphism classes of proper hyperbolic polycurves of dimension n with
Euler-Poincaré characteristic χ over F which have good reduction outside S.

As a corollary of Theorem 0.1, we give another proof of Sawada’s finite-
ness theorem of isomorphism classes of proper hyperbolic polycurves with
prescribed fundamental groups (cf. Corollary 4.1 and Remark 4.2).

Theorem 0.1 and its proof are a generalization and a new proof of [7,
Theorem 1.2], respectively. We explain the relation between Theorem 0.1
and [7, Theorem 1.2].

Remark 0.2. In [7], a canonically polarized surface over a discrete valu-
ation field is said to have good reduction if there exists a smooth proper
model whose relative dualizing sheaf is relatively ample (see [7, Introduc-
tion]), and he proved the Shafarevich conjecture for canonically polarized
smooth fibered surfaces. Theorem 0.1 is a generalization of [7, Theorem 1.2]
in the following two senses:

• Since a canonically polarized surface smooth proper over a curve of
characteristic 0 is a proper hyperbolic polycurve by [7, Lemma 3.1] (,
in fact, the converse is also true since a hyperbolic polycurve does not
contain (−2)-curves), our result in the case of dimension 2 implies [7,
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Theorem 1.2]. Therefore, our result can be seen as a higher dimensional
generalization of [7, Theorem 1.2].

• Even in the case of dimension 2, our theorem looks stronger than [7,
Theorem 1.2]. In our definition of the notion of good reduction, we do
not assume (in contrast to [7, Introduction]) that smooth models have
relatively ample dualizing sheaves. However, at the time of writing, we
do not know any examples of proper hyperbolic polycurves which do
not have smooth models with relatively ample dualizing sheaves.

One of the main tools which is used to generalize [7, Theorem 1.2] is the
good reduction criterion for proper hyperbolic polycurves established in [19]
(cf. the proof of Theorem 2.2).

In the proof of Theorem 0.1, we will use the Shafarevich conjecture
for proper hyperbolic curves over finitely generated fields of characteristic
0, which was also proved by Faltings. To use Faltings’s result inductively,
we study the structure of integral models of proper hyperbolic polycurves.
Precisely, we shall give the following result:

Theorem 0.3 (cf. Theorem 2.2). Let T be a connected Noetherian reg-
ular scheme, K(T ) the field of fractions of T , and X → T a proper smooth
scheme. Write X for the scheme X×T SpecK(T ). Suppose that X is a
proper hyperbolic polycurve over K(T ). Moreover, suppose that the resid-
ual characteristic of every point of T of codimension 1 is sufficiently large
(see Theorem 2.2 for the precise bound) or equal to 0. Then, for any se-
quence of parametrizing morphisms (S) of X → SpecK(T ), there exists a
unique sequence of parametrizing morphisms (S′) of a proper hyperbolic poly-
curve X′ → T (up to canonical isomorphism) such that the base change of
(X′, (S′)) to SpecK(T ) is isomorphic to (X, (S)) (cf. Definition 1.1.2) and
X is canonically isomorphic to X′.

Theorem 0.3 is a sort of generalization of the result of Jost and Yau [13].
(In [13], proper hyperbolic polycurves of relative dimension 2 over complex
manifolds are treated.) Theorem 0.3 is also a sort of generalization of [7,
Lemma 5.5]. We prove Theorem 0.3 by applying, the good reduction criterion
for proper hyperbolic polycurves, the results on Néron models of hyperbolic
curves by Liu-Tong [16], and the purity of proper hyperbolic polycurves over
regular schemes (cf. Theorem 1.11).

The content of each section is as follows: In Section 1, we give the pre-
cise definition of a proper hyperbolic polycurve and the proof of the purity
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of proper hyperbolic polycurves over regular schemes by using the good
reduction criterion for proper hyperbolic polycurves. In Section 2, we dis-
cuss structures of smooth models of a proper hyperbolic polycurve over a
Dedekind scheme. In Section 3, we give the proof of the Shafarevich con-
jecture for proper hyperbolic polycurves by using the results of Section 2
and Faltings’s result. In Section 4, we give another proof of the Sawada’s
finiteness theorem for proper polycurves in the case where their coefficient
fields are finitely generated over Q.

1. Proper hyperbolic polycurves over regular schemes

In this section, we discuss properties of proper hyperbolic polycurves over
regular schemes (cf. Theorem 1.11). We start with the definition of a proper
hyperbolic polycurve.

Definition 1.1. Let S be a scheme and X a scheme over S.

1) We shall say that X is a proper hyperbolic curve over S if the structure
morphism X → S is proper, smooth, and of relative dimension 1 with
geometrically connected fibers of genus g ≥ 2.

2) We shall say that X is a proper hyperbolic polycurve (of relative dimen-
sion n) over S if there exists a (not necessarily unique) factorization

(S) : X = Xn → Xn−1 → . . . → X1 → X0 = S

of the structure morphism X → S such that, for each i ∈ {1, . . . , n},
Xi → Xi−1 is a proper hyperbolic curve. We refer to the above factor-
ization of the morphism X → S as a sequence of parametrizing mor-
phisms. Let gi be the genus of the curve Xi → Xi−1 for each 1 ≤ i ≤ n.

We write gS
def
= max

1≤i≤n
gi. We also write gX

def
= min

S
gS , where S ranges

over the sequences of parametrizing morphisms of X → S. In the case
where we consider a pair of a proper hyperbolic polycurve X → S

and a sequence of parametrizing morphisms (S) of X → S, we write
(X, (S)). We refer to such a pair as a proper hyperbolic polycurve with
a sequence of parametrizing morphisms. We shall say that two proper
hyperbolic polycurves (over S) with a sequence of parametrizing mor-
phisms (X, (S)) and (X ′, (S ′)) are isomorphic if there exists an S-
isomorphism between proper hyperbolic polycurves of relative dimen-
sion i over S defined by (S) and (S ′) for each 1 ≤ i ≤ n such that these
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isomorphisms are compatible with the sequence of parametrizing mor-
phisms (S) and (S ′).

3) Let X be a proper hyperbolic polycurve of relative dimension n over
S. Let

X = Xn → Xn−1 → . . . → X1 → X0 = S

be a sequence of parametrizing morphisms of X → S. Write gi for the
genus of the proper hyperbolic curve Xi → Xi−1 for each 1 ≤ i ≤ n.
We refer to the nonzero integer

χ(X) =
∏

1≤i≤n

(2− 2gi)

as the Euler-Poincaré characteristic of the proper hyperbolic polycurve
X → S. Note that χ(X) does not depend on the choice of a sequence of
parametrizing morphisms of the proper hyperbolic polycurve X → S

by Lemma 1.2. It holds that 2n divides χ(X). Note that we cannot
determine n from χ(X).

Lemma 1.2. Let X be a proper hyperbolic polycurve of relative dimension
n over S. χ(X) does not depend on the choice of a sequence of parametrizing
morphisms of X → S.

Proof. Let

X = Xn → Xn−1 → . . . → X1 → X0 = S

be a sequence of parametrizing morphisms of X → S. Write gi for the genus
of the proper hyperbolic curve Xi → Xi−1 for each 1 ≤ i ≤ n. We may as-
sume that S is the spectrum of an algebraically closed field k. Let l ̸= p be a
prime number and χ(X,Fl) the Euler characteristic of the trivial étale sheaf
Fl on X. It suffices to show that

∏
1≤i≤n

(2− 2gi) = χ(X,Fl). By induction on

n and the Leray spectral sequence for Xn → Xn−1, one can verify this by
using [6, Corollaire 2.11]. □

Remark 1.3. In the case where S has a point s whose residual characteris-
tic is 0, Lemma 1.2 follows immediately from the fact that the Euler-Poincaré
characteristic of a proper hyperbolic polycurve X → S can be determined by
the étale fundamental groups of the scheme X ×S s. Here, s is a geometric
point of X over s. Indeed, let l be a prime number. Write ∆ for the étale
fundamental group of the scheme X ×S s, H i(∆,Fl) for the i-th cohomology
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group of the trivial ∆-module Fl, and χ(∆,Fl) for the Euler characteristic∑
0≤i≤∞

(−1)idimFl
H i(∆,Fl). Then one can verify that χ(X) = χ(∆,Fl).

In this paper, we shall say that a scheme T is Dedekind if T is a 1-dimensional
connected Noetherian normal separated scheme.

Definition 1.4. Let T be a Dedekind scheme, K(T ) the function field of
T , η the generic point of T , and X → SpecK(T ) a proper smooth morphism
with geometrically connected fibers.

1) We shall say that X has good reduction if there exists a proper smooth
T -scheme X whose generic fiber Xη is isomorphic to X over K(T ). We
refer to such X as a smooth model of X.

2) Suppose that X → SpecK(T ) is a proper hyperbolic polycurve. Let

(S) : X = Xn → Xn−1 → . . . → X1 → X0 = SpecK(T )

be a sequence of parametrizing morphisms of X → SpecK(T ). We
shall say that X has good reduction with respect to (S) if there exist a
proper hyperbolic polycurve X → T and a sequence of parametrizing
morphisms

(S ′) : X = Xn → Xn−1 → . . . → X1 → X0 = T

of X → T such that the proper hyperbolic polycurve with a sequence of
parametrizing morphisms defined by the base change of the sequence
(S ′) to SpecK(T ) is isomorphic to (X, (S)).

3) Let X be a separated, smooth, and of finite type scheme over T whose
generic fiber is isomorphic to X over K(T ). We shall say that X is
the Néron model of X if the following property, called Néron mapping
property, is satisfied:
for any smooth finitely presented scheme Y over T , the canonical map

MorT (Y,X) → MorK(T )(Y×T SpecK(T ), X)

is a bijection. Here, MorT (Y,X) is the set of morphisms from Y to
X over T , and MorK(T )(Y×T SpecK(T ), X) is the set of morphisms
from Y×T SpecK(T ) to X over K(T ).
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Remark 1.5. If a smooth model of a proper hyperbolic curve exists, it is
unique up to canonical isomorphism (cf. [2]). This also follows from Lemma
1.6 or Proposition 1.7.2.

Lemma 1.6. Let S be an irreducible normal scheme and K(S) the func-
tion field of S. Let C1 and C2 be proper hyperbolic curves over S, and
φ an isomorphism C1 ×S SpecK(S) ∼= C2 ×S SpecK(S) over K(S). Then
there exists a unique isomorphism Φ : C1

∼= C2 over S whose base change to
SpecK(S) coincides with φ.

Proof. (See also the argument given in the discussion entitled “Curves” in
[17, §0].) By [2, Theorem 1.11], the scheme IsomS(C1, C2) (cf. [2, Definition
1.10]) is finite over S. Write clφ for the classifying morphism

SpecK(S) → IsomK(S)(C1 ×S SpecK(S), C2 ×S SpecK(S))

over K(S). Since S is normal, the scheme theoretic image of the composite
morphism

SpecK(S)
clφ
→ IsomK(S)(C1 ×S SpecK(S), C2 ×S SpecK(S))

→ IsomS(C1, C2)

defines a section S → IsomS(C1, C2). This concludes the proof. □

Proposition 1.7 (cf. [16]). Let T , K(T ), and X be as in Definition 1.4.

1) Let X be a smooth model of X. Suppose that each closed fiber of the
morphism X → T contains no rational curves. Then X is the Néron
model of X ([16, Proposition 4.13]).

2) Suppose that X is a proper hyperbolic curve which has good reduction.
Then a smooth model of X (cf. Remark 1.5) is the Néron model of X.

3) Let Y be a geometrically connected smooth proper scheme over K(T ).
Suppose that X is a proper hyperbolic curve over K(T ) and that Y has
good reduction. Moreover, suppose that there exists a K(T )-morphism
from Y to X. Then X has good reduction ([16, Corollary 4.7]).

4) If X has a proper Néron model, any smooth model of X is canonically
isomorphic to the Néron model.

Proof. We only show assertion 2 and 4. Assertion 2 follows from [16, The-
orem 1.1] and the fact that a smooth model of X is the minimal regular
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model of X. Assertion 4 follows from van der Waerden’s purity theorem (see
[4, Corollaire (21.12.16)] for a more general statement). □

Note that Proposition 1.7.2 follows from Proposition 1.7.1. Also, one can
show Proposition 1.7.2 by the Néron mapping property of the Néron model
of the Jacobian variety of X (after replacing T by the strict henselization of
each closed point of T ).

Proposition 1.8. Let T and K(T ) be as in Definition 1.4. Let

X = Xn → Xn−1 → . . . → X0 = T

be a proper hyperbolic polycurve. Then X is the Néron model of the scheme
X×T SpecK(T ).

Proof. By Proposition 1.7.1, it suffices to show that there exist no rational
curves contained in the special fiber of X. Since any morphism from a rational
curve to a hyperbolic curve over a field is constant, a proper hyperbolic
polycurve over a field contains no rational curves. Hence, Proposition 1.8
holds. □

Proposition 1.9 (cf. [18] and [19, Section 7]). Let Z be a connected
Noetherian regular scheme.

1) Let K(Z) be the function field of Z and CK(Z) → SpecK(Z) a proper
hyperbolic curve. The following are equivalent:
• There exists a proper hyperbolic curve CZ → Z such that CZ ×Z

SpecK(Z) is isomorphic to CK(Z) over K(Z).
• There exist a nonempty open subset U of Z satisfying that Z \ U is

of codimension ≥ 2 in Z and a proper hyperbolic curve CU → U

such that CU ×U SpecK(Z) is isomorphic to CK(Z) over K(Z).
• For any point z ∈ Z of codimension 1, there exists a proper hyper-

bolic curve COZ,z
→ SpecOZ,z such that COZ,z

×OZ,z
SpecK(Z) is

isomorphic to CK(Z) over K(Z).
In this case, the scheme CZ (respectively, CU ; COZ,z

) is unique up to a
canonical isomorphism over Z (respectively, U ; OZ,z for each point z ∈
Z of codimension 1). Hence, the scheme CZ ×Z U (respectively, CZ ×Z

SpecOZ,z) is isomorphic to CU (respectively, COZ,z
) over U (respec-

tively, OZ,z for each point z ∈ Z of codimension 1) (cf. Remark 1.10).

2) Let Y be a connected Noetherian regular scheme over Z, V a nonempty
open subset of Y satisfying that Y \ V is of codimension ≥ 2 in Y , and



✐

✐

“10-Nagamachi” — 2022/9/29 — 0:36 — page 549 — #9
✐

✐

✐

✐

✐

✐

Shafarevich conjecture for proper hyperbolic polycurves 549

C ′ → Z a proper hyperbolic curve. Then the restriction map

MorZ(Y,C
′) → MorZ(V,C

′)

is bijective. Here, MorZ(Y,C
′) (respectively, MorZ(V,C

′)) is the set of
morphisms from Y to C ′ over Z (respectively, from V to C ′ over Z).

Proof. Assertion 1 follows from [18] and Lemma 1.6. To show assertion 2,
we may assume that Y = Z. Then the assertion follows from [18, Lemme 1]
(or [19, Section 7]). □

Remark 1.10. The latter part of Proposition 1.9.1 does not hold in gen-
eral. Let P1

Z be the projective line over SpecZ. Write Bp for the scheme
obtained by blowing up of P1

Z(p)
at some closed point of P1

Z(p)
. Then write Cp

for the scheme obtained by contraction of the strict transform of the special
fiber of P1

Z(p)
in Bp. Consider the family of smooth models {Dp → SpecZ(p) |

p is a prime number} of P1
Q → SpecQ, where Dp is P

1
Z(p)

or Cp. One can ver-
ify that there exists a proper smooth curve C → SpecZ whose base change
to SpecZ(p) is isomorphic to Cp for all p if and only if Dp = P1

Z(p)
for all but

finite p.

Theorem 1.11. Let Z be a connected Noetherian regular scheme.

1) Let K(Z) be the function field of Z and

(SK(Z)) : Xn,K(Z) → . . . → X1,K(Z) → SpecK(Z)

a sequence of parametrizing morphisms of a proper hyperbolic poly-
curve. The following are equivalent:
• There exists a sequence of parametrizing morphisms of a proper hy-

perbolic polycurve

(SZ) : Xn,Z → . . . → X1,Z → Z

such that the base change of (Xn,Z , (SZ)) to SpecK(Z) is isomor-
phic to (Xn,K(Z), (SK(Z))).

• There exist a nonempty open subset U of Z satisfying that Z \ U is of
codimension ≥ 2 in Z and a sequence of parametrizing morphisms
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of a proper hyperbolic polycurve

(SU ) : Xn,U → . . . → X1,U → U

such that the base change of (Xn,U , (SU )) to SpecK(Z) is isomor-
phic to (Xn,K(Z), (SK(Z))).

• For any point z ∈ Z of codimension 1, there exists a sequence of
parametrizing morphisms of a proper hyperbolic polycurve

(SOZ,z
) : Xn,OZ,z

→ . . . → X1,OZ,z
→ SpecOZ,z

such that the base change of (Xn,OZ,z
, (SOZ,z

)) to SpecK(Z) is iso-
morphic to (Xn,K(Z), (SK(Z))).

In this case, (Xn,Z , (SZ)) (respectively, (Xn,U , (SU )); (Xn,OZ,z
, (SOZ,z

)))
is unique up to a canonical isomorphism over Z (respectively, U ; OZ,z

for each point z ∈ Z of codimension 1).

2) Let Y be a connected Noetherian regular scheme over Z, V a nonempty
open subset of Y satisfying that Y \ V is of codimension ≥ 2 in Y , and
X ′

Z → Z a proper hyperbolic polycurve. Then the restriction map

MorZ(Y,X
′
Z) → MorZ(V,X

′
Z)

is bijective. Here, MorZ(Y,X
′
Z) (respectively, MorZ(V,X

′
Z)) is the set

of morphisms from Y to X ′
Z over Z (respectively, from V to X ′

Z over
Z).

3) Let K(Z) and (SK(Z)) be as in assertion 1. Suppose that the equivalent
conditions of assertion 1 are satisfied. Let XZ → Z be a proper smooth
morphism such that XZ ×Z SpecK(Z) is isomorphic to Xn,K(Z) over
K(Z). Then XZ is canonically isomorphic to Xn,Z over Z.

Proof. To show assertion 1 and 2, we may assume that n = 1, in which case
the assertions follow from Proposition 1.9.1 and 2. Next, we show assertion 3.
By Proposition 1.7.4, XZ ×Z SpecOZ,z is canonically isomorphic to Xn,OZ,z

over SpecOZ,z for any point z ∈ Z of codimension 1. Therefore, there exists
an open subset U of Z such that Z \ U is of codimension ≥ 2 in Z andXZ ×Z

U is canonically isomorphic to Xn,U over U . By assertion 2, there exists a
canonical birational morphism φ : XZ → Xn,Z over Z. φ is isomorphism by
van der Waerden’s purity theorem (cf. [4, Corollaire (21.12.16)]). □
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2. Existence of a smooth model of a proper hyperbolic

polycurve with respect to a given sequence of

parametrizing morphisms

In this section, we discuss structures of smooth models of a proper hyper-
bolic polycurve over a Dedekind scheme. For proper hyperbolic polycurves
of relative dimension 2 over complex manifolds, some of the main results of
this section (part of Theorem 2.2 and Corollary 2.3) are proven in [13].

Definition 2.1 (cf. [19, Theorem 1.2.3 and Theorem 1.3]). Let z be
a positive integer. Define a function fz(m) for m ≥ 2 in the following way:

• For m = 2, fz(2) = z + 1.

• For m = 3, fz(3) = 2z
2

.

• For m ≥ 3,

fz(m+ 1) = (fz(m))× (2z
2×fz(m)2)fz(m).

Theorem 2.2. Let Z be a connected Noetherian regular scheme, K(Z) the
field of fractions of Z, and X → Z a proper smooth scheme. Write X for the
scheme X×Z SpecK(Z). Suppose that X is a proper hyperbolic polycurve of
relative dimension n over K(Z).

1) Let

(S) : X = Xn → . . . → X1 → SpecK(Z)

be a sequence of parametrizing morphisms of a proper hyperbolic curve
X → SpecK(Z). Suppose that the residual characteristic of every point
of Z of codimension 1 is more than 22gS×f2gS (n) or equal to 0. Then
there exists a unique sequence of parametrizing morphisms

(S) : Xn → . . . → X1 → Z

(up to canonical isomorphism) such that the base change of (Xn, (S))
to SpecK(Z) is isomorphic to (Xn, (S)) and X is canonically isomor-
phic to Xn. In particular, if the residual characteristic of every point
of Z of codimension 1 is more than 22gS×f2gS (n) or equal to 0, X → Z

has a structure of a proper hyperbolic polycurve. If, moreover, Z is
Dedekind, X is the Néron model of X over Z.

2) Suppose that the residual characteristic of every point of Z of codi-
mension 1 is more than 2(|χ(X)|+2)×f(|χ(X)|+2)(n) or equal to 0. Then,
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for any sequence of parametrizing morphisms (S) of X → SpecK(Z),
there exists a sequence of parametrizing morphisms (S′) of a proper
hyperbolic polycurve X′ → Z such that the base change of (X′, (S′)) to
SpecK(Z) is isomorphic to (X, (S)) and X is canonically isomorphic
to X′.

Proof. Theorem 2.2.2 follows from Theorem 2.2.1 and the fact that 2gS ≤
|χ(X)|+ 2 for any sequence of parametrizing morphisms (S) of X → Z. The
uniqueness portion of Theorem 2.2.1 follows from Theorem 1.11.1. We show
the rest of Theorem 2.2.1. Let

(S) : X = Xn → . . . → X0 = SpecK(Z)

be a sequence of parametrizing morphisms of X. By Theorem 1.11, we may
assume that Z is the spectrum of a discrete valuation ring OK(Z). Then
Theorem 2.2.1 follows from [19, Theorem 1.2.1, Theorem 1.2.3, and Theo-
rem 1.3]. □

Corollary 2.3. Let Z,K(Z),X, and X be as in Theorem 2.2. Suppose
that Z is a Dedekind scheme and that the residual characteristic of every
closed point is more than 2(|χ(X)|+2)×f(|χ(X)|+2)(n) or equal to 0. Then X has
good reduction with respect to any sequence of parametrizing morphisms of
the proper hyperbolic polycurve X → SpecK(Z) and X has a proper Néron
model.

Proof. Corollary 2.3 follows from Theorem 2.2, Proposition 1.8, and [16,
Corollary 2.5]. □

3. The Shafarevich conjecture for proper hyperbolic

polycurves

In this section, we prove the Shafarevich conjecture for proper hyperbolic
polycurves. Firstly, we will recall the Shafarevich conjecture for proper hy-
perbolic curves over finitely generated fields of characteristic of 0, which was
proved by Faltings. Then we will prove the main theorem (Theorem 3.4) by
using Faltings’s result and results of Section 2.

Proposition 3.1 (Faltings). Let S be a normal connected scheme flat of
finite type over SpecZ. Let g ≥ 2 be an integer. Then there exist only finitely
many isomorphism classes of proper hyperbolic curves of genus g over K(S)
which have a smooth proper model over S.
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Proof. We may shrink S so that S is regular. Now Proposition 3.1 follows
from [3, VI, §1, Theorem 2] and the Torelli theorem. □

Proposition 3.2. Let S be a normal connected scheme flat of finite type
over SpecZ. Let χ be an integer, and n a positive integer. Then there exist
only finitely many isomorphism classes of proper hyperbolic polycurves of
dimension n with Euler-Poincaré characteristic χ over S with a sequence of
parametrizing morphisms.

Remark 3.3. As written in Definition 1.1.3, the dimension of a proper
hyperbolic polycurve is bounded by the absolute value of its Euler-Poincaré
characteristic. Therefore, Proposition 3.2 is still true even if we do not fix
the dimension.

Proof. Let A(n, χ, S) be the set of isomorphism classes of proper hyperbolic
polycurves with a sequence of parametrizing morphisms as in the statement
of Proposition 3.2. We will prove Proposition 3.2 by induction on n. The case
of n = 1 follows from Lemma 1.6 and Proposition 3.1. Let n be a positive
integer greater than 1. Take a pair (X, (S)) ∈ A(n, χ, S) with

(S) : X = Xn → Xn−1 → · · · → X1 → X0 = S.

Let (Xn−1, (S
′)) be the proper hyperbolic polycurve with a sequence of

parametrizing morphisms cut out from (X,S). We have (Xn−1, (S
′)) ∈ A(n−

1, χ(Xn−1), S) and |χ(Xn−1)| ≤ |χ|. By the induction hypothesis, we may fix
the isomorphism class of (Xn−1, (S

′)). Since Xn−1 is a regular connected
scheme flat of finite type over SpecZ, we have Xn → Xn−1 ∈ A(1, χ(Xn →
Xn−1),Xn−1). Since |χ(Xn → Xn−1)| ≤ |χ|, the desired finiteness follows from
the case of n = 1. □

Theorem 3.4. Let S be an integral scheme flat of finite type over SpecZ.
Let χ be an integer, and n a positive integer. Then there exist only finitely
many isomorphism classes of proper hyperbolic polycurves of dimension n

with Euler-Poincaré characteristic χ over K(S) which have good reduction
at any regular codimension 1 point of S.

Remark 3.5. As in Proposition 3.2, we do not need to fix the dimension.

Proof. Note that we can replace S by another nonempty open subscheme of
S. Therefore, we may assume that S is regular and that the residual charac-
teristic of any point of S of codimension 1 is more than 2(|χ|+2)×f(|χ(X)|+2)(n)
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or equal to 0. For any proper hyperbolic polycurve X of dimension n with
Euler-Poincaré characteristic χ over K(S), one can equip X with a sequence
of parametrizing morphisms (S) over K(S). By the assumption on the resid-
ual characteristics and Theorem 2.2, the pair (X, (S)) extends to a proper
hyperbolic polycurve with a sequence of parametrizing morphisms over S

uniquely. Therefore, it suffices to show the finiteness of the isomorphism
classes of proper hyperbolic polycurves with a sequence of parametrizing
morphisms of dimension n with Euler-Poincaré characteristic χ over S. This
follows from Proposition 3.2. □

4. An application of the Shafarevich conjecture

In this section, we show the finiteness of isomorphism classes of proper hy-
perbolic polycurves over a fixed number field satisfying a condition deter-
mined by their étale fundamental groups. This finiteness was proved in [20]
(cf. Remark 4.2) by examining the geometric étale fundamental groups of
proper hyperbolic polycurves. We show this by using the Shafarevich con-
jecture of proper hyperbolic polycurves (cf. Theorem 3.4) and [19, Theo-
rem 1.3].

Let L be a field and X → SpecL a proper hyperbolic polycurve. Take
a geometric point ∗ of X and write π1(X, ∗) → GL for the surjective homo-
morphism between the étale fundamental groups induced by X → SpecL.
Note that GL is isomorphic to the absolute Galois group of L defined by ∗.

Corollary 4.1. Let K be a field finitely generated over Q, GK its abso-
lute Galois group, and Π → GK a surjective homomorphism of profinite
groups. Then there are only finitely many K-isomorphism classes of proper
hyperbolic polycurves whose étale fundamental groups are isomorphic to Π
over GK .

Remark 4.2. Sawada proved Corollary 4.1 in the case where K is a gener-
alized sub-p-adic field. Moreover, he treated general (not necessarily proper)
hyperbolic polycurves. We give another proof of Corollary 4.1 because we
can prove Corollary 4.1 immediately by using Theorem 3.4 and [19, Theo-
rem 1.3] under the assumptions of Corollary 4.1.

Proof. If the étale fundamental group of a proper hyperbolic polycurve over
K is isomorphic to Π over GK , its Euler-Poincaré characteristic coincides
with χ(Ker(Π → GK),F2) by Remark 1.3. Therefore, by the last sentence
of Definition 1.1.3, it suffices to show that there are only finitely many K-
isomorphism classes of proper hyperbolic polycurves of dimension n whose
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étale fundamental groups are isomorphic to Π over GK for every natural
number n (cf. Remark 4.3). Moreover, we may assume that there exists a
proper hyperbolic polycurve XK of dimension n over K whose étale funda-
mental groups are isomorphic to Π over GK . Take a regular connected flat
scheme S of finite type over SpecZ whose function field is isomorphic to K.
Since we can replace S by its open dense subscheme, we may assume that
there exists a proper hyperbolic polycurve X → S whose base change to K

is isomorphic to XK → SpecK by Theorem 2.2.2. Moreover, we replace S

by its sufficiently small open dense subscheme so that we can apply [19,
Theorem 1.3] in this situation for l = 2. Hence, another proper hyperbolic
polycurve X ′ of dimension n over K whose étale fundamental group is iso-
morphic to Π over GK , has good reduction at any point of S of codimension
1. By Theorem 1.11.1, X ′ extends to a proper hyperbolic polycurve over S.
Hence, by Theorem 3.4, Corollary 4.1 holds. □

Remark 4.3. In fact, as in the proof of [20], the dimension of a (proper)
hyperbolic polycurve X over a field L of characteristic 0 is determined by
the profinite group Ker(π1(X, ∗) → GL).
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✐

✐

“10-Nagamachi” — 2022/9/29 — 0:36 — page 556 — #16
✐

✐

✐

✐

✐

✐

556 I. Nagamachi and T. Takamatsu
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