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The first result in this paper provides a very general ϵ-removal
argument for the multilinear restriction estimate. The second result
provides a refinement of the multilinear restriction estimate in the
case when some terms have appropriate localization properties; this
generalizes a prior result of the author in [1].
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1. Introduction

For n ≥ 2, let U ⊂ Rn−1 be an open, bounded and connected neighborhood
of the origin and let Σ : U → Rn be a smooth parametrization of an n− 1-
dimensional submanifold of Rn (hypersurface), which we denote by S =
Σ(U). By a smooth parametrization we mean that Σ satisfies

(1.1) ∥∂αΣ∥L∞(U) ≲α 1,

for |α| ≤ N for some large N . We say that S is a smooth hypersurface if it
admits a parametrization satisfying (1.1). To such a parametrization of S
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we associate the extension operator E defined by

Ef(x) =

∫

U

eix·Σ(ξ)f(ξ)dξ,

where f ∈ L1(U) and x ∈ Rn. This operator is closely related to a more
intrinsic formulation of the extension operator:

Ẽg(x) =

∫

S

eix·ωg(ω)dσS(ω),

where g ∈ L1(S; dσS) and x ∈ Rn. Indeed, using the parametrization Σ
as above we obtain ω = Σ(ξ) and dσS(ω) = | ∂Σ

∂ξ1

∧ · · · ∧ ∂Σ
∂ξn−1

|dξ, thus with

f(ξ) = g(Σ(ξ))| ∂Σ
∂ξ1

∧ · · · ∧ ∂Σ
∂ξn−1

|, the two formulations are equivalent. We

will use good parameterizations in the sense that | ∂Σ
∂ξ1

∧ · · · ∧ ∂Σ
∂ξn−1

| ≈ 1

throughout the domain and, given that all results are in terms of Lp norms,
the equivalence is carried out at the levels of results as well.

In order to avoid unnecessary technical issues, throughout this paper we
assume that, in the definition of Ef , the support of f is a compact subset of
U ; in other words f is supported away from the boundary of U . A similar
assumption will be in place for the corresponding g that appears in the
definition of Ẽg.

Given k smooth, compact hypersurfaces Si ⊂ Rn, i = 1, . . . , k, where 1 ≤
k ≤ n, we consider the following k-linear restriction estimate inequality

(1.2) ∥Πk
i=1Eifi∥Lp(Rn) ≲ Πk

i=1∥fi∥L2(Ui).

In a more compact format this estimate is abbreviated as follows:

(1.3) R∗(2× · · · × 2 → p).

A natural condition to impose on the hypersurfaces is the standard transver-
sality condition: there exists ν > 0 such that

(1.4) |N1(ζ1) ∧ · · · ∧Nk(ζk)| ≥ ν,

for any ζi ∈ Si, i ∈ {1, . . . , k}; here Ni(ζi) is the unit normal at ζi to Si and
it is clear that the choice of orientation is not important.

There are two main conjectures regarding the optimal exponent in (1.3).
For the generic case, when only the transversality condition is assumed, the
optimal conjectured exponent for (1.3) is p = 2

k−1 . There is also the non-
generic case when, in addition to the transversality condition, one assumes
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also appropriate curvature conditions on the hypersurfaces Si and in this
case the optimal conjectured exponent in (1.3) is p = 2(n+k)

k(n+k−2) (note that

this value is < 2
k−1). This paper considers problems related to the generic

case, but the results obtained here will have implications for the non-generic
case.

In [5] Bennett, Carbery and Tao established the near-optimal version of
the conjectured result in the generic case: for any ϵ > 0 and for any R > 0
and x0 ∈ Rn the following holds true

(1.5) ∥Πk
i=1Eifi∥L

2
k−1 (BR(x0))

≲ϵ R
ϵΠk

i=1∥fi∥L2(Ui),

where BR(x0) is the ball of radius R centered at x0. In a more compact
form, this results is saying that R∗(2× · · · × 2 → p, ϵ) holds true.

Closely related to this estimate, there is the multilinear Kakeya estimate.
The multilinear Kakeya estimate follows from the multilinear restriction
estimate by using a standard Rademacher-function argument, see [5] for
details. Vice-versa, one can obtain the multilinear restriction estimate from
the multilinear Kakeya estimate using a more delicate argument which incurs
losses. In [5] these losses are of type Rϵ. We do not formalize the multilinear
Kakeya estimate as it plays no role in our analysis; however it is important
that we mention it for reference purposes.

An alternative and shorter proof for the near-optimal multilinear Kakeya
estimate was provided by Guth in [9]. An alternative and shorter proof for
the multilinear restriction estimate that bypasses the use of the multlinear
Kakeya estimate was provided by the author in [1].

Removing the factor of Rϵ in these estimates seems to be a very difficult
problem, even in the non-endpoint case. A major breakthrough was made
by Guth in [8] where he proves the end-point case for the multilinear Kakeya
estimate with no loss in R. In this paper Guth employs algebraic topology
tools and initiates the use of the polynomial partitioning in the restriction
theory that proved to be a very powerful tool, see [10–12, 17].

The result of Guth in [8] does not remove the factor of Rϵ for the mul-
tilinear restriction theory, not even in the non-endpoint case. However, in
[4] Bennett uses Guth’s result in [8] to improve the loss in (1.5) from Rϵ to
(logR)κ, for some large κ.

Bourgain and Guth provide in [7] an ϵ-removal type argument that es-
tablishes (1.3) for p > 2

k−1 , with no loss in R, in the case of hypersurfaces
with non-degenerate curvature. Their proof is a modification of the ϵ-removal
argument of Tao in [15] in a linear context. In a very recent paper, see [14],
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Tao removes the factor Rϵ in the non-endpoint case for the multilinear re-
striction estimate in a very general setup for the hypersurfaces involved - a
certain amount of regularity is required, but nothing else. This is a very in-
volved result that further refines the heat flow method from [5]. Tao’s recent
result essentially leaves only the optimal problem (1.3) with p = 2

k−1 as an
open problem.

Our first result in this paper provides an ϵ-removal argument for general
hypersurfaces which have the property that the Fourier transform of the
surface measure displays some decay. Precisely we assume that there exists
some α > 0 such that the following decay property holds true

(1.6) |Eψ| ≲ C(ψ)(1 + |x|)−α

for any smooth ψ supported within U .

Theorem 1.1. Assume that the hypersurfaces Si, i = 1, . . . , k are as above,
satisfy the transversality condition 1.4 and the decay condition 1.6 for some
α > 0. If R∗(2× · · · × 2 → p, ϵ) holds true for some p ≥ 2

k
, then R∗(2×

· · · × 2 → q) holds true for any q ≥ p+ (n+ p+ 1) C
log 1

ϵ

, where C is any con-

stant satisfying C > min(2, n− 1).

The first thing to notice in the above statement is that our threshold for
the exponent p is 2

k
which is lower than the conjectured one of 2

k−1 . This im-
provement may seem artificial or vacuous at best, given that the conjectured
optimal exponent is 2

k−1 . However
2

k−1 is the threshold for the generic case
and it is conjectured that under appropriate curvature hypothesis on the
hypersurfaces Si the threshold in (1.3) can lowered to exponents p < 2

k−1 ; in
fact for some special class of hypersurfaces the author established the result
up to, but excluding, the end-point p = 2(n+k)

k(n+k−2) , see [2, 3].

Similar results have been obtained by Bourgain [6] and Tao and Vargas
[16], both in the context of the bilinear restriction estimate. When taking
into account the extended range of p, our result is new in the context of
multilinear restriction estimate where the multilinearity is trilinear or higher
in order; however it is not new when k = n, simply because the conjectured
value of p is the same in the generic case as in the non-generic case.

Next we introduce the type of a hypersurface (an analytic condition
that essentially guarantees that (1.6) holds true) and consider also the case
when (1.6) holds only for some hypersurfaces, while the others are subsets
of hyperplanes. Following [13] (see chapter 8, section 3.2), we define the
l-type of a hypersurface S = Σ(U). We fix x0 ∈ U and assume that there
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exists l ∈ N such that for every unit vector η there exists α with |α| ≤ l for
which |∂α(Σ · η)(x0)| ≠ 0. The smallest such l is called the type of S at x0.
Assuming that U is a subset of compact set where Σ is defined, we define
the type of S to be the maximum of the types pf the x0 ∈ U . In the real-
analytic class, the condition that S has a finite type is equivalent to S not
being a subset of any affine hyperplane. Outside this class, things can get
more complicated.

As a direct consequence or by simple modifications of the argument in
Theorem 1.1 we obtain the following result.

Corollary 1.2. i) If all Si, i = 1, . . . , k, are of finite type, then the result
of Theorem 1.1 holds true.

ii) Assume that there exists 0 ≤ k1 < k such that Si are of li-type, where
li <∞, ∀i = 1, . . . , k1, while Si, i = k1 + 1, . . . , k are subsets of hyperplanes.
If R∗(2× · · · × 2 → p, ϵ) holds true for some p ≥ 2

k−1 , then R∗(2× · · · ×

2 → q) holds true for any q ≥ p+ (n+ p+ 1) C
log 1

ϵ

, where C is any constant

satisfying C > min(2, n− 1).
iii) If all Si, i = 1, . . . , k are real-analytic, then the result in ii) above

holds true.

The noticeable difference here is that we increased the threshold for p
from 2

k
to 2

k−1 . This is not unnatural, given that if one of the hypersurfaces

is a subset of a hyperplane, then the generic estimate in L
2

k−1 is the best
that can be expected.

When comparing the result above with the ones described earlier for the
generic case, we see that our result is more general than the one of Bourgain-
Guth [7] given that we do not impose any non-degeneracy conditions on the
curvature. But it is not as strong as Tao’s result in [14] given that we restrict
ourselves to finite type or analytic setting, while Tao’s result requires only
a finite amount of differentiability. We note however that the arguments in
this paper are significantly simpler than the ones employed by Tao in [14];
but we should also note that our arguments rely heavily on the work of Tao
[15] where the ϵ-removal argument is carried in the linear setup.

The second result of this paper is about the generic multilinear restric-
tion estimate in the case when appropriate localization properties occur. In
a nutshell, the localization properties are in small neighborhoods of subman-
ifolds some of the Si; first we need to make this rigorous. The localization
property can be stated in terms of a parametrization, which corresponds to
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a localization property for f used in Ef , or in terms of the intrinsic formula-
tion, which corresponds to a localization property for g used in Ẽg. We will
state both and point out that they are in some sense equivalent.

By a submanifold S′
i of Si we mean S′

i = Σi(Mi) where Mi ⊂ Ui ⊂ Rn−1

is a submanifold in Rn−1 that is given by Σ′
i : U

′
i → Ui, where U ′

i is a
bounded, open, connected neighborhood of the origin in Rmi and Σ′

i is
smooth in the sense of (1.1); mi is the dimension of the submanifold S′

i. For
0 < ϵ≪ 1, the ϵ-neighborhood of Mi is defined by Bϵ(Mi) = ∪ξ∈Mi

Bϵ(ξ).
We say that f is supported in the ϵ-neighborhood of Mi if it is supported
in Bϵ(Mi).

With S′
i = Σi(Mi), we define the ϵ-neighborhood of S′

i in Rn in a similar
manner Bϵ(S

′
i) = ∪ξ∈S′

i
Bϵ(ξ). We say that g : Si → C is supported in the

ϵ-neighborhood of S′
i if it is supported in Bϵ(S

′
i) ∩ Si.

In what follows by Nζ we denote the normal space to the corresponding
submanifold within Rn: NζS

′
i is the normal space to S′

i ⊂ Rn at ξ ∈ S′
i.

Recalling that the two formulations of the restriction operator are related
via f(ξ) = g(Σ(ξ))| ∂Σ

∂ξ1

∧ · · · ∧ ∂Σ
∂ξn−1

|, and using that Σ is a local diffeomor-

phism, it follows that a localization of f in the ϵ1-neighborhood ofMi gives a
localization of g in the ϵ2-neighborhood of S′

i = Σ(Mi) and vice versa, where
ϵ1 ≈ ϵ2.

We introduce one more notation. If V1, . . . , Vk are di-dimensional planes,
then by |V1 ∧ · · · ∧ Vk| we mean the quantity |v1,1 ∧ . . . v1,d1

∧ · · · ∧ vk,1 ∧
· · · ∧ vk,dk

| where vi,1, . . . , vi,di
is an orthonormal basis in Vi, i = 1, . . . , k;

it is easily seen that the defined quantity is independent of the choices of
orthonormal systems.

The small support condition is the following:

Condition 1. Assume that we are given submanifolds S′
i ⊂ Si, i = 1, . . . , k,

of codimension ci, with the property that there exists ν > 0 such that

(1.7) |Nζ1S
′
1 ∧ · · · ∧NζkS

′
k| ≥ ν

for all choices ζi ∈ S′
i. Given gi ∈ L2(Si), ∀i = 1, . . . , k, we assume that

suppgi ⊂ Bµi
(S′

i) ∩ Si, where 0 < µi ≪ 1.

We make the observation that the codimension of S′
i is relative to Si,

thus the codimension of S′
i in Rn is ci + 1. In particular, the normal space

NζiS
′
i has dimension ci + 1. As a consequence, the total number of directions

in which localization is provided cannot exceed n− k, that is c1 + · · ·+ ck ≤
n− k; this follows from (1.7) and the fact that the dimension of each NζiS

′
i is
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ci + 1. We also note that if ci = 0, then the localization property is vacuous
and we simply work with S′

i = Si; at the same time NζiSi is just the normal
to Si at ζi.

If the assumptions above are imposed in the generic multilinear estimate,
we obtain the following result.

Theorem 1.3. Assume Si, i = 1, . . . , k are smooth. In addition, assume
that g1, . . . , gk satisfy Condition 1. Then for any ϵ > 0, there is C(ϵ) such
that for every R > 0 the following holds true

(1.8) ∥Πk
i=1Ẽigi∥L

2
k−1 (B(0,R))

≤ C(ϵ)Πk
i=1µ

ci
2

i R
ϵΠk

i=1∥gi∥L2(Si).

A more restrictive version of the above result was established in [1]. One
of the limitations there was that only one factor had localization properties.
But the more important limitation is that the localization in [1] was around
a flat submanifold (when using a specific projection-type parametrization).
The more general statement in Theorem 1.3 will play a crucial role in a
forthcoming paper of the author regarding the multilinear restriction esti-
mate when curvature properties are taken into consideration; it is also likely
that this new result will be useful in other applications.

The paper is organized as follows. In section 2 we introduce our most
common notations, recall some basic results and perform some reductions
which will be useful in the latter sections. In the following two sections we
prove Theorems 1.1 and 1.3, respectively.

In proving Theorem 1.1 we adapt to the multilinear setup the arguments
used by Tao in [15], where an ϵ-removal argument has been carried out in
the linear case. In addition, the analysis involves tracking the directions in
which each wave Eifi propagates and the components that are essential in
the application of the near-optimal multilinear restriction estimate - this is
very important in the final summation process.

In proving Theorem 1.3, we use an induction on scale argument, similar
to the one from [1] used for proving a weaker version of this result. Deal-
ing with the localization properties during the induction process requires a
complete change in the approach (relative to [1]) that is more robust and
general.
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2. Notation, basic results and reductions

In this section we introduce some notation and some reductions of the setup
described in the introduction with the aim of simplifying the level of tech-
nicalities involved in our arguments.

If v1, . . . , vm are vectors in Rn, by span(v1, . . . , vm) we mean the subspace
of Rn spanned by v1, . . . , vm. We use the standard notation A ≲ B, meaning
A ≤ CB for some universal C which is independent of variables used in this
paper; in particular it will be independent of δ and R that appear in the
main proof. By A ≲N B we mean A ≤ C(N)B and indicate that C depends
on N .

Our results involve estimates in Lp(S), S ⊂ Rn with 0 < p ≤ 1. We recall
the standard estimate for superpositions of functions in Lp for 0 < p ≤ 1:

(2.1) ∥
∑

α

fα∥
p
Lp ≤

∑

α

∥fα∥
p
Lp .

We make the convention that the hypersurfaces involved have very small
diameter in the sense that if S = Σ(U) is a parametrization then U ⊂ Rn−1

has small diameter in the classical sense. This assumption does not affect
our analysis: we can break each hypersurface in finitely many pieces of small
diameter, run the arguments with the above setup and then sum up the
result on these pieces.

Since the estimates are not affected by translating the hypersurfaces Si,
we can assume that they all pass through the origin, and moreover that
0 ∈ S′

i for all i = 1, . . . , k. For each i = 1, . . . , k, we let Ni = N0Si be the
ci-plane that is normal to Si at 0. Ni is transversal to S′

i at 0 and because
U ′
i has small diameter, Ni is transversal to S

′
i at every ζi ∈ S′

i.
Next we proceed with reducing the problem to the case when the hyper-

surfaces or submanifolds involved have appropriate parameterizations; we
do this for the more complicated setup of Theorem 1.3, and note that a
simplified version covers the one needed in Theorem 1.1.

From (1.7), we know that

(2.2) |N1 ∧ · · · ∧Nk| ≥ ν.

Our next goal is to prove that there exists a non-degenerate linear trans-
formation A : Rn → Rn that allows us to assume that, under this transfor-
mation of the ξ-space, the system N1, . . . , Nk is an orthogonal system in the
sense that if vi ∈ Ni, vj ∈ Nj with i ̸= j, then vi ⊥ vj .
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S′
i is transformed into AS′

i, T0S
′
i is transformed into AT0S

′
i, but ANi

is not necessarily the normal to AS′
i at ξ = 0 ∈ S′

i! Indeed, the normal
condition is ⟨n, v⟩ = 0, ∀v ∈ T0Si, n ∈ Ni and there is no guarantee that
⟨An,Av⟩ = 0, ∀v ∈ T0Si, n ∈ Ni (unless A is orthonormal transformation
which would not solve the problem we seek to fix). If we wanted ei,1, . . . ,
ei,ci+1 to be the normal vectors to ASi, then we need to impose ⟨ei,j , Av⟩ =
0, ∀v ∈ T0Si which is equivalent to ⟨A∗ei,j , v⟩ = 0, ∀v ∈ T0Si, therefore if
ni,j was an orthonormal base for Ni it suffices to impose

A∗ei,j = ni,j , ∀i = 1, . . . , k, ∀j = 1, . . . , ci + 1.

Given an orthonormal system {ei,j}i=1,...,k;j=1,...,ci+1, we can solve for A
satisfying these equations; from (2.2), it follows that we can choose A to
obey good bounds, that is ∥A∥+ ∥A−1∥ ≲ ν−1.

The effect of A on the other properties in Condition 1 is fairly sim-
ple: S′

i becomes AS′
i which is a submanifold of ASi, and the effect on the

neighborhood can be quantified as follows:

ABϵ(S
′
i) ⊂ Bcϵ(AS

′
i),

for some c depending on A.
The change of coordinates induced by A will be reflected in the norms

∥gi∥L2(Si) and ∥Πk
i=1Ẽigi∥L

2
k−1 (B(0,R))

via the usual determinants of the cor-

responding Jacobian transformation - these values are both bounded from
below and above in terms of A. Thus we can skip the use of A and its re-
lated effects discussed above throughout the rest of the argument and simply
work with the original objects with the additional assumption that the set
of vectors N1, . . . , Nk is an orthogonal base in Rn.

For the purpose of Theorem 1.1, a similar but simpler reduction is in
place, the only difference being that there Ni is simply the 1-dimensional
normal space to Si at 0, so we could work directly with (unit) vectors as
opposed to spaces.

Next, we arrange a bit the variables in our problem. Each Ni con-
tains ni = ni(0), the unit normal to Si at 0. This particular vector plays
an important role in the overall analysis, given that Si are the ambient
hypersurfaces. Next in each Ni, i = 1, . . . , k we pick an orthonormal basis
that contains ni, that is {ni} ∪ {eij}j=1,...,ci . If we relabel ∪k

i=1{e
i
j}j=1,...,ci =

{ek+1, . . . , el}, then we can further complete this system of vectors with
unit vectors el+1, . . . , en with the property that the set of vectors n1, . . . , nk,
ek+1, . . . , en is an orthonormal system. Then let ξ = (ξ1, . . . , ξn) where ξi
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is the coordinate in the direction of ni, i = 1, . . . , k, and ξi is the coordi-
nate in the direction of ei for i = k + 1, . . . , n; we also use the notation
ξ′i = (ξ1, . . . , ξ̂i, . . . , ξn) (skip the ξi coordinate). We let x = (x1, . . . , xn) be
the dual system of coordinate and x′i = (x1, . . . , x̂i, . . . , xn).

For each i = 1, . . . , k, we let Hi = {x ∈ Rn : xi = 0} be the hyperplane
passing through the origin with normal ni; we also let Ĥi = {ξ ∈ Rn : ξi =
0}. We denote by πi : R

n → Hi the projection along ni onto Hi; similarly
we denote by π̂i : R

n → Ĥi the projection along ni onto Ĥi.
For technical purposes it is preferably to work with graph-like parame-

trizations of Si = Σi(Ui), that is with Σi : Ui ⊂ Ĥi → Rn being of the form
Σi(x) = {ξ ∈ Rn : ξi = φi(ξ

′
i)}, ∀ξ

′
i ∈ Ui for some smooth injective map φi :

Ui → R. Such parametrizations always exists under the assumption that the
diameter of Ui (coming from the original parametrization) is sufficiently
small (which is the case): one can simply project Si onto Hi

∼= Rn−1 along
ni to obtain Σ−1

i : Si → Ĥi.

We let fi(ξ
′
i) = gi(Σi(ξ

′
i)) ·

dσSi
(Σi(ξ′i))
dξ′i

; the relevance of fi comes from the
fairly straightforward identity

Ẽigi = Eifi.

The above parametrization and newly constructed function fi have two
additional properties. First, Σ−1

i (S′
i) is a submanifold of Rn−1 whose co-

dimension equals the co-dimension of S′
i relative to Si. Second, if gi has

the properties in Condition 1, then fi is supported in Bcϵ(Σ
−1
i (S′

i)). In what
follows we setMi = Σ−1

i (S′
i) ⊂ Ĥi - this is the manifold whose specific neigh-

borhood contains the support of fi.
At one point in the argument we will be using more convenient ver-

sions of the ϵ-neighborhood of a submanifold. As before, we can assume
that U ′

i is of small diameter; then S′
i has a graph type parametrization

in the sense that, after an orthonormal change of coordinates, we have
Σ′
i(ξ

′) = (ξ′, φi,mi+1(ξ
′), . . . , φi,n−1(ξ

′)), ξ′ = (ξ1, . . . , ξmi
) ∈ U ′

i . Thus a stan-
dard neighborhood can be traded in this context for the simpler version
B̃ϵ(Mi) = (ξ′, φi,mi+1(ξ

′) + tmi+1, . . . , φi,n−1(ξ
′) + tn−1), ξ′ ∈ U ′

i +Bϵ(0),
|tj | < ϵ, ∀j = mi + 1, . . . , n− 1; here we are implicitly assuming the fact Σ′

i

extends in a neighborhood of size ϵ of U ′
i .

The above setup reduction works the same for Theorem 1.1 by simply
ignoring the consideration involving the manifold S′

i and its neighborhood.
With the above notations we have

(2.3) Eifi(x) =

∫

Ui

ei(x
′

iξ
′

i+xiφi(ξ′i))fi(ξ
′
i)dξ

′
i.
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The Fourier transform of a Schwartz function f : Rn → C is defined by

F(f)(ξ) = f̂(ξ) =

∫

e−ix·ξf(x)dx.

The inverse Fourier transform is defined by

F−1(g)(x) = ǧ(x) =
1

(2π)n

∫

eix·ξg(ξ)dξ.

The standard Fourier inversion formula is in place F−1Ff = f and FF−1g =
g. These definitions are then extended to distributions, in particular to
Lp(Rn) spaces, in the usual manner.

In a similar manner (just that we work in n− 1 dimensions), we denote
by Fj : Hj → Ĥj the Fourier transform, x′j → ξ′j , and by F−1

j the inverse

Fourier transform, ξ′j → x′j . Obviously, Fj ,F
−1
j act on the variables x′j , ξ

′
j

respectively.
With these notations in place we make a few more observations. We

denote by Ejfj(x
′
j , 0) = Ejfj |xj=0 and note that

(2.4) Ejfj(x
′
j , 0) = (2π)n−1F−1

j fj .

With the parametrizations introduced earlier for each Si, it follows that

(2.5) Ejfj = eixjφj(D′

j)f̌j ,

where the symbol of eixjφj(D′

j) is eixjφj(ξ′j).
Another observation is that the operator Ejfj(·, xj) : L

2(Hj) → L2(Hj)
is an L2 isometry with respect to xj , that is

(2.6) ∥Ejfj(·, xj)∥L2 = ∥Ejfj(·, 0)∥L2 = (2π)
n−1

2 ∥fj∥L2 , ∀xj ∈ R.

For the operators Ej we highlight a commutator estimate which will be
used in our proof. We define the operator ∇φj(

D′

i
) to be multiplier with

symbol ∇φj(ξ
′). For any x ∈ Rn and c ∈ Hj , it holds true that

(2.7)

(x′j − c− xj∇φj(
D′

i
))NEjf(x) = Ej(Fj((x

′
j − c)NF−1

j f))(x), ∀N ∈ N.

Next we prepare some geometric elements that are needed in the proof.
We let L := {z1n1 + · · ·+ zknk + zk+1ek+1 + · · ·+ znen : (z1, . . . , zn) ∈ Zn}
be the standard lattice in Rn generated by the vectors n1, . . . , nk, ek+1, . . . , en.
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In each Hi, i = 1, . . . , k we construct the induced lattice L(Hi) = πi(L). Re-
call that for each i = 1, . . . , k, it holds true that {n1, . . . , nk, ek+1, . . . , el} \
{ni} ⊂ Hi. We splitHi = H′

i ⊕H′′
i , whereH

′′
i is spanned by the set of vectors

{ei1, . . . , e
i
ci}, while H′

i is spanned by

{n1, . . . , nk, ek+1, . . . , el} \ {Ni, e
i
1, . . . , e

i
ci}.

Correspondingly, this produces a split of L(Hi) as follows L(Hi) = L(H′
i)⊕

L(H′′
i ).
Given r > 0 we define C(r) be the set of of cubes of size r in Rn that are

centered at points in the lattice rL; a cube in C(r) has the following form

q(j) := [r(j1 −
1

2
), r(j1 +

1

2
)]× · · · × [r(jn −

1

2
), r(jn +

1

2
)]

where j = (j1, . . . , jn) ∈ Zn. For such a cube we define

c(q) = rj = (rj1, . . . , rjn) ∈ rL

to be its center; vice-versa, if c ∈ rL then we define q(c) to be the cube whose
center c(q) = c. Then, for each i = 1, . . . , n, we let CHi(r) = πiC(r) be the set
of cubes of size r in the hyperplane Hi. Finally, given two cubes q, q′ ∈ C(r)
(or CHi(r) or CH

′
i(r), CH

′′
i (r)) we define d(q, q′) to be the distance between

them when considered as subsets of the underlying space, be it Rn or Hi or
H′

i/H
′′
i .

Let χn
0 : Rn → [0,+∞) be a Schwartz function, normalized in L1, that

is ∥χn
0∥L1 = 1, and with Fourier transform supported on the unit ball. For

each q ∈ C(r), define χq : R
n → R by

χq(x) = χn
0 (
x− c(q)

r
)

Notice that χ̂q is supported in B(0, r−1). By the Poisson summation formula
and the properties of χn

0 ,

(2.8)
∑

q∈C(r)

χq = 1.

Using the properties of χq, a direct exercise shows that for each N ∈ N, the
following holds true

(2.9)
∑

q∈C(r)

∥⟨
x− c(q)

r
⟩Nχqg∥

2
L2 ≲N ∥g∥2L2
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for any g ∈ L2(Rn).
We introduce similar entities in eachHi, i = 1, . . . k. For each q ∈ CHi(r),

define χq : Hi → R by χq(x) = χn−1
0 (x−c(q)

r
) and note that Fiχq is supported

in B(0, r−1). By the Poisson summation formula and the properties of χn−1
0 ,

(2.10)
∑

q∈CHi(r)

χq = 1.

In a similar way to (2.9), the following holds true

(2.11)
∑

q∈CHi(r)

∥⟨
x− c(q)

r
⟩Nχqg∥

2
L2 ≲N ∥g∥2L2

for any g ∈ L2(Hi). Here, the variable x is the argument of g and belongs
to Hi.

We recall from [1] the following discrete version of the continuous Loomis-
Whitney inequality:

(2.12) ∥Πk
i=1gi(πi(z))∥l

2
k−1 (L)

≲Πk
i=1∥gi∥l2(L(Hi)).

We need a further refinement of this estimate.
For a function g : L(Hi) → C, we define the space l2l∞(L(H′

i)× L(H′′
i ))

to be the space of functions whose norm

∥g∥l2l∞(L(H′

i)×L(H′′

i ))
=





∑

z′∈L(H′

i)

sup
z′′∈L(H′′

i )
|g(z′, z′′)|2





1

2

,

is finite. With this notation in place we have the following result:

Lemma 2.1. Assume gi ∈ l2l∞(L(H′
i)× L(H′′

i )), i = 1, . . . , k. Then the fol-
lowing holds true

(2.13) ∥Πk
i=1gi(πi(z))∥l

2
k−1 (L)

≲Πk
i=1∥gi∥l2l∞(L(H′

i)×L(H′′

i ))
.

Proof. For z ∈ L we write z = (z′, z′′, z′′′) where z′ = (z1, . . . , zk) collects the
coordinates in the directions of n1, . . . , nk, z

′′ collects the coordinates in the
directions of ek+1, . . . , el and z′′′ collects the coordinates in the directions
of el+1, . . . , en. In this proof, we need to further refine the latices Hi. We
let H̃′′

i be the projection of Hi onto the subspace generated by the vectors
{ek+1, . . . , el} \ {e

i
1, . . . , e

i
ci}.
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We fix z′ and z′′′, let {z′} × L′′ × {z′′′} be the sub-lattice of L obtained
by fixing z′ and z′′′. Then we use Hölder’s inequality to obtain

∥Πk
i=1gi(πi(z

′, ·, z′′′))∥
l

2
k−1 ({z′}×L′′×{z′′′})

≲Πk
i=1∥gi(πi(z

′, ·, z′′′))∥l2l∞(L(H̃′′

i )×L(H′′

i ))
.

In justifying this estimate, we have also used the fact that l2l∞(L(H̃′′
i )×

L(H′′
i )) is the strongest norm that combines an l2 norm in the variables

from L(H̃′′
i ) and an l∞ norm in the variables from L(H′′

i )); for instance it
controls l∞l2(L(H′′

i )× L(H̃′′
i )).

Then we apply (2.12) with respect to the variable z′ to obtain

∥Πk
i=1gi(πi(·, ·, z

′′′))∥
l

2
k−1 (L′×L′′×{z′′′})

≲Πk
i=1∥gi(πi(z

′, ·, z′′′))∥l2l∞(L(H̃′′

i )×L(H′′

i ))
.

Applying Hölder with respect to the z′′′ variable gives

∥Πk
i=1gi ◦ πi∥

l
2
k
z′′′

l
2

k−1

z′,z′′

≲Πk
i=1∥gi ◦ πi∥l2l∞(L(H′

i)×L(H′′

i ))
.

To conclude with (2.13) we only need to use the simple inequality
∥a∥

l
2

k−1
≲∥a∥

l
2
k
for any sequence a ∈ Zm and in any dimension m. □

3. The ϵ-removal result

In this Section we provide a proof of Theorem 1.1, a theorem that provides
an ϵ-removal technique for multilinear estimates. The closest type of result in
this direction is the work of Tao and Vargas in [16] in the context of bilinear
restriction estimates. Unfortunately we cannot adapt that approach to our
context, since, among other issues, it relies on duality type arguments; in
our particular context we work with Lp quasi-norms with p < 1 and use of
duality is not an option. Instead we follow a previous ϵ-removal argument of
Tao in [15] in a linear context and use techniques developed by the author
in [1] to adapt it in the context of multilinear estimates.

Our first result is of a technical nature and its use will become clear once
we proceed with the proof of Theorem 1.1. The basic idea is that we need
to use the near-optimal result

∥Πk
i=1Eifi∥Lp(BR) ≲ RϵΠk

i=1∥fi∥L2
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in a more optimal form that essentially collects the mass of each wave Eifi
from BR(xi). The starting point is that the mass of fi can be recovered in
multiple ways based on (2.6); as a consequence we can rewrite the above as

∥Πk
i=1Eifi∥Lp(BR) ≲ RϵΠk

i=1∥Eifi|xi=cQ,i
∥L2(Hi).

On the other hand, information coming from cubes q × {xi = cQ,i}, q ∈
CHi(R) that are at distance≫ R from πiQ× {xi = cQ,i}, q ∈ CHi(R) should
not impact much the estimate, due to the finite speed of propagation. The
following result encodes this heuristics.

Lemma 3.1. Let Q ∈ C(R). Then the following holds true

(3.1) ∥Πk
i=1Eifi∥Lp(Q)

≲ RϵΠk
i=1





∑

q∈CHi(R)

⟨
d(πiQ, q)

R
⟩−(2N−n2)∥⟨

x′i − c(q)

R
⟩NχqEifi|xi=cQ,i

∥2L2(q)





1

2

.

There is one technicality that we skip in the above statement in order
to keep it simple. The occurrence of χq in various places has the effect
of modifying the support of entities involving fi by a factor of R−1. This
would require us to assume that the original near-optimal result holds for
each fi supported in Ui +B(0, R−1) in order to claim the above for each
fi supported in Ui. The practical effect in the final argument here is that
in order to obtain the ϵ-removal result under the hypothesis that each fi
is supported in Ui, we need to know the near-optimal result for each fi
supported in Ui +B(0, c) for some small 0 < c≪ 1.

Proof. We just sketch the main steps in this argument, as the argument
is very similar to the one used for proving the more difficult (4.3); in the
present context the δ that appears in (4.3) should is essentially ≈ 1.

The first observation is that, without restricting the generality of the
argument we can assume that Q is centered at the origin, that is cQ = 0.
The above then becomes

(3.2) ∥Πk
i=1Eifi∥Lp(Q)

≲ RϵΠk
i=1





∑

q∈CHi(R)

⟨
c(q)

R
⟩−(2N−n2)∥⟨

x′i − c(q)

R
⟩NχqEifi|xi=0∥

2
L2(q)





1

2

.
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We establish the improvement one term at the time, starting with E1f1.
Since φ1(0) = 0 and ∇φ1(0) = 0, we work with the basic multiplier x′1 and
(2.7) to justify the following identity

x′1E1F1(χqF
−1
1 f1) = (x′1 − x1∇φ1(

D′

i
))E1F1(χqF

−1
1 f1)

+ x1∇φ1(
D′

i
)E1F1(χqF

−1
1 f1)

= E1(F1(x
′
1χqF

−1
1 f1))(x)

+ x1∇φ1(
D′

i
)E1(F1(χqF

−1
1 f1)).

Arguing in a similar manner to the way we do in the prof of (4.3) we derive
(3.2); the details are left as an exercise. One important observation is that
(2.4) provides the relation between E1f1|x1=0 and F1f1 that allows us to
switch from using one of them to the other one. □

We now proceed with the proof of Theorem 1.1. Without restricting the
generality of the argument, we can assume that ∥fi∥L2 = 1, i = 1, . . . , k. We
do this by providing a weak type estimate, that is if

E(λ) = {x ∈ R
n : |Πk

i=1Eifi| ≥ λ},

it suffices to prove |E(λ)| ≲ λ−q for some q satisfying q < p+(n+p+1) D
log 1

ϵ

.

The first observation is that if x ∈ E(λ), then for some universal c ≈ 1,
Bcλ(x) ⊂ E(λ2 ). This follows from the simple computation

|Πk
i=1Eifi(x)−Πk

i=1Eifi(x0)| ≤ kCk−1
1 max

i
|Eifi(x)− Eifi(x0)|

≤ kCk−1
1 C2|x− x0|

where

C1 = max
i

∥Eifi∥L∞ ≲ 1, C2 = max
i

∥∇Eifi∥L∞ ≲ 1.

Thus if we choose c = min(1, 12(kC
k−1
1 C2)

−1) ≈ 1, it follows that

|Πk
i=1Eifi(x)−Πk

i=1Eifi(x0)| ≤
λ

2

and the conclusion follows.
As a consequence, if we let F = ∪x∈E(λ)Bcλ(x) we obtain that F ⊂ E(λ2 );

we let G = ∪x∈E(λ)B1(x) and note that |G| ≲ λ−n|F |.
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Next we use the following result due to Tao [15]. We say that a collection
{BR(xi)}

N
i=1 is sparse if the centers xi are R

CNC separated.

Lemma 3.2 (Lemma 3.3, [15]). Suppose E is the union of c-cubes and
N ≥ 1. Then there exists O(N |E|

1

N ) sparse collections of balls that cover G,
such that the balls in each collection have radius 1 ≲ R ≲ |E|C

N

.

It is easy to see that the above statement can be made in terms of cubes,
rather than balls, and this is how we use it below. Thus the above lemma
gives us O(N |G|

1

N ) sparse collections Ol of cubes that cover the set G (and
hence the set F ), such that the cubes in each collection Ol have radius/side-
length 1 ≲ Rl ≲ |E|C

N

. We fix a sparse collection of cubes Ol; for each cube
Q ∈ Ol we apply the near-optimal result in its refined version (3.1):

∥Πk
i=1Eifi∥Lp(Q)

≲ Rϵ
lΠ

k
i=1





∑

q∈CHi(R)

⟨
d(πiQ, q)

R
⟩−(2N−n2)∥⟨

x′i − c(q)

R
⟩NχqEifi|xi=cQ,i

∥2L2(q)





1

2

.

Based on Lemma 3.3 part ii) below, we can conclude that each of the terms
on the right hand-side has the l2Q∈Ol

norm bounded by ∥fi∥L2 ; thus their

product has l
2

k

Q∈Ol
norm bounded by Πk

i=1∥fi∥L2 and since p ≥ 2
k
it follows

that

∥Πk
i=1Eifi∥Lp(Ol) ≲ Rϵ

lΠ
k
i=1∥fi∥L2 = Rϵ

l .

Since F ⊂ E(λ2 ), it follows that

|F | ≲λ−p∥Πk
i=1Eifi∥

p
Lp(F ) ≲ λ−p

∑

l

∥Πk
i=1Eifi∥

p
Lp(Ol)

≲λ−p
∑

l

Rpϵ
l ≲ λ−pN |G|

1

N (|G|C
N

)pϵ

=λ−pN |G|
1

N
+pϵCN

≲ λ−pN(λ−n|F |)
1

N
+pϵCN

.

We let β = 1
N

+ pϵCN and derive the following estimate

|F | ≲ Nλ−
p+nβ

1−β .

For ϵ≪ e−C ≤ 1, we make the choice N = C−1 log 1
ϵ
; then it follows C

log 1

ϵ

≤

β ≤ 2C
log 1

ϵ

≪ 1 and the following holds true p+nβ
1−β

< p+ (n+ p+ 1)β ≤ p+
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(n+ p+ 1) 2C
log 1

ϵ

. Thus our argument for Theorem 1.1 is complete provided

that we establish the following result.

Lemma 3.3. i) Assume that S = Σ(U) is a smooth hypersurface that is
parametrized by ξn = φ(ξ′n). In addition, we assume that there exists α > 0
such that

(3.3) |Eψ| ≲ C(ψ)(1 + |x|)−α

for any smooth ψ supported within U .
Given a C-sparse family of cubes {Qj}

N
j=1, for some C > min(2,n−1)

α
, the

following holds true

(3.4)

N
∑

j=1

∥Ef |xn=cn(Qj)∥
2
L2(πn(Qj))

≲ ∥f∥2L2 ,

for any f supported within U .
ii) Under similar hypothesis as in i), the following holds true:

(3.5)
N
∑

j=1

∑

q∈CHi(R)

⟨
d(πiQj , q)

R
⟩−(2N−n2)∥⟨

x′i − c(q)

R
⟩NχqEifi|xi=cQ,i

∥2L2(q) ≲ ∥fi∥
2
L2 .

Proof. The estimate above can be restated as follows. If g = f̌ , then from
(2.5), it follows that (3.4) is equivalent to

(3.6)

N
∑

j=1

∥χπnQj
eicn(Qj)φ(D)g∥2L2(πn(Qj))

≲ ∥g∥2L2 ,

for any g that is supported within U . We let T : L2(Rn) → l2L2(Rn) be
defined by

Tf = (χπnQj
eicn(Qj)φ(D)g)Nj=1.

Then (3.4) is equivalent to proving that ∥T∥ ≲ 1, where by the operator
norm we mean the norm of T acting from L2(Rn) → l2L2(Rn). Its adjoint
operator T ∗ : l2L2(Rn) → L2(Rn) is given by

T ∗F =

N
∑

j=1

e−icn(Qj)φ(D)(χπnQj
Fj).
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Thus, it suffices to establish that the operator TT ∗ : l2L2(Rn) → l2L2(Rn)
has a good bound on its norm, that is ∥TT ∗∥ ≲ 1 TT ∗ is given by

TT ∗F = (χπnQk
e−icn(Qk)φ(D)

N
∑

j=1

eicn(Qj)φ(D)χπnQj
Fj)

N
k=1.

In the above we make the additional observation that each Fj has its Fourier
transform F̂j is supported in a small neighborhood (of size O(R−1)) of U ;
this is a consequence of the original localization property of the function
g, namely that ĝ was supported in U . Formally we could have rigorously
kept track of this by inserting an additional operator χU (D) (where χU is
the characteristic function of the set U in the definition of T , but this would
have complicated the exposition without bringing any useful insight into the
argument.

We claim the following estimate:

∥χπnQk
e−i(cn(Qk)−cn(Qj))φ(D)χπnQj

Fj∥L2(3.7)

≲ min(1, Rn−1⟨c(Qk)− c(Qj)⟩
−α)∥Fj∥L2 .

Using the sparseness of the set of cubes with C > min(2,n−1)
α

, it follows that
TT ∗ is bounded and we can conclude the proof of (3.4).

We now prove (3.7). Using the full translation invariance of the estimate,
(3.7) is equivalent to

(3.8) ∥χQ(c′n)
e−icnφ(D)χQ(0)Fj∥L2 ≲ min(1, Rn−1⟨c⟩−α)∥Fj∥L2 .

To get the bound with constant 1, we simply use the fact that all operators
above are bounded on L2. To get the second bound we start with the explicit
formula

e−icnφ(D)χQ(0)Fj = K(·, cn) ∗ (χQ(0)Fj),

with

K(x′n, xn) =

∫

ei(x
′

nξ
′

n+xnφ(ξ′n))χ(ξ′n)dξ
′
n

where χ(ξ′n) keeps track of the localization property of each Fj . From (3.3)
it follows that K satisfies the decay properties:

|K(x)| ≲ (1 + |x|)−α.

Therefore

∥K∥L1(QR(c′n))
≲ Rn−1(1 + ∥c∥)−α.
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From this we obtain the (3.8) with constant Rn−1(1 + ∥c∥)−α. □

We end this section with the proof of Corollary 1.2. From [13] (see
chapter 8, section 3.2, Theorem 2) it follows that if S has l-type, then
|Eψ(x)| ≲ (1 + |x|)−

1

l . Then i) follows from Theorem 1.1.
For ii), the basic idea is that for the hypersurfaces S1, . . . , Sk1

we can
still use parts of the analysis above, while for the Sk1+1, . . . , Sk planar hy-
persurfaces we will make use of the known trivial estimates.

The argument follows the same steps as the one used in the proof of
Theorem 1.1. When we arrive at the use of the near-optimal result in its
refined version (3.1):

∥Πk
i=1Eifi∥Lp(Q)

≲ Rϵ
lΠ

k
i=1





∑

q∈CHi(R)

⟨
d(πiQ, q)

R
⟩−(2N−n2)∥⟨

x′i − c(q)

R
⟩NχqEifi|xi=cQ,i

∥2L2(q)





1

2

,

we cannot make use of Lemma 3.3 for all hypersurfaces involved, thus we

cannot recover the estimate in l
2

k

Q∈Ol
bounded by Πk

i=1∥fi∥L2 . What we can

do instead, is to recover an estimate in l
2

k1

Q∈Ol
for the product of the first

k1 terms on the right-hand side with a bound of ≲ Πk1

i=1∥fi∥L2 . For the
other terms we rely on an exact calculus. As we described in the section
2, we have chosen the coordinates such that nk1+1, . . . , nk, the normals at
the hyperplanes where Sk1+1, . . . , Sk respectively lie, belong to the set of
coordinate directions. As a consequence, Eifi|xi=cQ,i

= Eifi|xi=0. Thus the
remaining term to be estimated is

Πk
i=k1+1





∑

q∈CHi(R)

⟨
d(πiQ, q)

R
⟩−(2N−n2)∥⟨

x′i − c(q)

R
⟩NχqF

−1
i fi|xi=0∥

2
L2(q)





1

2

.

It is an easy exercise to see that we obtain an l
2

k−k1−1 estimate for the above
term with a bound of ≲ Πk

k1+1∥fi∥L2 - morally this is at the level of Loomis-
Whitney inequality. Alternatively, each term above has l2l∞(RL(Hi)×
Rspan(Ni)) with respect to Q ∈ C(R) and with a bound of ≲ ∥fi∥L2 . This

leads to the estimate l
2

k−k1−1 as above using similar but simpler arguments
to the ones in Lemma 2.1.

Finally iii) follows from ii).
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4. Proof of Theorem 1.3

The proof uses an induction of scales argument. When moving from smaller
scales to the larger ones, it is very useful to have tight control of the leaks
of mass between various spatial regions for each individual wave Eifi. This
is achieved by splitting each domain Ui into smaller pieces of diameter ≤ δ,
for some 0 < δ ≪ 1. This, in turn, splits the surfaces Si = Σi(Ui) in the
corresponding pieces. It suffices to prove the multilinear estimate for each
Si being replaced by one of its pieces, since then we can sum up the estimates
for all possibles combinations of pieces using (2.1) and generate the original
estimate at a cost of picking a factor that is a power of δ−1. In the end of the
argument, δ will be chosen in terms of absolute constants and ϵ, but not R,
and the power of δ−1 will be absorbed into C(ϵ). This idea originates from
the work of Guth in [9] and the author later used it in [1–3].

Once we have decided to work with these pieces from each Si, we run the
argument in section 2: we translates the pieces so that 0 ∈ Si, and redefine
all the entities there.

The proof of Theorem 1.3 relies on estimating Πk
i=1Eifi on cubes on the

physical side and analyze how the estimate behaves as the size of the cube
goes to infinity by using an inductive type argument with respect to the
size of the cube. As we move from one spatial scale to a larger one, we will
have to tolerate slightly larger Fourier support in the argument. But this
accumulation is in the form of a convergent geometric series, therefore the
only harm it does is imposing an additional technical layer in the argument.

Definition 4.1. Given R ≥ δ−2 we define A(R) to be the best constant for
which the estimate

(4.1) ∥Πk
i=1Eifi∥L

2
k−1 (Q)

≤ A(R, δ, µ)Πk
i=1∥fi∥L2

holds true for all cubes Q ∈ C(R), under the assumption that fi is supported
in the set

Bµi+10R−1(Mi) ∩B(0, δ), ∀i = 1, . . . k.

In the above we have used the notation µ = (µ1, . . . , µk). The induction
starts from R ≥ δ−2 in order to be able to propagate the support hypothesis.
We also tacitly assume that µi ≪ δ−2, ∀i = 1, . . . , k, or else the final gain of

µ
ci
2

i is indistinguishable from powers of δ−1 which will naturally contribute
to the final constant C(ϵ) that appears in the min estimate (1.8).
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We provide an estimate inside any cube Q ∈ C(δ−1R) based on prior
information on estimates inside cubes q ∈ C(R) ∩Q. Without restricting the
generality of the argument, we assume that Q is centered at the origin
and recall that each q ∈ C(R) ∩Q has its center in RL. When such a q
is projected using πi onto Hi one obtains πiq ∈ CHi(R).

Each q ∈ C(R) ∩Q has size R and the induction hypothesis is the fol-
lowing:

(4.2) ∥Πk
i=1Eifi∥L

2
k−1 (q)

≤ A(R, δ, µ)Πk
i=1∥fi∥L2 .

We strengthen this as follows:

(4.3) ∥Πk
i=1Eifi∥L

2
k−1 (q)

≲ A(R, δ, µ)

·Πk
i=1





∑

q′∈CHi(R)

⟨
d(πiq, q

′)

R
⟩−(2N−n2)∥⟨

x′i − c(q′)

R
⟩Nχq′F

−1
i fi∥

2
L2





1

2

.

The basic idea in (4.3) is the following: if q′ ̸= πiq, then E1F1(χq′F
−1
1 f1)

has off-diagonal type contribution outside q′ × [−δ−1R, δ−1R] (the interval
stands for the i’th slot), thus it has off-diagonal type contribution to the left-
hand side of (4.3). We now turn to the details and fix i = 1 and q′ ∈ CH1(R).
With x = (x1, x

′
1) we have

∥(x′1 − c(q′)− x1∇φ1(ξ
′
0))E1F1(χq′F

−1
1 f1) ·Π

k
i=2Eifi∥L

2
k−1 (q)

≤ ∥(x′1 − c(q′)− x1∇φ1(
D′

i
))E1F1(χq′F

−1
1 f1) ·Π

k
i=2Eifi∥L

2
k−1 (q)

+ ∥x1(∇φ1(ξ
′
0)−∇φ1(

D′

i
))E1F1(χq′F

−1
1 f1) ·Π

k
i=2Eifi∥L

2
k−1 (q)

= ∥E1F1((x
′
1 − c(q′))χq′F

−1
1 f1) ·Π

k
i=2Eifi∥L

2
k−1 (q)

+ ∥x1E1F1((∇φ1(ξ
′
0)−∇φ1(ξ

′))χq′F
−1
1 f1) ·Π

k
i=2Eifi∥L

2
k−1 (q)

≤ A(R, δ, µ)∥(x′1 − c(q′))χq′F
−1
1 f1∥L2

+A(R, δ, µ)δ−1R∥(∇φ1(ξ
′
0)−∇φ1(ξ

′))χq′F
−1
1 f1∥L2Πk

i=2∥fi∥L2

≲ A(R, δ, µ)
(

∥(x′1 − c(q′))χq′F
−1
1 f1∥L2 +R∥χq′F

−1
1 f1∥L2

)

Πk
i=2∥fi∥L2

≲ RA(R, δ, µ)∥⟨
x′1 − c(q′)

R
⟩χq′F

−1
1 f1∥L2Πk

i=2∥fi∥L2 .

We have used the following: (2.7) in justifying the equality between the
terms on the second and fourth line, the induction hypothesis and the
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fact that inside Q we have |x1| ≲ δ−1R to justify the inequality in the
sixth line. Note that it is in the above use of the induction estimate for
E1F1((x

′
1 − c(q′))χq′F

−1
1 f1) that we need to tolerate the relaxed support

of f1. f1 is supported in the set Bµ1+10(δ−1R)−1(M1) ∩B1(0, δ), and this
support is impacted by the convolution with F1((x

′
1 − c(q′))χq′) which is

supported in B1(0, R
−1); the sum set of the two supports is a subset of

Bµ1+10(δ−1R)−1(M1) ∩B1(0, δ); thus we can invoke the induction hypothesis
at scale R.

For any q ∈ C(R) ∩Q and x′ ∈ πN1
(q), it holds that ⟨x

′−c(q′)−x1∇φ1(ξ′0)
R

⟩ ≈

⟨
d(πN1

(q),q′)
R

⟩. This is justified by the fact that |x1| ≲ δ−1R and |∇φ1(ξ
′
0)| ≤ δ,

therefore the contribution of |x1∇φ1(ξ
′
0)| ≤ R is negligible. From this and

the previous set of estimates, we conclude that

∥E1F1(χq′F
−1
1 f1) ·Π

k
i=2Eifi∥L

2
k−1 (q)

≲ A(R, δ, µ)⟨
d(πN1

q, q′)

R
⟩−1∥⟨

x′1 − c(q′)

R
⟩χq′F

−1
1 f1∥L2Πk

i=2∥fi∥L2 .

We claim that we can extend the argument above to prove

(4.4) ∥E1F1(χq′F
−1
1 f1) ·Π

k
i=2Eifi∥L

2
k−1 (q)

≲NA(R, δ, µ)⟨
d(πN1

q, q′)

R
⟩−N∥⟨

x′1 − c(q′)

R
⟩Nχq′F

−1
1 f1∥L2Πk

i=2∥fi∥L2 ,

for all N ≥ 1. In repeating the argument above, we need to start with the
higher order terms:

∥(x′1 − c(q′)− x1∇φ1(ξ
′
0))

NE1F1(χq′F
−1
1 f1) ·Π

k
i=2Eifi∥L

2
k−1 (q)

.

If N ≥ 2 some more, but harmless, terms appear due to the lack of commu-
tativity between the symbols of the operators that are being used. We do
this for N = 2; the other cases are treated in a similar fashion. We use the
following operator decomposition

x′1 − c(q′)− x1∇φ1(ξ
′
0) = A+B,

A = x′1 − c(q′)− x1∇φ1(
D′

i
),

B = x1(∇φ1(ξ
′
0)−∇φ1(

D′

i
)),
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based on which we have

(x′1 − c(q′)− x1∇φ1(ξ
′
0))

2 = (A+B)2 = A2 +B2 + 2BA+ [A,B].

Each component is treated as follows. The contribution of the term with A2

is estimated as above and using (2.7). The contribution of the term with B2

is estimated as above and using the fact that

B2 = x21(∇φ1(ξ
′
0)−∇φ1(

D′

i
))2,

which is a consequence of the commutativity of x1 and ∇φ1(ξ
′
0)−∇φ1(

D′

i
).

The contribution of the BA term is estimated as follows:

∥BAE1F1(χq′F
−1
1 f1) ·Π

k
i=2Eifi∥L

2
k−1 (q)

= ∥x1(∇φ1(ξ
′
0)−∇φ1(

D′

i
))E1F1((x

′
1 − c(q′))χq′F

−1
1 f1) ·Π

k
i=2Eifi∥L

2
k−1 (q)

≲ δ−1R∥E1(∇φ1(ξ
′
0)−∇φ1(ξ

′))F1((x
′
1 − c(q′))χq′F

−1
1 f1) ·Π

k
i=2Eifi∥L

2
k−1 (q)

≲ δ−1R∥(∇φ1(ξ
′
0)−∇φ1(ξ

′))F1((x
′
1 − c(q′))χq′F

−1
1 f1)∥L2 ·Πk

i=2∥fi∥L2

≲ R∥F1((x
′
1 − c(q′))χq′F

−1
1 f1)∥L2 ·Πk

i=2∥fi∥L2

≲ R∥(x′1 − c(q′))χq′F
−1
1 f1∥L2 ·Πk

i=2∥fi∥L2

≲ R2∥⟨
x′1 − c(q′)

R
⟩χq′F

−1
1 f1∥L2 ·Πk

i=2∥fi∥L2 .

Finally since [A,B] = −x1

i
∆φ1(

D′

i
), we estimate its contribution as follows

∥[A,B]E1F1(χq′F
−1
1 f1) ·Π

k
i=2Eifi∥L

2
k−1 (q)

= ∥x1∆φ1(
D′

i
)E1F1(χq′F

−1
1 f1) ·Π

k
i=2Eifi∥L

2
k−1 (q)

≲ δ−1R∥E1(∆φ1(ξ
′))F1(χq′F

−1
1 f1) ·Π

k
i=2Eifi∥L

2
k−1 (q)

≲ δ−1R∥∆φ1(ξ
′)F1(χq′F

−1
1 f1)∥L2 ·Πk

i=2∥fi∥L2

≲ δ−1R∥F1(χq′F
−1
1 f1)∥L2 ·Πk

i=2∥fi∥L2

≲ δ−1R∥χq′F
−1
1 f1∥L2 ·Πk

i=2∥fi∥L2

≲ R2∥χq′F
−1
1 f1∥L2 ·Πk

i=2∥fi∥L2 ,

where, in passing to the last line, we have used that δ−1 ≪ R. Based on
all the estimates above, we obtain (4.4) for N = 2. The above argument
contains all the ingredients necessary to obtain (4.4) for N ≥ 3.
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Using (2.1), (2.8) and (4.4), we obtain

∥E1f1 ·Π
k
i=2Eifi∥

2

k−1

L
2

k−1 (q)

≤ A(R, δ, µ)
2

k−1

∑

q′∈CH1(R)

∥E1F1(χq′F
−1
1 f1) ·Π

k
i=2Eifi∥

2

k−1

L
2

k−1 (q)

≲NA(R, δ, µ)
2

k−1

·





∑

q′∈CH1(R)

⟨
d(πN1

q, q′)

R
⟩−N · 2

k−1 ∥⟨
x′ − c(q′)

R
⟩Nχq′F

−1
1 f1∥

2

k−1

L2





·Πk
i=2∥fi∥

2

k−1

L2

≲NA(R, δ, µ)
2

k−1Πk
i=2∥fi∥

2

k−1

L2

·





∑

q′∈CH1(R)

⟨
d(πN1

q, q′)

R
⟩−(2N−(k−1)2)∥⟨

x′ − c(q′)

R
⟩Nχq′F

−1
1 f1∥

2
L2





1

k−1

.

In justifying the last inequality, we have used the simple estimate for se-
quences

∥ai · bi∥
l

2
k−1
i

≲ ∥ai∥l2i ∥bi∥l
2

k−2
i

,

together with the straightforward estimate

∥⟨
d(πN1

q, q′)

R
⟩−

(k−1)2

2 ∥
l

2
k−2

q′

≲ 1.

Note that the previous inequality is (4.3) with the improvement for f1. By
repeating the procedure for all other terms f2, . . . , fk to conclude with (4.3).

Using (4.3) we invoke the discrete Loomis-Whitney inequality in (2.12)
to conclude the argument. For i = 1, . . . k, we define the functions gi :
L(Hi) → R by

gi(j) =





∑

q′∈CHi(R)

⟨
d(q(j), q′)

R
⟩−(N−2(k−1)2)∥⟨

x′ − c(q′)

R
⟩Nχq′F

−1
i fi∥

2
L2





1

2

,

j ∈ L(Hi).

For N large enough (depending only on n), we claim the following estimate:

(4.5) ∥gi∥l2l∞(L(H′

i)×L(H′′

i ))
≲Ci(µi, δ, R)∥fi∥L2 , i = 1, . . . k,
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where Ci(µi, δ, R) = min(1, (Rµi + 10δ)
ci
2 ). From (2.12) we conclude

(4.6) A(µ, δ, δ−1R)≲A(µ, δ, R)Πk
i=1Ci(µi, δ, R).

We will return to this estimate at the end of the proof and show how it is
used to close the induction.

For now, we continue with the argument for (4.5). The bound with the
choice of 1 in min(1, (Rµi + 10δ)

ci
2 is easily obtained from the stronger in-

equality:

∥gi∥l2l2(L(H′

i)×L(H′′

i ))
≲∥fi∥L2 , i = 1, . . . k.

The bound with the choice of (Rµi + 10δ)
ci
2 in min(1, (Rµi + 10δ)

ci
2 is ad-

dressed below. We prove this claim in the case i = 1, the other choices of i
being analogous; note that it suffices to prove

(4.7) ∥∥F−1
1 f1∥L2(q(j))∥l2l∞(L(H′

1)×L(H′′

1 ))
≲ (Rµ1 + 10δ)

c1
2 ∥f1∥L2 ,

where in the above the variable j runs in L(H1). In the context i = 1 we
ignore the variable along n1. The variable in H1 that was originally labeled
by x′1 will be denoted by x and is further split as follows x = (x′, x′′) ∈
Rn−c1−1 × Rc1 , with the dual Fourier variables being ξ = (ξ′, ξ′′). f1 is local-
ized in Bµ1+10δR−1(M1) where M1 is a n− c1 − 1-dimensional manifold. As
we discussed in Section 2, we can parametrize it as follows: (ξ′,Φ(ξ′)) with
ξ′ ∈ Rn−c1−1 and Φ(ξ′) = (φ̃1(ξ

′), . . . , φ̃c1(ξ
′)); this is true at least locally,

but given that we work with f1 supported in B1(0, 20δ
2) with δ ≪ 1, we can

obtain the parametrization in the whole support of f1.
The scope of what follows next is to ”flatten” the manifold M1, since

this allows us to exploit the localization in an easier way. We write

F−1
1 f1(x) =

∫

eix·ξf1(ξ)dξ

=

∫

ei(x
′·ξ′+x′′·(Φ(ξ′)+ξ′′))f1(ξ

′,Φ(ξ′) + ξ′′)dξ′dξ′′

=

∫ (

eix
′′·ξ′′

∫

ei(x
′·ξ′+x′′Φ(ξ′))h1(ξ

′, ξ′′)dξ′
)

dξ′′

=

∫

eix
′′·ξ′′EΦh1(·, ξ

′′)dξ′′

where

EΦh(x) =

∫

ei(x
′·ξ′+x′′·Φ(ξ′))h(ξ′)dξ′, h1(ξ

′, ξ′′) = f1(ξ
′,Φ(ξ′) + ξ′′).
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From its definition we see that h1 is supported in a set where |ξ′| ≤ δ +
10R−1 and ∥ξ′′∥∞ ≤ µ1 + 10δR−1. A straightforward computation shows
that ∥h1∥L2 = ∥f1∥L2 .

We note that for any q cube of size R the following estimate holds true:

(4.8) ∥EΦh∥
2
L2(q) ≲ R

c1
2 ∥h∥L2 ,

where h ∈ L2
ξ′ depends only on the variable ξ′. This simply follows from the

fact that EΦ is an isometry on L2
x′ and by integrating with respect to the x′′

variable in an interval of size R (in all directions contained in x′′).
Using (4.8) we obtain

∥F−1
1 f1∥L2(q) ≤ R

c1
2

∫

∥h1(·, ξ
′′)∥L2

ξ′
dξ′′

≤ R
c1
2 (Πc1

j=1(µ1 + 10δR−1))
1

2 ∥h1∥L2

= (Rµ1 + 10δ)
c1
2 ∥f1∥L2 .

(4.9)

The constant obtained here has the correct numerology, but the estimate
misses some additional localization that is necessary in closing the argument
for (4.7). To prove (4.7), it suffices to prove the following more localized
version:

(4.10) ∥F−1
1 f1∥

2
L2(q) ≲ R

c1
2 ·

·

∫





∑

q′∈CH′

1

⟨
d(π′q, q′)

R
⟩−(2N−n2)∥⟨

x′ − c(q′)

R
⟩Nχq′(F

′
1)

−1h1(·, ξ
′′)∥L2



 dξ′′,

where π′ is the projection onto H′
1 and N ∈ N and (F ′

1)
−1 is the inverse

Fourier transform with taken with respect to the variable x′ only. Indeed, if
we show (4.10), then

∥∥F−1
1 f1∥L2(q(j))∥l2l∞(L(H′

1)×L(H′′

1 ))
≲

∫

R
c1
2 ∥h1(·, ξ

′′)∥L2dξ′′

≲ (Rµ1 + 10δ)
c1
2 ∥h1∥L2

= (Rµ1 + 10δ)
c1
2 ∥f1∥L2 ,

which establishes (4.7); in the above we have used that h1 is supported in a
region with ∥ξ′′∥∞ ≤ µ1 + 10δR−1.
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It is also clear that (4.10) follows from the following estimate

(4.11) ∥EΦh∥
2
L2(q) ≲ R

c1
2 ·

·





∑

q′∈CH′

1

⟨
d(π′q, q′)

R
⟩−(2N−n2)∥⟨

x′ − c(q′)

R
⟩Nχq′(F

′
1)

−1h∥L2



 ,

where h ∈ L2
ξ′ depends only on the variable ξ′; h inherits the properties that

h1 has with respect to the ξ′ variable, mainly the support in a ball of size
δ + 10R−1. This is an improvement over the use of the isometry property
in deriving (4.8) and it is analogous to how (4.3) improves upon (4.2). The
analogy carries on to how we establish (4.11): we start from (4.8) and use
the multiplier x′ − c(q′)− x′′∇Φ(ξ′0) (where ξ

′
0 belongs to the support of h)

to run a similar argument as for the derivation of (4.3); the details are left
to the interested reader.

We now return to (4.6)

A(µ, δ, δ−1R) ≤ CA(µ, δ, R)Πk
i=1Ci(µi, δ, R)

and show how it implies the result in Theorem 1.3. Recall that C is inde-
pendent of δ, R and µ and that Ci(µi, δ, R) = min(1, (Rµij + 10δ))

ci
2 . The

localization in Theorem 1.3 and the one in Definition 4.1 are not quite the
same, but they match provided that R ≥ max{µ−1

1 , . . . , µ−1
k }; we first pro-

vide the argument for this case.
For any R ≥ max{µ−1

1 , . . . , µ−1
k }, we iterate (4.6) to obtain

A(µ, δ, R) ≤ CNA(µ, δ, δNR)ΠN
m=1Π

k
i=1Ci(µi, δ, δ

mR).

We pick N such that δ−1 ≤ δNR ≤ δ−2. We quantify the effect of some µi
for some i ∈ {1, . . . , k} in the expression above as follows:

ΠN
m=1min(1, (δmRµi + 10δ)

ci
2 ).

In the above we gain factors of δ for as long as δmRµi ≤ 10δ; the accumu-
lating powers of 10

ci
2 are added to the factor CN above. Thus it follows

that

(4.12) ΠN
m=1min(1, (δmRµi + 10δ)

ci
2 ) ≤ CN

0 µ
ci
2

i ,
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where C0 is independent of δ,R, µ; here we have used the fact that we have
chosen R large enough. Thus we conclude with:

A(µ, δ, R) ≤ CNA(µ, δ, δNR)Πk
i=1µ

ci
2

i ,

for any R ≥ max{µ−1
1 , . . . , µ−1

k } and where N is chosen such that δ−1 ≤
δNR ≤ δ−2. From this we obtain

A(µ, δ, R) ≤ CN max
r≤δ−2

A(µ, δ, r)Πk
i=1µ

ci
2

i .

From the uniform pointwise bound

∥Πn+1
i=1 Eifi∥L∞≲Πn+1

i=1 ∥Eifi∥L∞≲Πn+1
i=1 ∥fi∥L2

it follows that maxr≤δ−2 A(µ, δ, r) ≲ δ−10. ForR ∈ [δ−N , δ−N−1], andN large
enough so that R ≥ max{µ−1

1 , . . . , µ−1
k }, the above implies

A(µ, δ, R) ≤ CNC(δ) ≤ RϵC(δ)

provided that CN ≤ δ−Nϵ. Therefore choosing δ = C− 1

ϵ leads to the desired
result.

We now consider the case R ≤ max{µ−1
1 , . . . , µ−1

k }. In this case, Defini-
tion 4.1 requires localization properties at larger scales since R−1 ≥
min{µ1, . . . , µk}; this is not a problem at all. However, when we run the

argument above, we will not capture the full factor Πk
i=1µ

ci
2

i , and this is
reasonable given that we work with weaker localization properties.

For simplicity, let us assume µ1 ≤ µ2 ≤ · · · ≤ µk (which does not restrict
the generality of the argument) and look at the particular case µ1 ≤ R−1 ≤
µ2 - the other cases are treated in a similar fashion. Then we run the above

argument and note that the factor Πk
i=1µ

ci
2

i needs to be replaced by

R−
c1
2 Πk

i=2µ
ci
2

i ,

which is a simple consequence of re-quantifying the estimate (4.12). Thus,
relatively to (1.8), we are missing a factor of (Rµ1)

c1
2 , which needs to be

recovered. As of now we obtain that the inequality

(4.13) ∥Πk
i=1Eifi∥L

2
k−1 (Q)

≤ C(ϵ)RϵR−
c1
2 Πk

i=2µ
ci
2

i Πk
i=1∥fi∥L2
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holds true for all cubes Q ∈ C(R), under the assumption that fi is supported
in Bµi+10R−1(Mi) ∩B(0, δ), ∀i = 1, . . . k As before we assume that Q is cen-
tered at the origin. To improve this, we take advantage of the fact that,
in the orginal estimate that we seek to establish, f1 has better localization
properties: it is supported in Bµ1

(M1). (4.3) allows us to replace ∥f1∥L2 in
(4.13) by





∑

q′∈CH1(R)

⟨
d(π1Q, q

′)

R
⟩−(2N−n2)∥⟨

x′1 − c(q′)

R
⟩Nχq′F

−1
1 f1∥

2
L2





1

2

Morally this implies that, for the estimate at scale R, the contribution from
f1 that really matters is ∥F−1

1 f1∥L2(q), where q = π1Q ∈ CH1(R), and the
rest of the terms come with appropriate decay. On the other hand, a similar
argument to the one used for (4.9) gives that for any q ∈ CH1(R)

∥F−1
1 f1∥L2(q)≲(Rµ1)

c1
2 ∥f1∥L2 ;

here we use that f1 has better localization properties. This brings in the
correction we needed in (4.13); we leave the details as an exercise to the
interested reader.
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