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1. Introduction

Let p be a prime and let K be an algebraically closed non-archimedean field
of residue characteristic p. For an abelian variety A over K we consider the
inverse system of A under the p-multiplication morphism:

· · ·
[p]
−→ A

[p]
−→ A

[p]
−→ A.

Via the adic analytification functor, we may see this as an inverse system
of analytic adic spaces over Spa(K,OK), where OK is the ring of integers
of K. The primary goal of this article is to show that the “inverse limit” of
this tower exists in some way and is a perfectoid space: Since inverse limits
rarely exist in the category of adic spaces, in [11, Definition 2.4.2] Huber
introduced the weaker notion of tilde-limits to remedy this problem. This
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is the notion of “limits” we are going to use. More precisely, we prove the
following slightly more general result:

Theorem 1. Let A be an abeloid variety over K, for instance an abelian
variety seen as a rigid space. Then there is a unique perfectoid space A∞

over K such that A∞ ∼ lim
←−[p]

A is a tilde-limit.

In the special case of abelian varieties of good reduction, the possibility
of results in this direction is already mentioned in [19, §7 and §13], and was
proven in [15, Lemme A.16]. We recall the argument in Lemma 2.13 below.

In general, A has semi-stable reduction by the assumption that K is al-
gebraically closed. Consequently, the theory of Raynaud extensions provides
us with a short exact sequence

0→ T → E → B → 0

of rigid groups, where T = (Gan
m )r is a split rigid torus and B is the ana-

lytification of an abelian variety with good reduction, such that A = E/M
for a discrete lattice M ⊂ E. This short exact sequence is split locally on B
in the analytic topology, allowing us to locally write E as a product of T
and an open subspace of B. Our strategy for the proof of Theorem 1, which
more generally applies to any abeloid variety over K, is now:

1) Construct a perfectoid tilde-limit T∞ ∼ lim
←−[p]

T . This is easy.

2) Use T∞ and B∞ to construct a perfectoid tilde-limit E∞ ∼ lim
←−[p]

E.

3) Study the quotient map E → A in the limit over [p] to construct the
desired space A∞.

More precisely, this article is organised as follows: In §2 we recall the
definition of tilde-limits and collect some useful lemmas about tilde-limits
and perfectoid spaces. In particular, we construct the perfectoid tilde-limit
T∞. In §3 we use local splittings to construct a perfectoid tilde-limit E∞:
The Raynaud extension of A mentioned earlier arises from a short exact
sequence of formal group schemes over OK

0→ T → E → B → 0

by taking generic fibres and forming the pushout with respect to the open
immersion T η → T . We get the desired tilde-limit by tracing the local split-
ting through the tower of multiplication by [p]. This will also show that there
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is a short exact sequence of perfectoid groups in the analytic topology

0→ T∞ → E∞ → B∞ → 0.

In §4 we finish the proof of Theorem 1 by constructing A∞ from E∞ as
follows: After choosing lattices M ⊂Mn ⊂ E that map isomorphically to M
under [pn] : E → E, the [p]-multiplication tower of A = E/M naturally fac-
tors into two separate towers: One is the tower of maps E/Mn+1 → E/Mn

induced from [p]-multiplication of E, and the other is induced from the pro-
jection maps vn : E/M → E/Mn. Using local splittings, one can construct
a perfectoid tilde-limit A′

∞ ∼ lim
←−n

E/Mn of the first tower from E∞. It fits
into a short exact sequence

0→M → E∞ → A′
∞ → 0.

The existence of A∞ ∼ lim
←−[p]

A then follows because all the quotient maps

vn : E/M → E/Mn are étale. In fact, they are locally split in the analytic
topology, from which one can deduce the following analogue of Raynaud uni-
formisation for A∞: Write Dn for the kernel of vn. Then there is a profinite
perfectoid tilde-limit D∞ ∼ lim

←−[p]
Dn and a short exact sequence of perfec-

toid groups

0→M → D∞ × E∞ → A∞ → 0,

which we regard as an analogue of the sequence 0→M → E → A→ 0.
In §5, we give three applications of Theorem 1 if CharK = 0: As observed

by Hansen, one can deduce from Theorem 1 the existence of certain universal
covers of curves by embedding them into their Jacobian:

Corollary 1.1 (Hansen,[9]). Let C be a connected smooth projective curve
of genus g ≥ 1 over K. Fix a geometric point x : Spec(K)→ C and for each
open subgroup H of π1(C, x), let CH denote the finite étale cover of C cor-
responding to H. We regard C and CH as analytic adic spaces.

1) There is a perfectoid tilde-limit C̃ ∼ lim
←−H

CH where H ranges over the
open subgroups of π1(C, x).

2) The morphism C̃ → C is a pro-étale π1(C, x)-torsor. It is universal
with this property in the sense that it represents the fibre functor send-
ing pro-finite-étale perfectoid covers X → C to the π1(C, x)-module
F (X) = HomC(x,X).
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3) For any pro-finite-étale morphism X → C, there is a natural isomor-
phism

X = F (X)×π1(C,x) C̃ := (F (X)× C̃)/π1(C, x).

Here the right hand side is the categorical quotient in adic spaces for
the antidiagonal action.

Second, we note that the analogue of this corollary also works for C
replaced by an abelian variety, in which case the pro-étale fundamental group
is isomorphic to the adelic Tate module TA := lim

←−N∈N
A[N ]. In particular,

one obtains from this two different natural ways to uniformise the diamond
A♢ attached to A: On the one hand, as a consequence of Theorem 1, we can
write

A♢ = A∞/TpA.

On the other hand, one can deduce from Theorem 1 that there is also a
perfectoid tilde-limit Ã ∼ lim

←−[N ]
A which gives rise to a natural isomorphism

A♢ = Ã/TA.

Here the second equation describes A in terms of the universal connected
pro-finite-étale cover Ã→ A, whereas the first uses the universal connected
pro-finite-étale pro-p-cover. Either may be seen as a sort of analogue of
Riemann uniformisation of abelian varieties over C.

Our third application of Theorem 1 states that, in line with this analogy
to the complex case, the cohomology of Zariski-constructible Fp-sheaves (in
the sense of [16, before §3.1]) on A behaves like that of a Stein space: This
follows in combination with a result of Reinecke [16, Theorem 3.3]:

Corollary 1.2 (Reinecke). Let A be an abeloid variety and let L be a
Zariski-constructible sheaf of Fp-modules on Aét.

Then for any i > dim(suppL),

lim
−→n∈N

H i
ét(A, [p

n]∗L) = 0.

This is a generalisation to the rigid analytic setting of abeloids from the
algebraic case of abelian varieties: The latter follows from the case of com-
plex tori proved by Bhatt–Schnell–Scholze [2, Corollary 1.2]. Our strategy
is similar to the one in the complex case, and the role of the complex uni-
versal cover is replaced by the p-adic universal cover A∞. We note that the
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Perfectoid covers of abelian varieties 635

complex case is in turn inspired by [20, Theorem 17.3], which has a similar
approach for general projective varieties.

Notation

Let K be an algebraically closed non-archimedean field, let OK be the ring
of integers of K and fix a pseudo-uniformiser ϖ ∈ OK such that p ∈ ϖOK .

We will use adic spaces over Spa(K,OK) in the sense of Huber, and per-
fectoid spaces over Spa(K,OK) in the sense of Scholze [17, Definition 6.15].
We denote by X 7→ Xan the analytification functor from schemes of finite
type over X to analytic adic spaces over (K,OK).

By a rigid space, we shall always mean an analytic adic space locally of
topologically finite type over Spa(K,OK). In particular, by an open cover
of a rigid space we shall always mean a cover of the associated adic space,
so that we do not need the notion of admissible covers.

For a ϖ-adic formal scheme X over Spf(OK), we denote by

Xη := Xad ×Spa(OK ,OK) Spa(K,OK)

its adic generic fibre. This is the adic space representing the functor denoted
by Xad

η in [23, §2.2].

2. Tilde-limits of rigid groups

2.1. Tilde-limits

We begin with some lemmas on tilde-limits that we will need throughout.
Inverse limits often do not exist in the category of adic spaces, and

neither do they in rigid spaces. Instead we use the notion of tilde-limits
from [11, Definition 2.4.2]:

Definition 2.1. Let (Xi)i∈I be a filtered inverse system of adic spaces
with quasi-compact and quasi-separated transition maps, and let X be an
adic space with a compatible system of morphisms fi : X → Xi. We write
X ∼ lim

←−
Xi and say that X is a tilde-limit of the inverse system (Xi)i∈I if

1) the map of underlying topological spaces |X| → lim
←−
|Xi| is a homeo-

morphism, and
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2) there exists an open cover of X by affinoids Spa(A,A+) ⊂ X such that
the map

lim
−→

Spa(Ai,A
+

i )⊂Xi

Ai → A

has dense image, where the direct limit runs over all i ∈ I and all
open affinoid subspaces Spa(Ai, A

+
i ) ⊂ Xi through which the mor-

phism Spa(A,A+) ⊆ X → Xi factors.

Remark 2.2. As pointed out after Proposition 2.4.4 of [23], tilde-limits
(if they exist) are in general not unique. However, Corollary 2.5 below says
that perfectoid tilde-limits are unique.

We recall a few results from [23, §2.4] on tilde-limits that we will use
frequently throughout:

Proposition 2.3 ([23, Proposition 2.4.3] ). Let X ∼ lim
←−i∈I

Xi be a
tilde-limit and let Ui →֒ Xi be an open immersion for some i ∈ I. Set Uj :=
Ui ×Xi

Xj for j ≥ i and U := Ui ×Xi
X. Then

U ∼ lim
←−j≥i

Uj .

Proposition 2.4 ([23, Proposition 2.4.5] ). Let (Xi)i∈I be an inverse
system of adic spaces over (K,OK) and assume that there is a perfec-
toid space X such that X ∼ lim

←−i∈I
Xi. Then for any perfectoid K-algebra

(B,B+),

X(B,B+) = lim
←−i∈I

Xi(B,B+).

Corollary 2.5. Any two perfectoid spaces that are tilde-limits of the same
inverse system of adic spaces over (K,OK) are canonically isomorphic.

In the situation of the corollary, we will also refer to such a perfectoid
space as the perfectoid tilde-limit of the inverse system. Of course perfectoid
tilde-limits do not always exist. An example of a basic situation in which
they do is the following:
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Lemma 2.6. Let (Si)i∈I be an inverse system of finite sets and let S =
lim
←−i∈I

Si. Then the system of adic spaces

Si := Spa(Map(Si,K),Map(Si,OK))

has a perfectoid tilde-limit

S := Spa(Mapcts(S,K),Mapcts(S,OK)) ∼ lim
←−i∈I

Si.

Proof. Since S is compact, Mapcts(S,K) = Mapcts(S,OK)[ 1
ϖ
]. This is per-

fectoid since we have Mapcts(S,OK)/ϖ = lim
−→i∈I

Map(Si,OK/ϖ). The tilde-

limit property follows from [23, Proposition 2.4.2]. □

We will need the following basic lemma later on.

Lemma 2.7. Let (Ai, A
+
i )i∈I and (Bi, B

+
i )i∈I be direct systems of affinoids

over (K,OK) with compatible rings of definition Ai,0 and Bi,0 carrying the
ϖ-adic topology. Assume that there are perfectoid tilde-limits Spa(A,A+) ∼
lim
←−

Spa(Ai, A
+
i ) and Spa(B,B+) ∼ lim

←−
Spa(Bi, B

+
i ). Then

Spa(A,A+)×Spa(K,OK) Spa(B,B+)

∼ lim
←−
i∈I

(Spa(Ai, A
+
i )×Spa(K,OK) Spa(Bi, B

+
i ))

is also a perfectoid tilde-limit.

Proof. The fibre product Spa(A,A+)×Spa(K,OK) Spa(B,B+) exists and is
perfectoid by [17, Proposition 6.18]. In fact, it is represented by Spa(C,C+),
where C = A⊗̂KB and C+ is the ϖ-adic completion of the integral closure
of the image of A+ ⊗OK

B+ in C.
We first check the condition on topological spaces: Since fibre products

commute with limits in the category of sheaves, it follows from Proposi-
tion 2.4 that for any perfectoid field (D,D+) over (K,OK), we have

(Spa(A,A+)×Spa(K,OK) Spa(B,B+))(D,D+)

= lim
←−

(Spa(Ai, A
+
i )×Spa(K,OK) Spa(Bi, B

+
i ))(D,D+).

Since the topological space can be reconstructed from this data by [22,
Proposition 12.7, Lemma 15.6], it follows that the underlying topological
spaces of both sides coincide.
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It remains to check that if lim
−→

Ai → A has dense image and lim
−→

Bi → B
has dense image, then lim

−→
(Ai ⊗Bi)→ A⊗B has dense image. As direct

limits commute with tensor products, we have lim
−→

(Ai ⊗Bi) = (lim
−→

Ai)⊗
(lim
−→

Bi). Now density can be checked directly on elements. □

2.2. Perfectoid tilde-limits for rigid groups

One reason why perfectoid tilde-limits along group homomorphisms are par-
ticularly interesting is that these again have a group structure:

Definition 2.8. A perfectoid group is a group object in the category of
perfectoid spaces.

The category of perfectoid spaces over K has finite products, so this is
a well-defined notion.

Lemma 2.9. Let (Gi)i∈I be an inverse system of adic groups such that the
transition maps are homomorphisms of adic groups. Assume that there is a
perfectoid tilde-limit G∞ ∼ lim

←−i∈I
Gi.

1) There is a unique way to endow G∞ with the structure of a perfectoid
group in such a way that all projections G∞ → G are group homomor-
phisms

2) Given a homomorphism of inverse systems of adic groups (Gi)i∈I →
(Hj)j∈J and a perfectoid tilde-limit H∞ ∼ lim

←−j∈J
Hj, there is a unique

homomorphism of perfectoid groups G∞ → H∞ commuting with all
projection maps.

Proof. These are all consequences of the universal property of the perfectoid
tilde-limit, Proposition 2.4, which shows that one can argue like in the case
of categorical limits. □

Let G be an adic group locally of topologically finite type over (K,OK),
that is, a group object in the category of rigid spaces over Spa(K,OK).
Throughout we will always consider commutative groups. The main topic of
study of this work is the [p]-multiplication tower

· · ·
[p]
−→ G

[p]
−→ G.

We will usually assume that [p] : G→ G is surjective.
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Question 2.10. When is there a perfectoid space G∞ such that G∞ ∼
lim
←−[p]

G is a tilde-limit?

Example 2.11. If [p] : G→ G is not surjective, lim
←−[p]

G might have a tilde-

limit for trivial reasons: For example, let Ga be the p-adic completion of the
affine group scheme Ga over OK . Then the trivial group Spa(K,OK) ∼
lim
←−[p]

(Ga)
ad
η is a perfectoid tilde-limit.

Regarding Question 2.10, we are primarily interested in the following
examples:

1) Analytifications over Spa(K,OK) of finite type group schemes over K.
Examples include analytifications of abelian varieties A over K and of
tori T over K.

2) Generic fibres of locally topologically finite type formal group schemes
over OK .

3) Raynaud’s covering space E of an abelian variety with semi-stable
reduction.

Remark 2.12. More generally, one could ask Question 2.10 for families of
abelian varieties over Spec(R) where R is any perfectoid ring. Considering
the fibres of such a family in any point of Spa(R,R◦) motivates to also study
analytifications over Spa(K,K+) where K+ is any open bounded integrally
closed subring of OK . However, one can reduce this case to the one of K+ =
OK .

Indeed, this follows from the following technical observation: Let (Xi)i∈I
be an inverse system of reduced adic spaces Xi of finite type over (K,K+)
with finite transition maps. Let Xi,η := Xi ×Spa(K,K+) Spa(K,OK). Then
the following are equivalent:

1) There is a perfectoid tilde-limit X∞ ∼ lim
←−i∈I

Xi.

2) There is a perfectoid tilde-limit X∞,η ∼ lim
←−i∈I

Xi,η.

We shall omit the proof of this equivalence, as this will not be relevant in
the following. Instead, we simply take it as a motivation to restrict attention
to the case of K+ = OK .

As we have already mentioned in the introduction, Question 2.10 has an
affirmative answer in the case of abelian varieties of good reduction by [15,
Lemme A.16]. More generally:
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Lemma 2.13. Let G be a commutative flat ϖ-adic formal group scheme
over OK such that the morphism [p] : G→ G is affine. Let G = Gad

η be the

adic generic fibre. Then G∞ := (lim
←−[p]

G)adη is a perfectoid tilde-limit

G∞ ∼ lim
←−
[p]

G.

In particular, if B is an abelian variety of good reduction over K, there is a
perfectoid tilde-limit B∞ ∼ lim

←−
B.

Proof. This holds by the same proof as in [15, Lemme A.16], (see also [1,
Exercise 4 – 6]): Let ϖ ∈ OK be a pseudo-uniformiser such that p ∈ ϖOK .
The assumption that [p] : G→ G is affine ensures that the limit G∞ :=
lim
←−[p]

G exists.

The mod ϖ special fibre G/ϖ := G× Spec(OK/ϖ) is a group scheme
overOK/ϖ, so the map [p] : G/ϖ → G/ϖ factors through the relative Frobe-
nius map [6, Exp. VII, 4.3]. Consequently, the fibre lim

←−[p]
G/ϖ of G∞ over

OK/ϖ is relatively perfect: Indeed, we have a commutative diagram

lim
←−[p]

G/ϖ lim
←−[p]

G/ϖ

lim
←−[p]

(G/ϖ)(p) lim
←−[p]

(G/ϖ)(p)

F

[p]

∼

[p]

∼

in which the horizontal maps are isomorphisms. Thus also F is an isomor-
phism. This implies that the adic generic fibre of G∞ is perfectoid by [17,
Theorem 5.2]. □

Lemma 2.14. Let T be a torus over K. Then there is a perfectoid tilde-
limit T∞ ∼ lim

←−[p]
T .

Proof. Since we assume K algebraically closed, we may choose a splitting
T ∼= (Gan

m )r for some r ∈ N. By Lemma 2.7, it suffices to consider the case
of r = 1. For this, we may use the open embedding Gan

m = P1,an \ {0,∞} ⊆
P1,an. Sending (x : y) 7→ (xp : yp) defines a morphism φ : P1,an → P1,an. The
pullback of φ to Gan

m is precisely [p] : Gan
m → Gan

m . We can therefore apply
Proposition 2.3 to the perfectoid tilde-limit P1,perf ∼ lim

←−φ
P1,an introduced

in [17, end of §1]. □
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3. Perfectoid tilde-limits of Raynaud extensions

In this section we study the p-multiplication tower of the Raynaud extensions
associated to abeloid varieties over an algebraically closed perfectoid field
K. The main result of this section is Proposition 3.7, which shows that there
exists a perfectoid tilde-limit E∞ ∼ lim

←−[p]
E, which itself has an extension

structure that one could call a “perfectoid Raynaud extension”.

Remark 3.1. Everything in this section also works with minor modifica-
tions over a general perfectoid field. But we opt to work over an algebraically
closed field to simplify the exposition.

3.1. Raynaud extensions

We briefly sketch the theory of Raynaud extensions here, and refer the read-
ers to [3, §8], [4, §1], [13, §8][14, §6.1] for more details on the setup.

Let A be an abelian variety over K. Then by [4, Theorem 1.1] there
exists a unique open rigid analytic subgroup of A that admits a formal
model E that is a connected smooth OK-group scheme fitting into a short
exact sequence of formal group schemes

(1) 0→ T → E
π
−→ B → 0,

where B is a formal abelian scheme overOK with rigid generic fibre B := Bη,
and T is the completion of a torus TOK

of rank r over OK . We set T :=
TOK

⊗OK
K and denote its analytification also by T . Then the rigid generic

fibre T η of the formal torus T canonically embeds into T . This induces a
pushout exact sequence in the category of rigid groups: More precisely, there
exists a rigid group variety E such that the following diagram commutes and
the left square is a pushout:

(2)

0 T η Eη Bη 0

0 T E B 0.

The abelian variety A can be uniformized in terms of E as follows:

Definition 3.2. A subspace M of a rigid space G is called discrete if the
intersection of M with any affinoid open subset of G is a finite set of points.
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Let G be a rigid group, then a lattice in G of rank r is a discrete subgroup
M of G which is isomorphic to the constant rigid group Zr.

Theorem 3.3 (Bosch–Lütkebohmert, [4, Theorem 1.2]). With setup
as in the previous paragraph, there exists a lattice M ⊂ E of rank equal to
the rank r of the torus T such that the quotient E/M exists as a rigid space
and such that there is a natural isomorphism of rigid groups

A = E/M.

The data of the extension (1) together with the lattice M ⊂ E is what
we refer to as a Raynaud uniformisation of A. This will be the only input we
need to construct the perfectoid tilde-limit A∞. Consequently, our method
generalises to the class of rigid groups which admit Raynaud uniformisation,
namely to abeloid varieties:

Theorem 3.4 (Lütkebohmert, [14, Theorem 7.6.4]). Let A be an abe-
loid variety, that is, a connected smooth proper rigid group over K. Then A
admits a Raynaud uniformisation.

In the situation of Raynaud uniformisation, since M is discrete, the local
geometry of A is determined by the local geometry of E. We will therefore
first study the [p]-multiplication tower of E in the rest of this section and
will then deduce properties of the [p]-multiplication tower of A in the next
section.

Our strategy is to study the local geometry of E and E via T and B.
In order to put ourselves in a situation where we can work in an abelian
category, we shall do so in the category of abelian sheaves on the site of
sheafy adic spaces with the analytic topology. The following crucial lemma
says that Raynaud extensions are locally split in this topology:

Lemma 3.5. The short exact sequence (1) admits local sections, that is
there is a cover of B by formal open subschemes U i such that there exist
local sections s : U i → E of π. In particular, one can cover E by formal
open subschemes of the form T × U i →֒ E.

Proof. This is proved in [14, Proposition A.2.5], where it is formulated in
terms of the group Ext1(B, T ). Also see [4, §1]. □

As a consequence, in more topological terms, diagram (2) can be in-
terpreted as follows: We may regard E → B as a principal T -bundle, and
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the fact that E is obtained from Eη via push-out along T η → T can be ex-

pressed by saying that E = T ×T η Eη is the associated fibre bundle obtained
by change-of-fibre. But in the following, we choose to stick to sheaf-theoretic
language:

Definition 3.6. We call a sequence of adic groups 0→ T → E
π
−→ B → 0

an analytic-locally split short exact sequence if it is a short exact se-
quence of abelian sheaves on the site of sheafy adic spaces with the analytic
topology. Equivalently, this means that T is the kernel of π and π : E → B
is a principal T -torsor in the analytic topology.

In particular, any Raynaud extension is an analytic-locally split short
exact sequence. The main goal of this section is to use this to deduce the
following from the existence of perfectoid tilde-limits B∞ ∼ lim

←−[p]
B and

T∞ ∼ lim
←−[p]

T :

Proposition 3.7. Let 0→ T → E → B → 0 be a rigid Raynaud extension.
Then there is a perfectoid tilde-limit E∞ ∼ lim

←−[p]
E. It fits into an analytic-

locally split short exact sequence of perfectoid groups

0→ T∞ → E∞ → B∞ → 0.

Proof. The morphism [pn] : E → E induces a morphism of short exact se-
quences

(3)
0 T E B 0

0 T E B 0.

[pn]

π

[pn] [pn]

π

The basic idea is now to lift local splittings of π in this diagram:
Let U be a cover of B by formal opens U over which E → B is split;

this exists by Lemma 3.5. In particular, E → B is then also split over (the
generic fibre of) U . Let Un be the pullback of U along [pn]. We now use the
following Lemma, which is the main input in the proof of the Proposition.

Lemma 3.8. For any U ∈ U, the morphism π : E → B is still split over
Un = [pn]−1(U).

Proof. We may reduce to the case of n = 1. Choose s ∈ OK such that (sp) =
(p). In particular, if K has characteristic p, we have s = 0.
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We first claim that the reduction E/s→ B/s over OK/s admits a split-
ting over Un/s. To see this, we first reduce mod p and use that in charac-
teristic p, the morphism [p] : B/p→ B/p decomposes into the Verschiebung
V : (B/p)(p) → B/p and the relative Frobenius F : B/p→ (B/p)(p).

Note that we have (T/p)(p) = T/p, and Verschiebung is the identity on
T/p. The multiplication by [p] on E/p therefore gives rise to a commutative
diagram

0 T/p E/p B/p 0

0 (T/p)(p) (E/p)(p) (B/p)(p) 0

0 T/p E/p B/p 0.

F F F

V V V

Since the bottom left vertical morphism is an isomorphism, the middle row
is obtained from the bottom row via pullback along V : (B/p)(p) → B/p.
Consequently, the bottom right square is Cartesian, and the splitting over
U/p ⊆ B/p in the bottom row therefore lifts to a splitting V −1(U/p)→
(E/p)(p) in the middle row by the universal property of the fibre product.

Recall now that the absolute Frobenius on OK/p factors into the reduc-
tion OK/p→ OK/s and

f : OK/s
∼
−→ OK/p, x 7→ xp

which is an isomorphism since K is perfectoid. Base change along this iso-
morphism induces an isomorphism g : B/s→ (B/p)(p), and similarly for E
and T . In particular, after base-change along the isomorphism f , the middle
row of the diagram becomes

0→ T/s→ E/s→ B/s→ 0.

We claim that under this identification, the open V −1(U/p) ⊆ (B/p)(p) be-
comes Un/s, showing that indeed E/s→ B/s is split over Un/s. To see this,
consider the commutative diagram

B/p (B/p)(p) B/p

B/s B/s.

F V

Fabs

g
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By definition, the pullback of U/p along first V ◦ F = [p] and then the re-
duction to B/s is Un/s. Since the absolute Frobenius is the identity on the
underlying topological spaces, this shows that the pullback of U/p along first
V and then g is also equal to Un, as we needed to see.

It remains to lift this splitting from the special fibre over OK/s to OK .
For this we use that π : E → B is formally smooth. The lifting diagram

E E|Un
/s Un/s

B Un

π

therefore produces a splitting Un → E. This shows that E → B is split over
Un. □

Let us now also denote by U and Un the respective generic fibres, then
it follows from the Lemma that also π : E → B is split over Un. Locally over
U , the diagram (3) is therefore of the form

0 T T × Un Un 0

0 T T × U U 0.

[pn] [pn]×[pn] [pn]

Let U∞ ∼ lim
←−

Un be the perfectoid tilde-limit that exists by Lemma 2.13
and Lemma 2.3. Then by Lemma 2.14 and Lemma 2.7, the inverse system
in the middle has perfectoid tilde-limit T∞ × U∞. Glueing these for all U ∈ U

produces the desired space E∞ ∼ lim
←−[p]

E which by construction fits into the

desired analytic-locally split short exact sequence

0→ T∞ → E∞ → B∞ → 0.

□

Remark 3.9. There is an alternative proof of the tilde-limit property that
also constructs a formal model E∞ of E∞, like in Lemma 2.13. For this, one
first takes a sequence of formal models

· · · → T2
[p]1
−−→ T1

[p]1
−−→ T0

of · · ·
[p]
−→ T

[p]
−→ T . This can be done in such a way that each [p]i reduces

to the relative Frobenius mod p. Then T∞ := lim
←−[p]i

Ti is a formal model of
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the perfectoid space T∞ (giving an alternative proof that T∞ is a perfectoid

tilde-limit). When we set Ei := Ti ×
T E, we get an inverse system

· · · → E2
[p]1
−−→ E1

[p]1
−−→ E0

with transition maps that factor through the relative Frobenius map mod
p. Thus the generic fibre of E∞ := lim

←−[p]i
Ei is a perfectoid tilde-limit of

· · ·
[p]
−→ E

[p]
−→ E.

However, this construction does not give the local splittings in Proposi-
tion 3.7.

Remark 3.10. With some work, the arguments in this section can be
extended to any perfectoid base field. For instance, the Raynaud uniformi-
sation of Theorem 3.3 might only be defined over a finite extension L of K.
Our argument then gives a perfectoid space over the (necessarily perfectoid)
field L. We can then use Galois descent to get a perfectoid space over our
original field K. This uses that the quotient of a perfectoid space by a finite
group often remains perfectoid: see [8, Theorem 1.4] for details. Finally, one
checks that this Galois descent commutes with tilde-limits.

4. The case of abeloid varieties

We now prove Theorem 1, building on the preceding sections. Recall our
setup: Let A be an abeloid variety over K. Let E be the Raynaud extension
associated to A from Proposition 3.4, which is an extension of an abeloid
variety B of good reduction by a split rigid torus T of rank r, and M ⊂ E
is a lattice of rank r such that A = E/M .

By Proposition 3.4, the quotient map π : E → A is locally split in the
analytic topology on A: As the action of M on E is totally discontinuous, for
every point x ∈ A there is an open neighbourhood U ′ of E such that π maps
isomorphically onto an open U := π(U ′) containing x. Here we are careful
to distinguish U ′ ⊂ E and U ⊂ A, even though the two are isomorphic via
π.

We fix from now on a cover U of A by opens U of this form.
The pullback of U ′ along [p] : A→ A will in general be bigger than the

pullback of U along [p] : E → E: e.g. in characteristic 0, the first is an étale
A[p]-torsor, whereas the latter is an étale E[p]-torsor, and by the Snake
Lemma we have a short exact sequence

0→ E[p]→ A[p]→M/pM → 0.
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To relate the pullbacks, we subdivide the tower

· · ·
[p]
−→ A

[p]
−→ A

[p]
−→ A

into two partial towers. For this we make some auxiliary choices: Since K is
algebraically closed, we can choose lattices Mn ⊆ E such that M0 = M and
[p] : E → E restricts to isomorphisms Mn+1 →Mn for all n.

Remark 4.1. Such a choice is equivalent to the choice of subgroups Dn ⊆
A[pn] of order prn for all n such that pDn+1 = Dn and Dn + E[pn] = A[pn].
Namely, given the lattices Mn, we obtain the desired torsion subgroups by
setting Dn := Mn/M . This is because any such lattice gives a splitting of
the short exact sequence 0→ E[pn]→ A[pn]→M/pnM → 0.

Conversely, given subgroups Dn ⊆ A[pn] with properties as above, we
recover Mn as the kernel of E → A→ A/Dn.

One might call the choice of Dn for all n a partial anticanonical Γ0(p
∞)-

structure, because if B admits a canonical subgroup (that is, if it satisfies a
condition on its Hasse invariant), the choice of a (full) anticanonical Γ0(p

∞)-
structure on A is equivalent to the choice of a partial anticanonical Γ0(p

∞)-
structure on A and an anticanonical Γ0(p

∞)-structure on B. Note however
that A always has a partial anticanonical subgroup even if B does not have
a canonical subgroup.

Following the remark, denote by Dn the torsion subgroup Mn/M ⊂ A.
The quotient An := A/Dn = E/Mn is then another abeloid variety over K
and the quotient map

vn : A = E/M → An = E/Mn

is an isogeny of degree prn through which [pn] : A→ A factors. The [p]-
multiplication tower now splits into two towers, one written vertically, the
other horizontally:

(4)

A A1 A2

A A1

A.

v

[p]
[p]E

v

[p]E
v

[p]
[p]E



✐

✐

“2-Heuer” — 2022/10/28 — 19:12 — page 648 — #18
✐

✐

✐

✐

✐

✐

648 C. Blakestad, et al.

Since each Dn = Mn/M is finite étale, all horizontal maps are finite étale.
The vertical tower on the other hand fits into a commutative diagram which
compares it to the [p]-tower of E:

(5)

...
...

...

0 M1 E A1 0

0 M E A 0.

∼= [p] [p]E

By Proposition 3.7, the middle column has a perfectoid tilde-limit E∞ ∼
lim
←−[p]

E.

Definition 4.2. Let M∞ := lim
←−n∈N

Mn be the limit of the left vertical
tower.

We note that M∞ is an actual limit, not just a tilde-limit, because the
transition maps are isomorphisms. In particular, the projection M∞ →M
is an isomorphism as well. By Proposition 2.4, we get a natural map M∞ →
E∞.

Proposition 4.3. There is a perfectoid tilde-limit A′
∞ ∼ lim

←−n∈N
An. It fits

into an analytic-locally split short exact sequence of perfectoid groups

0→M∞ → E∞ → A′
∞ → 0.

Proof. We work locally on opens U ′ ⊂ E mapping isomorphically to U in our
cover U of A. Write πn : E → An for the quotient map. Since the rows in (5)
are exact, and the transition maps on the left are isomorphisms, it follows
that for each n ∈ N, the quotient map πn sends the pullback U ′

n := [pn]−1(U ′)
isomorphically onto Un := πn(U

′
n) ⊆ An. Thus (5) is locally of the form

(6)

0 M1 M1 × U ′
1 U1 0

0 M M × U ′ U 0.

∼= [p] [p]E

Let U∞ be the pullback of U ′ along E∞ → E. We have U∞ ∼ lim
←−

U ′
n
∼=

lim
←−

Un. The system (Un)n∈N thus has a perfectoid tilde-limit. This shows that
lim
←−

An has a perfectoid tilde-limit. We can therefore apply Proposition 2.4
to get a morphism E∞ → A′

∞, obtaining the desired short exact sequence
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in the limit over diagram (5) since the transition maps in (6) respect the
splitting. □

We will keep the notation introduced above: U ′ is an open of E mapping
isomorphically to U ⊂ A. The open U ′

n := [pn]−1(U ′) ⊂ E maps isomorphi-
cally to its image Un ⊂ An and we have a commutative diagram with exact
rows

0 Mn Mn × U ′
n Un 0

0 Mn E An 0.
πn

To construct a tilde-limit of lim
←−[p]

A, we now use the fact that the hori-

zontal maps in diagram (4) are all finite étale. They are even finite covering
maps, in the following sense:

Lemma 4.4. For any n ≥ 0, the preimage of Un ⊂ An under the horizontal
map vn : A→ An is isomorphic to prn disjoint copies of Un. More canoni-
cally, it is isomorphic to Dn × Un, where Dn = Mn/M (see Remark 4.1).

Proof. For the first part, we observe that the map vn fits into a commutative
diagram

(7)

0 M E A 0

0 Mn E An 0

vn

where the map on the left is the natural inclusion. Upon restriction to Un ⊂
An, this becomes

(8)

0 M Mn × U ′
n (vn)−1(Un) 0

0 Mn Mn × U ′
n Un 0

vn

and the claim follows from the fact that M is a discrete lattice of rank r,
and from U ′

n
∼= Un. □
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Definition 4.5. The [p]-multiplication on E maps Mn+1 onto Mn and
therefore the [p]-multiplication tower of A induces a tower

· · ·
[p]
−→ Dn+1 = Mn+1/M

[p]
−→ Dn = Mn/M → · · · .

Since K is algebraically closed, the finite étale groups Dn are already con-
stant. By Lemma 2.6, there is a profinite perfectoid group D∞ such that

D∞ ∼ lim
←−
n

Dn.

The quotient maps Mn → Dn = Mn ⊗Z Z/pn in the limit give rise to an
injective homomorphism of perfectoid groups M∞ →֒ D∞ = M∞ ⊗Z Zp.

Theorem 1 is now part of the following theorem:

Theorem 4.6. 1) There is a unique perfectoid space A∞ which is a
tilde-limit of lim

←−[p]
A.

2) The auxiliary subgroups Dn ⊆ A in the limit give rise to a pro-finite
subgroup D∞ ⊆ A∞.

3) The preimage of any U ∈ U under the projection A∞ → A is isomor-
phic to D∞ × U∞.

4) There is a natural map of analytic-locally split short exact sequences
of perfectoid groups

0 M∞ E∞ A′
∞ 0

0 D∞ A∞ A′
∞ 0.

5) In particular, we have an analytic-locally split short exact sequence of
perfectoid groups

0→M∞ → D∞ × E∞ → A∞ → 0

where the map on the left is the antidiagonal embedding of M∞ into
D∞ × E∞.

We note that A∞ is independent of the auxiliary choice of Dn up to
isomorphism by Corollary 2.5, but the subgroup D∞ and in particular the
diagrams in (4) and (5) depend on this choice.
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Remark 4.7. We think of part (5) as the analogue of the Raynaud uni-
formisation

0→M → E → A→ 0.

Here we note that while the map E → A is a quotient, in the limit over [p] it
becomes an injection E∞ →֒ A∞: The reason is that the projective system
(M, [p]) has vanishing lim

←−
but non-vanishing R1 lim

←−
, for instance when con-

sidered as abelian sheaves on perfectoid spaces for the pro-étale topology in
the sense of [22, Definition 8.1] (assuming that K is of characteristic 0). A
toy example of this phenomenon would be the inverse system over [p] on the
short exact sequence of groups 0→ Z→ R→ R/Z→ 0 whose limit yields
an exact sequence

0 0 R lim
←−[p]

R/Z R1 lim
←−[p]

Z = Zp/Z 0.

We therefore think of the quotient D∞/M∞ = M∞ ⊗Z (Zp/Z) implicit in
part (5) as being an incarnation of R1 lim

←−[p]
M∞.

Proof of Theorem 4.6. We keep the notation from the proof of Proposi-
tion 4.3: We have a cover of An by open subsets Un and a perfectoid open
subspace U∞ ⊆ E∞ for which U∞ ∼ lim

←−
Un.

By Lemma 4.4, the restriction of diagram (4) to the open U of the
bottom A becomes

D2 × U2 v−1(U2) U2

D1 × U1 U1

U.

v

[p]
[p]E

v

[p]E
v

[p]
[p]E

Hence the restriction of the tower · · ·
[p]
−→ A

[p]
−→ A

[p]
−→ A to U becomes the

inverse system

· · · → Dn+1 × Un+1 → Dn × Un → · · · .

By Lemma 2.7 this inverse system has perfectoid tilde-limit D∞ × U∞.
These local tilde-limits glue together to give the desired tilde-limit A∞. This
proves parts (1), (2) and (3), and shows that the second row of part (4) is
locally split and in particular exact.
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The first row in part (4) is from Proposition 4.3. Part (5) follows imme-
diately from part (4). □

Remark 4.8. When working over a general perfectoid base field, the lat-
tices Mn may no longer be defined over K. Instead, one can show that the
natural map A[pn]× Un → Vn is an étale E[pn]-torsor for the diagonal ac-
tion where Vn is the pullback of U along [pn] : A→ A. The point is that this
torsor is split when K is algebraically closed.

5. Applications

In this section, we give three applications of our main result. For all of
these, we assume that K is of characteristic 0, i.e. K is an algebraically
closed non-archimedean field extension of Qp.

5.1. Uniformisation

Our first application is a “p-adic uniformisation” of abelian varieties. Recall
that any abelian variety A over C of dimension d has a uniformisation in
terms of a complex torus A ∼= Cd/Λ for some 2d-dimensional lattice Λ ⊆ Cd.
More canonically, it admits the presentation

A ∼= LieA/H1(A,Z).

We have the following analogue of this over K: Let A be an abeloid
variety over K of dimension d, considered as a rigid space. Then in the limit
over n, the short exact sequences

0→ A[pn]→ A→ A→ 0

give rise to a short exact sequence of sheaves on perfectoid K-algebras with
the pro-étale topology

0→ TpA→ A∞ → A→ 0.

Using the language of diamonds from [22, §11], we then have:

Corollary 5.1. The diamond A♢ associated to A has the natural presen-
tation

A♢ = A∞/TpA

given by the perfectoid space A∞ with its pro-étale subgroup TpA.
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Here we think of TpA = H ét
1 (A,Zp) as the analogue of H1(A,Z) in the

complex setting.

Remark 5.2. This p-adic uniformisation of A is very closely related to the
uniformisation of the associated rigid analytic p-divisible group A[p∞] in the
sense of Fargues [7], as described in [19, §4.4] and [23, Proposition 3.1.3].
The precise connection is as follows: Using the Raynaud uniformisation, one
can attach to A a unique p-divisible group over OK with generic fibre A[p∞]
whose associated rigid analytic p-divisible group G in the sense of Fargues is
canonically an open subgroup G ⊆ A. The universal cover of G in the sense
of [23, §3.1] fits into a pullback diagram of open adic subgroups

0 TpG G̃ G 0

0 TpA A∞ A 0.

In particular, we recover the statement that G̃ is perfectoid.
However, we note that the translates of G̃ do not cover all of A∞, and

therefore the fact that G̃ is perfectoid does not show immediately that A∞

is perfectoid. The issue is points of rank 2: Indeed, there are infinitely many
disjoint translates of G̃, but A∞ is quasi-compact.

Remark 5.3. In [10], it is shown that this is a “uniformisation” also in the
stronger sense that for two abelian varieties A and A′, the perfectoid covers
A∞ and A′

∞ are isomorphic whenever A and A′ are “p-adically close” in some
precise sense. In particular, at least locally in the moduli space of abelian
varieties we can really think of TpA as a 2d-dimension Zp-sublattice of a fixed
perfectoid space determining A, in analogy to the complex uniformisation
of abelian varieties.

5.2. Stein property

As a second application, we can combine our main theorem with work of
Reinecke to deduce the following Artin vanishing result:

Corollary 5.4 (Reinecke, [16, Theorem 3.3]). Let A be an abeloid
variety over K. Let L be a Zariski-constructible sheaf of Fp-modules on Aét.
Then for any i > dim(suppL),

lim
−→n∈N

H i
ét(A, [p

n]∗L) = 0.
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Proof. Let ι0 : Z0 ⊆ A be the Zariski-closed subspace where L is supported.
Consider the pullback of Z0 along the tower of multiplication by [p]:

· · · Z1 Z0

· · · A A.

[p] [p]

[p] [p]

Then by [21, Lemma 2.2.2], our main theorem implies that the pre-image
of Z0 in A∞ has a unique structure of a Zariski-closed perfectoid subspace
Z∞ →֒ A∞ such that Z♢

∞ = lim
←−[p]

Z♢
i . We can therefore apply [16, Theo-

rem 3.3] to the system · · · → Z1
[p]
−→ Z0, which says that for i > dimZ0,

lim
−→
i∈N

H i
ét(A, [p

n]∗L) = lim
−→
i∈N

H i
ét(Z, [p

n]∗ι∗0L) = 0.

□

A theorem of Artin and Grothendieck states if X is an affine algebraic
variety over K, then H i

ét(X,L) = 0 for any constructible Fp-module L and
any i > dimA. However, the rigid analogue of this statement is false in
general. The point of Corollary 5.4 is that an analogue of this vanishing
statement is true for the pullback of L to A∞: By [22, Proposition 14.9], we
have

H i
ét(A∞, ν∗L) = lim

−→n∈N
H i

ét(A, [p
n]∗L),

and thus the cohomology of ν∗L vanishes in degree i > dim(A).

5.3. Universal perfectoid covers of curves

As a third application, we describe how one can obtain universal perfectoid
pro-étale covers of curves over K. This was first observed by Hansen, who on
his blog sketched a strategy to prove this in the case that the Jacobian has
good reduction. Due to our Theorem 1, this assumption can be removed, as
we shall now demonstrate:

We start by recalling some background in a more general setting: Let
C be a connected smooth proper rigid analytic curve over K. Any such
curve arises as the analytification of some schematic smooth projective curve
over K [14, Theorem 1.8.1], and by [12, Theorem 3.1], GAGA induces an
equivalence of categories between finite étale covers of C considered as a
scheme and as a rigid space, respectively. We can therefore fix a geometric
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base point x : Spa(K,OK)→ C and study the usual étale fundamental group
π1(C, x) using the language of adic spaces.

To prepare our discussion, we recall from [18, §3] a few facts on the
pro-finite-étale site of C: This is the category Cprofét = pro−Cfét of small
cofiltered inverse systems (Xi)i∈I in the finite étale site Cfét. An object in
Cprofét is called perfectoid if there is a perfectoid tilde-limit X∞ ∼ lim

←−
Xi.

Let Cperf
profét be the full subcategory of perfectoid objects, and let PerfC be

the category of perfectoid spaces over C. Then the argument in the proof of
[24, Lemma 8.2.4] shows:

Lemma 5.5. Sending perfectoid pro-étale objects to their tilde-limits de-
fines a fully faithful functor

Cperf
profét → PerfC , (Xi)i∈I 7→ X∞ ∼ lim

←−
i∈I

Xi.

We call the objects X∞ → C in the essential image the pro-finite-étale
perfectoid covers of C.

Proposition 5.6 ( [18, Proposition 3.5]). There is an equivalence of
categories

F : Cprofét → π1(C, x)−pfSets,

(Yi)i∈I 7→ F (X) := lim
←−
i∈I

|Yi ×C x| = lim
←−
i∈I

HomC(x, Yi)

from the pro-finite-étale site of C to the category of profinite sets with con-
tinuous π1(C, x)-action.

This restricts to the usual equivalence of finite étale covers to finite
sets with continuous π1(C, x)-action. In particular, for every open subgroup
H ⊆ π1(C, x), there is a corresponding finite étale morphism CH → C from
a connected curve CH , considered as an analytic adic space. For any two
open subgroups H1 ⊆ H2 ⊆ π1(C, x), there is a natural map CH1

→ CH2
.

For varying H, one therefore has a cofiltered inverse system (CH)H⊆π1(C,x)

which we may regard as an object in Cproét.

Corollary 5.7 (Hansen,[9]). Let C be a connected smooth projective curve
of genus g ≥ 1 over K, considered as an analytic adic space.

1) There is a perfectoid tilde-limit C̃ ∼ lim
←−H⊆π1(C,x)

CH , where H ranges

over open subgroups.
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2) The morphism C̃ → C is a pro-étale π1(C, x)-torsor. It is universal
with this property in the sense that it represents the functor send-
ing pro-finite-étale perfectoid covers X → C to the π1(C, x)-module
F (X) = HomC(x,X).

3) For any X ∈ Cprofét, for example for any finite étale X → C, there is
a natural isomorphism

X = F (X)×π1(C,x) C̃ := (F (X)× C̃)/π1(C, x).

Here the right hand side is the categorical quotient in adic spaces for
the antidiagonal action.

Remark 5.8. Parts (2) and (3) say that we may reasonably regard C̃ → C
as the “universal cover” of C, in analogy with this notion in topology.

The proof also works in the case that C is an abelian variety. In this case,
the étale fundamental group is simply the adelic Tate module π1(A, x) =
TA := lim

←−N∈N
A[N ](K). We then have:

Corollary 5.9. Let A be an abelian variety over K, then there is a perfec-
toid tilde-limit

Ã ∼ lim
←−
[N ]

A

where N ranges over N ∈ N. The analogous statements of Corollary 5.7.(2)
and (3) hold for the TA-torsor Ã→ A. In particular, there is a natural
isomorphism

A♢ = Ã/TA = Ã/π1(A, x).

Remark 5.10. There is a second, more topological universal property of
A∞ and Ã: Namely, in [10, §2.3] it is shown that A∞ is the universal cover
of A with the property that H1

v (A∞,Zp) = 0, whereas Ã is universal with

the property that H1
v (Ã, Ẑ) = 0.

Proof of Corollary 5.7 and Corollary 5.9. To ease notation, let us abbrevi-
ate G := π1(C, x).

We construct C̃ in two steps. The choice of the base point x gives an
embedding ι : C → A of C into its Jacobian. We can now argue like in [21,
§4.1] to obtain a perfectoid pro-étale cover of C via pull-back: Let Cn be the
pullback of C along the map [pn] : A→ A. Combining our main theorem with
[21, Lemma 2.2.2], we obtain a strongly Zariski-closed subspace C∞ → A∞
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that is the pullback of C → A. It is then clear on affinoid subspaces that we
have

C∞ ∼ lim
←−

Cn.

Indeed, the condition on topological spaces is immediate from [21, Lemma
2.2.2]. The approximation condition follows since affinoid locally, OA∞

→
OC∞

is surjective, hence any function f ∈ OC∞
can be lifted to g ∈ OA∞

,
and approximated by a convergent sequence of gn ∈ lim

−→[p]
OA. The images of

the gn in lim
−→n

OCn
then converge to f . This proves the displayed tilde-limit

property.
We now use the fact that pro-étale covers of perfectoid spaces are again

perfectoid to construct a perfectoid cover C̃ of C∞ that packages up the
entire étale fundamental group of C. The exact same argument can be used
to construct the tower Ã→ A∞, proving Corollary 5.9.

As we are assuming that K has characteristic 0, the maps [pn] : A→ A
are finite étale, so the induced covers Cn → C are finite étale. The inverse
system

· · · → Cn → · · · → C1 → C

therefore corresponds to a chain of subgroups

· · · < Gn < · · · < G1 < G = π1(C, x).

For any open subgroup H of G corresponding to the finite étale cover
CH → C, we have a decreasing sequence of positive integers

· · · ≤ [Gn : Gn ∩H] ≤ · · · ≤ [G1 : G1 ∩H] ≤ [G : G ∩H]

which stabilises for n≫ 0. So there is an integer d such that for all n≫ 0,
we have [Gn : Gn ∩H] = d. Translating back to the language of finite étale
covers, we see that for such n, the map

CGn+1∩H → CGn∩H ×CGn
CGn+1

coming from the universal property of the fibre product is an isomorphism:
Both spaces are finite étale covers of CGn+1

of degree d, so the map is
a finite étale cover of degree 1. This implies that the natural morphism
lim
←−

CGn∩H → lim
←−

CGn
of objects of Cprofét is finite étale in the sense of [18,

Definition 3.9]. To simplify notation, we write this morphism as CH,∞ → C∞

(via Lemma 5.5, one can also think of this as the corresponding map of per-
fectoid spaces).
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We can now rewrite in Cprofét:

lim
←−
H→1

CH = lim
←−
H→1

lim
←−
n→∞

CGn∩H = lim
←−
H→1

CH,∞.

As the CH,∞ have compatible finite étale maps to C∞, we obtain a morphism
in Cprofét

lim
←−
H→1

CH,∞ → C∞.

By [18, Lemma 4.6], pro-finite-étale covers of perfectoid objects are again
perfectoid, giving us the desired perfectoid space

C̃ ∼ lim
←−
H→1

CH .

This completes the construction of C̃, and thus proves part (1).
To see part (2), we write G = lim

←−N
G/N where N ranges through the

normal open subgroups. These are precisely the subgroups for which CN →
C is already a finite étale G/N -torsor. Concretely, this means that the fol-
lowing natural morphism is already an isomorphism:

G/N ×C CN → CN ×C CN .

We note that we also have C̃ ∼ lim
←−N

CN , as normal open subgroups are
cofinal in the inverse system of all open subgroups. In the limit, this shows
that C̃ is a pro-finite-étale G-torsor.

To see that F (X) = HomC(C̃,X), we recall that for any Galois cover
CN → C with a finite Galois map CN → X, we have F (X) = HomC(CN , X).
It therefore suffices to see that

HomC(C̃,X) = lim
−→
N

HomC(CN , X).

But this follows from Lemma 5.5.
For (3), write S = F (X), then it suffices to prove that the natural mor-

phism

ρ : S × C̃ → X

is a pro-finite-étale G-torsor for the antidiagonal action. Indeed, this implies
that X is the categorical quotient by the action of G: This is because the
torsor property implies OX = (ρ∗OS×C̃

)G as one can see by arguing as in

the proof of [5, Lemma 2.26].
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Since connected components of X correspond to G-orbits of S, we may
reduce to the case where X is connected and G acts transitively on S. By
writing X as a system of finite étale covers, we may further reduce to the
case that S is finite. Fix s ∈ S and let H ⊆ G be the stabiliser of s, then
X = CH . It now suffices to show that for any normal open subgroup N ⊆ G
with N ⊆ H, the natural morphism

G/H × CN → CH

is a G/N -torsor, as the desired result will follow in the limit N → 1. But
this follows by Galois descent from the diagram

G/H × CN CH

G/N × CN CN

which is Cartesian as CN → CH is a finite étale H/N -torsor. □
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