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Symplectic duality for T ∗Gr(k, n)

Hunter Dinkins

In this paper, we explore a consequence of symplectic duality (also
known as 3d mirror symmetry) in the setting of enumerative ge-
ometry. The theory of quasimaps allows one to associate hyper-
geometric functions called vertex functions to quiver varieties. In
this paper, we prove a formula which relates the vertex functions
of T ∗Gr(k, n) and its symplectic dual. In the course of the proof,
we study a family of q-difference operators which act diagonally
on Macdonald polynomials. Our results may be interpreted from a
combinatorial perspective as providing an evaluation formula for a
q-Selberg type integral.

1. Introduction

1.1.

The concept of symplectic duality, sometimes referred to as 3D mirror sym-
metry, originated in physics and has been attracting increasing attention
from mathematicians in recent years, see [2], [4], [5], [20], [19]. For a variety
X with certain conditions, it is expected that there exists a symplectic dual
variety, which we denote by X !, so that many deep geometric properties of
X and X ! are related. From a physical point of view, symplectic duality
exchanges the Higgs and Coulomb branches of certain three dimensional
gauge theories. From a mathematical perspective, it has led to deep results
and expectations in topics of enumerative geometry, stable envelopes, and
quantum difference equations, all of which are important topics in geometric
representation theory. In some cases, such as bow varieties [13], the construc-
tion of the symplectic dual variety is known. Once one has a candidate for
the symplectic dual of a variety X, it is generally a nontrivial problem to
verify that the expected mathematical properties hold.

In this paper, we consider the variety X = T ∗Gr(k, n) and its proposed
dual variety X !, both of which can be constructed as Nakajima quiver va-
rieties when 2k ≤ n. In [19], the authors prove that that expected relation-
ship between the elliptic stable envelopes of X and X ! hold. Here we take
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a different approach and explore symplectic duality from the perspective of
enumerative geometry. The main result of this paper is that, after appropri-
ate normalizations and identification of various parameters, the enumerative
invariants of X and X ! known as vertex functions coincide.

The basic ideas of vertex functions and the enumerative geometry of
Nakajima quiver varieties are as follows. For a geometric invariant theory
quotient X with certain conditions which are satisfied by Nakajima quiver
varieties, see [3] and [16], one can define the moduli space of quasimaps from
P1 to X of degree d. This space compactifies the space of maps from P1 to
X by allowing the maps to have singularities at finitely many points. The
maximal torus T ⊂ Aut(X) and an additional torus C×

q both act on the
space of quasimaps of a given degree.

On the moduli space of quasimaps of degree d, there exists a certain
natural K-theory class Ôd

vir called the symmetrized virtual structure sheaf.
For quasimaps nonsingular at ∞ ∈ P1, one can use equivariant localization
with respect to T× C×

q to pushforward Ôd

vir by the evaluation map at ∞ to
obtain a K-theory class on X. The generating function

V(z) =
∑

d

ev∞,∗(Ô
d

vir)z
d ∈ K

T×C
×
q
(X)[[z]]

is known as the vertex function of X. Here, the parameter z is introduced
formally to keep track of the degrees of the quasimaps and the sum is taken
over a certain cone inside of Z|I| where I is the vertex set of the quiver,
outside of which the quasimap moduli spaces are empty. Restricting to a
torus fixed point p ∈ XT gives a power series

Vp(z) ∈ K
T×C

×
q
(p)[[z]]

Since the pushfoward is defined by equivariant localization, the function
Vp(z) is a power series in z, with coefficients in C(a, q), where a denotes
the equivariant parameters of the torus T.

It is known that the vertex functions Vp(z), p ∈ XT give a basis of solu-
tions to a certain system of q-difference equations in z, see [17] and [2]. For
a pair of symplectic dual varieties X and X !, it is expected that the systems
of q-differences equations are equivalent, after a certain identification of the
parameters z with the equivariant parameters of X ! and vice versa. As a re-
sult, the vertex functions for X and X ! can be thought of as giving two bases
of solutions to the same q-difference equation. It is also expected that, after
appropriate normalization, the so-called elliptic stables envelope provides
the transition matrix between these two bases of solutions. As the elliptic
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stable envelope gives a triangular matrix in the basis of fixed points, it is
expected that the vertex functions for X and X ! corresponding to the “last”
fixed points in some ordering coincide after identification of parameters and
normalization by some factor.

Since the identification of the parameters involves interchanging the de-
gree counting parameters z with the equivariant parameters on the dual
side and vice versa, this equality is equivalent to a nontrivial combinatorics
involving re-expanding a power series in a different set of variables and col-
lecting certain terms into rational functions.

As the main result of this paper, we prove that the vertex functions
at the “last” fixed point for the variety X = T ∗Gr(k, n) and its proposed
dual X ! are equal, in the case of 2k ≤ n. The main ideas of the proof are as
follows.

From the integral representation of the vertex function in Section 4, it
follows that the vertex function for a Nakajima quiver variety can often
be thought of as a descendant insertion into the vertex function of simpler
quiver variety. In this case, the simpler quiver variety is just a point, the ver-
tex function of which was explored in detail in [6] and [4]. As observed in [4],
descendant insertions into vertex functions can in some cases be described
through the action of certain q-difference operators. For X and X ! in this
paper, we are led to introduce a family of q-difference operators commuting
with the Macdonald difference operators, closely related to those studied in
[14] and [15]. Once the fundamental property of the difference operators is
known, the remainder of the proof can be completed by direct computation.

The structure of this paper is as follows. In Section 2, we introduce
the descriptions of X = T ∗Gr(k, n) and its dual X ! as Nakajima quiver
varieties. We will also define another variety Xλ, whose quiver data and
vertex function are closely related to that of X !. Then we describe the torus
fixed points of X and X ! and a bijection between them.

In Section 3, we define the vertex functions of quiver varieties and de-
scribe the integral representation for type A quiver varieties. We also explain
the meaning of descendant insertions.

In Section 4, we give explicit formulas for the vertex functions at the
“last” fixed point, define the identification of parameters, and precisely state
our main result.

In order to study the relationship between the vertex functions of X and
X !, we are led in Section 5 to introduce the following family of q-difference
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operators:

Dd(x; q, t) =
∑

d1+...+dk=d
di≥0

k∏

i,j=1

(txj/xi)dj

(qxj/xi)dj

(qxj/xi)dj−di

(txj/xi)dj−di

k∏

i=1

pdi

i

where x = (x1, . . . , xk) is a set of variables, q and ℏ are parameters,

(x)n :=

n−1∏

i=0

(1− xqi)

is the q-Pochammer symbol, and the operator pi shifts xi by q. We prove
that this family of operators acts diagonally on Macdonald polynomials with
eigenvalues given as follows:

Dd(x; q, t)Pµ(x; q, q/t) =
(t)d
(q)d

Pd(q
µi(t/q)i−1; q, t)Pµ(x; q, q/t)

This result can be reinterpreted as an evaluation formula for a q-integral of
Selberg type, similar to those studied in [8] and [21]. As discussed in Section
5.4, the previous formula is equivalent to

∫

[0,a]
Pµ(x; q, t)h(x)

k∏

i,j=1

ϕ (txj/xi)

ϕ (qxj/xi)

ϕ (qxj/ai)

ϕ (txj/ai)
dqx

= Pµ(a; q, t)

k∏

i=1

ϕ(tqµi(t/q)i−1z)

ϕ(qµi(t/q)i−1z)

where

h(x) := exp

(
1

ln(q)
ln(z) ln(x1 . . . xk)

)
, ϕ(x) :=

∞∏

i=0

(1− xqi)

and the q-integral is defined as

∫

[0,a]
g(x)dqx :=

∑

d1,...,dk≥0

g(a1q
d1 , . . . , akq

dk)

Using these properties, we prove that the generating function for the
family of operators Dd(x; q, t) transforms the vertex function of Xλ into the
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vertex function of X !. Finally, using Theorem 1 from [6]

Vλ(z) =
∏

□∈λ

ϕ(ℏz□)

ϕ(z□)

where λ is the length n− k partition (k, k, . . . , k), and z□ is a certain mono-
mial depending on □ ∈ λ, we are able to explicitly observe the effect of
applying the difference operators to Vλ(z). From this it follows that, after
an appropriate normalization and identification of parameters, the vertex
functions of X and X ! at the last fixed point coincide.

2. Three quiver varieties

In the course of this paper, the relationship between the vertex functions for
three quiver varieties will be important. Though we are mainly interested in
the first two (X = T ∗Gr(k, n) and its symplectic dual X !), the third arises
in a natural way when considering the vertex function of X !.

2.1. The quiver variety X

Fix k, n ∈ N. We consider the cotangent bundle to the Grassmannian pa-
rameterizing k-dimensional subspaces in Cn. This variety can be described
as a Nakajima quiver variety corresponding to the quiver with a single ver-
tex and no edges. The dimension is k and the framing dimension is n, and
we call the corresponding vector spaces V and W , respectively. We choose
the stability condition given by the GL(V ) character

θ : g 7→ det(g)−1

n

k

Figure 1: The quiver data for the variety X.

Let T ∗Rep(k, n) be the cotangent space of the vector space of framed rep-
resentations of the quiver with dimenions k and n. By definition, Rep(k, n) =



✐

✐

“3-Dinkins” — 2022/10/25 — 2:17 — page 668 — #6
✐

✐

✐

✐

✐

✐

668 Hunter Dinkins

Hom(W,V ) and so T ∗Rep(k, n) = Hom(W,V )×Hom(V,W ). The corre-
sponding Nakajima quiver variety is defined to be the symplectic reduction

X := T ∗Rep(k, n)////θGL(V ) := µ−1(0)θ−ss/GL(V )

where µ : T ∗Rep(k, n) → gl(n)∗ is the moment map for the GL(V ) action
and µ−1(0)θ−ss is the intersection of µ−1(0) with the θ-semistable points in
T ∗Rep(k, n). By [7] Proposition 5.1.5, it follows that (I, J) ∈ T ∗Rep(k, n),
is θ semistable if and only if I : V →W is injective. The moment map is
µ(I, J) = I ◦ J . So we see that the quiver variety X is

X := {(I, J) ∈ T ∗Rep(k, n) : ker I = 0, I ◦ J = 0, }/GL(V ) = T ∗Gr(k, n)

2.2. Fixed points on X

The action of A := (C×)
n
onW induces an action of A onX, which preserves

the symplectic form. Let C×
ℏ

act on X by scaling the cotangent directions
with character ℏ−1. The torus C×

ℏ
scales the symplectic form with character

ℏ. Let T := A× C×
h . We will denote the coordinates on A by a = (a1, . . . , an).

The torus T fixes the subspaces of V spanned by k coordinate vectors.
So there are n!

k!(n−k)! fixed points, naturally indexed by size k subsets of

{1, . . . , n}.

2.3. The variety X!

The variety X ! dual to T ∗Gr(k, n) can be described as a Nakajima quiver
variety in the case that 2k ≤ n, see [19]. For general n, such a variety can
be described as a bow variety, see [13]. In this paper, we will always assume
that 2k ≤ n.

We consider the An−1 quiver with vertices labeled by 1, . . . , n− 1 and
dimension vector v = (v1, . . . , vn−1) given by

vi =





i 1 ≤ i ≤ k − 1

k k ≤ i ≤ n− k

n− i n− k + 1 ≤ i ≤ n− 1

and framing dimension w = (w1, . . . ,wn−1) given by wi = δi,k + δi,n−k. The
corresponding Nakajima quiver variety is defined as the symplectic reduction
of the cotangent space of framed representations of the An−1 quiver, which
we denote by T ∗Rep(v,w).
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1 1

1 2 . . . k . . . k . . . 2 1

Figure 2: The quiver data for the variety X !.

Explicitly,

Rep(v,w) =

n−2⊕

i=1

Hom(Vi, Vi+1)⊕Hom(C, Vk)⊕Hom(C, Vn−k)

where Vi is a vector space of dimension vi for 1 ≤ i ≤ n− 1. We use the
stability condition given by the G :=

∏n−1
i=1 GL(vi) character

θ : (gi) 7→

n−1∏

i=1

det(gi)

By definition, the Nakajima quiver variety is the symplectic reduction

X ! := T ∗Rep(v,w)////θG = µ−1(0)θ−ss/G

where g = Lie(G), µ : T ∗Rep(v,w) → g∗ is the moment map associated to
the G action on T ∗Rep(v,w), and µ−1(0)θ−ss denotes the intersection of
µ−1(0) with the set of θ-semistable points.

Points in T ∗Rep(v,w) are represented by tuples (Xi, Yi, Ik, Jk, In−k, Jn−k),
where

Xi : Vi → Vi+1, Yi : Vi+1 → Vi, Il : C → Vl, Jl : Vl → C, l ∈ {k, n− k}

By [7] Proposition 5.1.5, a point is θ-semistable if and only if the image of
Ik and In−k generate

⊕n−1
i=1 Vi under the action of all Xi and Yi.

2.4. Fixed points on X!

The torus A! := (C×)
2
acts on X ! by scaling the framing vector spaces. An

additional torus C×
ℏ! acts on X ! by scaling the cotangent fiber with character

1/ℏ!. We let T! := A! × C×
ℏ! . We will denote the coordinates on A! by (u1, u2).
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A standard argument, see [19] Section 4, shows that fixed points on
the variety X ! are indexed by Young diagrams which fit into a k × (n− k)
rectangle.

2.5. The variety Xλ

Let λ = (λ1 ≥ λ2 ≥ . . .) be a partition. If l(λ) is the length of the partition,
the Young diagram of the partition is the set of points

{(x, y) ∈ Z2 : 1 ≤ x ≤ l(λ), 1 ≤ y ≤ λx}

We do not distinguish between a partition and its Young diagram. If □ ∈ λ
has coordinates (i, j), then we define the content of □ to be cλ(□) = i− j +
λ1. The shift by λ1 guarantees that the smallest possible content is 1, which
allows for notational agreement with later parts of this paper.

Let v = (vi) where vi = |{□ ∈ λ : cλ(□) = i}|. We define the framing di-
mension vector to be w = (wi), where wi = δi,λ1

. In other words, there is one
framing, located at position λ1.

Let Xλ be the corresponding A∞ quiver variety, defined by the stability
condition

(gi) 7→
∏

i

det(gi)

where gi ∈ GL(vi) for 1 ≤ i ≤ λ1 + l(λ)− 1.
Although the variety Xλ is geometrically just a point ([6] Proposition 1),

we will work equivariantly with respect to the torus Tλ = C×
ℏ! , which acts

on the prequotient data by scaling the cotangent directions with character
1/ℏ!. Thus the tautological bundles over Xλ carry natural actions of the
torus Tλ.

3. Vertex functions for Nakajima quiver varieties

In this section, we define the main objects of interest. For complete defini-
tions, see [16] Sections 4-7, [1], and [3]. For various specific examples, see
[4], [6], [10], and [18].

3.1. Equivariant quasimap counts

Let X be a Nakajima quiver variety from a quiver with vertex set I. Let
p ∈ XT, where T is the maximal torus of Aut(X). Associated to X and a
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choice of degree d ∈ Z|I|, there exists a moduli space of quasimaps

QMd

p := {degree d quasimaps f : P1
99K X such that f(∞) = p}/ ∼=

where ∼= indicates that quasimaps are considered up to isomorphism. It
is known that the space QMd

p is a Deligne-Mumford stack of finite type

with a perfect obstruction theory, see [3]. Let Ôd
vir be the corresponding

symmetrized virtual structure sheaf, which is related to the usual virtual
structure sheaf provided by the obstruction theory by a twist by a square
root of the virtual canonical bundle.

The action of T on X induces an action on QMd

p . There is an additional
action of C×

q by rotation on the domain P1 of the quasimaps. The moduli

spaces QMd

p are not proper. However, the fixed locus
(
QMd

p

)T×C
×
q is. Thus

the equivariant Euler characteristic is well-defined:

χ(Ôd

vir) ∈ Q(a, ℏ, q)

where ℏ denotes the character of the symplectic form and a denotes the
coordinates on the torus A := ker(ℏ) ⊂ T preserving the symplectic form.

Quasimap spaces come equipped with natural evaluation maps evb for
b ∈ P1, taking values in the quotient stack [µ−1(0)/G], where µ is the mo-
ment map and G is the gauge group in the definition of the quiver variety.
Given a class τ ∈ KT(X), there is an associated class τstack ∈ KT([µ

−1(0)/G]).
We can pullback this class under ev0 to a class on QMd

p , which we will also
denote by τ .

Definition 1. The vertex function of X at p with descendant τ is defined
as the generating function of the τ -twisted equivariant Euler characteristics
of QMd

p :

Vp(z) ⟨τ⟩ :=
∑

d

χ(Ôd

vir ⊗ τ)zd

where the sum is taken over the cone of degrees such that the space QMd

p is

nonempty (see [16] Section 7.2). Here zd = zd1

1 . . . z
d|I|

|I| .

The variables zi are known as the Kähler parameters. The vertex func-
tion also depends on the equivariant parameters, which we sometimes write
as an argument below.
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3.2. Integral form of vertex functions

It is known that the vertex functions for quiver varieties can be represented
as integrals, see [1]. Let X be a Nakajima quiver variety with dimension
and framing dimension vectors v and w, and associated vector spaces Vi
and Wi. The index i takes values in I, the vertex set of the quiver. Let
G =

∏
i∈I GL(Vi).

For a character x1 + . . .+ xm ∈ KT(X), we define

Φ(x1 + . . .+ xm) := ϕ(x1) . . . ϕ(xm), ϕ(x) :=

∞∏

i=0

(1− xqi)

We extend Φ by linearity to polynomials with negative coefficients.
Let P be the bundle over X associated to the virtual G-module

⊕

i→j

Hom(Vi, Vj) +
⊕

i∈I

Hom(Wi, Vi)−
⊕

i∈I

Hom(Vi, Vi)

where i→ j denotes the sum over the arrows of the quiver. The quiver
variety is equipped with a collection of tautological bundles Vi, i ∈ I. Let
xi,j , 1 ≤ j ≤ vi be the Chern roots of the bundle Vi. It is known that the
tautological bundles generate the K-theory of X, see [12].

As a formal expression in the Chern roots and Kähler parameters, we
define the following:

f(x, z) := exp


 1

ln(q)

∑

i∈I

vi∑

j=1

ln(zi) ln(xi,j)




= exp

(
1

ln(q)

∑

i∈I

ln(zi) ln (Li)

)

where Li = det (Vi). Shifting a Chern root by q gives the following transfor-
mation property:

f(x1,1, . . . , qxi,j , . . . , z) = zif(x, z)

For a function g(x) of the Chern roots of the tautological bundles, symmetric
in the variables xi,1, . . . , xi,vi for each i and a T-fixed point p, we define the
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q-integral as
∫ p

0
g(x)dqx :=

∞∑

di,j=0

g(qdxp)

where each di,j is summed from 0 to ∞ and qdxp denotes the substitution of
the weights of the tautological bundles Vi at p in place of the Chern roots,
shifted by qdi,j . Then it is known (see [1]) that the vertex function of X at
p with descendant τ is equal to

(1) Vp(z) ⟨τ⟩

= Φ((q − ℏ)Pp)
−1f(xp, z)

−1

∫ p

0
Φ ((q − ℏ)P(x)) f(x, z)τ(x)dqx

where Pp is the T-character of P at p, and P(x) and τ(x) denote the ex-
pression of the classes P and τ in terms of the Chern roots x. Since all
expressions in the integral are symmetric functions of the Chern roots, the
substitution xp is well-defined.

From the transformation properties of f and ϕ, it is clear that the sum-
mation on the right hand side of (1) is a power series in the Kähler param-
eters with coefficients in Q(a, ℏ, q). The q-integral formula for the vertex
function arises from computing the τ -twisted equivariant Euler character-
istics χ(Ôd

vir ⊗ τ) by equivariant localization. We include the normalization
prefactor Φ((q − ℏ)Pp)

−1f(xp, z)
−1 in order to ensure that the first term of

the vertex function is τp.

4. Symplectic duality of X and X !

In this section, we investigate the relationship between the vertex functions
of X and X ! at a particular fixed point. In what follows, the restriction of
the vertex functions of X and X ! to fixed points p and p! will be denoted
by Vp(a, z) and V!

p!(u, z), respectively. The vertex function of Xλ will be
denoted by Vλ(z).

4.1. Bijection on fixed points

As explained above, the T!-fixed points on X ! are naturally indexed by
Young diagrams that fit into a k × (n− k) rectangle. We can consider the
path traced out by the border of the diagram. This path is completely de-
termined by specifying which of the n segments of the path move vertically.
In order for the Young diagram to fit into a k × (n− k) rectangle, there
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must be exactly k such locations, which corresponds to a size k subset of
{1, . . . , n}. This gives a natural bijection between fixed points on X ! and
fixed points on X. See Figure 3 for an example.

Figure 3: A fixed point where k = 3 and n = 7. The fixed point corresponds
to the subset {2, 5, 6} ⊂ {1, 2, 3, 4, 5, 6, 7}

In particular, we consider the fixed point p on X given by the subset
{n− k + 1, . . . , n}, or equivalently, the fixed point p! on X ! given by the
length n− k partition λ = (k, k, . . . , k). For the remainder of this paper, we
will always assume that p and p! denote these fixed points and we will always
use λ to denote the partition (k, k, . . . , k).

4.2. Exchange of Kähler and equivariant parameters

Let Ã be the cokernel of diagonal inclusion C× → A and let Ã! be the cokernel
of the diagonal inclusion C× → A!.

Define the map κ : K! × Ã! × C×
ℏ! × C×

q → K× Ã× C×
ℏ
× C×

q by

zi 7→





1
ℏ

ai+1

ai
1 ≤ i < k

ai+1

ai
k ≤ i < n− k

ℏ
ai+1

ai
n− k ≤ i ≤ n− 1

ℏ! 7→
q

ℏ

u1
u2

7→ z

(
ℏ

q

)k

q 7→ q

This map is an isomporphism of tori, and gives an induced map

C(q, ℏ!, u)[[z]] → C(q, ℏ, z)[[a]]

where u = u1/u2, which we also denote by κ.
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4.3. Vertex Function of X

At the fixed point p, the T-character of the tautological bundle V on X is

V = an−k+1 + . . .+ an ∈ KT(p)

Using the integral representation, it is straightforward to see that the vertex
function of T ∗Gr(k, n) at the fixed point p is equal to

Vp(a, z) =

∞∑

d1,...,dk=0

n∏

i=1

n∏

j=n−k+1

(ℏaj/ai)dj

(qaj/ai)dj

n∏

i,j=n−k+1

(qaj/ai)dj−di

(ℏaj/ai)dj−di

zd1+...dk

(2)

4.4. Vertex function of X!

At the fixed point p!, the character of the tautological bundle Vi is

Vi =

{∑
vi

j=1 u1ℏ
j−i−1 1 ≤ i < k∑

vi

j=1 u1ℏ
j−1 k ≤ i ≤ n− 1

Using the integral representation, it is straightforward to see that the vertex
function of X ! at the fixed point p! is equal to

V!
p!(u, z) =

∞∑

di,j=0

vk∏

i=1

(ℏi)dk,i

(qℏi−1)dk,i

vn−k∏

i=1

(ℏiu)dn−k,i

(qℏi−1u)dn−k,i

k−1∏

i=1

vi∏

j=1

vi+1∏

l=1

(ℏl−j)di+1,l−di,j

(qℏl−j−1)di+1,l−di,j

n−1∏

i=k

vi∏

j=1

vi+1∏

l=1

(ℏl−j+1)di+1,l−di,j

(qℏl−j)di+1,l−di,j

n−1∏

i=1

vi∏

j,l=1

(qℏl−j)di,l−di,j

(ℏl−j+1)di,l−di,j

n−1∏

i=1

vi∏

j=1

z
di,j

i(3)

where u = u1/u2 and the sum is taken over di,j for 1 ≤ i ≤ n− 1, 1 ≤ j ≤ vi

from 0 to ∞.

Note 1. In general, the degrees di,j must lie inside of a certain cone. But
in the case of the vertex function above, the specific form of the coefficients
gives 0 whenever the degrees lie outside this cone. Hence for uniformity, we
prefer to think of each di,j as running from 0 to ∞.
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4.5. Vertex function of Xλ

Since the same quiver is used to define both X ! and Xλ, we can canonically
identify the Kähler parameters for these two varieties. We also use the same
notation ℏ! for the character of the symplectic form for these two varieties.
Thus Vλ(z) is a power series in zi for 1 ≤ i ≤ n− 1, with coefficients in
Q(q, ℏ!). Explicitly, we have

Vλ(z) =

∞∑

di,j=0

vk∏

i=1

(ℏi)dk

(qℏi−1)dk

k−1∏

i=1

vi∏

j=1

vi+1∏

l=1

(ℏl−j)di+1,l−di,j

(qℏl−j−1)di+1,l−di,j

n−1∏

i=k

vi∏

j=1

vi+1∏

l=1

(ℏl−j+1)di+1,l−di,j

(qℏl−j)di+1,l−di,j

n−1∏

i=1

vi∏

i,l=1

(qℏl−j)di,l−di,j

(ℏl−j+1)di,l−di,j

n−1∏

i=1

zdi

i(4)

where the sum is taken over di,j for 1 ≤ i ≤ n− 1, 1 ≤ j ≤ vi from 0 to ∞
and vi = |{□ ∈ λ : cλ(□) = i}| as before.

Let

z□ :=
∏

□′∈Hλ(□)

ẑc(□′)

where the shifted Kähler parameters ẑi are

ẑi :=

(
ℏ

q

)σλ(i)

zi where σλ(i) :=

{
vi−1 − vi if i ̸= 0

vi−1 − vi + 1 if i = 0

and Hλ(□) denotes the set of boxes in the hook based at □ in λ. If □ has
coordinates (i, j) in the Young diagram for λ, then

Hλ(□) = {(i,m) ∈ λ : m ≥ j} ∪ {(m, j) ∈ λ : m ≥ i}

Proposition 1 ([6] Theorem 1). For |q| < 1, Vλ(z) is the power series
expansion of the function

Vλ(z) =
∏

□∈λ

ϕ(ℏz□)

ϕ(z□)

holomorphic in the polydisk |z□| < 1.

Proposition 1 holds for quiver varieties associated to general partitions.
But for our specific case of λ = (k, k, . . . , k), we obtain
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Proposition 2.

κ (Vλ(z)) =

n∏

j=n−k+1

n−k∏

i=1

ϕ(qaj/ai)

ϕ(ℏaj/ai)

Proof. This follows from a direct calculation using Proposition 1 and the
definitions of z□ and κ. □

4.6. Main theorem, coincidence of normalized vertex functions

The main result in this paper is the coincidence of the vertex functions for
X and X !, after normalization by a simple prefactor. Let

Ṽ
!

p!(u, z) = Vλ(z)
−1V!

p!(u, z)

and

Ṽp(a, z) =

k∏

i=1

ϕ((ℏ/q)i−1z)

ϕ(ℏ(ℏ/q)i−1z)
Vp(a, z)

Using the q-binomial theorem and Proposition 2, Ṽ
!

p!(u, z) can be expanded
as a power series in the Kähler parameters. Applying the map κ, we obtain
an element of C(q, ℏ, z)[[a]]. Each term involving z appears in the form

1− wz

1− w′z

where w and w′ are monomials in q and ℏ. Thus, we can expand each term
as a power series in z and obtain an element of C(q, ℏ)[[a, z]]. Collecting
powers of z gives

κ
(
Ṽ

!

p!(u, z)
)
=

∞∑

d=0

cd(a, q, ℏ)z
d

where cd(a, q, ℏ) ∈ C(q, ℏ)[[a]].
Similarly, applying the q-binomial theorem to the prefactor, we identify

Ṽp(a, z) as an element of C(q, ℏ,a)[[z]].

Theorem 1. In the notation above, each cd(a, q, ℏ) is the Taylor series
expansion of a rational function of a holomorphic in a neighborhood of
ai+1/ai = 0. Furthermore, as elements of C(q, ℏ,a)[[z]], we have the equality:

Ṽp(a, z) = κ
(
Ṽ

!

p!(u, z)
)
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This theorem will be proven below.

Note 2. Like the normalizing factor for the vertex function of X !, the
normalizing factor for the vertex function of X is the vertex function for a
simple quiver variety related to X. In this case, it is the vertex function for
the zero dimensional quiver variety T ∗Gr(k, k), obtained from the one-vertex
quiver with dimension and framing dimension both equal to k.

5. Difference operators and descendant insertions

In this section, we introduce some machinery and prove Theorem 1.

5.1. Macdonald polynomials

Let F = C[x1, . . . , xk]
Sk ⊗ C(q, t) be the ring of symmetric polyomials in

x1, . . . , xk. Following [11], we define an inner product on F by

(5) ⟨pλ, pµ⟩ := δλ,µ
∏

n≥1

nmnmn!

l(λ)∏

i=1

1− qn

1− tn
where mn = |{k | λk = n}|

where

pλ =

l(λ)∏

i=1

pλi
and pi =

k∑

j=1

xij

The Macdonald polynomials Pµ(x; q, t), where µ is a partition of length at
most k, are the unique basis of F defined by the following two properties

λ ̸= µ =⇒ ⟨Pµ(x; q, t), Pλ(x; q, t)⟩ = 0

Pλ(x; q, t) =
∑

µ≤λ

uλµmµ(x), uλλ = 1, uλ,µ ∈ Q(q, h)

where mµ(x) is the monomial symmetric function corresponding to µ and

µ ≤ λ ⇐⇒ µ1 + . . .+ µi ≤ λ1 + . . .+ λi, ∀i ≥ 0
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5.2. Vertex function for X! as a descendant insertion

As remarked above, V!
p!(u, z) is a power series in z, with coefficients in

C(q, ℏ!, u). The only terms involving u = u1/u2 appear as

1− wu

1− w′u

for Laurent monomials w and w′ in q and ℏ!. Hence we can expand each
of these as a power series in u, which identifies V!

p!(u, z) as an element of

C(q, ℏ!)[[z, u]].
For τ ∈ KTλ

(Xλ), we write the descendant insertion of τ into the vertex
function as Vλ(z)⟨τ⟩. We have the following

Proposition 3. Let x = (x1, . . . , xk) be the Chern roots of the tautological
bundle Vn−k on Xλ. As elements of C(q, ℏ!)[[z, u]], we have
(6)

V
!
p!(u, z) =

k∏

i=1

ϕ(uℏ!
i
)

ϕ(uqℏ!
i−1

)
Vλ(z)

〈
∞∑

d=0

(
q/ℏ!

)
d

(q)d
P(d)

(
x; q, q/ℏ!

)
(ℏ!u)d

〉

where u = u1/u2 and P(d) is the Macdonald polynomial for the length one
partition (d).

Proof. From the explicit form (4) of Vλ(z), we see that

V!
p!(u, z) =

k∏

i=1

ϕ(uℏ!
i
)

ϕ(uqℏ!
i−1

)
Vλ(z)

〈
k∏

i=1

ϕ(uqxi)

ϕ(uℏ!xi)

〉

Recall the identity from [11] Chapter 6 Section 2:

k∏

i=1

ϕ(ytxi)

ϕ(yxi)
=

∞∑

d=0

(t)d
(q)d

P(d)(x; q, t)y
d

Substituting t = q/ℏ! and y = ℏ!u gives the result.
□
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5.3. A family of difference operators

Definition 2. Let x = (x1, . . . , xk) be a set of variables. Define the follow-
ing difference operator on C(q, t, x1, . . . , xk)

(7) Dd(x; q, t) =
∑

d1+...+dk=d
di≥0

k∏

i,j=1

(txj/xi)dj

(qxj/xi)dj

(qxj/xi)dj−di

(txj/xi)dj−di

k∏

i=1

pdi

i

where pi : xj 7→ qδi,jxj.

The motivation for introducing Dd(x; q, t) comes from the following the-
orem.

Theorem 2. Let x = (x1, . . . , xk) denote the Chern roots of the tautological
bundle Vn−k on Xλ and let a = (an−k+1, . . . , an). Then

Dd(a; q, ℏ)κ (Vλ(z)) = κ

(
Vλ(z)

〈(
q/ℏ!

)
d

(q)d
P(d)

(
x; q, q/ℏ!

)
ℏ!

d(1−k)

〉)

This will be proven below.

Note 3. Theorem 2 is similar to the main result of [4]. There, we studied
descendant insertions into Vλ(z) in the basis of elementary symmetric func-
tions in the Chern roots of the tautological bundles on Xλ. In that case, the
techniques are similar, and instead of Dd(a; q, ℏ), the classical Macdonald
difference operators appear.

5.4. Spectrum of Dd(x; q, t)

Theorem 3. The operators Dd(x; q, t) for d ∈ N are pairwise commuta-
tive. In addition, they act diagonally in the basis of Macdonald polynomials
Pµ(x; q, q/t) as

(8) Dd(x; q, t)Pµ(x; q, q/t) =
(t)d
(q)d

Pd(q
µi(t/q)i−1; q, t)Pµ(x; q, q/t)
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Lemma 1.

Dd(x; q, t) =
∑

d1+...+dk=d

k∏

i,j=1

(txj/xi)dj

(qxj/xi)dj

∏

1≤i<j≤k

1− qdj−dixj/xi
1− xj/xi

(qxj/txi)dj−di

(txj/xi)dj−di

(
t

q

)dj−di k∏

i=1

pdi

i

Proof. This follows by elementary manipulations with the q-Pochammer
symbols in (7). □

Define the generating function

D(z) =

∞∑

d=0

zdDd(x; q, t)

Then

Theorem 4. Theorem 3 is equivalent to

(9) D(z)Pµ(x; q, q/t) = Pµ(x; q, q/t)

k∏

i=1

ϕ(tqµi(t/q)i−1z)

ϕ(qµi(t/q)i−1z)

Proof. This following by expanding the product in the right hand side of the
Theorem as a power series in z and equating the coefficients of z. □

Let p(x; s; q, t) be the function defined in formula (1.11) of [15]. It de-
pends on two sets of variables x = (x1, . . . , xk) and s = (s1, . . . , sk). It has
the property that

(10) xµp(x; qµtδ; q, t) = Pµ(x; q, t)

where δ = (k − 1, . . . , 0) and qµtδ stands for the specialization si = qµitδi .
Let

ψ(x; s; q, t) =
∏

1≤i<j≤k

ϕ (qxj/txi)

ϕ (qxj/xi)
p(x; s; q, t)

and

e(x; s) =

k∏

i=1

ϑ(xit
k−i)ϑ(sit

k−1)

ϑ(sixi)

where ϑ(x) = ϕ(x)ϕ(q/x)ϕ(q).
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The relevant property of e(x; s) is given by the following:

Lemma 2. The function e(x; s) transforms under the action of pi as:

pie(x; s) = e(x; s)sit
i−k

Proof. This follows from direct computation. □

Lemma 3 ([15] Theorem 1.4). The function ψ(x; s; q, t) satisfies the
following identity:

ψ(x; s; q, t) = ψ(x; s; q, q/t)

We also consider the normalized function:

f(x; s; q, t) = e(x, s)p(x; s; q, t)

Recall from [14] and [15], the family of q-difference operators

Nd(x; q, t) =
∑

d1+...+dk=d

k∏

i,j=1

(txj/xi)dj

(qxj/xi)dj

∏

1≤i<j≤k

qdjxj − qdixi
xj − xi

k∏

i=1

pdi

i

These operators are known as Noumi’s q-difference operators, or the Mac-
donald operators of row type. Define the generating function

N(z) =

∞∑

d=0

zdNd(x; q, t)

It is known that

Proposition 4 ([15] Formula (5.7)).

N(z)f(x; s; q, t) = f(x; s; q, t)

k∏

i=1

ϕ(tsiz)

ϕ(siz)

Proof of Theorem 4. Using the definitions and lemmas given above, we first
calculate

p(x; s; q, t) =
∏

1≤i<j≤k

ϕ(txj/xi)

ϕ(qxj/txi)

∏

1≤i<j≤k

ϕ(qxj/xi)

ϕ(txj/xi)
ψ(x; s; q, q/t)

= ∆(x)p(x; s; q, q/t)
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where

∆(x) =
∏

1≤i<j≤k

ϕ(txj/xi)

ϕ(qxj/txi)

Then

f(x; s; q, t) =
e(x; s)

xµ
∆(x)xµp(x; s; q, q/t)(11)

where xµ =
∏k

i=1 x
µi

i . Substituting (11), specializing s = qµ (q/t)δ, and re-
placing z by z(t/q)k−1 transforms Proposition 4 to

N
(
z (t/q)k−1

)
e(x; s)x−µ∆(x)Pµ(x; q, q/t)

= e(x; s)x−µ∆(x)Pµ(x; q, q/t)

k∏

i=1

ϕ(tqµi(t/q)i−1z)

ϕ(qµi(t/q)i−1z)
(12)

where we have suppressed writing the specialization of s, which we will
continue to do below. Rewriting this gives

∆(x)−1xµe(x; s)−1N
(
z(t/q)k−1

)
e(x; s)x−µ∆(x)Pµ(x; q, q/t)

= Pµ(x, q, q/t)

k∏

i=1

ϕ(tqµi(t/q)i−1z)

ϕ(qµi(t/q)i−1z)

Using the transformation property of e(x; s) and xµ, we calculate

xµe(x; s)−1Nd(x; q, t)e(x; s)x
−µ

=
∑

d1+...+dk=d

k∏

i,j=1

(txj/xi)dj

(qxj/xi)dj

∏

1≤i<j≤k

qdjxj − qdixi
xj − xi

k∏

i=1

tdi(i−k)(q/t)di(k−i)pdi

i

Doing some more elementary manipulations gives

xµe(x; s)−1Nd(x; q, t)e(x; s)x
−µ =

∑

d1+...+dk=d

k∏

i,j=1

(txj/xi)dj

(qxj/xi)dj

∏

1≤i<j≤k

1− qdj−dixj/xi
1− xj/xi

(
t

q

)dj−di k∏

i=1

(q/t)di(k−1)pdi

i
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It is now straightforward to see that conjugating this by ∆(x) gives

∆(x)−1xµe(x; s)−1Nd(x; q, t)e(x; s)x
−µ∆(x) = Dd(x; q, t)(q/t)

d(k−1)

Hence we see that (12) is equivalent to

∆−1(x)xµe(x; s)−1N
(
z(t/q)k−1

)
e(x; s)x−µ∆(x)Pµ(x; q, q/t)

= D(z)Pµ(x; q, t)

and so

D(z)Pµ(x; q, t) = Pµ(x; q, t)

k∏

i=1

ϕ(tqµi(t/q)i−1z)

ϕ(qµi(t/q)i−1z)

□

Note 4. This result can be interpreted as an evaluation formula for a q-
integral of Selberg type. Using q-integral notation, the above equation can be
written as

∫

[0,a]
Pµ(x; q, t)h(x)

k∏

i,j=1

ϕ (txj/xi)

ϕ (qxj/xi)

ϕ (qxj/ai)

ϕ (txj/ai)
dqx

= Pµ(a; q, t)

k∏

i=1

ϕ(tqµi(t/q)i−1z)

ϕ(qµi(t/q)i−1z)

where

h(x) := exp

(
1

ln(q)
ln(z) ln(x1 . . . xk)

)

and the q-integral is defined as

∫

[0,a]
g(x)dqx :=

∑

d1,...,dk≥0

g(a1q
d1 , . . . , akq

dk)

The above q-integral resembles the q-integrals considered by Kaneko [8] and
Warnaar [21].



✐

✐

“3-Dinkins” — 2022/10/25 — 2:17 — page 685 — #23
✐

✐

✐

✐

✐

✐

Symplectic duality for T ∗Gr(k, n) 685

In the special case when µ is the empty partition, we have

∫

[0,a]
exp

(
1

ln(q)
ln(z) ln(x1 . . . xk)

) k∏

i,j=1

ϕ (txj/xi)

ϕ (qxj/xi)

ϕ (qxj/ai)

ϕ (txj/ai)
dqx

=

k∏

i=1

ϕ(t(t/q)i−1z)

ϕ((t/q)i−1z)

From the integral formula of the vertex function (1), it is straightforward to
see that this is equal to the vertex function of the quiver variety T ∗Gr(k, k).

5.5. Proof of Theorem 2

Fix k, n, λ as before. The full flag variety inside of Ck can be described
as a Nakajima quiver variety, see [9]. We label the Kähler parameters of
the flag variety by zn−k+1, . . . , zn−1, and we identify these with a subset
of the Kähler parameters of X !. We label the equivariant parameters by
s1, . . . , sk, ℏ

!. Let F(s, z) be the vertex function of the flag variety at the
fixed point W1 ⊂W2 ⊂ . . . ⊂Wk = Ck where Wi is spanned by the first i
coordinate vectors.

Lemma 4. Substituting the Kähler parameters and ℏ! with the map κ gives

κ (F(s; z)) = p(a; s; q, q/ℏ)

where a = (an−k+1, . . . , an) and s = (s1, . . . , sk).

Proof. This can be seen directly by comparing the formula for p(a; s; q, t)
from [15] with the formula for F(s, z) from [4]. Alternatively, this follows
from Theorem 2.6 of [9], along with uniqueness of solutions to the bispectral
problem (Theorem 1.1 of [15]). □

For the remainder of this subsection, we write v for the dimension vector of
X !, or equivalently, of Xλ. It was proven in [4] that:

Proposition 5. Specializing the equivariant parameters si = ℏ!
i−1
qdn−k,i in

F(s, z), we have

Vλ(z) =
∑

di,j

Ψ

n−k∏

i=1

vi∏

j=1

z
di,j

i

n−1∏

i=n−k+1

vi∏

j=1

z
dn−k,j

i F(ℏ!
i−1
qdn−k,i , z)
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where Ψ ∈ C(q, ℏ!) represents ϕ function terms that do not depend on di,j for
i > n− k and the summation is taken over di,j for 1 ≤ i ≤ n− k, 1 ≤ j ≤ vi.

From (4), we see that the only terms that are nonzero arise from degree
choices that satisfy

dn−k,1 ≤ . . . ≤ dn−k,k

So we define the partition µ by µ = (dn−k,k, . . . , dn−k,1).
Then from (10) and Lemma 4, we have

Lemma 5 ([9], Proposition 2.7).

aµκ
(
F

(
qµℏ!

δ
, z
))

= Pµ(a; q, q/ℏ)

where a = (an−k+1, . . . , an), δ = (k − 1, . . . , 0), and aµ = aµ1

n−k+1 . . . a
µk

n .

Applying κ to Proposition 5 gives

Lemma 6.

κ (Vλ(z)) =
∑

di,j

κ(Ψ)

n−k∏

i=1

vi∏

j=1

(ai+1/ai)
di,j

k−1∏

i=1

vi∏

j=1

ℏ−di,j

n−1∏

i=n−k+1

vi∏

j=1

(ℏai+1/ai)
dn−k,j a−µPµ(a; q, q/ℏ)

Proof of Theorem 2. With our choice of notation, the operator pm in
Dd(a; q, ℏ) shifts an−k+m by q. It is easy to see that

pm

n−1∏

i=n−k+1

vi∏

j=1

(ℏai+1/ai)
dn−k,j =

n−1∏

i=n−k+1

vi∏

j=1

(ℏai+1/ai)
dn−k,j qµmpm

and

pma−µ = a−µq−µmpm

So the contributions of q from these terms cancel. Using Lemma 6, this
implies that

Dd(a; q, ℏ)κ (Vλ(z)) =
∑

di,j

(. . .)Dd(a; q, ℏ)Pµ(a; q, q/ℏ)
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where (. . .) stands for the remaining terms in Lemma 6. By Theorem 3, this
implies

Dd(a; q, ℏ)κ (Vλ(z)) =
∑

di,j

(. . .)Pµ(a; q, q/ℏ)
(ℏ)d
(q)d

P(d)

(
qµi (ℏ/q)i−1 ; q, ℏ

)

=
∑

di,j

(. . .)Pµ(a; q, q/ℏ)
(ℏ)d
(q)d

P(d)

(
qµi (ℏ/q)i−k ; q, ℏ

)
(q/ℏ)d(k−1)

where δ = (0,−1, . . . ,−k + 1). The expression on the right is exactly equal
to κ applied to the insertion into Vλ(z) of the descendant given in the
statement of Theorem. □

5.6. Proof of Theorem 1

Proposition 6.

κ (Vλ(z))
−1Dd(a; q, ℏ)κ (Vλ(z))

=
∑

d1+...+dk=d

n∏

i=1

n∏

j=n−k+1

(ℏaj/ai)dj

(qaj/ai)dj

n∏

i,j=n−k+1

(qaj/ai)dj−di

(ℏaj/ai)dj−di

Proof. From Proposition 2, we see that for n− k + 1 ≤ j ≤ n

p
dj

j κ (Vλ(z)) =

n−k∏

i=1

(ℏaj/ai)dj

(qaj/ai)dj

κ (Vλ(z))

which, along with Definition 2, gives the result. □

We note that the right hand side in Proposition 6 is precisely the coef-
ficient of Vp(z,a) corresponding to the choice d1, . . . , dk.

Proof of Theorem 1. Applying Proposition 3 gives

κ
(
Ṽ

!

p!(u, z)
)
= κ (Vλ(z))

−1 κ
(
V!

p!(u, z)
)

= κ

(
k∏

i=1

ϕ(uℏ!
i
)

ϕ(uqℏ!
i−1

)

)
κ (Vλ(z))

−1

κ

(
Vλ(z)

〈
∞∑

d=0

(
q/ℏ!

)
d

(q)d
P(d)

(
x; q, q/ℏ!

)
(ℏ!u)d

〉)

By Theorem 2, this is equal to
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κ

(
k∏

i=1

ϕ(uℏ!
i
)

ϕ(uqℏ!
i−1

)

)
κ (Vλ(z))

−1
∞∑

d=0

Dd(a; q, ℏ)κ

(
Vλ(z)

(
ℏ!

k
u
)d)

= κ

(
k∏

i=1

ϕ(uℏ!
i
)

ϕ(uqℏ!
i−1

)

)
κ (Vλ(z))

−1
∞∑

d=0

Dd(a; q, ℏ)κ (Vλ(z)) z
d

By Proposition 6 this is just Vp(a, z). By definition of κ,

κ

(
k∏

i=1

ϕ(uℏ!
i
)

ϕ(uqℏ!
i−1

)

)
=

k∏

i=1

ϕ
(
(ℏ/q)i−1z

)

ϕ (ℏ(ℏ/q)i−1z)

So after multiplying this factor over, we obtain

Ṽ
!

p!(u, z) = Ṽp(a, z)

□
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