
✐

✐

“4-Domat” — 2022/10/26 — 19:23 — page 691 — #1
✐

✐

✐

✐

✐

✐

Math. Res. Lett.
Volume 29, Number 3, 691–726, 2022

Big pure mapping class groups are

never perfect

George Domat

Appendix with Ryan Dickmann

We show that the closure of the compactly supported mapping
class group of an infinite-type surface is not perfect and that its
abelianization contains a direct summand isomorphic to ⊕2ℵ0Q.
We also extend this to the Torelli group and show that in the case of
surfaces with infinite genus the abelianization of the Torelli group
contains an indivisible copy of ⊕2ℵ0Z as well. Finally we give an
application to the question of automatic continuity by exhibiting
discontinuous homomorphisms to Q.
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1. Introduction

Let S be a connected, orientable, second-countable surface. The mapping
class group, MCG(S), is the group of orientation-preserving homeomor-
phisms of S up to homotopy, where all homeomorphisms and homotopies
fix the (possibly empty) boundary of S point-wise. When S is infinite type,
that is, when π1(S) is not finitely generated, we will often call MCG(S) a
big mapping class group. The pure mapping class group, PMCG(S), is the
subgroup of MCG(S) consisting of elements that fix the ends of S. In the
finite-type setting it is a classic result of Powell [36] that PMCG(S) is per-
fect, that is, has a trivial abelianization, whenever S has genus at least 3.
We will see that this is not the case in the infinite-type setting.

Let PMCGc(S) denote the subgroup of PMCG(S) consisting of
compactly-supported mapping classes. We prove the following when S has
more than one end. The one-ended case is proved with Ryan Dickmann in
the attached appendix by applying the Birman Exact Sequence.

Theorem A. PMCGc(S) is not perfect if S is an infinite-type surface.

This disproves Conjecture 5 in [4]. In [4] the authors show that once
S has at least two ends accumulated by genus there exist nontrivial ho-
momorphisms from PMCG(S) to Z so that PMCG(S) cannot be perfect.
The maps they build come from handleshifts and for genus 2 and greater
they prove that the integral cohomology of the closure of the compactly-
supported mapping classes is trivial. The authors in [17] prove the same for
surfaces with a single genus. Note that we get nontrivial homomorphisms
to Z from PMCG(S) when S has genus 0 for free by first taking a forgetful
map to a sphere with finitely many punctures (see [17] for a discussion on
this). Thus PMCG(S) also cannot be perfect when S has genus 0.

In [35] the authors prove that PMCG(S) = PMCGc(S) if and only if S
has at most one end accumulated by genus. Combining the previous work
in [4] with our main theorem we see that big pure mapping class groups are
never perfect.

Theorem B. PMCG(S) is not perfect if S is an infinite-type surface.
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We prove this theorem for surfaces with at least two ends in Section 6.
This proof relies on the existence of curves that separate at least two ends
of the surface. The final case of the surface with one end, the Loch Ness
monster surface, is proved in the appendix with Ryan Dickmann. Here we
add a puncture to the Loch Ness monster and apply the Birman Exact
Sequence.

Now that we know that PMCGc(S) is not perfect we can ask: What is
H1(PMCGc(S);Z)? Throughout this paper when we refer to the homology
of a group we refer to its homology as a discrete group so that H1(G;Z) is
exactly the abelianization of the group G. We make use of the tools involved
in the proof of Theorem A to find an uncountable direct sum of Q’s inside
the abelianization. We can then apply tools from abelian group theory to
conclude the following.

Theorem C. Let S be an infinite-type surface. H1(PMCGc(S);Z) =
(⊕2ℵ0Q)⊕B where all divisible subgroups of B are torsion.

We can similarly find such a direct summand in the abelianization of
the Torelli group, I(S). However, in the Torelli group we can make use
of the Johnson homomorphism to see that the abelianization also contains
uncountably many indivisible copies of Z whenever S has infinite genus.

Theorem D. Let S be an infinite-type surface. Then H1(I(S);Z) =
(⊕2ℵ0Q)⊕B where all divisible subgroups of B are torsion. If S also has
infinite genus, then B contains a copy of ⊕2ℵ0Z.

Finally we provide two applications of Theorem C. The first is to the
question of automatic continuity of big mapping class groups and the second
pertains to endomorphisms of pure mapping class groups.

Corollary E. Let S be an infinite-type surface. There exists 2c discontin-
uous homomorphism from PMCGc(S) to Q.

This gives some progress towards Questions 2.4 and 2.6 in [31] that ask
for which infinite-type surfaces do the mapping class groups or pure mapping
class groups have automatic continuity.

Aramayona and Souto in [5] prove that if S is a finite-type surface with-
out boundary and with genus at least 4 then every endomorphism of the pure
mapping class group is in fact an isomorphism. We can now give examples
where this is not the case in the infinite-type setting.
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γ0 γ1 γ2 γ3γ−1γ−2

Figure 1: Curves used to find a counterexample to perfectness.

Corollary F. Let S be the surface with infinite genus, no boundary com-
ponents, and one end. Then there exist uncountably many distinct nontrivial
endomorphisms of MCG(S) that are not isomorphisms.

To obtain these maps we use the recent result in [2] that Q is a subgroup
of MCG(S) for this surface. Then we simply first map MCG(S) to Q using
the maps from Theorem E and then map Q into MCG(S).

Our proof of the main result uses the projection complex machinery of
[7] and [10]. Projection complexes have proven very useful in the setting of
finite-type mapping class groups (see [8], [9], and the original two papers
mentioned previously). Recently the authors in [27] make use of the projec-
tion complex machinery to study the question of which big mapping class
groups admit nonelementary continuous actions on hyperbolic spaces.

2. Outline

Here we give an outline of the proof of Theorem A. Powell in [36] shows
that when S is closed and without boundary PMCG(S) is perfect once S
has genus at least 3. It was also shown in [23] that this is true whenever S
has any (finite) number of punctures or boundary components. However, in
the finite-type setting pure mapping class groups are not uniformly perfect.
In fact, the number of commutators needed to write a power of a Dehn twist
grows linearly in the power [18]. This idea gives some intuition for the proof
of the main theorem. Consider the mapping class f on the surface S with two
ends accumulated by genus given by an infinite product of increasing pow-

ers of Dehn twists about disjoint separating curves. That is, f =
∏

i∈Z T
|i|
γi

where γi is the bi-infinite sequence of disjoint separating curves pictured in
Figure 1.

Now, if we approximate f on larger and larger finite-type subsurfaces the
number of commutators needed to write these approximations of f grows;
however, if PMCGc(S) were perfect then we would be able to write f as a
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finite product of commutators. The challenge is how do we actually build a
contradiction using this intuition.

We will build a quasimorphism on PMCGc(S) for each curve γi that
“measures” the twisting of f about γi. However, quasimorphisms are always
bounded on commutators, so we get a uniform upper bound on the value
of f for each of these quasimorphisms. This will yield a contradiction as f
twists more and more about each γi as i increases.

This transforms the problem into building quasimorphisms with these
properties. To do this we will use the projection complex machinery of [7]
and [10]. We will use γi and the orbit of γi under PMCGc(S) to build a
projection complex for each i. This will give an action of PMCGc(S) on a
quasi-tree with Tγi

acting as a WWPD element. We then use a generalization
of the Brooks construction from [8] to build our desired quasimorphisms.

Section 3 establishes the definitions and previous results we use. Sections
4 and 5 pertain to building the projection complexes and quasimorphisms we
use. Section 6 proves that certain types of infinite products of Dehn twists
about separating curves are nontrivial in H1(PMCGc(S);Z). As a corollary
we obtain Theorem A. Section 7 shows that we can similarly replace the
infinite product of Dehn twists with infinite products of partial pseudo-
Anosovs supported on disjoint subsurfaces and obtain the same result. This
is important for proving Theorem C in the low-genus case. Section 8 contains
the proof of Theorem C. Section 9 contains a discussion on the Torelli group
and the proof of Theorem D. Section 10 discusses an application to the
question of automatic continuity by building discontinuous homomorphisms
and contains the proof of Theorem E. Section 11 contains a conversation and
poses some questions about other possible elements in H1(PMCGc(S);Z).
Finally, the appendix with Ryan Dickmann give the proof of Theorem A in
the case of the Loch Ness Monster (one-ended) surface.

3. Background

We will always assume that our surfaces are connected, orientable, second
countable, and possibly with finitely many compact boundary components.

3.1. Ends, classification, and exhaustions of infinite-type surfaces

The space of ends of a surface S is given by Ends(S) = lim
←−K

(S \K) where
K ranges over the compact subsets of S. It can be given a topology that
is totally-disconnected, separable, and compact so that it is always home-
omorphic to a subset of the Cantor set. We say an end is accumulated
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by genus if every open set in S containing that end has infinite genus. We
denote the set of ends accumulated by genus as Ends∞(S).

Theorem 3.1 (Classification of Surfaces, [29] [37]). A surface, S,
with finitely many compact boundary components is determined up to home-
omorphism by the quadruple (g, b,Ends(S),Ends∞(S)), where g ∈ N ∪ {∞}
is the genus of S, b ∈ N is the number of boundary components, and the pair
(Ends(S),Ends∞(S)) is considered up to topological type.

Note that this classification subsumes the classical classification of finite-
type surfaces.

Definition 3.2. We say that an essential, simple closed curve γ in a surface
S is end separating if it separates the space of ends of S. Likewise we
say that a finite-type subsurface B ⊂ S is end separating if ∂B \ ∂S is a
collection of essential, end-separating, simple closed curves.

We will make use of a modification of the notion of a principal exhaustion
as defined in [26]. First we recall that the topological complexity of a
finite-type surface S is 3g − 3 + b+ n where g is the genus of S, b is the
number of boundary components of S, and n is the number of punctures
of S.

Definition 3.3. Let {Si} be an increasing sequence of closed subsurfaces
of S, an infinite-type surface. We say that {Si} is a separating principal
exhaustion if S =

⋃∞
i=1 Si and for all i it satisfies the following:

(i) each Si is an end-separating surface,

(ii) Si is contained in the interior of Si+1, and

(iii) each component of Si+1 \ Si has topological complexity at least 6.

A separating principal exhaustion always exists for any infinite-type sur-
face with at least two ends.

3.2. Big mapping class groups

For S a surface, possibly with boundary, let Homeo+∂ (S) be the group of
orientation-preserving homeomorphisms that fix the boundary pointwise.
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The mapping class group, MCG(S), is defined to be

MCG(S) = Homeo+∂ (S)/ ∼

where two homeomorphisms are equivalent if they are isotopic relative to
the boundary of S. When S is of finite type, MCG(S) is discrete. In the
infinite-type setting we equip Homeo+∂ (S) with the compact-open topology,
this in turn induces the quotient topology on MCG(S). The pure mapping
class group, PMCG(S), is the kernel of the action of MCG(S) on the space
of ends of S equipped with the subspace topology.

We say that f ∈ MCG(S) is compactly supported if f has a represen-
tative that is the identity outside of a compact subset of S. The subgroup
consisting of compactly supported mapping classes is denoted PMCGc(S) ⊂
MCG(S). Note that any compactly-supported mapping class is in the sub-
group PMCG(S).

In [4] the authors decompose PMCG(S) as a semi-direct product of
PMCGc(S) and a group generated by handle shifts.

Theorem 3.4 ([4], Corollary 4). PMCG(S) = PMCGc(S)⋊H where

H ∼=
∏

n−1

Z with n ∈ N ∪ {∞} the number of ends of S accumulated by genus

and H trivial if n ≤ 1.

See [35] and [4] for the definition of a handle shift and a more thorough
introduction to big mapping class groups. We note that if S has only one
end accumulated by genus, then PMCG(S) = PMCGc(S)

3.3. Projection complexes

In this section we will review the projection complex machinery of [7] and
[10] that will be used to build an action of PMCGc(S) on a quasi-tree.

A quasi-tree is a geodesic metric space that is quasi-isometric to a tree.
Manning in [32] gave the following equivalent characterization. A geodesic
metric space X is a quasi-tree if and only if it satisfies the bottleneck crite-
rion: There exists ∆ ≥ 0 such that for any two points x, y ∈ X the midpoint
z of a geodesic between x and y has the property that any path between
x and y intersects the ∆-ball about z. Here ∆ is called the bottleneck
constant.

The setup of the projection complex machinery begins with some given
data:
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• Y a set,

• for each Y ∈ Y an associated geodesic metric space C(Y ), and

• for X,Z ∈ Y, with X ̸= Z, a projection πZ(X) ⊂ C(Z) from X to Z.

Then we define dY (X,Z) = diam(πY (X) ∪ πY (Z)) for X,Y, Z ∈ Y.

Definition 3.5. The collection {(C(Y ), πY )}Y ∈Y satisfies the projection
axioms for a projection constant θ ≥ 0 if

(P0) diam(πY (X)) ≤ θ when X ̸= Y ,

(P1) if X,Y, Z are distinct and dY (X,Z) > θ then dX(Y, Z) ≤ θ,

(P2) if X ̸= Z, the set {Y ∈ Y|dY (X,Z) > θ} is finite.

Given such a collection and a constant K > 0 one can define the projec-
tion complex PK(Y) to be the graph with vertex set Y and edges joining
X,Z ∈ Y whenever dY (X,Z) < K for all Y ∈ Y \ {X,Z}. We then get the
blown-up projection complex CK(Y) by replacing each vertex Y ∈ Y
with C(Y ) and joining points in πX(Z) with points in πZ(X) by an edge of
length L = L(K) whenever X and Z have an edge between them in PK(Y).
Technically CK(Y) depends on a choice of L and K but we will fix L as a
function of K. If K is sufficiently large then each C(Y ) will be isometrically
embedded in CK(Y) ([7], Lemma 4.2).

We say that a group G acting on Y preserves the projection structure
if for every Y ∈ Y and g ∈ G there are isometries F Y

g : C(Y )→ C(g(Y )) so
that

(i) F
g(Y )
g′ F Y

g = F Y
g′g for all g, g′ ∈ G, Y ∈ Y and

(ii) g(πY (X)) = πg(Y )(g(X)) for all g ∈ G and X,Y ∈ Y.

If G acts in this way it preserves the projection distances and acts naturally
on PK(Y) and CK(Y) by isometries.

Provided that K is large enough this construction yields a quasi-tree.

Theorem 3.6 ([7], Theorem 3.16, Theorem 4.14, and Theorem
4.17). If {(C(Y ), πY )}Y ∈Y satisfies the projection axioms with projection
constant θ and K > 3θ then

(i) PK(Y) is a quasi-tree.

(ii) If all C(Y ) are quasi-trees with uniform bottleneck constants for all
Y ∈ Y, CK(Y) is a quasi-tree. Furthermore, the bottleneck constant of
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CK(Y) depends only on the bottleneck constants of the C(Y ) and the
projection constant.

(iii) If all C(Y ) are δ-hyperbolic with the same δ then CK(Y) is hyperbolic
with hyperbolicity constant depending only on δ and the projection con-
stant.

We will primarily be utilizing the blown-up projection complex. For our
uses we only need that K is sufficiently larger than the projection constant
and so we will often drop the K and simply write P(Y) and C(Y) for the
projection complex and blown-up projection complex, respectively.

3.4. Curve graphs and projections

We will be using the curve graphs and subsurface projections as defined in
[33] and [34] to build our projection complex. Recall that the curve graph
of an orientable surface with boundary, S, is the graph C(S) with vertices
homotopy classes of simple closed curves and edges between any two classes
that can be realized disjointly on S. We can then define projections between
curve graphs of essential subsurfaces of S. If Y and Z are essential sub-
surfaces with ∂Z intersecting Y , then ∂Z ∩ Y is a collection of curves and
arcs in Y . For each of these arcs one can perform surgery, in potentially
two different ways, with ∂Y to close it up to a curve in Y . Then we de-
fine πY (Z) ⊂ C(Y ) to be the union of all curves and closed up arcs coming
from ∂Z ∩ Y . This gives a definition for whenever our subsurfaces have neg-
ative Euler characteristic; however, we will also be concerned with annular
subsurfaces and projections between them.

We now define the curve graph for a simple closed curve in S, or equiva-
lently an annular subsurface of S. Fix a hyperbolic metric on the interior of
S. If γ is an essential non-peripheral simple closed curve let Xγ be the an-
nular cover of S corresponding to γ. Now let C(γ) be the graph with vertices
complete geodesics in Xγ that cross the core curve and an edge between
any pair of geodesics that are disjoint. In [34] it is shown that C(γ) is quasi-
isometric to Z. In fact, there is always a (1, 2)-quasi-isometry, regardless of
the topological type of the underlying surface or curve.

For β another essential non-peripheral simple closed curve intersecting
γ we define the projection πγ(β) to be the components in Xγ that intersect
the core curve of the preimage of the geodesic representative of β in S.
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γ̃

β̃

Tγ(β̃)

Figure 2: A schematic picture of the action of a Dehn Twist in the annular
cover corresponding to γ on the curve β that intersects γ once. The complete
lift of γ is given in purple, a lift of β is blue, and the twist of this lift is in
red.

We say that two subsurfaces Y and Z overlap if i(∂Y, ∂Z) ̸= 0 where
i denotes the geometric intersection number and if γ is an essential non-
peripheral simple closed curve we say that the boundary of the corresponding
annular subsurface is simply γ. Note that projections between subsurfaces
are only defined when they overlap.

We can now define distances between subsurface projections. For X,Y, Z
three overlapping subsurfaces (potentially annuli) define

dY (X,Z) = diamC(Y )(πY (X), πY (Z)).

For β any curve intersecting γ transversely we have that dγ(T
n
γ (β), β) =

2 + |n| for all n ̸= 0. The additive factor of two comes from the fact that the
Dehn twist in S will affect every lift of γ to Xγ so that the lifts of Tn

γ (β) are
twisted an extra amount, causing it to pick up two additional intersections
as pictured in Figure 2. This was also shown in [34].

Now we have the following lemma that follows from work in [34] and
the Behrstock inequality, [6]. The explicit bound of 10 for the Behrstock
inequality follows from a proof of Leininger as recorded in [30].

Lemma 3.7 ([7], Section 5.1). Let Y be a collection of pairwise over-
lapping subsurfaces in a compact orientable finite-type surface S such that
χ(S) < 0, possibly with finitely many punctures (compact after the punctures
are filled in). Then {(C(Y ), πY )}Y ∈Y, where C(Y ) denotes the curve graph of
Y , satisfies the projection axioms (P0)-(P2) with projection constant θ = 10.
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This lemma also holds in the infinite-type setting.

Lemma 3.8. Let Y be a collection of pairwise overlapping finite-type sub-
surfaces in an orientable infinite-type surface S. Then {(C(Y ), πY )}Y ∈Y,
where C(Y ) denotes the curve graph of Y , satisfies the projection axioms
(P0)-(P2) with projection constant θ = 10.

Proof. (P0) and (P1) follow exactly as in the finite-type setting. For (P2), if
X,Y ∈ Y we let A be the smallest finite-type subsurface of S that contains
both X and Y . Note that if Z is a third subsurface and Z is not contained
within A then there is some curve γ in Z disjoint from ∂X ∩ Z and ∂Y ∩ Z,
so it suffices to only consider subsurfaces Z contained in A. Then (P2) holds
due to the fact that it holds for X and Y as subsurfaces of A. □

3.5. WWPD elements

The construction above gives an action of a group G on a δ-hyperbolic space,
CK(Y). CK(Y) is δ-hyperbolic because the hyperbolicity constant of a curve
graph of a finite-type surface is independent of the topological type of the
surface. This is due to [1], [13], [16], and [25], independently. This action
will not be proper; however, we will still have some control on how certain
elements of G act. We say that a virtual quasi-axis of an element g ∈ G
is a quasi-axis of a power of g.

Definition 3.9. Let (G,X, g, C) be a quadruple with

(i) X a δ-hyperbolic graph,

(ii) G a group acting on X by isometries,

(iii) g ∈ G a hyperbolic isometry of X with fixed points x±∞ at infinity,
and

(iv) C < G a subgroup that fixes x±∞ pointwise; equivalently, for every vir-
tual quasi-axis γ the orbit Cγ is contained in a Hausdorff neighborhood
of γ and no element of C flips the ends.

Given such a quadruple, if there exists some ξ > 0 and quasi-axis ℓ for g
such that for every h ∈ G \ C we have that the projection of h · ℓ to ℓ has
diameter ≤ ξ we say that the quadruple (G,X, g, C) satisfies WWPD with
constant ξ. We also say that the element g is WWPD if it is part of such
a quadruple.
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WWPD elements will be important in our construction of quasimor-
phisms.

3.6. Quasimorphisms

Definition 3.10. A quasimorphism of a group G is a function F : G→ R

such that

D(F ) := sup
g,h∈G

|F (gh)− F (g)− F (h)| <∞.

We say D(F ) is the defect of F . We say that F is antisymmetric if
F (g−1) = −F (g) for all g ∈ G.

Note that any antisymmetric quasimorphism F : G→ R is bounded on
commutators; that is,

|F ([g, h])| ≤ 3D(F )

for all g, h ∈ G. Also, if g ∈ G can be written as a product of C commutators
then we have

|F (g)| ≤ 3C ·D(F ) + (C − 1)D(F ) ≤ 4C ·D(F ).

These inequalities follow directly from applying the definition of an anti-
symmetric quasimorphism.

In [8] the authors generalize the classical Brooks construction [14] to the
setting of groups acting on quasi-trees with WWPD elements.

Proposition 3.11 ([8], Proposition 3.1). For every ∆ > 0 there is M =
M(∆), a fixed multiple of ∆+1, such that the following holds. Let (G,Q, g, C)
satisfy WWPD with constant ξg where Q is a quasi-tree with bottleneck con-
stant ∆ and assume that τg ≥ ξg +M where τg is the translation length of
g. Then there is an antisymmetric quasimorphism F : G→ R such that

(i) D(F ) ≤ 12, and

(ii) F is unbounded on the powers of g. In fact, F (gn) ≥ n
2 − 1.

The proposition as stated in [8] has more consequences but we’ve only
listed the two that we will take advantage of.

We give an informal description of the map F and direct the reader to
[8] for more detail. We begin by picking a basepoint x0 ∈ Q that is moved
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x0

hx0

Q

F (h) = 2

Figure 3: A schematic pictue of how the quasimorphism F is defined. F (h)
counts the (oriented) copies of w (in red) that appear along a geodesic from
x0 to hx0.

minimally by g. Let w = [x0, gx0] be an oriented geodesic. F (h) is then de-
fined by counting the non-overlapping, oriented copies of w that appear
along [x0, hx0]. Here a copy of w is a G-translate of the segment w. See Fig-
ure 3 for an example of the map F . This is analogous to the quasimorphism
defined in [14] for the free group. In the quasi-tree case some extra care is
needed in formally defining this count and in showing that the resulting map
is a quasimorphism.

4. Building projection complexes

Let S be an infinite-type surface with more than one end. We will build pro-
jection complexes out of the PMCGc(S)-orbits of either an end-separating
curve in S or an end-separating subsurface of S.

Lemma 4.1. Let g, h ∈ PMCGc(S). Then

(i) for any end-separating simple closed curve γ in S the translates g(γ)
and h(γ) are either homotopic or overlap. That is, either h(γ) = g(γ)
or h(γ) ∩ g(γ) ̸= ∅.

(ii) for any end-separating subsurface B ⊂ S the translates g(B) and h(B)
are either homotopic or overlap. That is, either h(B) = g(B) or
i(∂(h(B)), ∂(g(B))) ̸= 0.
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Proof. We start by proving (i). Without loss of generality we will show that
γ ∩ g(γ) ̸= ∅ for all g ∈ PMCGc(S) that do not fix γ up to homotopy. Since
g ∈ PMCGc(S) there is some g′ ∈ PMCGc(S) such that g′(γ) = g(γ). There
is a finite-type subsurface K ⊂ S such that γ, g(γ), and supp(g′) are con-
tained in K. Thus we can realize g′ as a pure mapping class of the subsurface
K. Now since γ separates the boundary curves and/or the punctures of K
and g′ is a pure mapping class of K the only way for g′(γ) to be disjoint
from γ would be if g′ maps one of the complementary components of γ into
itself. Since g′ fixes the topological types and boundary components of each
of the complementary components of γ this would only be possible if γ and
g′(γ) were homotopic, a contradiction to our assumption. Thus we conclude
that γ ∩ g′(γ) ̸= ∅, or equivalently, γ ∩ g(γ) ̸= ∅.

For (ii) we apply (i) to each of the curves in ∂B. □

We can now apply Lemma 3.8 and Theorem 3.6 to obtain an action of
PMCGc(S) on a graph that is either a quasi-tree or δ-hyperbolic.

Proposition 4.2. Let S be an infinite-type surface and let Y = {g(A)|g ∈
PMCGc(S)} where A is either an end-separating curve on S or an end-
separating subsurface of S. Then PMCGc(S) acts on a quasi-tree, the pro-
jection complex PA(Y) corresponding to {C(Y ), πY }Y ∈Y, where the bottle-
neck constant for PA(Y) is independent of the surface S or A. Furthermore,
PMCGc(S) also acts on the blown up projection complex CA(Y). When A
is an end-separating curve CA(Y) is again a quasi-tree and when A is an
end-separating subsurface CA(Y) is δ-hyperbolic. In either case the respective
bottleneck constant or δ is independent of S and A.

Remark 4.3. The independence of all of the constants follows from the
fact that they only depend on two quantities:

• The projection constant, which in all cases is 10.

• The bottleneck constant of the curve graph in the case that A is a
curve, which is shown to be constant in [34], and the hyperbolicity
constant of the curve graph when A is a finite-type surface, which is
shown to be independent of topological type in [1], [13], [16], and [25],
independently.
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5. Constructing quasimorphisms

In this section we construct quasimorphisms on PMCGc(S) that will “see”
elements that are nontrivial in H1(PMCGc(S);Z). We will do this by show-
ing that Dehn twists about end-separating curves are WWPD elements when
acting on the projection complexes arising from Proposition 4.2 and then
applying Proposition 3.11. Let γ be an end-separating simple closed curve
on S.

Lemma 5.1. (PMCGc(S), Cγ(Y), Tγ , Stab(γ)) satisfies WWPD with con-
stant ξ depending only on the projection constant of Cγ(Y) and with trans-
lation length 1. Furthermore, for any power n > 0, (PMCGc(S), Cγ(Y), Tn

γ ,
Stab(γ)) also satisfies WWPD with the same constant.

To prove this we need to make use of the fact that nearest-point projec-
tions in the projection complex are uniformly close to the given projections.

Proposition 5.2 ([7], Corollary 4.10). For every Z ∈ Y the nearest-
point projection C(Y)→ C(Z) is coarsely Lipschitz and the image of C(Y )
for Y ̸= Z is in a uniform neighborhood of the bounded set πZ(Y ). The
uniform bound is a function of the projection constant.

Proof of Lemma 5.1. We first note that Tγ acts hyperbolically with trans-
lation length 1. Indeed, within C(γ) we have that the projection distances
satisfy dγ(T

n
γ (α), α) = 2 + |n| for all n ̸= 0 where α is some curve in S that

intersects γ transversely. C(γ) is then isometrically embedded within C(Y).
Fix a quasi-axis ℓ ⊂ C(γ) for Tγ . For any h ∈ PMCGc(K) \ Stab(γ) we

have that h must move C(γ) to some other C(h(γ)). Thus by Proposition 5.2
the diameter of the nearest-point projection of h · ℓ to ℓ is bounded by
the nearest point projection of a uniform neighborhood of πC(γ)(C(h · γ))
to ℓ. This in turn is uniformly bounded by a function of the projection
constant. □

We can now apply Proposition 3.11 to this construction. By making an
appropriate choice of basepoint in the construction of our quasimorphism
we can gain control over the value of the quasimorphism on group elements
that are sufficiently “independent” of our Dehn twist.

Lemma 5.3. Suppose (PMCGc(S), Cγ(Y), Tn
γ , Stab(γ)) is as in Lemma

5.1. If h ∈ PMCGc(S) fixes C(γ) and C(γ′) for some γ′ ∈ Y with γ′ ̸= γ
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then the quasimorphism F obtained via Proposition 3.11 (when n is suffi-
ciently large) can be chosen to be bounded on h. Furthermore, if n is greater
than the projection constant, 10, of Cγ(Y), then F (h) = 0.

Proof. If h preserves C(γ) and C(γ′) then it must preserve the projections
πγ(γ

′) and πγ′(γ). These projections are bounded in diameter by the pro-
jection constant, 10. Now we can pick our basepoint, x0, in the construction
of F to be in the set πγ(γ

′) so that dCγ(Y)(x0, h(x0)) ≤ 10. We conclude

that |F (h)| ≤ 10
n

since the translation length of Tn
γ is n. The furthermore

statement follows from the fact that F is integer valued. □

6. Proof of Theorem A

We will actually prove a stronger theorem than stated in the introduction.

Theorem 6.1. Let S be an infinite-type surface with more than one end,
Γ = {γi}i∈N and Γ′ = {γ′i}i∈N be two collections of disjoint end-separating
curves that eventually leave every compact set so that γ′i ̸= γi is a translate
of γi by a compactly-supported mapping class and γ′i ∩ γj = ∅ for all i ̸= j,
and A = {ai}i∈N be an unbounded sequence of natural numbers. Then the
mapping class

fΓ,A :=

∞
∏

i=1

T ai

γi
∈ PMCGc(S)

cannot be written as a product of commutators in PMCGc(S). The same
also holds for products ϕfΓ,A where ϕ ∈ PMCGc(S) is a mapping class that
fixes γi and γ′i for infinitely many i.

We can first note that since the γi are disjoint and eventually leave
every compact set, maps of the form fΓ,A are indeed defined and contained
in PMCGc(S).

Proof of Theorem 6.1. The proof is a direct application of the following
lemma.

Lemma 6.2. For every C > 0, there exists an integer N0 > 0 with the fol-
lowing property: If N>N0, γ is an end-separating curve, and h∈PMCGc(S)
such that h fixes γ as well as some PMCGc(S)-translate of γ, then g = hTN

γ

cannot be written as a product of C commutators.
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Proof. Let ξ be the WWPD constant coming from Lemma 5.1 and M be the
constant coming from Proposition 3.11 when we apply it to the quasi-tree
arising from a projection complex as in Proposition 4.2. Note that ξ and M
depend only on the projection constant of 10 coming from Lemma 3.8. In
particular, they do not depend on S or γ.

Next we let N1 = max{M + ξ, 11}, N2 = 2(48C + 25), and N0 = N1N2.
Suppose g = hTN

γ as in the statement of the lemma. Apply Proposition 4.2 to

S and the curve γ to get an action of PMCGc(S) on the quasi-tree Cγ(Y). De-
note the length metric on Cγ(Y) by dCγ

. By Lemma 5.1, (PMCGc(S), Cγ(Y),
TN1

γ , Stab(γ)) satisfies WWPD with constant ξ and TN1

γ has translation
length N1 > 10 and N1 ≥M + ξ. By our choice of N1 we can apply Propo-
sition 3.11 and Lemma 5.3 to (PMCGc(S), Cγ(Y), TN1

γ , Stab(γ)) in order

to build a quasimorphism F : PMCGc(S)→ R with basepoint x0 so that
F (h) = 0. Thus we see that

|F (hTN
γ )− F (TN

γ )| < 12.

Now write N = AN1 +B for A ≥ N2 and B < N1. Note that B < N1 so
that dCγ

(x0, T
B
γ x0) < dCγ

(x0, T
N1

γ x0) and hence F (TB
γ ) = 0. Then we have

|F (TAN1+B
γ )− F ((TN1

γ )A)− F (TB
γ )| = |F (TAN1+B

γ )− F ((TN1

γ )A)| < 12.

We chose N2 so that F (TN1

γ )A > 48C + 24 by Proposition 3.11(ii). Thus
we see that

F (TN
γ ) > 48C + 12,

and

F (g) = F (hTN
γ ) > 48C.

If g could be written as a product of C commutators than we would have
F (g) ≤ 48C, contradicting the lower bound found above. □

To finish the proof of our theorem we simply note that since A is un-
bounded, for any C > 0 we can always write fΓ,A = hT ai

γi
with ai > N0(C)

coming from Lemma 6.2. Here h will be the product of all Dehn twists ap-
pearing in fΓ,A other than the twists about γi and so satisfies the conditions
of Lemma 6.2. For the final claim we simply include ϕ into the expression
for h. □
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Finally, we can conclude Theorem A from Theorem 6.1 provided that
the families of curves as in the statement of Theorem 6.1 always exist. To
find such a family of curves we can fix a separating principal exhaustion of a
given infinite-type surface S (with at least two ends) and take Γ = {γi}i∈N to
be a choice of one boundary curve of each Si in the exhaustion. Now for each
i pick a curve αi in Si+1 \ Si−1 that intersects γi. Set γ′i = Tαi

(γi). These
collections of curves Γ and Γ′ satisfy the hypotheses of Theorem 6.1. This
proves Theorem A provided that S has at least two ends. The one-ended
case is proved in the appendix by applying the Birman exact sequence.

7. Pseudo-Anosovs on disjoint subsurfaces

Now we see that the proof of Theorem 6.1 also works when we replace
the Dehn twists by pseudo-Anosovs supported on homeomorphic disjoint
subsurfaces. This version will be used in the following section to prove that
H1(PMCGc(S);Z) contains an uncountable direct sum of Q’s when S has
genus less than 3.

Theorem 7.1. Let S be an infinite-type surface with at least two ends,
B = {Bi}i∈N be a collection of disjoint subsurfaces of S, each of which is
end separating and is homeomorphic to some fixed finite-type surface B of
topological complexity at least 5 and A = {ai}i∈N be an unbounded sequence
of natural numbers. Suppose that f ∈ PMCG(B) is a pseudo-Anosov and
let fi ∈ PMCGc(S) be the mapping class that is equal to f on Bi and the
identity outside of Bi. Then the mapping class

fB,A :=

∞
∏

i=1

fai

i ∈ PMCGc(S)

cannot be written as a product of commutators in PMCGc(S). The same
also holds for any mapping class of the form ϕfB,A where ϕ ∈ PMCGc(S)
fixes Bi for infinitely many i.

To prove this we want to follow the same steps used in the proof above.
Proposition 4.2 gives an action of PMCGc(S) on a blown-up projection
complex built out of the curve graphs of the PMCGc(S)-orbit of Bi for each
i. Just as above we will build quasimorphisms on PMCGc(S) for each Bi.
For now we assume that i is fixed and abuse notation to write B = Bi.

Next we have to do two things. We have an action of PMCGc(S) on a
δ-hyperbolic space, but we really need an action on a quasi-tree. Also we
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need to see that a pseudo-Anosov, f , supported on B is a WWPD element
for this action. This will all follow from work in [11], [7], and [8].

The first step is to see that f acts as a WWPD element on CB(Y). The
following proposition informs us that f is a WPD element for the action of
PMCG(B) on the curve graph of B. Since curve graphs are δ-hyperbolic we
can take as a definition for WPD to be that f is a WWPD element together
with the extra condition that the subgroup C in the definition of WWPD
is virtually cyclic.

Proposition 7.2 ([11], Proposition 11). Let A be a finite-type surface
of topological complexity at least 5. The action of MCG(A) on the curve
graph of A is WPD. In particular, every pseudo-Anosov is a WPD element.

Now Proposition 4.20 in [7] tells us that this WPD element for the action
on a single curve graph gives a WWPD element for the action on the entire
blown up projection complex with WWPD constant depending only on the
projection constant. Finally we can use the following proposition to upgrade
our WWPD action on a δ-hyperbolic graph to a WWPD action on a quasi-
tree.

Proposition 7.3 ([8], Proposition 2.9). Let X be a δ-hyperbolic graph
and assume (G,X, g, C) satisfies WWPD with constant ξ = ξXg . Then there
is an action of G on a quasi-tree Q such that:

(i) The bottleneck constant, ∆, for Q depends only on δ and ξ and is
bounded by a multiple of δ + ξ + 1,

(ii) (G,Q, g, C) satisfies WWPD with ξQg bounded by a multiple of δ + ξ +
1.

Sketch of Proof. We apply the projection complex construction again. Say
two conjugates of g are equivalent if they have parallel quasi-axes. Now for
each equivalence class we take the union of the quasi-axes of its members.
This is a quasi-line with the subspace metric. Let the collection Y be all of
these quasi-lines. This collection will satisfy the projection axioms and so
when we construct the projection complex we get a quasi-tree, Q. We get
(i) by realizing that the projection constant used in the construction only
depends on δ and ξ. (ii) follows again from Proposition 4.20 in [7]. □

We collect these facts in the following lemma.

Lemma 7.4. Let S be an infinite-type surface and suppose that B ⊂ S
is an end-separating subsurface of topological complexity at least 5. Given
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f ∈ PMCG(B) a pseudo-Anosov, there exists a subgroup C < PMCGc(S)
and quasi-tree Q so that (PMCGc(S), Q, f, C) satisfies WWPD with con-
stant ξ. Furthermore, Q is a quasi-tree with bottleneck constant that does not
depend on how B embeds as a subsurface of S and (PMCGc(S), Q, fn, C)
also satisfies WWPD with constant ξ for any integer n ≥ 1.

Proof. We first apply Proposition 4.2 to obtain an action of PMCGc(S) on
a blown-up projection complex, CB, built out of copies of the curve graph
of B. Let C be the subgroup of StabPMCGc(S)

(B) that fixes pointwise the
points at infinity in the curve graph for B fixed by f . Then since f is a
WPD element for the action on a single curve graph by Proposition 7.2, we
can apply Proposition 4.20 in [7] to get that (PMCGc(S), CB, f, C) satisfies
WWPD. Finally we can apply Proposition 7.3 to replace CB by a quasi-tree
Q so that (PMCGc(S), Q, f, C) satisfies WWPD.

The furthermore statement follows from the fact that the these constants
can be taken to depend only on the hyperbolicity constant of the curve graph
of B and the project constant for CB. □

This lemma allows us to apply Proposition 3.11 by passing to a suffi-
ciently large power, n, of f . Now we get an analogous result as in Lemma 5.3.

Lemma 7.5. Let (PMCGc(S), Q, fn, C) be as above. If h ∈ PMCGc(S)
acts as the identity on B then the quasimorphism F obtained via Propo-
sition 3.11 (when n is sufficiently large) can be chosen to be trivial on h.

Proof. h acts as the identity on B and so it fixes C(B) pointwise in CB(Y).
Thus h must fix pointwise a quasi-axis of f in C(B). This quasi-axis is one of
the objects used to construct the projection complex Q. Now when we build
F we can take the basepoint to be on this quasi-axis so that F (h) = 0. □

We can also follow the exact same proof for Lemma 6.2 to get a version
in this setting.

Lemma 7.6. Let S be an infinite-type surface and f ∈ PMCGc(S) a partial
pseudo-Anosov supported on an end-separating subsurface B of S. For every
C > 0, there exists an integer N0 > 0, dependent on f , with the following
property: If N > N0 and h ∈ PMCGc(S) such that h fixes B, then g = hfN

cannot be written as a product of C commutators.

With all of these pieces the proof of Theorem 7.1 follows exactly as the
proof of Theorem 6.1. Note that the constant N0 is dependent on f as an
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element of PMCG(B). This is the reason that we take higher and higher
powers of the same pseudo-Anosov in the statement of Theorem 7.1. The
result should also hold for higher and higher powers of different pseudo-
Anosovs provided that their translation lengths fall in a bounded range.

8. Divisible subgroup of H1(PMCGc(S);Z)

We have seen that for any infinite-type surface, S, with more than one end,
H1(PMCGc(S);Z) is nontrivial. Next we will use our main theorem to find
a subgroup isomorphic to ⊕2ℵ0Q within the abelianization.

Definition 8.1. An element g of a group G is said to be divisible by n
if the equation g = xn has a solution in G. We say that g is divisible if it
is divisible by n for all n ∈ N. An abelian group is called divisible if every
element is divisible.

We first find a divisible element in the abelianization, then we construct
uncountably many independent elements, and finally we combine these two
constructions to prove Theorem C. We adopt the notation that an over-bar
represents the image of a mapping class in H1(PMCGc(S);Z).

8.1. Constructing divisible elements

We will follow the construction of Bogopolski and Zastrow for infinitely-
divisible elements in the first homology of the Hawaiian Earring and Grif-
fiths’ space as seen in [12]. We will need a slight modification when S has
genus less than 3.

8.1.1. S has genus at least 3. We first consider the case that S is an
infinite-type surface of genus at least 3 and with more than one end.

Let {γi}i∈N and {γ′i}i∈N be as in the statement of Theorem 6.1. Let

f =

∞
∏

j=1

T j!
γj
.

Note that f satisfies the hypotheses of Theorem 6.1 so that f̄ is nontrivial
in H1(PMCGc(S);Z).

Since S has genus at least 3, each individual Tγi
can be thought of as a

Dehn twist on a finite type surface of genus at least 3. We can then apply
the theorems of Powell and Harer to see that each Tγi

can be written as a
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product of commutators in PMCGc(S). Therefore, if we delete finitely many
of the Tγi

from f , the resulting equivalence class in H1(PMCGc(S);Z) will
be unchanged. By deleting all of the occurrences of Tγ1

in f̄ we see that we
can write f̄ as a square in H1(PMCGc(S);Z). Indeed, f̄ = f̄ ′f̄ ′ where f ′ is
given by

f ′ =

∞
∏

k=2

T
k!

2
γk
.

We also verify that f̄ ′ is nontrivial in H1(PMCGc(S);Z) by Theorem 6.1.
Similarly, for all n ∈ N, by deleting all occurrences of Tγ1

, . . . , Tγn
from

f̄ we see that f̄ is an (n+ 1)-th power in H1(PMCGc(S);Z). Thus we see
that f̄ is divisible in H1(PMCGc(S);Z).

8.1.2. General case. If S has genus less than 3 we can no longer simply
use Dehn twists because we no longer get for free that they can be written as
a product of commutators. Instead we will run the same construction using
a pseudo-Anosov on a punctured sphere that we can write as a commutator.
Here we will need to make use of Theorem 7.1.

Remark 8.2. We note that this proof works in all cases regardless of the
genus of the surface with a slight modification. The slight modification per-
tains to the use of six-times punctured spheres in what follows. If S does not
contain an infinite collection of end-separating six-times punctured spheres
we could replace them with some other collection of homeomorphic subsur-
faces of sufficiently large complexity. We have included the previous sub-
section because the proof is simpler in the case of Dehn twists and gives
intuition for the following.

Suppose that h is a pseudo-Anosov on a six-times punctured sphere (or
similarly a sphere with six boundary components) that can be written as
a product of commutators. Now since S is infinite-type we can follow the
same steps as at the end of Section 6 to find a collection B = {Bi}i∈N where
each Bi is end-separating and homeomorphic to a sphere with six boundary
components. Let hi ∈ PMCGc(S) be the mapping class that is h on Bi and
the identity elsewhere. We can now apply the same exact construction as
in the previous section with hi instead of Tγi

to get a divisible element. We
apply Theorem 7.1 to see that it is nontrivial in H1(PMCGc(S);Z). Note
that we used a six-times punctured sphere since Proposition 7.2 required a
surface with sufficiently large complexity.
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Now we just need to find a pseudo-Anosov on a six-times punctured
sphere that can be written as a commutator. We will obtain such a pseudo-
Anosov from the following lemma that is an application of Thurston’s con-
struction from [40] as stated in [20].

Lemma 8.3. Suppose α and β are curves that fill a finite-type surface S.
Then the element T 2

αT
2
βT

−2
α T−2

β is a pseudo-Anosov in MCG(S).

Proof. Thurston’s construction gives that there is a representation ρ :
⟨Tα, Tβ⟩ → PSL(2,R) given by

Tα →

(

1 −i(α, β)
0 1

)

Tβ →

(

1 0
i(α, β) 1

)

.

Furthermore, this representation has the property that f ∈ ⟨Tα, Tβ⟩ is peri-
odic, reducible, or pseudo-Anosov if and only if ρ(f) is elliptic, parabolic, or
hyperbolic, respectively. Finally, we note that two filling curves intersect at
least once so that the element ρ(T 2

αT
2
βT

−2
α T−2

β ) has trace in absolute value
greater than 2. □

This lemma allows us to obtain our desired pseudo-Anosov by taking
two curves that fill the six-times punctured sphere.

8.2. Uncountably many independent elements

Let S be any infinite-type surface with more than one end (of any genus).
We will apply a trick used in [38] and [31]. For each a ∈ R let Λa be an
infinite subset of N such that Λa ∩ Λb is finite for all a ̸= b. We can obtain
Λa by putting N in bijection with Q and then letting Λa be a sequence of
rational numbers approximating a.

Once again let {γi}i∈N and {γ′i}i∈N be as in the statement of Theorem 6.1.
For a ∈ R enumerate elements of Λa as {ai}i∈N and let

fa :=

∞
∏

i=1

T i
γai
∈ PMCGc(S).

By Theorem 6.1 f̄a is nontrivial in H1(PMCGc(S);Z) for all a ∈ R. Note
also that since Λa ∩ Λb is finite for any a ̸= b, any finite product of such fa
also satisfies the hypotheses of Theorem 6.1 so that any finite product is also
nontrivial in H1(PMCGc(S);Z). Thus we have the following proposition.
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Proposition 8.4. Let S by any infinite-type surface with more than one
end. Then H1(PMCGc(S);Z) contains an uncountable collection of indepen-
dent elements.

Note that we could have applied this same technique to products of
powers of pseudo-Anosovs on subsurfaces as in Theorem 7.1.

8.3. Proof of Theorem C

We can now modify the construction of a divisible element to find uncount-
ably many independent divisible elements. For a ∈ R, let Λa be as above. In
the genus at least 3 case, for each a ∈ R we construct fa as in Section 8.1.1
except by using only twists in Λa. That is, fa is defined as:

fa =

∞
∏

j=1

T j!
γaj

In the genus less than three case we do the same construction but using
pseudo-Anosovs as in Section 8.1.2.

In both cases this gives an uncountable collection of independent divis-
ible elements {f̄a}a∈R in H1(PMCGc(S);Z). Let A be the minimal divisible
subgroup containing {f̄a}a∈R. We can now apply the Structure Theorem of
Divisible Groups. First we recall that a quasicyclic group is a group iso-
morphic to the group of pnth complex roots of unity for all n and for some
prime p. Note that these groups are all torsion.

Theorem 8.5 ([21], Theorem 23.1). Any divisible group D is a direct
sum of quasicyclic and full rational groups. The cardinal numbers of the sets
of quasicyclic components and Q’s form a complete and independent system
of invariants for D.

Every element in the collection {f̄a}a∈R is torsion free since any power
is non-trivial in the abelianization by Theorem 6.1. Therefore we see that A
has uncountably many torsion-free elements and so must contain a subgroup
isomorphic to ⊕2ℵ0Q. Next we use the following.

Theorem 8.6 ([21], Theorem 21.3). Every abelian group A is the direct
sum A = D ⊕ C where D is divisible and C has no divisible subgroups other
than the identity.
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Proof of Theorem C. Write H1(PMCGc(S);Z) = D ⊕ C where D is divisi-
ble and C as in Theorem 8.6. Next we can further decompose D = Q⊕ T
where Q is a direct sum of Q’s and T is torsion. By the above discussion
and Theorem 8.5 we have Q = ⊕2ℵ0Q. Note that Q cannot be any larger
since the cardinality of PMCGc(S) is 2ℵ0 . Letting B = T ⊕ C finishes the
proof. □

9. Torelli group

The Torelli group, I(S), is the kernel of the natural homomorphism
MCG(S)→ Aut(H1(S;Z)). The Torelli group has been widely studied in
the finite-type case. In particular, Johnson in [28] explicitly computed the
abelianization of the Torelli group when S is a finite-type surface of genus
at least 3 and with 1 boundary component. We will see that all of our ar-
guments in the previous sections can be carried out in the Torelli group to
obtain the same results.

Theorem 9.1. Let S be an infinite-type surface. Then, H1(I(S);Z) =
⊕2ℵ0Q⊕B where all divisible subgroups of B are torsion.

The case of the infinite-type surface with one end is also handled via a
Birman Exact Sequence argument in the appendix.

In [3] the authors found a topological generating set for I(S) when S is
infinite type.

Theorem 9.2 ([3], Corollary 2). Let S be a connected oriented surface
of infinite type. Then I(S) is topologically generated by separating twists and
bounding-pair maps.

We thus immediately see that mapping classes of the form used in The-
orem 6.1 are contained within I(S). This gives us nontrivial elements in
H1(I(S);Z) when S has more than one end. We have to be a little bit more
careful when it comes to finding divisible elements in the abelianization.
Just as in the low-genus case we no longer can be sure that individual Dehn
twists are contained in [I(S), I(S)]. However, we can use the exact same
arguments as in Section 8.1.2 to apply Theorem 7.1 to obtain divisible ele-
ments in H1(I(S);Z). To do this we simply apply Lemma 8.3 to a pair of
separating, filling curves. Theorem 9.1 now follows by the same argument
as in Section 8.3.
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Remark 9.3. This theorem did not depend on the fact that we were con-
sidering the Torelli group. The conclusion of Theorem 9.1 holds for any sub-
groups of PMCGc(S) that contain sufficiently many elements of the form
found in Theorems 6.1 or 7.1.

9.1. Johnson homomorphism

Johnson makes use of the Johnson and Birman-Craggs-Johnson homomor-
phisms to explicitly compute H1(I(S);Z) in the finite-type setting. We can
extend the Johnson homomorphism to the infinite-type setting and use it to
find an indivisible copy of ⊕2ℵ0Z in H1(I(S);Z) provided that S has infinite
genus.

Let S be an infinite-type surface, H = H1(S;Z), and a ∈ H a primitive
element. Represent a by an oriented multicurve µ on the surface S. Given
f ∈ I(S) and a representative homeomorphism ϕ of f letMφ be the mapping
torus of ϕ. The cylinder C = µ× [0, 1] maps into Mφ. Since f ∈ I(S) we
have that ϕ(µ) is homologous to µ so that there is an immersed surface in
S × {0} ⊂Mφ that closes up the cylinder C to a surface Sa in Mφ. Note that
since S has at least one end the choice of this surface is unique. Sa gives rise
to a homology class [Sa] ∈ H2(Mφ;Z). By Poincarè duality this gives a class
[Sa] ∈ H1

c (Mφ;Z), the first cohomology with compact support of Mφ.
Given a triple a ∧ b ∧ c ∈ ∧3H, the third exterior power of H, we get an

element [Sa] ⌣ [Sb] ⌣ [Sc] ∈ H3
c (Mφ;Z). Finally, we can pair this homology

class with the fundamental class ofMφ in locally finite homology to obtain an
element of Z. This gives a homomorphism, the Johnson homomorphism,

τ : I(S)→ Hom(∧3H,Z).

We refer the reader to [24] and [22] for background on locally finite
homology.

Alternatively, τ(f)(a ∧ b ∧ c), can be thought of as the triple algebraic
intersection Sa ∩ Sb ∩ Sc. Also, just as in the finite-type case the Johnson ho-
momorphism satisfies a naturality property: for f ∈ I(S), h ∈ MCG(S),
and a ∧ b ∧ c ∈ ∧3H we have

τ(hfh−1)(a ∧ b ∧ c) = τ(f)(h−1
∗ (a) ∧ h−1

∗ (b) ∧ h−1
∗ (c)).

Note that since Hom(∧3H,Z) is abelian, τ factors through the abelian-
ization of I(S) and so nontrivial elements in the image of τ give rise to
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α

β

a

b

c

a

b c

TαT
−1
β (c)

A

Figure 4: A generic bounding pair {α, β} and curves used to detect the non-
triviality of τ(TαT

−1
β ).

nontrivial elements in H1(I(S);Z). We next will examine the image of τ
when applied to bounding-pair maps.

Remark 9.4. Just as in the finite-type case it can be shown that τ is triv-
ial on any separating twist. In fact, τ is trivial on any infinite product of
separating twists, provided the infinite product actually defines a mapping
class. This triviality follows by building and applying the resulting homo-
morphism to a geometric homology basis as defined in [19]. The Johnson
homomorphism can thus be seen as capturing some new information about
H1(I(S);Z) not coming from the previous constructions in this paper.

Lemma 9.5. Let {α, β} be a bounding pair.

(i) τ(TαT
−1
β ) is non-zero.

(ii) Let B be the subsurface of S with boundary α ∪ β. If a′, b′, c′ is a triple
of curves that do not intersect B, then τ(TαT

−1
β )(a′ ∧ b′ ∧ c′) = 0.

Proof. The change of coordinates principle and naturality property allows
us to consider a standard bounding pair {α, β} as in Figure 4. Consider
the triple of curves a ∧ b ∧ c in Figure 4. Here c and TαT

−1
β (c) cobound the

surface, A, on the left hand side of the figure. Also, TαT
−1
β fixes a and b

pointwise. Thus we see that τ(TαT
−1
β )(a ∧ b ∧ c) = 1, proving (i).



✐

✐

“4-Domat” — 2022/10/26 — 19:23 — page 718 — #28
✐

✐

✐

✐

✐

✐

718 George Domat

For (ii) we simply note that TαT
−1
β fixes each of a′, b′, and c′ so that

in the mapping torus each corresponding cylinder closes up. Thus the three
corresponding subsurfaces have trivial triple intersection. □

This allows us to build uncountably many linearly independent elements
in the image of τ provided that S has infinite genus.

Proposition 9.6. Let S be a surface with infinite genus. Then the im-
age of τ : I(S)→ Hom(∧3H;Z) has uncountably many linearly-independent
elements.

Proof. If f is a bounding-pair map we let Sf be the finite-type surface that
the corresponding bounding pair cobound. Let {fi}i∈N be a sequence of
bounding-pair maps such that {Sfi}i∈N is a pairwise disjoint sequence of
subsurfaces of S. Now we apply the same trick as in Section 8.2 to obtain
for each a ∈ R an infinite subset Λa of N such that Λa ∩ Λb is finite for all
a ̸= b. For each a ∈ R let

fa =
∏

i∈Λa

fi.

We claim that the collection {τ(fa)}a∈R is linearly independent. We first
check that τ(fa) ̸= τ(fb) for all a ̸= b. Let ia ∈ Λa \ Λb and ib ∈ Λb \ Λa.
Consider two triples of curves xia ∧ yia ∧ zia and xib ∧ yib ∧ zib where xia
and yia are two curves contained in Sia intersecting once and zia is a curve
intersecting each of the bounding-pair curves making up fia that is disjoint
from Sib , likewise for the other triple of curves.

Then by Lemma 9.5 we have the following.

τ(fa)(xia ∧ yia ∧ zia) = 1,

τ(fb)(xia ∧ yia ∧ zia) = 0,

τ(fa)(xib ∧ yib ∧ zib) = 0,

τ(fb)(xib ∧ yib ∧ zib) = 1.

Finally, given any finite linear combination of such maps we will always
be able to find such a triple that evaluates to something non-zero since any
finite collection of the Λa has finite intersection. □

Since τ must factor through H1(I(S);Z) this proves that the abelian-
ization of I(S), unlike the abelianization of PMCGc(S), also contains many
indivisible copies of Z when S has infinite genus.
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Proof of Theorem D. The first statement is the content of Theorem 9.1.
Assume that S has infinite genus. We first note that Hom(∧3H;Z) ∼= ZN

does not contain any divisible elements. We must then have that all divis-
ible elements in H1(I(S);Z) are contained in the kernel of τ . Therefore,
given the splitting H1(I(S);Z) = ⊕2ℵ0Q⊕B as in Theorem 9.1 we have
that τ(H1(I(S);Z)) = τ(B). By Proposition 9.6 we see that the image of τ
contains a copy of ⊕2ℵ0Z. Finally, this is a free abelian group and so lifts to
a copy of ⊕2ℵ0Z in B. □

10. Discontinuous homomorphisms

In this section we give counterexamples to automatic continuity in the set-
ting of the closure of the compactly-supported mapping class group using
Theorem C. This application was pointed out to the author by Ryan Dick-
mann and in conversations with Paul Plummer, Jesús Hernández Hernández,
Ryan Dickmann, and Mladen Bestvina. In this section we write c = 2ℵ0 for
the cardinality of the continuum.

A topological group is said to be Polish if it is separable and com-
pletely metrizable. In [4] the authors show that for an infinite-type sur-
face, S, MCG(S) is Polish and hence so are all closed subgroups including
PMCG(S) and PMCGc(S).

Definition 10.1. We say that a Polish group G has automatic conti-
nuity if every homomorphism from G to a separable topological group is
necessarily continuous.

Theorem 10.2. Let S be an infinite-type surface. There exists 2c discon-
tinuous homomorphisms from PMCGc(S) to Q.

Proof. Since H1(PMCGc(S);Z) has a direct summand isomorphic to ⊕cQ

we have 2c nontrivial homomorphisms from H1(PMCGc(S);Z) to Q.
By pre-composing each of these with the quotient homomorphism

PMCGc(S)→ H1(PMCGc(S);Z) we have 2c nontrivial homomorphisms
from PMCGc(S) to Q. However, since PMCGc(S) is separable only c of
these can be continuous. Note that if S has at least three genus then in fact
none of these maps are continuous since PMCGc(S) (a dense set) is con-
tained in the kernel of each one by the theorems of Powell and Harer. □

Note that when S has at most one end accumulated by genus we have
PMCGc(S) = PMCG(S). Thus this theorem gives discontinuous homomor-
phisms with domain the full pure mapping class group in this setting. When
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S is the Loch Ness monster (one end accumulated by genus) we get a dis-
continuous homomorphism with domain the full mapping class group. This
is in contrast to the sphere minus a Cantor set for which it is known that
the full mapping class group has automatic continuity [31] and is uniformly
perfect [15].

11. Elements not in H1(PMCGc(S);Z) and other possible
nontrivial elements

In this section we give examples of elements in PMCGc(S) \ PMCGc S that
are trivial in the abelianization and pose some questions about other possible
nontrivial elements.

Proposition 11.1. Let S be an infinite-type surface. Suppose f ∈
PMCGc(S) can be written as f =

∏∞
i=1 fi where each fi ∈ PMCGc(S) with

supp(fi) ⊂ Ki where each Ki is a finite-type subsurface with Ki ∩Kj = ∅ if
i ̸= j. Furthermore, suppose that each fi can be written as a product of com-
mutators in PMCG(Ki) and that their commutator lengths are uniformly
bounded by N > 0. Then f can be written as a product of N commutators.

Proof. For each i write fi = [gi1 , gi2 ] · · · [gi2N−1
, gi2N ] where gij ∈ PMCG(Ki).

We allow for some of the gij to be the identity if fi has commutator length
less than N . Thus we have

f =

∞
∏

i=1

2N−1
∏

j=1

[gij , gij+1
].

Since we have Ki ∩Kj = ∅ we can rearrange this product to write

f =

2N−1
∏

j=1

[

∞
∏

i=1

gij ,

∞
∏

i=1

gij+1

]

.

□

An example of this is an infinite product of uniformly-bounded powers
of commuting Dehn twists. We now ask whether the converse holds.

Question 11.2. Let S be an infinite-type surface. Suppose f ∈ PMCGc(S)
can be written as f =

∏∞
i=1 fi where each fi ∈ PMCGc(S) with supp(fi) ∩

supp(fj) = ∅ for all i ̸= j. Furthermore, suppose that each fi can be written
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as a product of commutators in PMCG(supp(fi)) with unbounded commu-
tator lengths. Then is f nontrivial in H1(PMCGc(S);Z)?

Each component of f having unbounded commutator length was the
inspiration for Theorem 6.1 and each element we construct satisfies the
hypotheses of the question. However, our techniques relied heavily on the fact
that each component is a power of the same mapping class on homeomorphic
subsurfaces. So far we do not know how to get a large lower bound on a
quasimorphism purely from the fact that the commutator lengths of the
components grow.

Our technique was also only able to detect torsion-free elements. This
begs a second question.

Question 11.3. Let S be an infinite-type surface. Are there torsion ele-
ments in H1(PMCGc(S);Z)?

Appendix A. The Loch Ness monster

Ryan Dickmann and George Domat

In this appendix we prove that the mapping class group of the Loch
Ness Monster surface is also not perfect. Note that for this surface and its
once-punctured variant MCG(S), PMCG(S), and PMCGc(S) are all the
same.

Theorem A.1. Let L be the surface with one end, no boundary compo-
nents, and infinite genus. Then MCG(L) is not perfect. In fact, H1(MCG(L);
Z) = ⊕2ℵ0Q⊕B where all divisible subgroups of B are torsion.

To prove this we make use of the Birman Exact Sequence for infinite-
type surfaces. We could not find a discussion of the infinite-type case in the
literature so we present one here.

The proof is identical to the standard proof in [20]. One only needs to
check that π1(Homeo+(S)) is trivial in the infinite-type case. The result then
follows from the long exact sequence of homotopy groups given by the fiber
bundle

Homeo+(S, x)→ Homeo+(S)→ S.

Here Homeo+(S) is equipped with the compact-open topology. One can
verify from the standard proof that this is indeed a fiber bundle in the



✐

✐

“4-Domat” — 2022/10/26 — 19:23 — page 722 — #32
✐

✐

✐

✐

✐

✐

722 George Domat

infinite-type case as well. It was shown in [41] that the connected component
of the identity in Homeo+(S) is homotopy equivalent to a point for general
non-compact 2-manifolds minus some degenerate finite-type cases.

Theorem A.2 (Birman Exact Sequence). Let S be a surface of negative
Euler characteristic or infinite type. Let (S, x) be the surface obtained from
S by adding a marked point x in the interior of S. Then there is an exact
sequence:

1→ π1(S, x)→ MCG(S, x)→ MCG(S)→ 1

Proof of Theorem A.1. We first note that by applying the same abelian
group theory argument as in Section 8.3 it suffices to show thatH1(MCG(L);
Z) contains a copy of ⊕2ℵ0Q. The general proof fails in the case of the Loch
Ness Monster because we do not have end-separating curves. For the Loch
Ness Monster with a puncture we do now have a separating principle exhaus-
tion and the methods in the paper show that H1(MCG(L, x);Z) contains a
copy of ⊕2ℵ0Q.

The fundamental group of any infinite-type surface is a free group with
countably many generators [39]. Therefore we have the following exact se-
quence:

1→ F∞ → MCG(L, x)→ MCG(L)→ 1

Abelianization is right exact so we get the following exact sequence of
abelianizations:

Z∞ → H1(MCG(L, x);Z)→ H1(MCG(L);Z)→ 1

Here Z∞ is the free abelian group with countably many generators. It follows
that H1(MCG(L);Z) is the quotient of an uncountable group by a countable
subgroup and is therefore uncountable itself.

In fact we can do better and find a copy of ⊕2ℵ0Q insideH1(MCG(L);Z).
Since Z∞ is countable we must have that

⊕2ℵ0Q ∩ ker(H1(MCG(L, x);Z)→ H1(MCG(L);Z))

is countable where ⊕2ℵ0Q refers to the copy found in Section 8. Thus the
image of ⊕2ℵ0Q is a divisible group with uncountably many non-torsion
elements. Then by the Structure Theorem of Divisible Groups this image
must again contain a copy of ⊕2ℵ0Q. □
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We can also apply this method of proof to the Torelli group for the Loch
Ness Monster.

Theorem A.3. Let L be the surface with one end and infinite genus. Then
H1(I(L);Z) = ⊕2ℵ0Q⊕B where all divisible subgroups of B are torsion.

Proof. Once again, it suffices to show that H1(I(L);Z) contains a copy of
⊕2ℵ0Q. As in Section 9 we can find elements in I(L, x) that give rise to a
copy of ⊕2ℵ0Q in the abelianization. We can pick these elements so that they
remain in I(L) after applying the forgetful map. Indeed, we can ensure that
the curves we twist about remain separating after forgetting the marked
point. Now the same counting argument as in the previous theorem gives a
copy of ⊕2ℵ0Q in H1(I(L);Z). □
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