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The principle of least action in the space

of Kähler potentials

László Lempert

Given a compact Kähler manifold, the space H of its (relative)
Kähler potentials is an infinite dimensional Fréchet manifold, on
which Mabuchi and Semmes have introduced a natural connection
∇. We study certain Lagrangians on TH, in particular Finsler met-
rics, that are parallel with respect to the connection. We show that
geodesics of ∇ are paths of least action; under suitable conditions
the converse also holds; and we prove a certain convexity property
of the least action. This generalizes earlier results of Calabi, Chen,
and Darvas.
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1. Introduction

Let (X,ω) be an n dimensional, connected, compact Kähler manifold and

H = Hω = {u ∈ C∞(X) : ω + ddcu = ωu > 0}

its space of relative Kähler potentials. Here C∞(X) refers to the Fréchet
space of real valued smooth functions on X, and dc = i(∂ − ∂)/2, so that
ddc = i∂∂. The space H, as an open subset of a Fréchet space, inherits a
Féchet manifold structure, whose tangent bundle has a canonical trivial-
ization TH ≈ H× C∞(X). Mabuchi and Semmes [M, S] independently and
with different motivations have introduced a torsion free connection ∇ on
TH. Mabuchi, as a tool to study special Kähler metrics, defined a Rieman-
nian metric on H and obtained ∇ as the Levi–Civita connection of the met-
ric. Somewhat later Semmes found the connection in search for a geometric
interpretation of interpolation of Banach spaces and of a certain homoge-
neous complex Monge–Ampère equation associated with interpolation. He
also determined all Riemannian metrics compatible with the connection:
they are linear combinations of Mabuchi’s metric and the square of a one
form.

One way to explain ∇ is through its parallel transport. We will use dot
˙ to denote derivative of a function of one real variable, and gradv to re-
fer to gradient of a function X → R with respect to the Kähler metric of
ωv. Let u : [a, b] → H be a smooth path. By integrating the time depen-
dent vector field (−1/2) gradu(t)u̇(t) on X we obtain a smooth family of
diffeomorphisms φ(t) : X → X. In fact φ(t) : (X,ωu(0)) → (X,ωu(t)) is sym-
plectomorphic. The parallel translate of ξ ∈ Tu(t)H ≈ C∞(X) to u(0) along
the path u is then

(1.1) ξ ◦ φ(t) ∈ C∞(X) ≈ Tu(0)H.

Understanding the geodesics of this connection was already marked in
[M, S] as an interesting and potentially important problem, and Donald-
son’s subsequent work [Do] gave further impetus to study them. By now
the boundary value problem for geodesics is well understood. On the one
hand Darvas, Hu, Vivas, and myself [D1, DL, Hu, LV] proved that points
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in H cannot always be connected by a geodesic, not even if they are close
to each other. On the other hand work by Berman–Demailly, Berndtsson,
B locki, Chen, Chen–Feldman–Hu, Chu–Tosatti–Weinkove, Darvas, and He
[BD, Be1, Bl1, Bl2, C, CFH, CTW, D2, D3, He] gave that the geodesic
equation extends to various enlargements of H, and in these enlargements
any pair of points, or at least nearby points, can be connected by solutions
of the extended geodesic equation, weak geodesics. It follows from Chen’s
work that in those enlargements to which Mabuchi’s metric extends, weak
geodesics minimize length. In [D2] Darvas generalized Mabuchi’s metric to
certain Orlicz–type Finsler metrics on H, determined the metric completions
of H under these metrics, and again found that weak geodesics in these com-
pletions minimize length. In a slight overstatement the length minimizing
paths are independent of which of Darvas’s metric we use to compute length.
This was surprising at first sight.

But in fact in geometry one encounters other similar phenomena. In
a normed vector space straight line segments minimize length no matter
what norm is chosen. There is also the analogy between H and the space
Q of positive definite quadratic forms on Rk. Q has a natural torsion free
connection that turns it in a symmetric space ≈ GL+

k (R)/SOk(R); and for
all parallel Finsler metrics—i.e. those that are invariant under GL+

k (R)—
the shortest paths are the same: subarcs of left translates of certain one
parameter subgroups in GL+

k (R), projected to GL+
k (R)/SOk(R).

Now H with Mabuchi’s connection is itself a symmetric space [Do, M, S],
at least according some definitions of a symmetric space (while it is not
according to some others, [L3]). Although there is no group acting tran-
sitively on∗ (H,∇), the holonomy groupoid Γ of (H,∇) acts on TH. Thus
Γ =

⋃

u,v∈H Γuv, where Γuv consists of linear isomorphisms TuH → TvH that
arise as parallel transport along piecewise smooth paths from u to v. Con-
catenation of parallel transports defines an operation Γuv × Γvw → Γuw that
turns Γ in a grupoid. That a Finsler metric or a function L : TH → R is par-
allel means it is invariant under Γ.

Darvas’s metrics are parallel. They are defined in terms of integrals

(1.2)

∫

X
χ(ξ)ωn

u , u ∈ H, ξ ∈ TuH ≈ C∞(X),

∗This follows from [L2]. Even though Theorem 1.2 there is formulated for isome-
tries of Mabuchi’s metric, the proof, verbatim, gives that if ωu is analytic while ωv

is not, then no diffeomorphism of H can preserve ∇ and map u to v.
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with a fixed “Young weight” χ : R → [0,∞], and are invariant under parallel
transport simply because in the formula (1.1) for parallel transport, φ(t)
satisfies φ(t)∗ωu(t) = ωu(0). But there are many parallel Finsler metrics on
TH beyond those considered in [D2]. The simplest is, for given 0 < α < 1,

p(ξ) = sup
{

∫

E
|ξ|ωn

u

/(

∫

E
ωn
u

)α
: E ⊂ X is measurable

}

,

ξ ∈ TuH. This is known as weak Lq-norm or Lq,∞ Lorentz norm, q = 1/α.
Our thesis is that the proper generality of Darvas’s results on his met-

rics is parallel, or holonomy invariant, Finsler metrics and more generally,
fiberwise convex functions TH → R, “Lagrangians”. In this paper and in
a sequel we will show that many of his results generalize to this frame-
work. Most of the time we will consider Lagrangians on TH that extend
to the space B(X) ∩ PSH(ω) of bounded ω–plurisubharmonic functions.
Here we denote by B(X) the Banach space of bounded Borel functions
ξ : X → R with the norm ||ξ|| = sup |ξ|; the Lagrangians of interest extend
to (B(X) ∩ PSH(ω)) ×B(X). (The more common space L∞(X) is a quo-
tient of B(X), but we have little use for it in this paper.) A generalization of
holonomy invariance can be defined for such functions. Our results pertain
to invariant Lagrangians that are convex in the B(X) variable and have a
certain continuity property, that we call strong continuity (Definition 3.1).

Theorem 1.1 (=Theorem 8.1, Principle of least action). If v : [0, T ] →
B(X) ∩ PSH(ω) is a weak geodesic, and C1 as a map into the Banach space
B(X), then it minimizes action

∫ T

0
L(u̇(t))dt

among all piecewise C1 paths u : [0, T ] → B(X) ∩ PSH(ω) with u(0) = v(0),
u(T ) = v(T ).

Weak geodesics may fail to be C1 (Example 5.4), but from Chen’s work
[C] we do know that a weak geodesic with endpoints in H is C1. The theorem
can be proved for weak geodesics rather less regular than C1, but even this
relaxed regularity is not automatic.

The next result is about how least action varies as one moves along
weak geodesics; it is a manifestation of seminegative curvature. Fix T > 0.
If w,w′ ∈ B(X) ∩ PSH(ω), the least action LT (w,w′) between them is the

infimum of the actions
∫ T
0 L(u̇(t))dt over all piecewise C1 paths u : [0, T ] →
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B(X) ∩ PSH(ω) connecting w with w′. It is not obvious, but by Lemma 9.4,
LT (w,w′) is finite.

Theorem 1.2 (=Theorem 9.1). If u, v : [a, b] → B(X) ∩ PSH(ω) are
weak geodesics, then the function LT (u, v) : [a, b] → R is convex.

Special instances of the result were known before. When L defines
Mabuchi’s metric, this is a consequence of the CAT(0) property, proved
by Darvas in [D3]. More generally, it was known for all of Darvas’s Lp–type
metrics dp, 1 ≤ p <∞, and weak geodesics u, v in the corresponding energy
spaces Ep(ω). The case p = 1 is due to Berman, Darvas, and Lu while, as
my referee indicated, other p’s to Chen and Cheng, [BDL, Proposition 5.1],
[ChC, Theorem 5.1].

We also prove a converse of sorts to Theorem 1.1: under certain con-
ditions, only weak geodesics minimize action, see Theorem 11.1. When L
defines Mabuchi’s metric, or one of Darvas’s Lp–type metrics dp, this time
1 < p <∞, Darvas and Lu already proved this, even more generally for
paths in Ep(ω), in [D3, Theorem 1], respectively [DLu, Theorem 3.5].

The tools of this paper are Chen’s work on ε–geodesics, rudiments of
Guedj–Zeriahi’s pluripotential theory, and our results on invariant convex
functions on C∞(X) [C, GZ1, GZ2, L4]. In the proof of Theorem 1.1, even
if the details are different, overall we will be able to follow the strategy of
Calabi, Chen, and Darvas [C, CC, D2, D3]. Once basic properties of our
Lagrangians are established, the greater generality occasionally results in
less computation in the proofs for the following reason. Say, for a holonomy
invariant Finsler metric p : TH → [0,∞), there is a family F ⊂ TH ≈ H×
C∞(X) such that

(1.3) p(ξ) = sup
{

∫

X
fξωn

u : f ∈ F ∩ TuH
}

, ξ ∈ TuH

(see Theorem 2.4), and the integrals in (1.3), linear in ξ, can be easier to
manipulate than the nonlinear integrals in (1.2).

It appears that the greatest generality in which action can be defined by
an integral is the space of bounded ω–plurisubharmonic functions. Nonethe-
less, action can be defined for any path in PSH(ω) as a limit of integrals.
Whether this action is finite or ±∞ of course depends on the path and on
the Lagrangian. We plan to address this and related questions in a sequel
to this paper.

Lagrangians even beyond Finsler metrics are not new to the subject.
Chen’s ε–geodesics are trajectories of a Lagrangian L : TH → R (albeit not
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holonomy invariant), with kinetic energy term the square of Mabuchi’s met-
ric and potential energy a multiple of V (u) = −

∫

X uωn. Functions on H that
its geometry motivates, and that are used in existence problems in Kähler
geometry, are also not new. Aubin’s functional I : H → R [Au, p.146],

I(u) =

∫

X
u(ωn − ωn

u)

is a constant multiple of the total geodesic curvature of the line segment
[0, 1] ∋ t 7→ tu ∈ H, measured in Darvas’s L1 Finsler metric. Monge–Ampère
energy also arises from the geometry of H. It is a convex function on H, for
example in the sense that its restrictions to geodesics of ∇ are convex; but
its negative is also convex and, up to scaling and adding a constant, it is the
only continuous function that has this property.

We hope that a geometrical approach to functions on H and on related
spaces, in the spirit of this paper, will be of use in analytical problems on
Kähler manifolds.

Contents. Section 2 is about basic properties of holonomy invariant con-
vex Lagrangians TH → R. Section 3 is about a subclass of Lagrangians that
have an extra continuity property, which makes it possible to extend them
to a larger vector bundle. Many of the results in these sections are direct
consequences of results in [L4]. Section 4 reviews the notion of weak and
ε–geodesics, and ε–Jacobi fields. Section 5 introduces the action and for-
mulates Theorems 1.1 and 1.2 in precise forms. It also gives a road map to
their proofs, which occupy sections 6–9. Section 10 provides a discretized
formula for action, which suggests how to generalize to less regular paths,
and section 11 addresses the problem of uniqueness of paths that minimize
action.

In this paper we freely use basic notions of infinite dimensional analy-
sis and geometry. There are many sources the reader can consult on these
matters, one of them [L1], written with an eye on the space H of Kähler
potentials.

2. Lagrangians

The central objects of this paper are continuous functions L : TH → R that
are convex on each tangent space TuH and have a certain invariance prop-
erty; as well as the associated action functional on paths u : [a, b] → H

given by L(u) =
∫ b
a L(u̇(t))dt

(

=
∫ b
a L ◦ u̇ for brevity). In this section and

in the next we record basic facts about such functions which follow more
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or less directly from [L4], that dealt with the action on C∞(X) of Hamil-
tonian diffeomorphisms of (X,ω) and with invariant convex functions on
C∞(X). As explained in the Introduction, for L the invariance property in
question is invariance under the holonomy grupoid Γ of (H,∇). Thus, if
ξ1 ∈ Tu(1)H is the parallel translate of ξ0 ∈ Tu(0)H along a piecewise smooth
path u : [0, 1] → H, then L(ξ0) = L(ξ1). This property in fact implies a much
stronger and more primitive notion of invariance.

Definition 2.1. Given two measure spaces (X,µ) and (Y, ν), we say that
measurable functions ξ : X → R and η : Y → R are equidistributed, or are
strict rearrangements of each other, if µ(ξ−1B) = ν(η−1B) for every Borel
set B ⊂ R.

In finite measure spaces this is equivalent to requiring µ(ξ > t) = ν(η >
t) for all t ∈ R.

Back to our n dimensional Kähler manifold (X,ω), if u ∈ H we let µu
denote the measure induced by ωn

u . Given measurable ξ, η : X → R we will
write
(2.1)

(ξ, u) ∼ (η, v) if ξ, η are equidistributed as functions on (X,µu), (X,µv).

When smooth ξ, η are viewed as tangent vectors in TuH, TvH, we will just
write ξ ∼ η.

Theorem 2.2. A function L : TH → R, continuous and convex on each
fiber TuH, is invariant under the holonomy gruppoid Γ if and only if it is
invariant under strict rearrangements: L(ξ) = L(η) when ξ ∼ η.

For the proof we need to understand the holonomy groups Γuu. (1.1)
shows that in general, elements of Γuv, isomorphisms TuH → TvH, are pull-
backs by certain symplectomorphisms φ : (X,ωv) → (X,ωu). Let us write
G for those symplectomorphisms that induce elements of Γ00. Thus G is a
subgroup of the Fréchet–Lie group DiffX of diffeomorphisms of X.

Lemma 2.3. The closure of G in DiffX contains all Hamiltonian diffeo-
morphisms of (X,ω).

Recall that Hamiltonian diffeomorphisms are time–1 maps of time de-
pendent Hamiltonian vector fields sgrad ζt, i.e., vector fields that are sym-
plectic gradients with ζt ∈ C∞(X,ω) a smooth family, t ∈ [0, 1].
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Proof. Let g (the “Lie algebra” of G) consist of smooth vector fields V on
X for which there is a smooth map φ : [0, 1] → G ⊂ DiffX such that φ(0) =
idX and φ̇(0) = dφ(t)/dt|t=0 = V . This is a vector subspace of the space of
all vector fields: for example, if φ, ψ realize vector fields V,W ∈ g, then φ(t) ◦
ψ(t) realizes V +W . In [S, pp. 512-513] Semmes essentially proved that g

contains all Hamiltonian vector fields sgrad ζ. Essentially only, because the
proof of his Lemma 4.1 is given only in Sobolev spaces, not in C∞(X). At
any rate, we will need a slightly stronger, parametrized statement, to wit: If
ζ : [a, b] → C∞(X) is smooth, then there is a smooth family

(2.2) [a, b] × [0, 1] ∋ (s, t) 7→ φs
t ∈ G ⊂ DiffX

such that φs
0 = idX and ∂tφ

s
t |t=0 = sgrad ζ(s) for all s.

To verify this, recall Semmes’ construction in [S, top of p. 512] that, given
ξ, η ∈ C∞(X), shows that the Poisson bracket {ξ, η} ∈ C∞(X), determined
by ω, has symplectic gradient in g. The same construction works with a
parameter appended. Thus, if ξ, η : [a, b] → C∞(X) are smooth, there is a
smooth family φs

t ∈ G as in (2.2), φs
0 = idX and ∂tφ

s
t |t=0 = sgrad{ξ(s), η(s)}.

But any smooth ζ : [a, b] → C∞(X) such that
∫

X ζ(s)ωn = 0 can be written

(2.3) ζ(s) =

m
∑

j=1

{ξj(s), ηj(s)}, m = 4n+ 1,

with suitable smooth ξj , ηj : [a, b] → C∞(X). In fact ξj can be chosen con-
stant, and arbitrary as long as ξj(s) ≡ ξj embed X into Rm. The state-
ment, without s–dependence, corresponds to [S, Lemma 4.1], but was already
proved in [AG]. Atkin and Grabowski’s proof is easily modified to provide
(2.3). The proof of [AG, (5.2) Theorem] depends on [AG, (2.6) Proposition],
the s–dependent version of which says that if ξj ∈ C∞(X), j = 1, . . . ,m,
embed X into Rm, then any smooth family ψs of smooth k-forms on X,
s ∈ [a, b], can be written

ψs =
∑

i1,i2,...

fi1...ik(s)dξi1 ∧ · · · ∧ dξik

with fi1...ik : [a, b] → C∞(X) smooth. This is proved by an obvious coho-
mology vanishing as in [AG]. Another ingredient of the proof of [AG, (5.2)
Theorem], on p. 325 there, in s–dependent version says that given a smooth
family αs of exact smooth forms on X, there is a smooth family βs of smooth
forms such that dβs = αs. One way to prove this is by Hodge theory, which
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gives that the unique solution βs of dβs = αs that is othogonal to Ker d de-
pends smoothly on s. The rest of the proof in [AG] manipulates identities,
and changes not if a parameter s is appended. Thus (2.3) is proved.

We can now construct φs
t ∈ G as in (2.2). First, subtracting from

ζ a smooth function c : [a, b] → R we obtain ζ ′ : [a, b] → C∞(X) with
∫

X ζ ′(s)ωm = 0. We find ξj , ηj as in (2.3), corresponding to ζ ′ rather than
ζ, and then smooth maps (s, t) 7→ φs

jt ∈ G such that φs
j0 = idX and ∂tφ

s
jt =

{ξj(s), ηj(s)} at t = 0. Since sgrad ζ = sgrad ζ ′, the diffeomorphisms

φs
t = φs

1t ◦ φ
s
2t ◦ · · · ◦ φ

s
mt

have t–derivative sgrad ζ(s) at t = 0.
After these preparations we are ready to prove the lemma. Suppose

φ1 : (X,ω) → (X,ω) is a Hamiltonian diffeomorphism. This means it can
be included in the flow φs of Hamiltonian vector fields V s = sgrad ζ(s),

(2.4) ∂sφ
s = V s(φs), 0 ≤ s ≤ 1, φ0 = idX .

Here ζ : [0, 1] → C∞(X) is smooth. The φs
t constructed above for this ζ can

be used as integrators in a 1–step scheme to approximate the solution of the
initial value problem (2.4). General theory gives that

(2.5) φ
(k−1)/k
1/k ◦ φ

(k−2)/k
1/k ◦ · · · ◦ φ0

1/k → φ1 in C∞(X)

as k → ∞.
(Details are as follows. Smoothly embed X in some Rm and with p ∈

N, view φs as an element of the Banach space B = Cp(X) × · · · × Cp(X),
m copies of Cp(X). Extend φs

t : X → X to a smooth family of maps ψs
t :

Rm → Rm and extend V s to a vector field on Rm by V s = ∂tψ
s
t |t=0. The

error analysis of e.g. [HNW, p.160, Theorem 3.4], or more directly [An,
Theorem 4.1, Corollary 4.2], gives that

(2.6) ψ
(k−1)/k
1/k ◦ ψ

(k−2)/k
1/k ◦ · · · ◦ ψ0

1/k ◦ φ
0 → φ1 in B

as k → ∞. Both [HNW, An] work in finite dimensional Banach spaces, the
latter in Cm, but the same reasoning proves the result in any Banach space.)

Since the left hand side of (2.6) is φ
(k−1)/k
1/k ◦ . . . φ0

1/k ∈ G, we proved that

φ1 is indeed in the closure of G. □

Proof of Theorem 2.2. That invariance under strict rearrangements implies
holonomy invariance follows since parallel transport is realized by compo-
sition with a symplectomorphism, and such compositions send functions
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to their strict rearrangements. The converse implication depends on Lemma
2.3. This implies that L(ξ) = L(ξ ◦ φ) if ξ ∈ T0H and φ ∈ Diff(X,ω) is Hamil-
tonian. By [L4, Theorem 1.2], L|T0H is therefore invariant under strict rear-
rangements. To complete the proof, take ξ ∈ TuH, η ∈ TvH such that ξ ∼ η.
Parallel translate ξ, η to ξ′, η′ ∈ T0H along arbitrary smooth paths. Then
ξ′ ∼ ξ ∼ η ∼ η′, whence L(ξ) = L(ξ′) = L(η′) = L(η). □

In what follows, a fiberwise continuous and convex function L : TH → R

that is invariant under strict rearrangements will be called an invariant con-
vex Lagrangian. The chief device to analyze their finer properties is the fol-
lowing representation theorem. We write B(X) or B(X,µ)—when a Borel
measure µ on X plays a role—for the Banach space of bounded Borel func-
tions on X, with the supremum norm ∥ ∥.

Theorem 2.4. Given an invariant convex Lagrangian L : TH → R, there
are families Au ⊂ R×B(X), u ∈ H such that for ξ ∈ TuH ≈ C∞(X)

(2.7) L(ξ) = sup
(a,f)∈Au

a+

∫

X
fξωn

u .

Au can be chosen in R× C∞(X), and have the property that whenever
(a, f) ∈ Au and φ : (X,ωv) → (X,ωu) is a symplectomorphism, then (a, f ◦
φ) ∈ Av. Alternatively, Au can be chosen to be strict rearrangement invari-
ant: if f ∈ B(X,µu) and g ∈ B(X,µv) are equidistributed, and (a, f) ∈ Au,
then (a, g) ∈ Av.

If L is also positively homogeneous, (L(cξ) = cL(ξ) whenever c ∈ (0,∞)),
then in addition Au can be chosen in {0} × C∞(X), respectively, in {0} ×
B(X).

Proof. Most of the proof was done in [L4]. Lemma 2.1 there produces A0 ⊂
R× C∞(X) that satisfies (2.7) when u = 0. If we adjoin to A0 all pairs
(a, f ◦ φ) with (a, f) ∈ A0 and φ : (X,ω) → (X,ω) a symplectomorphism,
because of the invariance of L the supremum in (2.7) is not going to change
(for u = 0). So we can assume that A0 already is invariant under sym-
plectomorphisms. We then define Au to consist of pairs (a, f ◦ ψ) with
(a, f) ∈ A0 and ψ : (X,ωv) → (X,ω) a symplectomorphism. This will do,
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since if ξ ∈ TuH, with the above ψ

sup
(a,g)∈Au

a+

∫

X
gξωn

v = sup
(a,g)∈Au

a+

∫

X
(g ◦ ψ−1)(ξ ◦ ψ−1)ωn

= sup
(a,f)∈A0

a+

∫

X
(ξ ◦ ψ−1)fωn = L(ξ ◦ ψ−1) = L(ξ).

Alternatively, we can modify the above Au to A′
u consisting of all (a, g) ∈

R×B(X) for which there is (a, f) ∈ A0 such that (f, µ0) ∼ (g, µu). This will
not change the supremum in (2.7), with A′

u now, either. It suffices to check
this for u = 0. By a variant of a lemma of Katok, [L4, Lemma 3.2], if (f, µ0) ∼
(g, µ0) then there is a sequence φk : (X,ω) → (X,ω) of symplectomorphisms
such that

∫

X |g − f ◦ φk|ω
n → 0. Therefore

∫

X
gξωn = lim

k→∞

∫

X
(f ◦ φk)ξωn = lim

k→∞

∫

X
(ξ ◦ φ−1

k )fωn, and so

a+

∫

X
gξωn ≤ lim

k→∞
L(ξ ◦ φ−1

k ) = L(ξ).

Thus replacing Au with A′
u, (2.7) will still hold, and A′

u is now strict rear-
rangement invariant.

Finally, if L is positively homogeneous, the statement of the theorem
follows in the same way from the corresponding part of [L4, Lemma 2.1]. □

The Lagrangians in this section were required to be continuous on the
fibers of TH. But, coupled with invariance, this implies continuity on TH:

Theorem 2.5. An invariant convex Lagrangian L : TH → R is a continu-
ous function on the Fréchet manifold TH.

Proof. Suppose u, uk ∈ H, ξ ∈ TuH, ξk ∈ Tuk
H, and ξk → ξ. This simply

means that as elements of C∞(X), uk → u and ξk → ξ. Parallel translate ξk
to ηk ∈ TuH along the straight line segment t 7→ tu+ (1 − t)uk. This is done
by integrating the time dependent vector field (1/2) gradtu+(1−t)uk

(uk − u)
on X, for 0 ≤ t ≤ 1. If the time–1 map is ψk : X → X, then ηk = ξk ◦ ψk.
Since ψk → idX in the C∞ topology, ηk → ξ in C∞(X) ≈ TuH, as k → ∞.
Hence limk L(ξk) = limk L(ηk) = L(ξ), as claimed. □

3. Extending Lagrangians

As said in the Introduction, weak geodesics tend not to stay in the space H.
Therefore, even in order to formulate a principle of least action we need to
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evaluate the action of a Lagragian along paths in spaces larger than H. In
this section we will extend invariant convex Lagrangians TH → R to larger
Banach bundles and describe properties of the extended Lagrangians.

We start by recalling definitions. Let Y be a complex manifold and Ω
a smooth real (1, 1) form on it, dΩ = 0. A function u : Y → [−∞,∞) is
Ω–plurisubharmonic if ρ+ u is plurisubharmonic whenever ρ is a poten-
tial of Ω over some open V ⊂ Y , i.e., Ω|V = ddcρ. We use the convention
that ≡ −∞ is not plurisubharmonic, and write PSH(Ω) for the set of Ω–
plurisubharmonic functions. Back to our Kähler manifold (X,ω), we denote
by E(ω) the class of u ∈ PSH(ω) with full Monge–Ampère mass, see [GZ1].
The class contains all bounded ω–plurisubharmonic functions. The Monge–
Ampère measure on X, corresponding to ωn

u , will again be denoted µu. This
is a Borel measure on X, its crucial property is µu(X) =

∫

X ωn. We endow
E(ω) with the discrete topology, and let

(3.1) T∞E(ω) = E(ω) ×B(X),

a trivial Banach bundle with fibers the bounded Borel functions on X. Cor-
responding to usage in the subject we will not distinguish between elements
ξ ∈ T∞

u E(ω) and their representation ξ ∈ B(X) in the trivialization (3.1).
The embedding C∞(X) →֒ B(X) induces an embedding TH →֒ T∞E(ω) of
vector bundles, continuous if H is considered with the discrete topology. We
will also deal with a bundle between the image of TH and T∞E(ω),

T cH = H× C(X).

Definition 3.1. Suppose u ∈ E(ω) and V ⊂ B(X,µu) is a vector subspace.
We say that a function p : V → R is strongly continuous if p(ξk) converges
whenever ξk ∈ V is a uniformly bounded sequence that converges µu almost
everywhere.

In this case limk p(ξk) depends only on ξ = limk ξk, since another se-
quence ηk → ξ can be combined with ξk into one sequence.

Theorem 3.2. Any invariant convex Lagrangian L : TH → R has a unique
fiberwise continuous extension to T cH. This extension is strict rearrange-
ment invariant and fiberwise convex. If in addition L is strongly continuous
on the fibers TuH, then it has a unique extension to T∞E(ω) that is strict re-
arrangement invariant, and strongly continuous on the fibers T∞

u E(ω). This
extension is fiberwise convex.
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For example, Darvas’s metrics in [D2], coming from finite Young weights,
cf. (1.2), are strongly continuous on the fibers.—The proof of the theorem
will use the notion of decreasing rearrangement of measurable functions
η : (Y, ν) → R on a measure space. This is a decreasing, upper semicontin-
uous function η⋆ : (0, ν(Y )] → R, equidistributed with η. Thus ν(s ≤ η ≤ t)
is equal to the length of the maximal interval on which s ≤ η⋆ ≤ t. The
requirement of upper semicontinuity for the decreasing function η⋆ trans-
lates to left continuity, which differs from the more usual right continuity
requirement, but the difference is of no consequence. In our setting

(3.2) ν(η > η⋆(s)) ≤ s ≤ ν(η ≥ η⋆(s)),

and more generally,

(3.3) ν(η ≥ t) < τ implies η⋆(τ) < t, ν(η > t) > τ implies η⋆(τ) > t.

This is so because, for example ν(η > t) equals the Lebesgue measure of the
set {η⋆ > t}, and this set would be contained in (0, τ) if we had η⋆(τ) ≤ t.

When ξ ∈ T∞
u E(ω), we compute ξ⋆ with respect to the measure µu.

Proof of Theorem 3.2. Suppose first L : TH → R is just continuous. By [L4,
Theorem 5.2] each L|TuH has a unique continuous extension C(X) → R.
These extensions are convex and strict rearrangement invariant, and to-
gether define the extension L : T cH → R of L. To see that L is strict re-
arrangement invariant, given equidistributed ξ ∈ T c

uH and η ∈ T c
vH, choose

ξj ∈ C∞(X) converging uniformly to ξ. Let φ : (X,ωv) → (X,ωu) be a sym-
plectomorphism (for example one induced by parallel transport along some
path connecting u and v). Then ξ ◦ φ, η ∈ T c

vH are equidistributed, whence

L(η) = L(ξ ◦ φ) = lim
j→∞

L(ξj ◦ φ) = lim
j→∞

L(ξj) = L(ξ).

As to the second case of the theorem, if L is strongly continuous, by
[L4, Theorem 5.2] L|T0H : C∞(X) → R has a unique strongly continuous
and strict rearrangement invariant extension q : B(X) → R; this extension
is convex. Further to extend q to L : T∞E(ω) → R, take a ξ ∈ T∞

u E(ω) ≈
B(X,µu). There is a measurable θ : X → (0, µ0(X)], that pulls back Lebesgue
measure to µ0, see e.g. [L4, Lemma 5.5]. Now let η = ξ⋆ ◦ θ ∈ T∞

0 E(ω) and
L(ξ) = q(η). This is clearly the only strict rearrangement invariant way to
extend q : T∞

0 E(ω) → R to L : T∞E(ω) → R, and it is immediate that L
thus constructed has the properties claimed in the theorem. □
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Further down we will not distinguish between an invariant convex La-
grangian TH → R that is (strongly) continuous on the fibers and its exten-
sion to T cH, respectively, T∞E(ω) provided by Theorem 3.2; we will just
refer to a (strongly continuous,) invariant, convex Lagrangian L : T cH → R

or L : T∞E(ω) → R.

Lemma 3.3. A strongly continuous, invariant, convex Lagrangian L :
T∞E(ω) → R is equi–Lipschitz continuous on bounded subsets of the fibers
TuE(ω) in the sense that given R ∈ (0,∞) there is an A ∈ (0,∞) such that
for u ∈ E(ω) and ξ, η ∈ T∞

u E(ω)

(3.4) if ∥ξ∥, ∥η∥ < R then |L(ξ) − L(η)| ≤ A∥ξ − η∥.

Proof. According to [L4, Theorem 5.4] (3.4) holds when u = 0. The same A
will work for any u, for with a measure preserving θ : (X,µ0) → (0, µ0(X)]
as in the proof of Theorem 3.2 and ξ, η ∈ T∞

u E(ω)

|L(ξ) − L(η)| = |L(ξ⋆ ◦ θ) − L(η⋆ ◦ θ)| ≤ A sup |ξ⋆ ◦ θ − η⋆ ◦ θ| ≤ A∥ξ − η∥.

□

Although we have endowed E(ω) with the discrete topology, we will need
a continuity property of Lagrangians T∞E(ω) → R stronger than fiberwise.
This will involve the notion of Monge–Ampère capacity cap of subsets of
X [BT, K, GZ2]. Recall that a function ξ : X → R is quasicontinuous if
for every ε > 0 there is an open G ⊂ X of capacity cap (G) < ε such that
ξ|X \G is continuous; and a sequence of functions ξj : X → R converges
to ξ : X → R in capacity if limj→∞ cap(|ξj − ξ| > δ) = 0 for every δ > 0. In
particular, a uniformly convergent sequence converges in capacity.

Lemma 3.4. Let L : T∞E(ω) → R be strongly continuous, invariant, and
convex. Suppose uk ∈ E(ω) either decrease, or uniformly converge, to a
bounded u ∈ E(ω) as k → ∞, and uniformly bounded ξk ∈ T∞

uk
E(ω) ≈ B(X)

converge in capacity to ξ ∈ T∞
u E(ω) ≈ B(X). If ξ is quasicontinuous, then

ξ⋆k → ξ⋆ away from a countable subset of (0, µ0(X)], and limk L(ξk) = L(ξ).

Proof. If needed, we drop finitely many uk to arrange that the remaining
uk are uniformly bounded. Upon adding a constant to the uk and scaling
u, uk, ω, and L, we can even arrange that 0 ≤ u, uk ≤ 1. Suppose first the uk
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decrease. Define decreasing functions f, g on (0, µ0(X)]

f = lim inf
k→∞

ξ⋆k ≤ lim sup
k→∞

ξ⋆k = g.

Let s ∈ (0, µ0(X)), S = ξ⋆(s), and ε > 0. With Ak = {|ξk − ξ| ≥ ε}, k ∈ N,

{ξk ≥ S + 2ε} ⊂ {ξ ≥ S + ε} ∪Ak and

{ξ > S − ε} ⊂ {ξk > S − 2ε} ∪Ak.

For j ∈ N define continuous functions Fj , Gj : R → [0, 1]

Fj(t) =











0 if t ≤ S + ε− 1/j

1 if t ≥ S + ε

linear in between,

Gj(t) =











0 if t ≤ S − ε

1 if t ≥ S − ε+ 1/j

linear in between.

Note that Fj decrease as j → ∞ to the characteristic function of [S + ε,∞)
and Gj increase to the characteristic function of (S − ε,∞). We can estimate
(3.5)

µuk
(ξk ≥ S + 2ε) ≤ µuk

(ξ ≥ S + ε) + µuk
(Ak) ≤

∫

X
Fj ◦ ξ dµuk

+ cap (Ak)

µuk
(ξk ≥ S − 2ε) ≥ µuk

(ξ > S − ε) − µuk
(Ak) ≥

∫

X
Gj ◦ ξ dµuk

− cap (Ak).

Since Fj ◦ ξ, Gj ◦ ξ are quasicontinuous, by [GZ2, Theorem 4.26, Proposi-
tion 4.25]

lim
k→∞

∫

X
Fj ◦ ξ dµuk

=

∫

X
Fj ◦ ξ dµu,

lim
k→∞

∫

X
Gj ◦ ξ dµuk

=

∫

X
Gj ◦ ξ dµu.

Therefore, letting first k → ∞ in (3.5), then j → ∞, and using the monotone
convergence theorem and (3.2) as well,

lim sup
k→∞

µuk
(ξk ≥ S + 2ε) ≤ µu(ξ ≥ S + ε) ≤ µu(ξ > S) ≤ s

lim inf
k→∞

µuk
(ξk > S − 2ε) ≥ µu(ξ > S − ε) ≥ µu(ξ ≥ S) ≥ s.

Hence, given σ < s < ρ, for sufficiently large k

µuk
(ξk ≥ S + 2ε) < ρ, σ < µuk

(ξk > S − 2ε).
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Let η = ξk, ν = µuk
, and apply (3.3) first with t = S + 2ε, τ = ρ; then with

t = S − 2ε, τ = σ. We conclude ξ⋆k(ρ) < S + 2ε and ξ⋆k(σ) > S − 2ε. In the
limit k → ∞

g(ρ) ≤ S + 2ε = ξ⋆(s) + 2ε and f(σ) ≥ S − 2ε = ξ⋆(s) − 2ε,

for all σ < s < ρ. If f, g are continuous at s—which occurs apart from count-
ably many values—, g(s) ≤ ξ⋆(s) ≤ f(s) ≤ g(s) follows, i.e., limk ξ

⋆
k(s) =

ξ⋆(s) as claimed.
It is now easy to finish the proof. With a measure preserving θ : (X,µ0) →

(0, µ0(X)], as in the proof of Theorem 3.2, ξk ∈ B(X,µuk
) and ξ⋆k ◦ θ ∈

B(X,µ0) are equidistributed, and ξ⋆k ◦ θ → ξ⋆ ◦ θ µ0–almost everywhere.
Hence

lim
k
L(ξk) = lim

k
L(ξ⋆k ◦ θ) = L(ξ⋆ ◦ θ) = L(ξ).

We are done if uk are known to decrease.
Now suppose that uk converge uniformly. It suffices to prove that a

subsequence of L(ξk) converges to L(ξ), and for this reason we can assume
that ∥uk − uk−1∥ < 2−k for k = 2, 3, . . . . Then the sequence vk = uk + 2−k

decreases to u, and µuk
= µvk

. We can view ξk ∈ T∞
uk
E(ω) ≈ B(X,µuk

) as
elements ξ′k ∈ T∞

vk
E(ω) ≈ B(X,µvk

), which are strict rearrangements of ξk.
Hence L(ξk) = L(ξ′k) → L(ξ) as k → ∞, by the first part of the proof. □

Later on we will need a variant of Lemma 3.4 in which the condition on
ξk is relaxed.

Definition 3.5. We will say that a family N of finite Borel measures on X
is hereditarily tight if for every open U ⊂ X the restrictions ν|U , ν ∈ N are
tight, i.e., given ε > 0, there is a compact K ⊂ U such that ν(U \K) < ε
for all ν ∈ N .

For example, if all ν ∈ N are absolutely continuous with respect to a
finite Borel measure µ, and the Radon–Nikodym derivatives dν/dµ are uni-
formly bounded, then N is hereditarily tight.

Lemma 3.6. Let L : T∞E(ω) → R be strongly continuous, invariant, and
convex, and uk ∈ E(ω) either decrease, or uniformly converge, to a bounded
u ∈ E(ω) as k → ∞. Suppose that the family µuk

, k ∈ N, is hereditarily
tight. If uniformly bounded ξk ∈ T∞

uk
E(ω) ≈ B(X) converge µu–almost every-

where to ξ ∈ T∞
u E(ω) ≈ B(X), then ξ⋆k → ξ⋆ away from a countable subset

of (0, µ0(X)], and limk L(ξk) = L(ξ).
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Proof. As in the previous proof, it suffices to argue when the uk decrease.
Let ε > 0. First we claim that there are uniformly bounded ηk ∈ T∞

uk
E(ω)

and continuous η ∈ T∞
u E(ω) such that ηk → η uniformly and for ε ≤ s ≤

µ0(X) − ε

(3.6) η⋆(s+ ε) ≤ ξ⋆(s) ≤ η⋆(s− ε), η⋆k(s+ ε) ≤ ξ⋆k(s) ≤ η⋆k(s− ε).

Indeed, by the theorems of Lusin and Egorov there are an open U ⊂ X
and η ∈ C(X) such that µu(U) < ε/4, η = ξ on X \ U , and ξk → ξ uniformly
on X \ U . With k0 to be determined in a moment, let ηk = ξk if k < k0,

ηk =

{

η on U

ξk on X \ U
if k ≥ k0.

Thus ηk → η uniformly. Next, µu(ξ ̸= η) ≤ µu(U) < ε/2. To estimate
µuk

(ξk ̸= ηk) we pick a compact K ⊂ U such that µuk
(U \K) < ε/4 for all k

and a function ζ ∈ C(X) such that χK ≤ ζ ≤ χU (characteristic function).
This implies

∫

X(χU − ζ) dµuk
≤ µuk

(U \K) < ε/4 for all k. Choose k0 so
that

∫

X
ζ dµuk

< ε/4 if k ≥ k0.

This is possible, because, for example by [GZ2, Theorem 3.18], as k → ∞,
the integral above tends to

∫

X ζ dµu ≤ µu(U) < ε/4. Hence for k ≥ k0

(3.7) µuk
(ξk ̸= ηk) ≤ µuk

(U) =

∫

X
(χU − ζ) dµuk

+

∫

X
ζ dµuk

< ε/2,

and the same holds for k < k0 trivially.
We view η, ηk as vectors in T∞

u E(ω), T∞
uk
E(ω). Let σ < ξ⋆(s) < ρ. By

(3.2)

µu(ξ ≥ ρ) ≤ µu
(

ξ > ξ⋆(s)
)

≤ s ≤ µu
(

ξ ≥ ξ⋆(s)
)

≤ µu(ξ > σ).

As µu(ξ ̸= η) < ε/2,

s− ε < s− ε/2 ≤ µu(η > σ), µu(η ≥ ρ) ≤ s+ ε/2 < s+ ε,

and by (3.3) η⋆(s+ ε) < ρ, σ < η⋆(s− ε). This being true for all σ < ξ⋆(s) <
ρ, the first set of inequalities in (3.6) follows. The second set follows the same
way, using (3.7).
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We can apply Lemma 3.4 and conclude that η⋆k → η⋆ away from a count-
able set. Therefore

lim sup
k→∞

ξ⋆k(s) ≤ lim
k→∞

η⋆k(s− ε) = η⋆(s− ε) ≤ ξ⋆(s− 2ε),

for all s ∈ [2ε, µ0(X) − 2ε] except countably many; and similarly

lim inf
k→∞

ξ⋆k(s) ≥ ξ⋆(s+ 2ε).

If in addition ξ⋆ is continuous at s, letting ε→ 0 through a sequence these
inequalities prove limk→∞ ξ⋆k(s) = ξ⋆(s), which therefore holds for all s ∈
(0, µ0(X)] with countably many exceptions.

From this limk L(ξk) = L(ξ) follows the same way as in Lemma 3.4. □

4. Weak geodesics, ε–geodesics, Jacobi fields

If a < b are real numbers, we let

Sab = {s ∈ C : a < Res < b},

and denote by π the projection Sab ×X → X.
Following Berndtsson and Darvas [Be1, D4, section 3.3] we make the

following definition.

Definition 4.1. A path u : (a, b) → PSH(ω) is a subgeodesic if the func-
tion U : Sab ×X → [−∞,∞) given by U(s, x) = u(Res)(x) is π∗ω–plurisub-
harmonic.

If w,w′ ∈ PSH(ω), the weak geodesic determined by (or connecting) w,w′

is u : (a, b) → PSH(ω),
(4.1)
u = sup{v | v : (a, b) → PSH(ω) is subgeodesic, lim

t→a
v(t) ≤ w, lim

t→b
v(t) ≤ w′}.

The limits are understood pointwise on X; they exist because π∗ω–
plurisubharmonicity implies that for each x ∈ X the function v(·)(x) is con-
vex. It is possible that (4.1) gives u ≡ −∞, not valued in PSH(ω); but other-
wise the weak geodesic is indeed a path in PSH(ω) and is itself a subgeodesic
[D4, section 3.1]. Darvas points out that in general the term “connecting”
weak geodesic is misleading, as lima u may have little to do with w. But,
if w,w′ are bounded, Berndtsson proves by a simple argument that the
weak geodesic indeed connects, lima u = w, limb u = w′, uniformly on X,
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[Be1, pp. 156-157]. If c < d, the weak geodesic v : (c, d) → PSH(ω) between
w and w′ is u, composed with an affine reparametrization, because affine
reparametrizations of subgeodesics yield subgeodesics.

In what follows we will only deal with weak geodesics u determined by
bounded w,w′. Such a u is a Lipschitz map into B(X), and we will refer to
its continuous extension to the closed interval [a, b] as a weak geodesic, too.

In (1.1) we defined Mabuchi’s connection on TH through its parallel
transport. A more direct definition takes a smooth path u : [a, b] → H and
a smooth vector field ξ : [a, b] → TH, ξ(t) ∈ Tu(t)H, along it; the covariant
derivative of ξ along u is then the vector field ∇tξ given by

(4.2) ∇tξ(t) = ξ̇(t) −
1

2
(dX u̇(t), dXξ(t))u(t) ∈ C∞(X) ≈ Tu(t)H.

Here dX is differential on X, for fixed t, and ( , )u(t) is inner product
on T ∗X induced by the Kähler metric of ωu(t). In (4.2) the left hand side
is to be computed for ξ a section of TH along u; on the right ξ stands
for the representation of this section in the canonical trivialization TH ≈
H× C∞(X), so for a function [a, b] → C∞(X); and the equality of the two
sides again uses the trivialization of TH.

Geodesics u : [a, b] → H of ∇ satisfy ∇tu̇(t) = 0. Chen, however, had
the idea that the geometry of H can be better accessed through ε–geodesics.
Define a vector field F on H by

(4.3) F (v)ωn
v = ωn, v ∈ H, F (v) ∈ C∞(X) ≈ TvH.

If ε > 0, an ε–geodesic is a solution u : [a, b] → H of

(4.4) ∇tu̇(t) = εF (u(t)), t ∈ [a, b].

In what follows, we will just write d for dX . Chen proves [C, Bl1, Bl2]

Theorem 4.2. Given a<b and two potentials w,w′ ∈ H, (4.4) has a unique
C2 solution u = uε : [a, b] → H satisfying u(a) = w, u(b) = w′. The solution
u is smooth, and as an element of C∞([a, b] → H), it depends smoothly on
w,w′ (and a, b, ε). Finally, if w,w′ are in a fixed compact subset of H, the
forms ddcuε(t), du̇ε(t) and üε(t) are uniformly bounded on X for 0 < ε < ε0
and a ≤ t ≤ b.

It follows by the Arzelà–Ascoli theorem and a maximum principle for the
Monge–Ampère operator that for fixed w,w′ the uniform limit u = limε→0 u

ε
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exists. The limit u maps into the space

(4.5) H11 = {w ∈ C(X) ∩ PSH(ω) : the current ddcw is bounded},

and the currents ddcu(t), du̇(t), ü(t) are represented by uniformly bounded
forms. Also, u is the weak geodesic in the sense of Definition 4.1 to connect
w,w′.

Consider an ε–geodesic u : [a, b] → H.

Definition 4.3. A vector field ξ : [a, b] → TH along u is an ε–Jacobi field
if there are an interval I containing 0 ∈ R and a smooth family I ∋ s 7→ us,
each us : [a, b] → H an ε–geodesic such that u0 = u and ξ = ∂su

s|s=0.

Lemma 4.4. (a) If I ⊂ R is an interval and v : I → H a smooth path, then
the covariant derivative of F along v satisfies

(4.6) ωn
v(s)∇sF (v(s)) = −nd

(

F (v(s))dcv̇(s)
)

∧ ωn−1
v(s) .

(b) If ξ : [a, b] → TH is an ε–Jacobi field along an ε–geodesic u : [a, b] → H,
then

(4.7) ωn
u(t)∇

2
t ξ(t) =

1

4

{

{u̇(t), ξ(t)}, u̇(t)
}

ωn
u(t) − εnd

(

F (u(t))dcξ(t)
)

∧ ωn−1
u(t) ,

where { , } = { , }u(t) is Poisson bracket on Tu(t)H ≈ C∞(X) for the sym-
plectic form ωu(t).

Calabi and Chen [CC, Section 2.3] derive an equivalent equation for
ε–Jacobi fields.

Proof. (a) We will apply (4.2) with ξ = F ◦ v. Differentiating F (v(s))ωn
v(s) =

ωn with respect to s gives

ωn
v(s)∂sF (v(s)) = −F (v(s))∂s(ω + ddcv(s))n = −nF (v(s))ddcv̇(s) ∧ ωn−1

v(s) .

At the same time

(

dv̇(s), dF (v(s))
)

v(s)
ωn
v(s) = 2ndF (v(s)) ∧ dcv̇(s) ∧ ωn−1

v(s) ,

see e.g. [Bl2, p.103]. Substituting into (4.2) now gives (4.6).
(b) Let us : [a, b] → H be a smooth family of ε–geodesics such that

ξ = ∂su
s|s=0, and set U(s, t) = us(t). As Mabuchi’s connection is torsion

free, ∇s∂tU = ∇t∂sU . The curvature of ∇, evaluated on ∂sU(s, t), ∂tU(s, t) ∈
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TU(s,t)H is an endomorphism of TU(s,t)H that acts on a vector field η(s, t)
by

R(∂sU, ∂tU)η = (∇s∇t −∇t∇s)η =
{

{∂sU, ∂tU}, η
}

/4,

see [M, Theorem 4.3]. (Mabuchi’s formula does not contain the factor 1/4,
due to different conventions.)

We apply ∇s to the ε–geodesic equation ∇t∂tU(s, t) = εF (U(s, t)), to
obtain at s = 0

ε∇sF (U) = ∇s∇t∂tU = R(∂sU, ∂tU)∂tU + ∇t∇s∂tU

= (1/4)
{

{∂sU, ∂tU}, ∂tU
}

+ ∇t∇t∂sU = (1/4)
{

{ξ, u̇}, u̇
}

+ ∇2
t ξ.

Combining (4.6) with this, (4.7) follows. □

5. The action

Consider an invariant convex Lagrangian L : TH → R. If u : [a, b] → H is a
piecewise C1 path, its action is

(5.1) L(u) =

∫ b

a
L(u̇(t))dt.

Depending on the nature of L, this can represent length or energy of a path,
but in general it is neither. No mather what L, the integral (5.1) is that
of a piecewise continuous function by Theorem 2.5, so that it exists as a
Riemann integral.

For the purposes of this paper we must consider action for paths beyond
H. The material developed in section 3 allows to define action for paths
in the space B(X) ∩ PSH(ω) ⊂ E(ω) of bounded ω–plurisubharmonic func-
tions. This is a subset of the Banach space B(X) and, viewing maps into
it as maps into B(X), we can talk about various regularity classes of such
maps. If a < b are real, the following is easy to check.

Lemma 5.1. A map u : [a, b] → B(X) is continuous if and only if the func-
tions

(5.2) u(·)(x), for x ∈ X

are equicontinuous, and it is Ck for k = 1, 2, . . . if and only if, in addition,
the functions in (5.2) are k times differentiable, and the k’th derivatives are
also equicontinuous.
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According to Theorem 3.2, an invariant convex Lagrangian TH → R

that is strongly continuous on the fibers determines a strongly continu-
ous, invariant, convex Lagrangian L : T∞E(ω) → R. Suppose u : [a, b] →
B(X) ∩ PSH(ω) is a C1 path. Since ω–plurisubharmonic functions are qua-
sicontinuous [BT, Theorem 3.5], [GZ2, Corollary 9.12], the difference quo-
tients (u(t) − u(s))/(t− s) are quasicontinuous and so are their uniform lim-
its u̇(t). Hence by Lemma 3.4 L ◦ u̇ : [a, b] → R is continuous. Clearly if u
is just piecewise C1, the integral in (5.1) still exists as the integral of a
piecewise continuous function, and defines action L(u).

If w,w′ ∈ B(X) ∩ PSH(ω) and T ∈ (0,∞), we define the least action, or
just action, LT (w,w′) between w,w′ as

(5.3) LT (w,w′) = inf
u
L(u),

the infimum taken over all piecewise C1 paths u : [0, T ] → B(X) ∩ PSH(ω)
such that u(0) = w, u(T ) = w′. Note that w,w′ can be connected by a
smooth path, e.g. u(t) = (1 − t/T )w + (t/T )w′ connects. We will see that
LT (w,w′) > −∞ (Lemma 9.4).

Instead of [0, T ] if we minimize over paths [a, a+ T ] → B(X) ∩ PSH(ω),
the infimum in (5.3) does not change. However, in general LT (w,w′) will
depend on T ; it will not if L is positively homogeneous. In general

LT (w,w′) + LS(w′, w′′) ≥ LT+S(w,w′′)

follows by concatenating paths. Of course, LT (w,w′) = LT (w′, w) should be
expected only if L is even, L(−ξ) = L(ξ).

In the two results below, L : T∞E(ω) → R is a strongly continuous, in-
variant, convex Lagragian.

Theorem 5.2 (Principle of least action). If a C1 path v : [0, T ] →
B(X) ∩ PSH(ω) is a weak geodesic, then L(v) = LT (v(0), v(T )).

It is not hard to show that piecewise C1 geodesics in B(X) ∩ PSH(ω) are
automatically C1, and by Chen’s work, Theorem 4.2, weak geodesics con-
necting points in H are also C1. Nonetheless, by Example 5.4 below, general
weak geodesics in B(X) ∩ PSH(ω) are not even left or right differentiable,
and it is dubious if action along such paths can be defined by an integral.

Theorem 5.3. If u, v : [a, b] → B(X) ∩ PSH(ω) are weak geodesics, then
for S > 0 the function

[a, b] ∋ t 7→ LS(u(t), v(t)) ∈ R
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is convex.

If L is absolutely homogeneous, L(cξ) = |c|L(ξ), and vanishes only on
zero vectors, then action LS is distance measured in a Finsler metric and is
independent of S; the statement of Theorem 5.3 is an indication of semineg-
ative curvature.

The proofs will take sections 6–9. First we prove approximate versions,
with ε–geodesics in H replacing weak geodesics. The approximate versions
depend on two facts. First, that L is convex along ε–Jacobi fields; second,
as a consequence, a triangle type inequality holds for triangles in H with
two sides ε–geodesics (Theorem 6.1, Lemma 7.2). It is a technical point but
noteworthy that the approximate results contain no error term, no O(ε). By
letting ε→ 0 we obtain a principle of least action in H11̄ (Corollary 7.4).
Approximating weak geodesics in B(X) ∩ PSH(ω) by weak geodesics in H11̄

we obtain the same in B(X) ∩ PSH(ω) in section 8. Theorem 5.3 is proved
by the same approximation scheme in section 9.

To conclude this section we discuss smoothness of weak geodesics v :
[a, b] → B(X) ∩ PSH(ω). For fixed x ∈ X, the function v(·)(x) is convex,
hence has left and right derivatives at every t ∈ (a, b), that we will denote
∂∓t v(t)(x). These one sided derivatives are bounded, since v is Lipschitz
according to Berndtsson [Be1, section 2.2], see Lemma 9.3. Let (X,ω) be
complex projective space Pn with the Fubini–Study metric.

Example 5.4. There is a weak geodesic v : [a, b] → B(X) ∩ PSH(ω) that
is not left or right differentiable (as a map into B(X)) at any t ∈ [a, b].
Furthermore, for each t ∈ (a, b) the derivatives ∂−t v(t) and ∂+t v(t), computed
pointwise on X, differ µv(t) almost everywhere.

Our v will be a toric weak geodesic. Such weak geodesics can be obtained
using an extension of Guan’s correspondence between toric geodesics and
linear geodesics in a suitable Hilbert space L2(P ), see [G]. Nevertheless,
since the correspondence between properties of toric weak geodesics and
linear geodesics is less straightforward than for geodesics in H, we will just
write down one possible example and verify its character directly.

We view Pn as Cn ∪ Pn−1, and denote by | | Euclidean norm on Cn.
Keeping in mind that ω = ddc log(1 + |x|2) on Cn, we define v : [a, b] →
C(X) ∩ PSH(ω) by
(5.4)

v(t)(x) =

{

2 max(t, log |x|) − log(1 + |x|2), if t ∈ [a, b], x ∈ Cn

0, if t ∈ [a, b], x ∈ Pn−1.
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In fact v(t) is smooth in a neighborhood of Pn−1. To check that v is a weak
geodesic, let Sab = {s ∈ C : a < Res < b} as in section 4 and

V (s, x) =

{

2 max(Res, log |x|) − log(1 + |x|2), if s ∈ S̄ab, x ∈ Cn

0, if s ∈ S̄ab, x ∈ Pn−1.

Thus V is π∗ω–plurisubharmonic on Sab ×X, i.e., v is a subgeodesic. Sup-
pose u : [a, b] → B(X) ∩ PSH(ω) is the weak geodesic connecting v(a), v(b),
so that v ≤ u. Let U(s, x) = u(Res)(x) for s ∈ S̄ab, x ∈ X. Since u(a) = v(a)
and u(b) = v(b) are continuous, U is continuous at points in ∂Sab ×X. If
y ∈ X, consider the map

ϕy : S̄ab ∋ s 7→ (s, esy) ∈ S̄ab ×X,

with the understanding that esy = y if y ∈ Pn−1. The pull back ϕ∗yV is
smooth, and ddcϕ∗yV = 2ddc(Res+ max(0, log |y|)) − ϕ∗yω = −ϕ∗yω. Hence
the bounded function ϕ∗y(U − V ) is subharmonic on Sab, and by the maxi-
mum principle it is ≤ 0. As y ranges over X, the strips ϕy(Sab) foliate X.
Therefore U ≤ V . Along with v ≤ u this implies that v = u is indeed a weak
geodesic.

For fixed x ∈ X one computes from (5.4) the one sided derivatives of
v(·)(x),

(5.5) ∂−t v(t)(x) =

{

2 if t > log |x|

0 otherwise,
∂+t v(t)(x) =

{

2 if t ≥ log |x|

0 otherwise.

On the one hand, for each t these are discontinuous functions on X; on the
other, each difference quotient of v is continuous. Hence ∂±t v(t) cannot be
the limit, in B(X), of difference quotients, and so v as a map into B(X) has
no one sided derivatives.

Finally, for each t (5.4) gives that the measure induced by ωn
v(t) is invari-

ant under U(n) rotations of X and is supported on the sphere |x| = et. Hence
it is a nonzero multiple of area measure on that sphere; by (5.5) therefore
µv(t)–almost everywhere ∂−t v(t) ̸= ∂+t v(t).

The example shows that action even along a weak geodesics in B(X) ∩
PSH(ω) cannot be defined by the integral (5.1), since the integral depends
on whether u̇(t) is interpreted as left or right derivative. Perhaps the correct
interpretation is the average of the two; this is what Theorem 10.1 and
Lemma 10.2 seem to suggest.
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6. Divergence of ε–Jacobi fields

In this section we stay in H, and consider invariant convex Lagrangians
L : TH → R, that are just continuous. Recall that given ε > 0, an ε–geodesic
u : [a, b] → H satisfies the equation

(6.1) ∇tu̇(t) = εF (u(t)),

where the vector field F : H → TH is defined by F (v)ωn
v = ωn. Infinitesimal

variations of ε–geodesics are ε–Jacobi fields. If ξ : [a, b] → TH is an ε–Jacobi
field along an ε–geodesic u : [a, b] → TH, by Lemma 4.4(b)
(6.2)

ωn
u(t)∇

2
t ξ(t) =

1

4

{

{u̇(t), ξ(t)}, u̇(t)
}

ωn
u(t) − εnd

(

F (u(t))dcξ(t)
)

∧ ωn−1
u(t) .

All our subsequent results rest on the following theorem.

Theorem 6.1. If ξ : [a, b] → TH is an ε–Jacobi field along an ε–geodesic
u : [a, b] → H, then L ◦ ξ is a convex function on [a, b].

This will be derived from a special case.

Lemma 6.2. Given u0 ∈ H and f0 ∈ B(X), Theorem 6.1 holds for the
Lagrangian

(6.3) L(η) = sup
(f,v)∼(f0,u0)

∫

X
fηdµv, η ∈ TvH,

cf. (2.1).

To prove Lemma 6.2 we need some preparation. If Y is any set, we
say that functions g, h : Y → R are similarly ordered if (g(x) − g(y))(h(x) −
h(y)) ≥ 0 for all x, y ∈ Y . Equivalently, g(x) < g(y) should imply h(x) ≤
h(y). The relation is not transitive, any function is similarly ordered as a
constant.

Lemma 6.3. Let Y be an oriented smooth manifold and aij smooth func-
tions, Vi smooth vector fields on it, i, j = 1, . . . , k. Assume the matrix (aij)
is symmetric and positive semidefinite everywhere. If g ∈ C∞(Y ) and a
locally integrable h : Y → R are similarly ordered, then the current Q =
∑

i,j aij(Vig)(Vjh) is ≥ 0.
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Proof. It suffices to prove when h is bounded (in general we replace h
by hR = min

(

R,max(−R, h)
)

and let R→ ∞). Assume first that in ad-
dition there is a smooth increasing H : R → R such that h = H ◦ g. Then
Q = H ′(g)

∑

aij(Vig)(Vjg) ≥ 0. The same follows ifH is any increasing func-
tion, by writing it as limp limqHpq (pointwise limit), with locally uniformly
bounded smooth increasing Hpq.

Now consider general g, h. Let I denote the range of g, and for t ∈ I
define

m(t) = inf{h(x) : g(x) = t}, M(t) = sup{h(x) : g(x) = t}.

If g(x) = t < g(y) = τ , then h(x) ≤ h(y), which means that

m(t) ≤M(t) ≤ m(τ) ≤M(τ) when t < τ.

In particular, m and M are increasing functions, and coincide on int I wher-
ever one of them is continuous, that is, apart from a countable set T ⊂ I.
On g−1(I \ T ) we have h = m ◦ g. If t is a regular value of g, then g−1(t) has
measure 0. Hence on the regular set of g the functions h and m ◦ g agree a.e.,
and the induced currents simply agree there. By what we already proved,
Q ≥ 0 on the set where dg ̸= 0. We still need to understand the contribution
of the critical set C = (dg = 0).

Let χ : [0,∞) → [0, 1] be a smooth function, χ(t) = 0 if t ≤ 1, χ(t) = 1 if
t ≥ 2. Endow Y with a Riemannian metric and denote by dist(·, C) distance
to C. This is a Lipschitz function with Lipschitz constant 1. For s > 0,
the function χ(s dist(·, C)) has Lipschitz constant O(s); it vanishes in the
1/s neighborhood of C and equals 1 outside the 2/s neighborhood. Let
ρs ∈ C∞(Y ) have the same properties. To prove the lemma we need to show
that if θ ≥ 0 is a compactly supported smooth volume form on Y , then

0 ≤

∫

Y
Qθ = −

∫

Y
h
∑

i,j

£j(θaijVig),

where £j stands for Lie derivative along Vj .
The inequality holds if θ is replaced by θρs, because Q ≥ 0 in a neighbor-

hood of supp θρs. The point is that the functions £j(θρsaijVig) are uniformly
bounded and tend to £j(θaijVig) a.e. as s→ ∞. The former is verified by
applying Leibniz rule to the products, and checking each term. The only
term that needs speaking for is θaij(Vig)(Vjρs). But since |Vig| |Vjρs| at-
tains its maximum on {y ∈ Y : 1/s ≤ dist(y, C) ≤ 2/s}, this maximum is
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O(1/s)O(s) = O(1). As to convergence,

lim
s→∞

£j(θρsaijVig) =

{

£j(θaijVig) on Y \ C

0 on C.

If £j(θaijVig)(y) ̸= 0 at some y ∈ C, then (VjVig)(y) ̸= 0; thus y is a zero
and a regular point of Vig. Such points form a hypersurface in Y , of zero
measure. This proves the a.e. convergence statement.

We conclude by dominated convergence:

∫

Y
Qθ = − lim

s→∞

∫

Y
h
∑

i,j

£j(θρsaijVig)

= lim
s→∞

∫

Y
Qθρs ≥ 0.

□

Proof of Lemma 6.2. The plan is to construct for every t0 ∈ (a, b) a fam-
ily f(t) ∈ B(X) with the property that (f(t), u(t)) ∼ (f0, u0) and A(t) =
∫

X f(t)ξ(t)dµu(t) ≤ L(ξ(t)) satisfies

A(t0) = L(ξ(t0)), Ä(t0) ≥ 0.

To simplify notation we can assume t0 = 0. At the price of replacing f0 by f1
such that (f0, u0) ∼ (f1, u(0)), we can assume u(0) = u0. Further to simplify
we can arrange that f = f0 realizes

(6.4) sup
(f,u(0))∼(f0,u(0))

∫

X
fξ(0) dµu(0), i.e., L(ξ(0)) =

∫

X
f0ξ(0) dµu(0) ;

this is possible simply because the supremum is attained, see e.g., [L4,
Lemma 6.2]. The same lemma says that there is a maximizing f that is
similarly ordered as ξ(0), and accordingly we will work with f0 similarly
ordered as ξ(0).

For a moment suppose u : [a, b] → H is an arbitrary smooth path, and
parallel transport Tu(0)H → Tu(t)H along u is given by pull back by a sym-
plectomorphism φ(t) : (X,ωu(t)) → (X,ωu(0)). Suppose η : [a, b] → Tu(0)H is
smooth; then t 7→ η(t) ◦ φ(t) defines a vector field along u. Parallel transport
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intertwines differentiation and covariant differentiation:

∇t(η(t) ◦ φ(t)) = η̇(t) ◦ φ(t) and ∇2
t (η(t) ◦ φ(t)) = η̈(t) ◦ φ(t).

When u is an ε–geodesic and ξ an ε–Jacobi field along it, as in the
lemma, choose η so that η(t) ◦ φ(t) = ξ(t). By (6.2), at t = 0,

η̈(0)ωn
u(0) = (1/4){{u̇(0), η(0)}, u̇(0)}ωn

u(0)(6.5)

− εnd
(

F (u(0))dcη(0)
)

∧ ωn−1
u(0) .

With f(t) = f0 ◦ φ(t) we let

A(t) =

∫

X
f0η(t)ωn

u(0) =

∫

X
f(t)ξ(t)ωn

u(t) ≤ L(ξ(t)),

then A(0) = L(ξ(0)) by (6.4) and Ä(t) =
∫

X f0η̈(t)ωn
u(0). In view of (6.5)

Ä(0) =
1

4

∫

X
f0{{u̇(0), η(0)}, u̇(0)}ωn

u(0) − εn

∫

X
f0d

(

F (u(0))dcη(0)
)

∧ ωn−1
u(0)

=
1

4

∫

X
{u̇(0), f0}{u̇(0), η(0)}ωn

u(0) + εn

∫

X
F (u(0))df0 ∧ d

cη(0) ∧ ωn−1
u(0) .

In the last line {u̇(0), f0} and df0 are currents. By Lemma 6.3 the first inte-
grand in this last line is ≥ 0, since f0 and η(0) = ξ(0) are similarly ordered;
and so is, for the same reason, 2ndf0 ∧ d

cη(0) ∧ ωn−1
u(0) = (df0, dη(0))u(0)ω

n
u(0),

cf. [Bl2, p.103].
To summarize, we have shown that for every t0 ∈ (a, b) there is a function

A ∈ C∞[a, b] such that

A(t) ≤ L(ξ(t)), with equality when t = t0, and Ä(t0) ≥ 0.

By a standard argument this implies that L ◦ ξ is convex. First one notes
that if p > 0 and q ∈ R, the function L(ξ(t)) + pt2 + qt cannot have a lo-
cal maximum at any t0 ∈ (a, b), because with the A we have constructed
A(t) + pt2 + qt has no local maximum at t0. It follows that on any subin-
terval [α, β] ⊂ [a, b], L(ξ(t)) + pt2 + qt attains its maximum at one of the
endpoints, whence L(ξ(t)) + pt2 is convex. Letting p→ 0 we see that L ◦ ξ
itself is also convex. □
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Proof of Theorem 6.1. Clearly, Lemma 6.2 implies that if a ∈ R, g ∈ B(X),
and

La,g(η) = a+ sup
(f,v)∼(g,u0)

∫

X
fηdµv, η ∈ TvH,

then La,g is convex along any ε–Jacobi field. Since by Theorem 2.4 a general
invariant convex Lagrangian is the supremum of a family of such La,g, the
theorem follows. □

7. Least action in H and H11̄

In this section we will compare the actions along weak geodesics in H11̄ and
along general paths in H. Recall the notation T cH = H× C(X).

Theorem 7.1. Suppose a Lagrangian L : T cH → R is invariant and con-
vex. Consider a piecewise C1 path u : [0, T ] → H and a weak geodesic v :
[0, T ] → H11̄. If u(0) = v(0) and u(T ) = v(T ), then

(7.1)
1

T

∫ T

0
L ◦ u̇ ≥ L(v̇(0)).

First we prove a variant.

Lemma 7.2. Suppose an invariant convex Lagrangian L : TH → R is posi-
tively homogeneous, L(cξ) = cL(ξ) if c > 0. Consider a triangle in H formed
by a piecewise C1 path u : [a, b] → H and ε–geodesics va, vb : [0, T ] → H; so
that va(0) = vb(0) and va(T ) = u(a), vb(T ) = u(b). Then

(7.2)
1

T

∫ b

a
L ◦ u̇ ≥ L(v̇b(0) − v̇a(0)).

Note that positive homogeneity implies the triangle inequality L(ξ +
η) ≤ L(ξ) + L(η) for w ∈ H and ξ, η ∈ TwH.

Proof. Because of the additive nature of (7.2), we can assume u is C1,
not only piecewise, and then by simple approximation that it is even C∞.
For each s ∈ [a, b] let U(s, ·) : [0, T ] → H denote the ε–geodesic connect-
ing va(0) = vb(0) with u(s). According to Theorem 4.2, that is, by Chen’s
work, there is a unique such geodesic, and U ∈ C∞([a, b] × [0, T ]). Thus
ξs = ∂sU(s, ·) is an ε–Jacobi field and ξs(0) = 0. By Theorem 6.1 L ◦ ξs is
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convex on [0, T ]. Using ∂t (and later, dot) to denote right derivative, there-
fore

L(ξs(T )) ≥ L(ξs(0)) + T∂t|t=0L(ξs(t)).

By homogeneity, the first term on the right is 0. To compute the second, let
η(t) ∈ TU(0,0)H denote the parallel translate of ξs(t) ∈ TU(s,t)H along U(s, ·).
Thus

lim
t→0

L(ξs(t))/t = lim
t→0

L(η(t))/t = lim
t→0

L(η(t)/t)

= L(∇t|t=0ξ
s(t)) = L(∇t|t=0∂sU(s, t)) = L(∂s∂t|t=0U(s, t)).

The last equality is because ∇ has no torsion, and U(·, 0) is constant. Hence,
using Jensen’s inequality as well,

1

T

∫ b

a
L(∂su(s))ds =

1

T

∫ b

a
L(ξs(T ))ds ≥

∫ b

a
L(∂s∂t|t=0U(s, t))ds

≥ L
(

∫ b

a
∂s∂t|t=0U(s, t)ds

)

= L(v̇b(0) − v̇a(0)),

as claimed. □

Proof of Theorem 7.1. For ε > 0 let vε, wε : [0, T ] → H denote the ε–
geodesics connecting u(0) with u(T ), respectively, u(0) with itself. Again
by Chen [C], see also B locki [Bl1, Bl2], vε → v and wε → u(0) in such a way
that v̇ε(0) → v̇(0) and ẇε(0) → 0 in T c

u(0)H as ε→ 0. Suppose first that L is

positively homogeneous, and apply Lemma 7.2 with [a, b] = [0, T ], va = wε,
vb = vε. We obtain

1

T

∫ T

0
L ◦ u̇ ≥ L(v̇ε(0) − ẇε(0)).

Letting ε→ 0,

(7.3)
1

T

∫ T

0
L ◦ u̇ ≥ L(v̇(0))

follows. This is true even if L is not positively homogeneous but L plus
a constant is. Since a general L is the supremum of Lagrangians of form
positively homogeneous plus constant, see Theorem 2.4, (7.3) follows for a
general L. □
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Lemma 7.3. If L : T∞E(ω) → R is strict rearrangement invariant, and
v : [0, T ] → H11̄ is a weak geodesic of class C1, then L ◦ v̇ is constant. Hence

L(v̇(0)) =
1

T

∫ T

0
L ◦ v̇.

Proof. Berndtsson [Be2, Proposition 2.2] discovered that v̇(t) ∈ B(X,µv(t))
are equidistributed for all t, although he worked with integral Kähler classes
[ω] and weak geodesics terminating in H only. At any rate, [D2, Lemma
4.10] implies the general result. Since L is invariant, the lemma follows. □

Together with Theorem 7.1 this almost proves the principle of least
action in H11̄:

Corollary 7.4. Suppose L : T∞E(ω) → R is a strongly continuous, invari-
ant, and convex Lagrangian. If u : [0, T ] → H is a piecewise C1 path and

v : [0, T ] → H11̄ is a weak geodesic between the same endpoints, then
∫ T
0 L ◦

u̇ ≥
∫ T
0 L ◦ v̇.

8. Least action in B(X) ∩ PSH(ω)

Here we will extend Corollary 7.4 to u, v taking values in B(X) ∩ PSH(ω)
(Theorem 5.2). In this section L : T∞E(ω) → R is assumed to be strongly
continuous, invariant, and convex.

Theorem 8.1. Suppose u, v : [0, T ] → B(X) ∩ PSH(ω) have the same end-
points: u(0) = v(0), u(T ) = v(T ). If u is piecewise C1 and v is a C1 weak

geodesic, then
∫ T
0 L ◦ u̇ ≥

∫ T
0 L ◦ v̇.

This will be derived from Corollary 7.4 by approximation.

Lemma 8.2. Suppose u : [0, T ] → B(X) ∩ PSH(ω) is a piecewise C1 path,
and wj , w

′
j ∈ H decrease to u(0), respectively, u(T ), as j → ∞. Then there

are a sequence J ⊂ N and for j ∈ J piecewise linear uj : [0, T ] → H such

that uj(0) = wj, uj(T ) = w′
j, and

∫ T
0 L ◦ u̇j →

∫ T
0 L ◦ u̇ as J ∋ j → ∞.

As said, at points where u, uj are not differentiable, u̇, u̇j mean right
derivatives.

Proof. Choose t0 = 0 < t1 < · · · < tp = T so that u is C1 on each [ti−1, ti].
Suppose first that u is even linear on [ti−1, ti]. In this case J will be all
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of N. A simple special instance of regularization, see [De, DP] and espe-
cially [BK], provides zij ∈ H such that zij decreases to u(ti) as j → ∞ for
i = 0, . . . , p. We take z0j = wj and zpj = w′

j , and arrange that the zij are
uniformly bounded. Linearly interpolating on [ti−1, ti] between zi−1,j and zij
we obtain the functions uj sought. Indeed, uj(t) decreases to u(t), and

u̇j(t) =
zij − zi−1,j

ti − ti−1
∈ Tuj(t)H, when t ∈ [ti−1, ti),

are uniformly bounded and tend to u̇(t) as j → ∞. Since ω–plurisubharmonic
functions are quasicontinuous [GZ2, Corollary 9.12], so are the difference
quotients u̇(t). Also, by [GZ2, Proposition 9.11] zij , hence u̇j(t) converge in
capacity as j → ∞; therefore limj L(u̇j(t)) = L(u̇(t)) by Lemma 3.4. Since
u̇j(t) are uniformly bounded, so are L(u̇j(t)) by equi–Lipschitz continuity,

Lemma 3.3. The dominated convergence theorem gives therefore limj

∫ T
0 L ◦

u̇j =
∫ T
0 L ◦ u̇.

For general u, partition each [ti−1, ti] into k equal parts. Construct
vk : [0, T ] → B(X) ∩ PSH(ω) that agrees with u at each partition point, and
is linear in between. Then vk → u and v̇k → u̇ uniformly, because u̇ is uni-
formly continuous on [ti−1, ti). Hence L ◦ v̇k → L ◦ u̇ by Lemma 3.4 and,

again by dominated convergence,
∫ T
0 L ◦ v̇k →

∫ T
0 L ◦ u̇. By what we have

already proved, for each k we can find j = jk > jk−1 and piecewise linear
uj : [0, T ] → H such that uj(0) = wj , uj(T ) = w′

j , and

∣

∣

∣

∫ T

0
L ◦ u̇j −

∫ T

0
L ◦ v̇k

∣

∣

∣
<

1

k
.

Thus J = {j1, j2, . . . } will do.
□

Lemma 8.3. Let v, vj : [a, b] → PSH(ω) be weak geodesics. If vj(t) decreases
to v(t) when t = a, b, then vj(t) decreases to v(t) for all t ∈ [a, b].

This is [D4, Proposition 3.15].—There is one more ingredient that goes
into the proof of Theorem 8.1.

Lemma 8.4. Consider a weak geodesic v : [0, T ] → B(X) ∩ PSH(ω). If it
is right differentiable at t ∈ [0, T ), then the right derivative v̇(t) is quasi-
continuous. Moreover, L ◦ v̇ is constant on the subset D ⊂ (0, T ) where v is
differentiable. Finally, if vj : [0, T ] → H11̄ are weak geodesics that decrease
to v, then L ◦ v̇j → L ◦ v̇ on D.
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Proof. As plurisubharmonic functions are quasicontinuous, the difference
quotients (v(t+ s) − v(t))/s and their uniform limit v̇(t) are also quasicon-
tinuous. Next we turn to the last statement, that we reduce to Lemma 3.4.
First we fix t ∈ D and show that v̇j(t) → v̇(t) in sup norm ∥ ∥. If ε > 0,
there is an s > 0 such that

∥

∥

∥
v̇(t) −

v(t± s) − v(t)

±s

∥

∥

∥
< ε,

and so there is a j0 such that for j > j0

∥

∥

∥
v̇(t) −

vj(t± s) − vj(t)

±s

∥

∥

∥
< ε.

Convexity implies

vj(t− s) − vj(t)

−s
≤ v̇j(t) ≤

vj(t+ s) − vj(t)

s
,

whence ∥v̇j(t) − v̇(t)∥ < ε.
Given that vj(t) decreases to v(t), that v̇j(t) → v̇(t) in B(X), and that

v̇(t) is quasicontinuous, t ∈ D, Lemma 3.4 implies L ◦ v̇j → L ◦ v̇ on D.
To prove the second statement, construct wj , w

′
j ∈ H that decrease to

v(0), v(T ), and let vj : [0, T ] → H11̄ be the weak geodesic that joins them. By
Lemma 8.3 vj decreases to v and by Lemma 7.3 L ◦ v̇j is constant. According
to what we just proved, L ◦ v̇j → L ◦ v̇ on D, and L ◦ v̇ must be constant
there. □

In particular, if v : [a, b] → B(X) ∩ PSH(ω) is a weak geodesic of class
C1, then L ◦ v̇ is constant on (a, b). Using this with different Lagrangians one
can show that in fact v̇(t) ∈ B(X,µv(t)) are equidistributed for a < t < b.

Proof of Theorem 8.1. Construct wj , w
′
j ∈ H decreasing to u(0), u(T ), and

let uj : [0, T ] → H, j ∈ J , be as in Lemma 8.2. Let vj : [0, T ] → H11̄ be the
weak geodesic connecting wj and w′

j , j ∈ J . By Corollary 7.4

(8.1)

∫ T

0
L ◦ u̇j ≥

∫ T

0
L ◦ v̇j .

The integral on the left tends to
∫ T
0 L ◦ u̇ as j → ∞. The integrand on

the right is constant for each j, and on (0, T ) converges unformly to L ◦ v̇

by Lemma 8.4. Hence limJ∋j→∞

∫ T
0 L ◦ v̇j =

∫ T
0 L ◦ v̇ and letting j → ∞ in

(8.1) we obtain the theorem. □
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9. Convexity of the action

In this section the Lagrangian L : T∞E(ω) → R is strongly continuous, in-
variant, and convex. We first investigate the least action, cf. (5.3), between
two ε–geodesics, and then by letting ε→ 0 we prove Theorem 5.3, which
was:

Theorem 9.1. If u, v : [a, b] → B(X) ∩ PSH(ω) are weak geodesics, then
for any S ∈ (0,∞) the function LS(u, v) : [a, b] → R is convex.

The ε–variant is as follows:

Lemma 9.2. If u, v : [a, b] → H are ε–geodesics, then for any S ∈ (0,∞)
the function LS(u, v) : [a, b] → R is convex.

Proof. Let a ≤ α < β ≤ b. Suppose U : [0, S] × [α, β] → H is a smooth map
such that U(s, ·) is an ε–geodesic for all s, and U(0, ·) = u, U(S, ·) = v. Hence
ξs = ∂sU(s, ·) is an ε–Jacobi field, 0 ≤ s ≤ S, and by Theorem 6.1 L ◦ ξs is
convex. Therefore, with 0 ≤ λ ≤ 1 and tλ = (1 − λ)α+ λβ

(9.1)

L(U(·, tλ)) =

∫ S

0
L(ξs(tλ)) ds ≤ (1 − λ)

∫ S

0
L(ξs(α)) ds+ λ

∫ S

0
L(ξs(β)) ds.

Fix δ > 0. Given u, v, we can choose U (uniquely) so that both wδ
α = U(·, α)

and wδ
β = U(·, β) are δ–geodesics. From (9.1)

(9.2) LS(u(tλ), v(tλ)) ≤ L(U(·, tλ)) ≤ (1 − λ)

∫ S

0
L ◦ ẇδ

α + λ

∫ S

0
L ◦ ẇδ

β .

Now limδ→0w
δ
α = wα and limδ→0w

δ
β = wβ are the weak geodesics in H11̄

connecting u(α), v(α), respectively, u(β), v(β); and, as explained in section
4,

wδ
α → wα, wδ

β → wβ , ẇδ
α → ẇα, ẇδ

β → ẇβ

uniformly as δ → 0. Thus by Lemma 3.4 and Theorem 8.1

lim
δ→0

∫ S

0
L ◦ ẇδ

α =

∫ S

0
L ◦ ẇα = LS(u(α), v(α)),
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and similarly for the other integral in (9.2). Hence letting δ → 0 in (9.2)
gives

LS(u(tλ), v(tλ)) ≤ (1 − λ)LS(u(α), v(α)) + λLS(u(β), v(β)),

what was to be proved. □

Lemma 9.3. If v : [a, b] → B(X) ∩ PSH(ω) is a weak geodesic, then

||v(s) − v(t)|| ≤
||v(b) − v(a)||

b− a
|s− t|, s, t ∈ [a, b].

Proof. This is not new. Let M = ||v(b) − v(a)||. As v(·)(x) is convex, v̇(a) ≤
(v(b) − v(a))/(b− a) ≤M/(b− a). Furthermore, u(t) = v(a) −M(t− a)/
(b− a) is a subgeodesic, u(a) = v(a), u(b) ≤ v(b). Hence u(t) ≤ v(t) for all
t, and

v̇(a) ≥ lim
t→a

u(t) − v(a)

t− a
≥ −

M

b− a
.

Arguing similarly at b we find ||v̇(a)||, ||v̇(b)|| ≤M/(b− a), and the claim
follows, again since v(·)(x) is convex for x ∈ X. □

Lemma 9.4. If w,w′ ∈ B(X) ∩ PSH(ω) and T > 0, then LT (w,w′) is fi-
nite. If wj , w

′
j ∈ C(X) ∩ PSH(ω) decrease, or converge uniformly, to w, resp.

w′, then

(9.3) LT (wj , w
′
j) → LT (w,w′) as j → ∞.

We do not know if (9.3) holds when wj , w
′
j ∈ B(X) ∩ PSH(ω).

Proof. We will prove (9.3) for decreasing sequences wj , w
′
j ; the case of uni-

formly convergent sequences can be reduced to decreasing sequences in a
standard way, as in Lemma 3.4.

Invariance implies that L is constant on the zero section of T∞E(ω).
Since adding a constant to L will not affect the validity of the lemma, we
will assume L vanishes on the zero section. Let us start with (9.3). It suffices
to prove it along a subsequence j = jk.

Assume first that wj , w
′
j ∈ H. Let u : [0, T ] → B(X) ∩ PSH(ω) be piece-

wise C1 connecting w and w′. At the price of passing to a subsequence,
by Lemma 8.2 there are uj : [0, T ] → H piecewise C1 such that uj(0) = wj ,
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uj(T ) = w′
j , and

∫ T
0 L ◦ u̇j →

∫ T
0 L ◦ u̇. Therefore

L(u) = lim
j→∞

L(uj) ≥ lim sup
j→∞

LT (wj , w
′
j).

Passing to the infimum over paths u connecting w,w′,

(9.4) LT (w,w′) ≥ lim sup
j→∞

LT (wj , w
′
j).

Let vj : [0, T ] → H11̄ be the weak geodesics connecting wj and w′
j .

We take a pause in the proof of (9.3) and show how (9.4) implies
LT (w,w′) > −∞. By Lemma 9.3 ∥v̇j(0)∥ is a bounded sequence. Since L is
equi–Lipschitz on bounded subsets of the fibers (Lemma 3.3), using Lemma
7.3 as well, LT (wj , w

′
j) = L(vj) = TL(v̇j(0)) is a bounded sequence, and

(9.4) implies LT (w,w′) > −∞.
We return to the proof of (9.3); we need to estimate LT (w,w′) from

above. For fixed δ > 0 there are infinitely many k with

(9.5) lim inf
j→∞

LT (wj , w
′
j) ≥ LT (wk, w

′
k) − δ = TL(v̇k(0)) − δ.

If 0 < ε < T/2 and k ∈ N, define

vεk(t) =















twk/ε+ (ε− t)w/ε if 0 ≤ t < ε

vk

(

t− ε
T − 2t

T − 2ε

)

if ε ≤ t < T − ε

(T − t)w′
k/ε+ (t+ ε− T )w′/ε if T − ε ≤ t ≤ T .

The piecewise C1 paths vεk : [0, T ] → B(X) ∩ PSH(ω) connect w and w′,
hence

(9.6) LT (w,w′) ≤ L(vεk) =
(

∫ ε

0
+

∫ T−ε

ε
+

∫ T

T−ε

)

L ◦ v̇εk.

The middle integral on the right is

∫ T−ε

ε
L ◦ v̇εk = (T − 2ε)L

(T v̇k(0)

T − 2ε

)

.

As we saw, the v̇k(0) are uniformly bounded. By the equi–Lipschitz property
of L an ε ∈ (0, 1) can be chosen so that for all k

(9.7)

∫ T−ε

ε
L ◦ v̇εk ≤ TL(v̇k(0)) + δ.
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When 0 ≤ t ≤ ε, we have v̇εk(t) = (wk − w)/ε ∈ T∞
vε
k(t)

E(ω). Again by the

equi–Lipschitz property, if k is sufficiently large, |L(v̇εk(t))| < δ; and similarly
for T − ε ≤ t < T . Putting this and (9.6), (9.7) together,

LT (w,w′) ≤ 3δ + TL(v̇k(0))

if k is sufficiently large. Choosing k that also satisfies (9.5) therefore yields

LT (w,w′) ≤ 4δ + lim inf
j→∞

LT (wj , w
′
j).

This being true for all δ > 0, (9.3) follows in view of (9.4).
So far we dealt with wj , w

′
j ∈ H. If wj , w

′
j ∈ C(X) ∩ PSH(ω) only, upon

adding constants to them we can arrange that wj < wj−1 and w′
j < w′

j−1

everywhere. We will express this by saying that wj , w
′
j strictly decrease.

We construct recursively zj > wj , z
′
j > w′

j in H that strictly decrease to
w,w′ and satisfy |LT (zj , z

′
j) − LT (wj , w

′
j)| < 1/j as follows. Suppose we al-

ready have zj−1, z
′
j−1. Construct sequences yi < zj−1, y

′
i < z′j−1 (i ∈ N) in

H that decrease to wj , w
′
j . By what we have already proved, |LT (yi, y

′
i) −

LT (wj , w
′
j)| < 1/j for some i, and we let zj = yi, z

′
i = y′i with that i. Thus

LT (w,w′) = lim
j

LT (zj , z
′
j) = lim

j
LT (wj , w

′
j),

as claimed. □

Proof of Theorem 9.1. Assume first that u, v are weak geodesics in H11̄ with
endpoints in H, and connect u(a), u(b), respectively, v(a), v(b) by ε–geodesics
uε, vε. By Chen’s theorem uε → u and vε → v uniformly as ε→ 0. Hence by
Lemma 9.4, LS(uε, vε) → LS(u, v), and so the latter, as the limit of convex
functions (Lemma 9.2) is itself convex.

Second, consider general u, v. Choose wj , w
′
j ∈ H decreasing to u(a), u(b)

and zj , z
′
j ∈ H decreasing to v(a), v(b). Join wj , w

′
j by weak geodesics uj :

[a, b] → H11̄ and zj , z
′
j by weak geodesics vj : [a, b] → H11̄. By Lemma 8.3

uj , vj decrease to u, v, hence by Lemma 9.4 the convex functions LS(uj , vj)
converge to LS(u, v). It follows that the latter is also convex. □

10. Two ways to compute action

One way is by the definition,
∫ b
a L ◦ u̇, if u : [a, b] → B(X) ∩ PSH(ω). The

other corresponds to computing length of a curve in a metric space as the
least upper bound of the lengths of inscribed piecewise geodesic curves. The
two agree in our setting as well.
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The Lagrangian L : T∞E(ω) → R in this section is strongly continuous,
invariant, and convex.

Theorem 10.1. For a piecewise C1 path u : [a, b] → B(X) ∩ PSH(ω)

(10.1)

∫ b

a
L ◦ u̇ = sup

m
∑

i=1

Lti−ti−1

(

u(ti−1), u(ti)
)

,

the sup over all partitions a = t0 < t1 < · · · < tm = b.

We start with an asymptotic formula for LT (w, z), valid as w, z ap-
proach each other in two different ways. One will be needed in the proof of
Theorem 10.1; the other for material in section 11.

Lemma 10.2. Consider a sequence of positive numbers τk → 0 and
sequences wk, zk ∈ B(X) ∩ PSH(ω) converging uniformly to w ∈ B(X) ∩
PSH(ω), ||zk − wk|| = O(τk). Let ξ ∈ B(X). Suppose that either

(i) (zk − wk)/τk → ξ uniformly or only in capacity; or
(ii) (zk − wk)/τk → ξ µw–almost everywhere, and the family of µwk

, µzk ,
k ∈ N, is hereditarily tight (Definition 3.5).

Viewing ξ as a vector in T∞
w E(ω), we then have

(10.2) Lτk(wk, zk)/τk → L(ξ) as k → ∞.

Proof. It will suffice to prove (10.2) along a subsequence. Construct wj
k, z

j
k ∈

H that decrease to wk, respectively, zk as j → ∞. Let vjk : [0, τk] → H11̄ be

the weak geodesic connecting wj
k, z

j
k, and ujk : [0, τk] → H the line segment

connecting the two,

ujk(t) =
τk − t

τk
wj
k +

t

τk
zjk.

Since ||zk − wk|| = O(τk) as k → ∞, we can arrange that (zjk − wj
k)/τk form

a bounded set in B(X). This implies by Lemma 9.3 that v̇jk(t) are uniformly
bounded.

We have vjk(t) ≤ ujk(t), because evaluated at x ∈ X the former is a convex
function of t, the latter is a linear function, and the two agree at t = 0, τk.
Hence

v̇jk(0) ≤ u̇jk(0), u̇jk(τk) ≤ v̇jk(τk),

and since the right, respectively, left derivatives v̇jk(0), v̇jk(τk) are equidis-
tributed, see [D2, Lemma 4.10],

(10.3) u̇jk(τk)⋆ ≤ v̇jk(0)⋆ ≤ u̇jk(0)⋆.
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As j → ∞, the decreasing sequences wj
k, respectively, zjk, of ω–plurisub-

harmonic functions converge in capacity [GZ2, Proposition 9.11], and so

u̇jk(0) = u̇jk(τk) =
zjk − wj

k

τk
→

zk − wk

τk
, as j → ∞,

in capacity. The latter function is quasicontinuous because ω–plurisubhar-
monic functions are [GZ2, Corollary 9.12]. It can be viewed as an element
of T∞

wk
E(ω) or of T∞

zk E(ω). We will write fk, gk : (0, µ0(X)] → R for its de-
creasing rearrangement as an element of one or the other. Lemma 3.4 then
implies

u̇jk(0)⋆ → fk, u̇jk(τk)⋆ → gk, as j → ∞,

away from a countable subset of (0, µ0(X)], and so by (10.3)

(10.4) gk ≤ lim inf
j→∞

v̇jk(0)⋆ ≤ lim sup
j→∞

v̇jk(0)⋆ ≤ fk

away from a countable set. In case (i) by Lemma 3.4, in case (ii) by Lemma
3.6 we obtain

lim
k→∞

fk = lim
k→∞

gk = ξ⋆,

away from a countable set.
By Egorov’s theorem for each m ∈ N there is an Em ⊂ (0, µ0(X)], whose

complement has Lebesgue measure < 2−m, and on which the sequences
fk, gk, and for every k the sequences

inf
j≥i

v̇jk(0)⋆, sup
j≥i

v̇jk(0)⋆, i = 1, 2, . . .

converge uniformly. Upon passing to a subsequence we can arrange that for
every m

ξ⋆ − 1/m ≤ gm ≤ fm ≤ ξ⋆ + 1/m on Em.

In light of (10.4) for each m there is im such that whenever j > im,

(10.5) ξ⋆ − 2/m < v̇jm(0)⋆ < ξ⋆ + 2/m on Em.

Choose j > im so that

(10.6) Lτm(wm, zm)/τm and Lτm(wj
m, z

j
m)/τm = L

(

v̇jm(0)
)

are within 1/m, and set vm = vjm.
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By the Borel–Cantelli lemma almost every point in (0, µ0(X)] is con-
tained in all but finitely many Em. (10.5) therefore implies limm v̇m(0)⋆ = ξ⋆

a.e. With a measure preserving θ : (X,µ0) → (0, µ0(X)], see [L4, Lemma
5.5], v̇m(0)⋆ ◦ θ ∈ B(X,µ0) then tends to ξ⋆ ◦ θ a.e., whence

L
(

v̇m(0)
)

= L
(

v̇m(0)⋆ ◦ θ
)

→ L(ξ⋆ ◦ θ) = L(ξ), m→ ∞,

as L is invariant and strongly continuous. But then

lim
m→∞

Lτm(wm, zm)/τm = L(ξ)

(cf. (10.6)), as needed. □

Proof of Theorem 10.1. It suffices to prove when u is C1, not only piecewise.
Since

(10.7)

∫ ti

ti−1

L ◦ u̇ ≥ Lti−ti−1
(u(ti−1), u(ti)),

the left hand side of (10.1) is ≥ than the right hand side. As to the converse,
let M = max[a,b] |L ◦ u̇|.

Given ε > 0, choose δ > 0 so that for any partition a = t0 < t1 < · · · <
tm = b finer than δ any corresponding Riemann sum satisfies

(10.8)
∣

∣

∣

∫ b

a
L ◦ u̇−

m
∑

i=1

L(u̇(si))(ti − ti−1)
∣

∣

∣
< ε.

Here ti−1 ≤ si ≤ ti. It follows from Lemma 10.2 that for every s ∈ (a, b) there
is a δs ∈ (0, δ) such that if 0 < τ < δs,

∣

∣Lτ (u(s− τ/2), u(s+ τ/2)) − L(u̇(s))τ
∣

∣ < ετ/(b− a).

Vitali’s covering theorem implies that there are a partition a = t0 < t1 <
· · · < tm = b finer than δ, and I ⊂ {1, 2, . . . ,m} with the following property.
Let si = (ti−1 + ti)/2. If i ∈ I then ti − ti−1 < δsi ; while the total length of
the intervals [ti−1, ti] with 1 ≤ i ≤ m not in I is < ε/M . Write ti − ti−1 = τi.
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By (10.7) |Lτi(u(ti−1), u(ti))| ≤Mτi. We have

∫ b

a
L ◦ u̇−

m
∑

i=1

Lτi

(

u(ti−1), u(ti)
)

=
(

∫ b

a
L ◦ u̇−

m
∑

i=1

L(u̇(si))τi

)

+

m
∑

i=1

(

L(u̇(si))τi − Lτi(u(ti−1), u(ti))
)

.

The first term on the right is < ε according to (10.8). The second is

∑

i∈I

+
∑

i/∈I

≤
∑

i∈I

ετi/(b− a) +
∑

i/∈I

2Mτi < ε+ 2ε.

All added up,
∫ b
a L ◦ u̇−

∑m
i=1 Lti−ti−1

(

u(ti−1), u(ti)
)

< 4ε, and the theorem
follows. □

11. Uniqueness of minimizing paths

In this section L : T∞E(ω) → R will denote a strongly continuous, invariant,
convex Lagrangian. The question we will entertain is whether weak geodesics
are the unique minimizers of action

∫ b
a L ◦ u̇ among paths connecting fixed

u(a), u(b).
In complete generality uniqueness, of course, fails. For example, if L is

positively homogeneous, reparametrized weak geodesics will still minimize
action. Uniqueness may also fail more drastically even with L a Finsler
metric. Here is an example. Start with a Lagrangian Λ : T∞E(ω) → R that
vanishes on constants. For instance, denoting the average of ξ ∈ T∞

u E(ω) ≈
B(X) with respect to the measure µu by ⟨ξ⟩u,

Λ(ξ) =

∫

X

∣

∣ξ − ⟨ξ⟩u
∣

∣ dµu, ξ ∈ T∞
u E(ω),

is a possibility. The path v(t) = t, 0 ≤ t ≤ T , is a geodesic in H, and in
particular minimizes action of the Lagrangian L(ξ) = max

(

⟨ξ⟩u,Λ(ξ)
)

.
But take arbitrary nonconstant w, z ∈ C∞(X) and with piecewise C1

functions f, g : [0, T ] → R let

u(t) = t+ f(t)w + g(t)z, 0 ≤ t ≤ T.
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We choose f, g so that (u maps into H and) ⟨u̇(t)⟩u(t) = 1, i.e.,

0 =

∫

X

(

ḟ(t)w + ġ(t)z
)(

ω + f(t)ddcw + g(t)ddcz
)n

(11.1)

= ḟ(t)P
(

f(t), g(t)
)

+ ġ(t)Q
(

f(t), g(t)
)

,

where P,Q are polynomials determined by the choice of w, z. If f, g satisfy

f(0) = g(0) = 0, ḟ = Q(f, g), ġ = −P (f, g) on [0, T/2],

and f(t) = f(T − t), g(t) = g(T − t) for T/2 ≤ t ≤ T , then (11.1) holds.
When T is small, this initial value problem is solvable, and furnishes a path
u in H connecting 0 and T . Now suppose that P (0, 0) =

∫

X wωn = 0 and
Q(0, 0) =

∫

X zωn is small but nonzero. Since, again for small T and t ∈ [0, T ]

Λ(u̇(t)) < 1 = ⟨u̇(t)⟩u(t), and so

∫ T

0
L ◦ u̇ = T =

∫ T

0
L ◦ v̇,

it follows that u also minimizes action; and u is not v reparametrized.
Darvas’s L1 metric, L(ξ) =

∫

X |ξ| dµu for ξ ∈ T∞
u E(ω), supplies another

example. [D4, Proposition 3.43] and Theorem 10.1 imply that a C1 path
u : [a, b] → B(X) ∩ PSH(ω) minimizes action whenever it is monotone in
the sense that u(t) ≤ u(s) if t ≤ s.

If mere convexity of L does not imply uniqueness of minimizers, strict
versions of convexity do, at least in H11̄:

Theorem 11.1. Suppose u : [a, b] → H11̄ is piecewise C1 as a map into
B(X), v : [a, b] → H11̄ is a weak geodesic connecting u(a) and u(b), and
∫ b
a L ◦ u̇ = Lb−a(u(a), u(b)). If L is strictly convex in the sense that for all

w ∈ H11̄, ξ, η ∈ T∞
w E(ω)

(11.2) L
(ξ + η

2

)

<
L(ξ) + L(η)

2
unless ξ = η µw–almost everywhere,

then u = v. If, instead, L satisfies the weaker condition
(11.3)

L
(ξ + η

2

)

<
L(ξ) + L(η)

2
unless ξ = λ(ξ + η) µu–almost everywhere

with some λ ∈ [0, 1], then u = v ◦ φ, where φ : [a, b] → [a, b] is piecewise C1.

We have not written the minimization condition as
∫ b
a L ◦ u̇ =

∫ b
a L ◦ v̇

because we need not assume a priori that v is C1. But we do not know if
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the theorem holds more generally when u, v map into B(X) ∩ PSH(ω).—
It suffices to verify conditions (11.2), (11.3) for w = 0 only, since Rohlin’s
theory of Lebesgue spaces [R, Section 2, Nos 3, 4, 7] and the fact that
a general µw has no atoms yields a measure preserving bijection between
(X,µ0) and (X,µw).

In the proof of the next lemma we will use Mabuchi length, the La-
grangian L = M ,

(11.4) M(ξ) =
(

∫

X
ξ2 dµw

)1/2
, ξ ∈ T∞

w E(ω).

The corresponding action MT (w,w′), Mabuchi distance, is independent of
T . We will denote it d(w,w′).

Lemma 11.2. Consider a map u : [a, b] → H11̄. If for some c ∈ (a, b) the
restrictions u|[a, c], u|[c, b] are weak geodesics, and the left and right deriva-
tives ∂−u(c), ∂+u(c), computed pointwise on X, agree µu(c)–almost every-
where, then u is a weak geodesic.

Proof. It follows from He’s work [He] that if v : [α, β] → H11̄ is a weak
geodesic, then the family µv(t), t ∈ [α, β], is hereditarily tight (Definition
3.5). Indeed, He constructs smooth vk : [α, β] → H that, as maps into B(X),
converge to v uniformly and have ddcvk(t) uniformly bounded, k ∈ N, t ∈
[α, β], see [He, Theorem 1.3, and proof of Theorem 1.1]. Therefore dµvk(t)/dµ0
are uniformly bounded, say, by A. Since µv(t) is the weak limit of µvk(t), e.g.,
by [GZ2, Theorem 3.18], for all ξ ∈ C(X)

∣

∣

∣

∫

X
ξ dµv(t)

∣

∣

∣
= lim

k→∞

∣

∣

∣

∫

X
ξ dµvk(t)

∣

∣

∣
≤ A

∫

X
|ξ| dµ0.

Hence each µv(t) is absolutely continuous with respect to µ0, with Radon–
Nikodym derivative dµv(t)/dµ0 ≤ A, and this implies hereditary tightness.
(Note, though, that for the weak geodesic v : [a, b] → B(X) ∩ PSH(ω) of
Example 5.4, the family µv(t) is not hereditarily tight.)

In particular, the family dµu(t), t ∈ [a, b], is hereditarily tight. By The-
orem 9.1 h(t) = d(u(c− t), u(c+ t)) is a convex function of small t ≥ 0, it
vanishes at 0 and by Lemma 10.2 h′(0) = 2M(∂−u(c)) = 2M(∂+u(c)), cf.
(11.4). Hence h(t) ≥ 2M(∂−u(c))t. At the same time, by Lemma 7.3

d
(

u(c− t), u(c)
)

= d
(

u(c), u(c+ t)
)

= M
(

∂−u(c)
)

t,
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and so

h(t) = d
(

u(c− t), u(c+ t)
)

≥ d
(

u(c− t), u(c)
)

+ d
(

u(c), u(c+ t)
)

.

Thus u|[c− t, c+ t] is a shortest path for d between u(c± t); it is of constant
speed, too. By [D3, Theorem 1, and the discussion following it] this means
that u|[c− t, c+ t] is a weak geodesic. Therefore u itself is a weak geodesic.
Indeed, with the strip Sab = {s ∈ C : a < Res < b} and projection π : Sab ×
X → X, we need to check that

U : Sab ×X ∋ (s, x) 7→ u(Res)(x) ∈ R

is π∗ω–plurisubharmonic and maximal in the sense that (π∗ω + ddcU)n+1 =
0. Both hold because they hold on Sac ×X, Scb ×X, and on a neighborhood
of {c+ iR} ×X. □

The key to Theorem 11.1 is the following characterization of constella-
tions in which a triangle inequality degenerates:

Lemma 11.3. Suppose the Lagrangian L satisfies (11.3), and w,w′, w′′ ∈
H11̄. If with some S, T > 0

LS(w′, w) + LT (w,w′′) = LS+T (w′, w′′),

then w is on the weak geodesic v : [0, S + T ] → H11̄ connecting w′, w′′. If L
is strictly convex (condition (11.2)), then w = v(S).

Proof. Construct a path u : [0, S + T ] → B(X) ∩ PSH(ω) whose restrictions
u|[0, S], u|[S, S + T ] are weak geodesics connecting w′, w, respectively, w,w′′.
By [He, Theorem 1.1] u in fact maps into H11̄. With small τ > 0

LS+T (w′, w′′) ≤ LS−τ

(

w′, u(S − τ)
)

+ L2τ

(

u(S − τ), u(S + τ)
)

+ LT−τ

(

u(S + τ), w′′
)

≤ LS−τ

(

w′, u(S − τ)
)

+ Lτ

(

u(S − τ), w
)

+ Lτ

(

w, u(S + τ)
)

+ LT−τ

(

u(S + τ), w′′
)

≤ LS(w′, w) + LT (w,w′′) = LS+T (w′, w′′).

Hence L2τ (u(S − τ), u(S + τ)) = Lτ (u(S − τ), w) + Lτ (w, u(S + τ)). We
divide by 2τ and compute the limits as τ → 0 using Lemma 10.2. This is
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possible, since the family µu(t), t ∈ [a, b], is hereditarily tight by the initial
observation in the proof of Lemma 11.2. We obtain

(11.5) L
(∂−u(S) + ∂+u(S)

2

)

=
L(∂−u(S)) + L(∂+u(S))

2
,

If L is strictly convex, (11.5) implies ∂−u(S) = ∂+u(S) µw–almost every-
where. By Lemma 11.2 therefore u is a weak geodesic connecting w′, w′′,
and so coincides with v.

If L satisfies the weaker condition (11.3) only, we can still conclude
∂−u(S) = λ(∂−u(S) + ∂+u(S)) µw–almost everywhere, 0 ≤ λ ≤ 1. If one of
∂±u(S) is a.e. 0, then w is at 0 Mabuchi distance to w′ or w′′, hence coincides
with one of them. Otherwise λ ̸= 0, 1, and u can be linearly reparametized
on [S, S + T ] to a path ũ that satisfies ∂−ũ(S) = ∂+ũ(S) µw–almost every-
where. Lemma 11.2 again implies that w is on the geodesic v. □

Proof of Theorem 11.1. Let a < s < b, S = s− a, and T = b− s. Then

LS+T

(

u(a), u(b)
)

≤ LS

(

u(a), u(s)
)

+ LT

(

u(s), u(b)
)

≤

∫ s

a
L ◦ u̇+

∫ b

s
L ◦ u̇ =

∫ b

a
L ◦ u̇ = LS+T

(

u(a), u(b)
)

,

and all inequalities here must be equalities. If L is strictly convex, this
implies via Lemma 11.3 that u(s) = v(s), and so u = v.

If L satisfies (11.3) only, Lemma 11.3 gives u(s) = v(φ(s)) with some
function φ : [a, b] → [a, b]. If v is constant, this again means u = v. Oth-
erwise, on the one hand, Mabuchi distance along the weak geodesic v is
d(v(a), v(t)) = c(t− a), with c ̸= 0. On the other, Mabuchi distance along u
is a piecewise C1 function of s

d(u(a), u(s)) =

∫ s

a

(

∫

X
u̇(t)2 dµu(t)

)1/2
dt.

It follows that d
(

v(φ(a)), v(φ(s))
)

= c(φ(s) − φ(a)) is a piecewise C1 func-
tion of s, and so is φ(s). □
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