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Khovanov homology detects T(2,6)

Gage Martin

We show if L is any link in S3 whose Khovanov homology is iso-
morphic to the Khovanov homology of T (2, 6) then L is isotopic to
T (2, 6). We show this for unreduced Khovanov homology with Z
coefficients.

1. Introduction

Khovanov homology is a combinatorially defined, bi-graded R module
Khi,j(L,R) which is associated to an oriented link L ⊆ S3 [13]. The graded
Euler characteristic of Khovanov homology is the Jones polynomial. Many
of the topological applications of Khovanov homology come from algebraic
relationships to Floer homologies either implicitly through an analogy (e.g.
the definition of the s-invariant) or explicitly through a spectral sequence.

In the spirit of finding connections between topological information and
Khi,j(L,R) is the question of detection. Specifically, Khovanov homology
is said to detect a link L0 if given any link L then L is isotopic to L0

if and only if Khi,j(L,R) ∼= Khi,j(L0, R). Kronheimer and Mrowka showed
that Khovanov homology detects the unknot [14]. Khovanov homology is
also known to detect the unlink [9] [6], the Hopf link [5], the trefoil [4], the
connected sum of two Hopf links [23], the torus link T (2, 4) [23], and split
links [16].

In this paper we prove an additional detection result for Khovanov ho-
mology

Theorem 5. Let L be a link with Kh(L,Z) ∼= Kh(T (2, 6),Z). Then L is
isotopic to T (2, 6).

The proof of Theorem 5 is similar in spirt to the proof in [23] that
Khovanov homology detects T (2, 4) but uses Dowlin’s spectral sequence to
knot Floer homology, rather than the Kronheimer-Mrowka spectral sequence
to singular instanton Floer homology.
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2. Background

2.1. Khovanov homology

Khovanov homology is a combinatorially defined invariant that assigns to
an oriented link L ⊆ S3 a bi-graded R-module Khi,j(L,R) which is the ho-
mology of a chain complex CKh(D) associated to a diagram D for L [13].
The i grading is the homological grading and the j grading is the quantum
grading.

A choice of a basepoint p ∈ L defines an action of R[X]/X2 = 0 on
CKh(D). Quotienting by the image of this action and then taking homol-

ogy gives rise to reduced Khovanov homology K̃h
i,j
(L,R). The rank of

K̃h
i,j
(L,F2) is exactly half the rank of Khi,j(L,F2) [21, Corollaries 3.2.B-

C].
Multiple spectral sequences starting at Khovanov homology and converg-

ing to other homology theories have been constructed. We briefly recall the
spectral sequences that will be needed in the proof of Theorem 5.

Using a similar construction to Khovanov homology, Lee defined an in-
variant of an oriented link L ⊆ S3 called Lee homology Leei(L,Q), and from
the construction there is a spectral sequence from Khi,j(L,Q) to Leei(L,Q).
Lee showed that the total rank of Leei(L,Q) for an n-component link L is
2n and showed an explicit bijection between generators of Leei(L,Q) and
choices of orientations of L. The homological gradings in which Leei(L,Q)
is non-zero are determined by the pairwise linking numbers of the different
components of L [15].

Batson-Seed constructed a link splitting spectral sequence from Kho-
vanov homology. To simplify the exposition, we will restrict to the case that
L = K1 ∪K2 is a 2-component link which is what is relevant to the proof
of Theorem 5. We also define an additional grading ℓ on Khovanov ho-
mology given by ℓ = i− j. If L has two components, then the Batson-Seed
construction gives a spectral sequence from Khi,j(L,F2) to a homology the-
ory BSℓ(L,F2) where BS

ℓ+A(L,F2) ∼= Khℓ(K1 ⊔K2) ∼= ⊕ℓ1+ℓ2=ℓKhℓ1(K1)⊗
Khℓ2(K2) where A is some overall shift determined by L [6].

Pointed Khovanov homology is a generalization of reduced Khovanov ho-
mology to a link L with a set of base points p1, . . . , pm ∈ L and a correspond-
ing action of R[X1, . . . , Xm]/X2

1 = · · · = X2
m = 0 on CKh(L) for each base

point [7]. Dowlin constructed a spectral sequence from relatively δ′ = j − 2i
graded pointed Khovanov homology to relatively δ′ = 2M − 2A graded knot
Floer homology [7]. The version of pointed Khovanov homology Dowlin con-
structs is similar but slightly different than the earlier version defined by
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Baldwin-Levine-Sarkar [3]. As an example, when applied to a link with a
single basepoint, the Dowlin construction gives the reduced Khovanov ho-
mology reduced at that point while the Baldwin-Levine-Sarkar construction
does not. However, many formal properties of the theories are analogous,
compare the following lemma with Lemma 2.11 of [3].

Lemma 1. Let (L,p) be a pointed link diagram, and suppose that p con-
tains some point p0, and p

′ = p \ p0. Then there is a short exact sequence

0 → Σ0,1CKh(L,p′) → CKh(L,p) → Σ−1,−1CKh(L,p′) → 0

where Σi,j denotes shifts in the homological and quantum gradings. In par-
ticular

rankKhδ
′

(L,p) ≤ 2 rankδ
′+1Kh(L,p′)

where δ′ is a single Z grading given by j − 2i.

Proof. The chain level exact sequence follows immediately from the con-
struction of CKh(L,p) using an iterated tensor product of basepoint maps
and keeping track of the bi-gradings. □

2.2. Knot Floer homology, link Floer homology, and sutured

Floer homology

Knot Floer homology is an invariant that assigns to an oriented link L ⊆ S3

a bi-graded R-module ĤFK(L). The two gradings are the Maslov grading
M and the Alexander grading A [19].

Link Floer homology ĤFL(L) is a generalization of knot Floer homology
which is graded by an Alexander grading ai for each component of L in
addition to the Maslov grading M [20].

To recover knot Floer homology from link Floer homology for an n-
component link L, start with ĤFL(L) and define a single Alexander grading
as the sum over the Alexander gradings of all components, A =

∑
ai. Then

ĤFL(L) graded by A and M + n−1
2

is isomorphic to ĤFK(L) [20].
Sutured Floer homology SFH(M) is a version of Heegaard Floer homol-

ogy defined for a balanced sutured manifold M . The homology SFH(M)
splits over relative SpinC structures on M [10].

The complement of a link S3 \ L is naturally a balanced sutured mani-
fold. The sutures are pairs of two oppositely oriented meridional sutures on
each component of the boundary. The sutured Floer homology SFH(S3 \ L)

is isomorphic to ĤFL(L) with the relative SpinC structures corresponding
to the multi-Alexander gradings.
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Given a properly embedded oriented surface with boundary S in a su-
tured manifold M , which satisfies some technical conditions about how ∂S
intersects the the sutures of M , S defines a sutured manifold decomposition
from M to M ′ = M \ Int(N(S)). Juhász showed that SFH(M ′) is isomor-
phic to the direct summands of SFH(M) corresponding to “outer” SpinC

structures [11].

2.3. Link Floer homology detects braids

An argument similar in spirit to arguments in [11, Theorem 1.5] and [8]
shows that link Floer homology detects braids in the complement of a fibered
component. This braid detection result is known to some experts but the
author is unaware of a proof in the literature so one is produced here. We
provide a proof a more general statement is needed in the proof of Theorem 5.
A version of the following argument was communicated to the author by John
Baldwin [1]. For a definition of a braid in the complement of a fibered knot
refer to [12, Definition 1.2].

Proposition 2. Suppose L ⊆ M is a link with l components with a fibered
component K and M \ L is irreducible. Then L \K is a braid in the comple-

ment of K if and only if ĤFL(L) has rank 2l−1 in the highest (and lowest)
non-zero Alexander grading associated to K.

Proof. Consider a fiber surface S bounded by K which intersects L \K
minimally. Cutting open the sutured manifold M \ L along S \ L gives a
new sutured manifold N . The sutured Floer homology of N is isomorphic
to the link Floer homology of L supported in a constant aK grading of
1
2
c(S, t) = χ(S) + I(S)− r(S, t), where aK is the Alexander grading associ-

ated to K [11, Theorem 3.11]. For a definition of 1
2
c(S, t), see [11, Defini-

tion 3.8].
The sutured manifold N contains l − 1 pairs of parallel sutures corre-

sponding to the base points on the components of L \K. Removing these su-
perfluous pairs of sutures gives a new sutured manifoldN ′ and rk(SFH(N)) =
2l−1 rk(SFH(N ′)). Finally, rk(SFH(N ′)) = 1 if and only if N ′ is a product
sutured manifold [10, Prop 9.4] [11, Theorem 1.4]. The manifold N ′ is a
product sutured manifold exactly when L \K is a braid in the complement
of K.

To see that c(S, t) is the lowest non-zero aK grading, consider increasing
the genus of the Seifert surface for K by adding h handles to the genus g
surface S in the complement of L to obtain a new surface S′ of genus g + h.
Then the sutured manifold obtained by cutting open along S′ is not taut if
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i = 0 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

j = 18 Z
j = 16 Z Z
j = 14 Z/2Z
j = 12 Z Z
j = 10 Z/2Z
j = 8 Z
j = 6 Z
j = 4 Z

Table 1: The Khovanov homology of the torus link T(2,6) computed using
SageMath [22]

h ≥ 1 so the link Floer homology in aU grading 1
2
c(S′, t) is zero [10, Prop 9.8]

and one can compute that c(S′, t) = c(S, t)− 2h.
The rank in the lowest non-zero Alexander grading associated to K is

the same as the rank in the highest non-zero Alexander grading associated
to K because of the symmetry of Link Floer homology. □

Taking L ⊆ S3 and the fibered knot to be the unknot gives the following
corollary.

Corollary 3. Suppose L ⊆ S3 is a link with l components with an unknotted
component U and each component of L \ U has non-zero geometric linking

with U . Then L \ U is a braid in the complement of U if and only if ĤFL(L)
has rank 2l−1 in the highest (and lowest) non-zero Alexander grading asso-
ciated to U .

Proof. The condition that each component of L \ U has non-zero geometric
linking with U ensures that S3 \ L is irreducible and so the result follows
from Proposition 2. □

Remark 4. For the case with the unknot, if D intersects L in n points then
a simple computation of c(D, t) shows that the highest non-zero Alexander
grading will be n/2.

3. Khovanov Homology detects T(2,6)

In this section, we show that Khovanov homology detects the torus link
T(2,6). For reference, the Khovanov homology is shown in Table 1.
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Theorem 5. Let L be a link with Kh(L,Z) ∼= Kh(T (2, 6),Z), then L is
isotopic to T (2, 6).

Theorem 5 follows from the two propositions below.

Proposition 6. If Kh(L,Z) ∼= Kh(T (2, 6),Z), then L is a 2-component link
with linking number 3 and each of the components is an unknot.

Proposition 7. If Kh(L,Z) ∼= Kh(T (2, 6),Z), then one component of L is
a braid in the complement of the other component.

Proof of Theorem 5 from Propositions 6 and 7. From Propositions 6 and 7,
L must be β̂ ∪ U where β is a 3-braid whose closure is an unknot and U is
the braid axis.

Up to isotopy in the complement of the braid axis, there are only three
possible 3-braids whose closures are the unknot, σ1σ2, σ

−1
1 σ−1

2 and σ1σ
−1
2 so

L must be one of these braids together with its braid axis [18, Theorem 12.1].
The first two possibilities both represent T (2, 6). The final possibility using
the braid σ1σ

−1
2 gives the link L6a2 and Kh(L6a2,Z) ̸∼= Kh(T (2, 6),Z) be-

cause they have different ranks [17]. □

Proof of Proposition 6. The fact that Kh(L,Z) ∼= Kh(T (2, 6),Z) means that
Kh(L,Z) is supported in even quantum gradings and so L has an even
number of components because the non-zero quantum gradings of Kh(L,R)
agrees mod 2 with the number of components of L.

The Lee homology of L has even rank in each homological grading and
has total rank 2n where n is the number of components of L. So then rank
inequalities from the spectral sequence between Khovanov homology and Lee
homology show that L has exactly two components because there are only
two homological gradings where the rank of Khovanov homology is more
than 1 and in each of these gradings the rank is exactly 2. Furthermore,
these homological gradings are i = 0 and i = 6 so the linking number of the
two components is 6/2 = 3 [15, Proposition 4.3].

Considering the Batson-Seed spectral sequence over F2 from Kh(L) to
Kh(L′) where L′ is the split link comprised of the two components of L [6,
Theorem 1.1]. The total rank of Kh(L,F2) is 12 and the total rank of Kh(L′)
is the product of the ranks of the Khovanov homology of the two components.
Additionally, over F2, the rank of Khovanov homology of a knot over F2 must
be twice an odd number because it is twice the rank of reduced Khovanov
homology over F2 which always has odd rank for a knot.

Then the only possible ranks for the Khovanov homologies of the com-
ponents of L are 2 and 6. Then the only possibilities for the components
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of L are either two unknots or an unknot and a trefoil because the unknot
is the only knot whose Khovanov homology has rank two over F2 [14, The-
orem 1.1] and the trefoil is the only knot whose Khovanov homology has
rank 6 over F2 [4, Theorem 1.4]. Examining the rank of Khovanov homology
of L over Q in each i− j grading, which is preserved by the Batson-Seed
spectral sequence up to an overall shift, rules out the possibility that one of
the components of L is a trefoil because there is no overall shift possible to
make the ranks agree with the ranks in i− j gradings of the tensor product
Kh(U)⊗Kh(T ) where U and T are the unknot and trefoil respectively. □

Proof of Proposition 7. To show that one component of L is braided with
respect to the other, we will use the spectral sequence from the pointed
Khovanov homology of L to a singly graded version of knot Floer homology
constructed by Dowlin [7]. In this proof, we will use δ′ to refer to both
grading Khovanov homology by j − 2i and grading knot Floer homology by
2M − 2A. We will use δ to refer to grading knot Floer homology by A−M .

From knowing Kh(L,Z) we can see that the reduced Khovanov homology
of L over F2 is rank 6. So then the reduced Khovanov homology of L over
Q has rank no greater than 6 for any choice of basepoint. Let (L,p) be the
pointed link L with a single basepoint on each component of L. Because
L is a 2 component link, the pointed Khovanov homology Kh(L,p) over
Q has rank no greater than 12. The fact that L is Khovanov thin means
that the reduced Khovanov homology of L over F2 is supported in a single
δ′ = j − 2i grading and then this is also true over Q for either choice of
basepoint. This implies that Kh(L,p) is supported in a single δ′ = j − 2i
grading by Lemma 1.

The Dowlin spectral sequence preserves the relative δ′ grading so ĤFK(L)
is supported in a single δ = −1/2δ′ grading.

Now we consider ĤFL(L) in order to show that one component is a braid
in the complement of the other component. By Corollary 3, we want to show
that in the top non-zero grading of either a1 or a2 the rank of ĤFL(L) is
exactly two.

Link Floer homology of a 2-component link L = K1 ∪K2 admits a spec-
tral sequence from ĤFL(L = K1 ∪K2) to ĤFL(K1)⊗ V . The grading a1 is

corresponds to the Alexander grading on ĤFL(K1)⊗ V up to an overall shift
by half the linking number of L [2, Lemma 2.4]. The differentials of the spec-
tral sequence lower the a2 grading. There is a similar spectral sequence from
ĤFL(L = K1 ∪K2) to ĤFL(K2)⊗ V .

The fact that each of the two components of L is an unknot and the
existence of the spectral sequence from ĤFL(L = K1 ∪K2) to ĤFL(K1)⊗

V implies that ĤFL(L) has rank at least 1 in the gradings M = 0, a1 =
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3/2 and M = −1, a1 = 3/2 where each generator sits in some unknown a2
grading [2, Lemma 2.4]. Similarly ĤFL(L) has rank at least 1 in the gradings
M = 0, a2 = 3/2 and M = −1, a2 = 3/2 where each generator sits in some

unknown a1 grading. The fact that ĤFL(L) is supported in a single δ = a1 +
a2 −M − 1/2 grading allows us to write the unknown gradings in terms of a
variable x. There is at least one generator in (M,a1, a2) gradings (0, 3/2, x)
and (−1, 3/2, x− 1), where these generators survive in the spectral sequence
induced by a2. Also there is at least one generator in (0, x, 3/2) and (−1, x−
1, 3/2), where these generators survive in the spectral sequence induced by
a1.

The symmetry of ĤFL(L) [20, Proposition 8.2] then tells us that ĤFL(L)
also has rank at least 1 in the following four gradings (−3− 2x,−3/2,−x),
(−3− 2x+ 1,−3/2,−x+ 1), (−3− 2x,−x,−3/2), (−3− 2x+ 1,−x+ 1,
−3/2).

From here the proof breaks into seven cases depending on the value of x.
There is a case where x > 5/2, a case where x < −3/2 and a case for each of
the following values 5/2, 3/2, 1/2,−1/2,−3/2. For each case we deduce that
one component of L is a braid in the complement of the other component.

We first address the case x = 3/2 which is the case that occurs if L =
T (2, 6). If the Dowlin spectral sequence was known to preserve the absolute
δ′ grading then this would be the only case that needed to be considered.

The case x = 3/2

Setting x = 3/2 we have that ĤFL(L) has rank at least 1 in the tri-
gradings (0, 3/2, 3/2), (−1, 1/2, 3/2) and (−1, 3/2, 1/2) and these genera-
tors survive in one or both of the spectral sequences induced by ai. Ad-
ditionally, ĤFL(L) also has rank at least 1 in gradings (−6,−3/2,−3/2),
(−5,−3/2,−1/2), and (−5,−1/2,−3/2) and these generators do not survive
in either spectral sequence. The partial complex with these six generators is
shown in Figure 1.

At this point, there are at most 6 more generators we can add to con-
struct a possible ĤFL(L). When we have finished adding generators to a

possible ĤFL(L), the end result must have even rank in every a1 grading
and every a2 grading, otherwise it is impossible to have spectral sequences
to ĤFL(K1)⊗ V and ĤFL(K2)⊗ V . Additionally, it must have the symme-

try that ĤFLM (L, a1, a2) ∼= ĤFLM−a1−a2
(L,−a1,−a2) [20, Proposition 8.2],

and it must be possible to add differentials changing the Maslov index by
1 so that there are spectral sequences induced by each ai grading with the
E∞ pages mentioned in the previous paragraph.

If we add generators with ai grading larger than 3/2 then the above
requirements about even parity in every grading and symmetry mean that
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-3/2

-1/2

1/2

3/2

-3/2 -1/2 1/2 3/2

Figure 1: A partial ĤFL(L) complex when x = 3/2 with 6 generators. The
dots represent bi-degrees where the partial complex has rank one.

-3/2

-1/2

1/2

3/2

-3/2 -1/2 1/2 3/2

Figure 2: A partial ĤFL(L) complex when x = 3/2 with 8 generators if
every generator has ai grading no greater than 3/2 in absolute value. The
dots represent bi-degrees where the partial complex has rank one.

we must add exactly two generators in that grading (which is now the top
grading) and so one of the components is a braid in the complement of the
other. So now we can assume that we only add generators whose ai gradings
are less than or equal to 3/2 in absolute value.

Having the appropriate E∞ pages of the two spectral sequences now
means that there must be a generator in grading M = −4, a1 = −1/2, a2 =
−1/2 and one in grading M = −2, a1 = 1/2, a2 = 1/2. The partial complex
with these generators is shown in Figure 2.

Now there are at most 4 more generators to add. If the end result will
have that neither component is a braid in the complement of the other
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-5/2

-3/2

-1/2

1/2

3/2

5/2

-5/2 -3/2 -1/2 1/2 3/2 5/2

Figure 3: A partial ĤFL(L) complex when x = 5/2 with 6 generators. The
dots represent bi-degrees where the partial complex has rank one. The ver-
tical columns represent a1 gradings with grading increasing by 1 from −5/2
to 5/2.

then two those generators must be added at either a1 = 3/2, a2 = −3/2 or
a1 = 3/2, a2 = 3/2 and the other two are then added in the appropriate place
for symmetry. There are three possible ways to add the two generators,
either both in a1 = 3/2, a2 = −3/2, both in a1 = 3/2, a2 = 3/2, or one in
a1 = 3/2, a2 = −3/2 and the other in a1 = 3/2, a2 = 3/2. For each of these
ways of adding generators, it is impossible to add differentials that give the
desired E∞ pages of both spectral sequences. So then the link L must have
that one of its components is a braid in the complement of the other.

The case x = 5/2

Setting x = 5/2 we have that ĤFL(L) has rank at least 1 in the tri-
gradings (0, 5/2, 3/2), (0, 3/2, 5/2) and (−1, 3/2, 3/2) and these generators
survive in one or both of the spectral sequences induced by ai. Additionally,
ĤFL(L) also has rank at least 1 in gradings (−6,−5/2,−3/2), (−6,−3/2,
−5/2), and (−5,−3/2,−3/2) and these generators do not survive in either
spectral sequence. The partial complex with these six generators is shown in
Figure 3.

Generators must be added to the gradings ai = ±5/2 to allow for the de-
sired spectral sequences to exist. There are two possible ways to do this while
preserving the symmetry, the first is adding generators at the (a1, a2) grad-
ings (5/2, 1/2) and (1/2, 5/2). Then two more generators must be added to
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preserve symmetry leaving a complex with 10 generators and only being able
to add up to two additional generators. The partial complex has exactly two
generators in the maximal ai grading for i = 1, 2. There is no way to add the
two additional generators in a way that increases the rank in these maximal
gradings while maintaining the needed spectral sequences and symmetry.

The second possibility is adding a generator in the (a1, a2) grading
(5/2, 5/2) and adding on in the grading (−5/2,−5/2) to preserve the sym-
metry. The partial complex with these generators is shown in Figure 4. At
this point there are eight generators in the complex and up to four more
that can be placed.

If we add generators with ai grading larger than 5/2 then the require-
ments about even parity in every grading and symmetry mean that we must
add exactly two generators in that grading (which is now the top grading)
and so one of the components is a braid in the complement of the other. So
now we can assume that we only add generators whose ai gradings are less
than or equal to 5/2 in absolute value.

Now there are at most 4 more generators to add. If the end result will
have that neither component is a braid in the complement of the other
then two those generators must be added at either a1 = 5/2, a2 = −5/2 or
a1 = 5/2, a2 = 5/2 and the other two are then added in the appropriate place
for symmetry. There are three possible ways to add the two generators,
either both in a1 = 5/2, a2 = −5/2, both in a1 = 5/2, a2 = 5/2, or one in
a1 = 5/2, a2 = −5/2 and the other in a1 = 5/2, a2 = 5/2. For each of these
ways of adding generators, it is impossible to add differentials that give the
desired E∞ pages of both spectral sequences. So then the link L must have
that one of its components is a braid in the complement of the other.

The case x = 1/2

Setting x = 1/2 we have that ĤFL(L) has rank at least 1 in the tri-
gradings (0, 3/2, 1/2), (0, 1/2, 3/2), (−1,−1/2, 3/2) and (−1, 3/2,−1/2) and
these generators survive in one of the spectral sequences induced by ai.
Additionally, ĤFL(L) also has rank at least 1 in gradings (−4,−3/2,−1/2),
(−4,−1/2,−3/2), (−3, 1/2,−3/2) and (−3,−3/2, 1/2) and these generators
do not survive in either spectral sequence. The partial complex with these
six generators is shown in Figure 5.

If we add generators with ai grading larger than 3/2 then the require-
ments about even parity in every grading and symmetry mean that we must
add exactly two generators in that grading (which is now the top grading)
and so one of the components is a braid in the complement of the other. So
now we can assume that we only add generators whose ai gradings are less
than or equal to 3/2 in absolute value.
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-5/2

-3/2

-1/2

1/2

3/2

5/2

-5/2 -3/2 -1/2 1/2 3/2 5/2

Figure 4: A partial ĤFL(L) complex when x = 5/2 with 8 generators. The
dots represent bi-degrees where the partial complex has rank one. The ver-
tical columns represent a1 gradings with grading increasing by 1 from −5/2
to 5/2.

Having the appropriate E∞ pages of the two spectral sequences now
means that there must be a generator in each of the following four gradings
(−3,−1/2,−1/2), (−1, 1/2, 1/2), (−2, 1/2,−1/2), and (−2,−1/2, 1/2). Af-
ter adding these four generators the rank of the complex is 12 and there are
no more generators to add. There are exactly two generators in the top a1
grading and so one of the components is a braid in the complement of the
other.

The case x > 5/2
When x > 5/2 the tri-gradings (0, 3/2, x), (−1, 3/2, x− 1), (0, x, 3/2),

(−1, x− 1, 3/2), (−3− 2x,−3/2,−x), (−3− 2x+ 1,−3/2,−x+ 1), (−3−
2x,−x,−3/2), and (−3− 2x+ 1,−x+ 1,−3/2) are all distinct and so rep-

resent eight different generators of ĤFL(L). The only way to add four gener-
ators so that all the ai gradings have even rank are by adding two at (a1, a2)
gradings (x, x) and (x− 1, x− 1) or at (x, x− 1) (x− 1, x). The Maslov

gradings are determined by ĤFL(L) being supported in a single δ grading.
The other two generators are then added to the appropriate gradings to
maintain symmetry. After adding these four generators the rank of the com-
plex is 12 and there are no more generators to add. There are exactly two
generators in the top a1 grading and so one of the components is a braid in
the complement of the other.
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Figure 5: A partial ĤFL(L) complex when x = 1/2 with 8 generators. The
dots represent bi-degrees where the partial complex has rank one.

All other cases
The arguments to show braidedness in the remaining cases are almost

identical to the cases shown and are not repeated. The argument for the case
x < −3/2 is similar to the case x > 5/2. The argument for the case x = −3/2
is similar to the case x = 5/2. Finally the argument for the case x = −1/2
is similar to the case x = 3/2. □
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[19] Peter Ozsváth and Zoltán Szabó. Holomorphic disks and knot invari-
ants. Advances in Mathematics, 186(1):58–116, August 2004.
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