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Algebraic entropy for smooth projective

varieties
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We show that the spectral radius for the action of a self map f of
a smooth projective variety (over an arbitrary base field) on its ℓ-
adic cohomology is achieved on the f∗ stable sub-algebra generated
by any ample class. This generalizes a result of Esnault-Srinivas
who had obtained an analogous result for automorphisms of sur-
faces. Over C we also show that this sub-algebra is naturally an
irreducible representation of a Looijenga-Lunts-Verbitsky type Lie
algebra acting on the cohomology of a smooth projective variety.

1. Introduction

Let X be a compact Kähler manifold and ω ∈ H2(X,R) be a (1, 1) form
corresponding to the choice of a Kähler metric. Let f : X → X be a surjective
and holomorphic self map of X. To any such pair (X, f) consisting of a
compact metric space and a continuous self map one can associate a real
number dtop(f), the topological entropy of the pair (X, f) [Bow71, Din71].

Let λ(f), λeven(f) and λp(f), 0 ≤ p ≤ dim(X) be the spectral radius
of f∗ acting on ⊕iH

i(X,Q), ⊕iH
2i(X,Q) and Hp,p(X,R) respectively. The

following fundamental theorem is due to Gromov-Yomdin.

Theorem 1.1. [Gro03, Yom87] With notations as above, dtop(f) =
log λ(f) = log λeven(f) = max

0≤p≤dim(X)
log λp(f).

Theorem 1.1 implies that for a surjective self map f of a smooth projec-
tive variety over C, the spectral radius of f∗ on the Hodge classes equals the
spectral radius on the entire cohomology (see [Ogu14] for a comprehensive
summary of the Gromov-Yomdin theory and its generalizations).

When working over an arbitrary base field there is no obvious and useful
notion of a topological entropy, however it still makes sense to look at the ac-
tion of f∗ on suitable cohomology theories. In this direction Esnault-Srinivas
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obtained the following result for automorphisms of smooth projective sur-
faces over an arbitrary base field.

Theorem 1.2. [ES13, Theorem 1.1] Let f : X → X be an automorphism of
a smooth projective surface over an arbitrary algebraically closed field k. Let
ℓ be a prime invertible in k. Let ω ∈ H2(X,Qℓ) be an ample class. Then for
any embedding of Qℓ inside C,

1) the spectral radius for the action of f∗ onH∗(X,Qℓ) coincides with the
spectral radius for its action on the sub-space spanned by fn∗ω, n ∈ Z.

2) Let V (f, ω) be the largest f∗-stable sub-space of H2(X,Qℓ) in the
orthogonal complement of ω (with respect to the cup-product pair-
ing). Then f∗ is of finite order on V (f, ω).

The proof of Theorem 1.2 is quite delicate, and uses (among other things)
the classification of smooth projective surfaces in positive characteristics. It
also relies on lifting of certain K3 surfaces to characteristic 0 based on
[LM11], and uses Hodge theory to resolve this case. Given the motivic nature
of Theorem 1.2, it is natural to ask for analogues of the Gromov-Yomdin
theory over an arbitrary base field (see [ES13], Section 6.2). Indeed one has
the following result.

Theorem 1.3. [Shu19, Corollary 1.2] Let f : X → X be any self map1 of
a proper scheme over an arbitrary field k. Let ℓ be a prime invertible in k
and let k̄ be an algebraic closure of k. Then (for any embedding of Qℓ in C)
the spectral radius of f∗

k̄
on the entire ℓ-adic cohomology equals the spectral

radius for its action on ⊕iH
2i(Xk̄,Qℓ).

The proof Theorem 1.3 uses the theory of weights [Del80] to obtain
restrictions on the analytic properties of a zeta function associated to the self
map f [Shu19, Definition 2.12]. The analytic properties of the zeta functions
are then used to obtain restrictions on the behavior of the spectral radius
with respect to the weight filtration [Shu19, Theorem 1.1], which in turn
implies Theorem 1.3.

Now suppose X is a smooth projective variety, then one can ask more
refined questions and in particular look for analogues of Theorem 1.2, (1) for
higher dimensional varieties. In this direction we have the following result.

1In what follows by self map we will mean an endomorphism of a scheme.
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Theorem 1.4 ([Tru16]). Let f : X → X be a dominant self map of a
smooth projective variety over an algebraically closed field k. Let ℓ be a
prime invertible in k. Then for any embedding of Qℓ inside C, the spectral
radius of f∗ on the ℓ-adic cohomology of X equals the spectral radius of f∗

acting on its Chow group modulo numerical equivalence.

Motivated by the methods in [Tru16] and in an forthcoming article
[SV20, Appendix B] we obtain the following generalization of Theorem 1.2
to higher dimensions.

Theorem 1.5. Let f : X → X be a self map of a smooth projective variety
over an arbitrary algebraically closed field k. Let ℓ be a prime invertible in
k. Let [ω] ∈ H2(X,Qℓ) be an ample class. Then the spectral radius of f∗

acting on H∗(X,Qℓ) (with respect to τ : Qℓ →֒ C) is independent of τ , and
coincides with the spectral radius of f∗ on the numerical Gromov algebra
(see Definition 3.2).

Theorem 1.5 in particular shows that for smooth projective varieties
with Pic(X) = Z, the spectral radius of a self map on the ℓ-adic cohomology
coincides with its degree (see Corollary 3.8). Finally in a hope to generalize
Theorem 1.2, (2), we propose an approach via a Looijenga-Lunts-Verbistky
Lie algebra [LL97, Ver96]. The reader is referred to Section 4 for details.

2. Some preliminaries from intersection theory

Throughout this article we will work over an arbitrary algebraically closed
field k. A variety (over k) is a finite type, separated and integral scheme over
k. Let ℓ be a prime invertible in k. We fix once and for all an isomorphism
of Qℓ(1) with Qℓ. Hence we will talk of cycles classes with values in ℓ-adic
cohomology without the Tate twist. We also fix an embedding

(2.1) τ : Qℓ →֒ C.

2.1. Summary of results needed from intersection theory

Let X be a smooth, projective variety over k of dimension r. Let Z∗(X)
be the free abelian group generated by the set of closed subvarieties of X
and graded by codimension [Ful98, Section 1.3]. Let A∗(X) be the graded
(by codimension) Chow ring of X [Ful98, Section 8.3]. The group underly-
ing A∗(X) is a graded quotient of Z∗(X) by rational equivalence. We shall
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write A(X) := ⊕iA
i(X) when we want to ignore the grading and the ring

structure.
The components of an algebraic cycle [Z] ∈ Z∗(X) are the subvarieties

of X which appear in [Z] with non-zero coefficients. To any closed subscheme

Y ⊆ X we can associate an effective cycle [Y ] in Z∗(X) whose components
are precisely the irreducible components of Y [Ful98, Section 1.5].

Let A∗
num(X) (resp. A∗

num(X)Q, resp. A
∗
num(X)R) be the graded (by codi-

mension) ring of algebraic cycles on X modulo numerical equivalence with
Z (resp. Q, resp. R) coefficients [Kle68, Section 1.1].

Let A∗
hom(X)Q be the graded (by codimension) ring of algebraic cy-

cles on X modulo homological equivalence (with respect to ℓ-adic cohomol-
ogy2 ), with Q coefficients (see [Del77, Chapitre 4] and [Mil16, Chapter 6]
for a construction of cycle classes). Note that A∗

num(X)Q is a quotient of
A∗

hom(X)Q, which in turn is a Q-subalgebra of ⊕iH
2i(X,Qℓ).

For a morphism f : X → Y of smooth, projective varieties over k, there
is a pullback map f∗ : A∗(Y ) → A∗(X) and a pushforward map f∗ : A(X) →
A(Y ) [Ful98, Proposition 8.3 (a) and Theorem 1.4]. The pullback is a mor-
phism of graded rings and the pushforward is a morphism of abelian groups.
Further they satisfy a projection formula [Ful98, Proposition 8.3 (c)]. In
particular there exists a group homomorphism πX∗ : A(X) → A(Spec (k)) ≃
Z · [Spec (k)] [Ful98, Definition 1.4]. A∗

num(X) and A∗
hom(X)Q also have

similar functorial properties [Kle68, Section 1]. We shall denote the in-
tersection product on rings by ‘·’. For cycles [Z] and [Z ′] of complimentary
co-dimension in X, by abuse of notation we shall also denote the integer
πX∗([Z] · [Z ′]) by [Z] · [Z ′].

Let [Ps
k] ∈ An−s(Pn

k), 0 ≤ s ≤ n be the class of a s-dimensional linear
subspace of Pn

k . The Chow ring A∗(Pn
k) is isomorphic to the graded ring

Z[x]/(xn+1) under the map [Pn−1] → x [Ful98, Proposition 8.4] and the class
[Ps

k] generates the free abelian group An−s(Pn
k), 0 ≤ s ≤ n [Ful98, Exam-

ple 1.9.3].

Definition 2.1. The degree of [Z] ∈ As(Pn
k) is the integer [Z] · [Ps

k]. For a
subvariety Z of Pn

k by deg(Z) we mean deg([Z]).

For any two smooth, projective varieties X and Y (over k), there is an
exterior product map A∗(X)⊗Z A∗(Y ) → A∗(X ×k Y ) [Ful98, Section 1.10],
which is a morphism of graded rings [Ful98, Example 8.3.7]. We shall denote
the image of [Z]⊗ [Z ′] by [Z]× [Z ′].

2Conjecturally A∗

hom
(X)Q is independent of ℓ
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In what follows, we will need a bound (see Proposition 2.9) well known
to experts and proved using standard techniques. For ease of exposition we
present a short proof using Chow’s moving Lemma and the join construction
[Ful98, Example 8.4.6].

Definition 2.2. Two subvarieties V and W in a smooth projective variety
X are said to intersect properly, if the each component of V ∩W has the
right dimension (i.e. dim(V ) + dim(W )− dim(X)).

Remark 2.3. In a similar vein, cycles [V ] and [W ] in Z∗(X) are said to
intersect properly if each component of [V ] intersects each component of [W ]
properly.

Suppose now i : X →֒ Pn
k is a closed embedding of a smooth, projec-

tive variety of dimension r. Fulton’s definition of intersection multiplicities
implies the following statement [Ful98, Section 6.2, Section 7.1].

Proposition 2.4. Let [C] ∈ Z∗(Pn
k) be a cycle on Pn

k which intersects [X]
properly. Then,

i∗([C]) =
∑

j i(Zj ; [X], [C])[Zj ] ∈ A∗(X),

where Zj ’s are the irreducible components of the intersection of X with the
components of [C], and i(Zj ; [X], [C])’s are the intersection multiplicities
along the Zj ’s [Ful98, Definition 7.1].

Remark 2.5. By abuse of notation the cycle
∑

j i(Zj ;X,C)[Zj ] ∈ Z∗(X)
will also be denoted by [C] · [X]. Moreover if [C] is an effective cycle so is
[C] · [X] [Ful98, Proposition 7.1].

Let V ⊆ X be a closed subvariety of dimension d. Let L ⊆ Pn
k be a linear

subspace of dimension n− r − 1 disjoint from X. We denote by CL(V ) ⊆
Pn
k , the cone of V over L [Rob70, Section 2] or equivalently the join of V

and L [Ful98, Example 8.4.5]. It is a subvariety of dimension n+ d− r, and
of degree equal to the degree of V . Moreover V is an irreducible component
of CL(V ) ∩X and every component of CL(V ) ∩X is of dimension equal to
d [Rob70, Lemma 2].

Remark 2.6. Hence for any such L, we see that CL(V ) and X intersect
properly (see Defintion 2.2) and we let [CL(V )] · [X] denotes the correspond-
ing cycle on X (see Remark 2.5).
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For an arbitrary cycle [V ] =
∑

imi[Vi] ∈ Zr−d(X) we define

[CL([V ])] :=
∑

imi[CL(Vi)] ∈ Zr−d(Pn).

Let V and W be closed subvarieties of X. We define the excess of V
(relative to W ) to be −∞ if they do not intersect. Else it is defined to be
the maximum of the (non-negative) integers

dim(Y )− dim(V )− dim(W ) + dim(X),

where Y runs through all the components of V ∩W . We denote the excess
by eW (V ). For a cycle [V ] :=

∑
imi[Vi] in Z∗(X), we define eW ([V ]) :=∑

imieW (Vi). We have the following result from [Rob70] (used there to
prove the ‘Chow moving Lemma’).

Lemma 2.7. [Rob70, Main Lemma]
Let i : X →֒ Pn

k be a smooth, projective closed subvariety of dimension
r. Let W be a subvariety of X. For any cycle [V ] ∈ Z∗(X), there exists a
dense open subset U of G(n, n− r − 1), the Grassmanian of linear subspaces
in Pn of dimension n− r − 1, such that for any closed point x ∈ U , if Lx

denotes the corresponding linear subspace then,

(1) Lx ∩X = ∅.

(2) eW ([CL ([V ])] · [X]− [V ]) ≤ max (eW ([V ])− 1, 0).

2.2. An estimate for intersection product

As before let i : X →֒ Pn
k be a smooth, projective closed subvariety of dimen-

sion r. Let V and W be closed subvarieties of X. Let d be the dimension of
V . The following lemma is now easy to deduce from Lemma 2.7.

Lemma 2.8. There exist a positive integer k ≤ r + 1 and a sequence of
effective cycles {[Vj ]}0≤j≤k and {[Ej ]}1≤j≤k in Zr−d(X) such that,

(1) [V0] = [V ] in Zr−d(X).

(2) [Vj ] = [Ej+1]− [Vj+1] in Zr−d(X) for all 0 ≤ j ≤ k − 1.

(3) For all j ≥ 1, [Ej ] = i∗(deg ([Vj−1]) [P
n−d+r
k ]) in Ar−d(X). Thus [Ej ]’s

are ‘ambient’ cycles.

(4) Every component of [Vk−1] and [Vk] intersects W properly (see Defi-
nition 2.2 and Remark 2.3).
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In particular

[V ] =
∑k

j=1(−1)j+1[Ej ] + (−1)k[Vk] in Zr−d(X).

Proof. Let

[V0] := [V ] ∈ Zr−d(X).

For any integer j ≥ 1, having defined [Vj−1] ∈ Zr−d(X) and proven that
it is effective, we define

(2.2) [Ej ] := [CLj
([Vj−1])] · [X] ∈ Zr−d(X),

where Lj is linear sub-space of Pn of dimension n− r − 1 (see Remark 2.6),
chosen such that

e(i∗[CLj
([Vj−1])]− [Vj−1]) ≤ max(e([Vj−1]−)1, 0) (see Lemma 2.7).

Here the excess is with respect to W . Since [CLj
(Vj−1)] and [X] intersect

properly [Rob70, Lemma 2], Remark 2.5 implies that [Ej ] is an effective
cycle. For any integer j having defined [Vj−1] and [Ej ], we define,

[Vj ] := [Ej ]− [Vj−1] in Zr−d(X).

For any subvariety V ⊆ X, V is an irreducible component of CL(V ) ∩X
[Rob70, Lemma 2], thus the effectivity of [Vj ] for any j ≥ 1, is a consequence
of the effectivity of [Ej ].

Since e([V0]) = e([V ]) ≤ r, for any j ≥ r, the excess e([Vj ]) = 0. Let k − 1
be the smallest integer j with the property that e([Vk−1]) = 0. Then every
component of the algebraic cycles [Vk−1] and [Vk] intersects W properly.

For any j ≥ 1 since CL([Vj−1]) and X intersect properly [Rob70, Lemma
2], Proposition 2.4 implies that

(2.3) [Ej ] = i∗ ([CL([Vj−1])]) ∈ Ar−d(X).

For any j ≥ 1 since [CL([Vj−1])] as a cycle on Pn
k has degree equal to the

degree of [Vj−1] [Ful98, Example 8.4.5], thus (2.3) implies that,

[Ej ] = i∗
(
deg ([Vj−1]) [P

n−d+r
k ]

)
in Ar−d(X).

□

Now we derive a basic estimate which is needed later.
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Proposition 2.9. Let X ⊆ Pn
k be a smooth, projective variety. Then for

any two subvarieties V and W of complimentary dimension in X, |[V ] ·
[W ]| ≤ Cdeg(V )deg(W ), for a constant C independent of V and W .

Proof. We use Lemma 2.8 to construct a sequence of algebraic cycles
{[Vj ]}0≤j≤k and {[Ej ]}1≤j≤k in Zr−d(X) where d is the co-dimension of
V in X and satisfying properties (1)-(4) in Lemma 2.8.

Since

[V ] =
∑k

j=1(−1)j+1[Ej ] + (−1)k[Vk] in Zr−d(X),

one has that

(2.4) |[V ] · [W ]| ≤
k∑

j=1

|[Ej ] · [W ]|+ |[Vk] · [W ]|.

Note that [Ej ] = i∗
(
deg([Vj−1])[P

n+d−r
k ]

)
(see Lemma 2.8, (3)) and hence

for every j ≥ 1,

(2.5) [Ej ] · [W ] = deg(W )deg([Vj−1]).

Since every component of [Vk−1] intersects [W ] properly, [Vk] · [W ] is
bounded above by [Ek] · [W ] = deg(W )deg([Vk−1]) [Ful98, Proposition 7.1].
Combining (2.4) and (2.5) we get,

(2.6) |[V ] · [W ]| ≤




k∑

j=1

deg([Vj−1]) + deg([Vk−1])


 deg(W ).

Projection formula implies that for every j ≥ 1,

deg([Ej ]) = deg(X)deg([Vj−1]).

Since the [Ej ]’s and [Vj ]’s are effective,

deg([Vj ]) ≤ deg([Ej ]) = deg(X)deg([Vj−1]).



✐

✐

“9-Shuddhodan” — 2022/11/26 — 22:32 — page 859 — #9
✐

✐

✐

✐

✐

✐

Algebraic entropy for smooth projective varieties 859

Thus for every j ≥ 1

(2.7) deg([Vj ]) ≤ deg(X)jdeg(V ) ≤ deg(X)r+1deg(V ).

Thus (2.6) and (2.7) together imply that

(2.8) |[V ] · [W ]| ≤ (r + 2)deg(X)r+1deg(V )deg(W ).

□

Remark 2.10. If V and W intersect properly, then the bound in (2.8)
can be improved to [V ] · [W ] ≤ deg(V )deg(W ) [Hru12, Lemma 10.12]. Fur-
thermore the bound in Proposition 2.9 can be generalized (in an appropriate
sense) to Gysin pullbacks under regular embeddings of quasi-projective vari-
eties and proved without recourse to the moving lemma [SV20, Appendix C].

3. Gromov algebra

Let i : X →֒ Pn
k be a smooth, projective variety over an algebraically closed

field k of dimension r. Let [H] ∈ A1(X) be the class of a hyperplane sec-
tion. Let ω be the cohomology class of [H] in H2(X,Qℓ).

For j ≥ 1, let [H]j (resp. ωj) denote the jth self intersection product
(resp. self cup product) of [H] (resp. ω) in A∗(X) (resp. H∗(X,Qℓ)). Let
f : X → X be a self map and [Γf ] ∈ Ar(X ×k X) be the graph correspon-
dence. For integers 0 ≤ j ≤ r let

(3.1) δj(f) := [H]r−j · f∗([H]j) = f∗([H]j) · [H]r−j .

Note that we have an equality

(3.2) δj(f) = TrX(ωr−j ∪ f∗(ωj)) = TrX(f∗(ωj) ∪ ωr−j),

where ∪ is the cup product on H∗(X,Qℓ) and TrX is the usual trace map
on top degree cohomology.

Lemma 3.1. Using the above notations,

(3.3) (i× i)∗[Γf ] =

r∑

j=0

δr−j(f)([P
r−j
k ]× [Pj

k])
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Proof. The exterior product map A∗(Pn
k)⊗Z A∗(Pn

k) → A∗(Pn
k ×k P

n
k) is an

isomorphism of graded rings [Ful98, Example 8.3] and hence

(3.4) (i× i)∗[Γf ] =

r∑

j=0

nj([P
r−j
k ]× [Pj

k])

where for any j ≥ 0, nj =
(
(i× i)∗ [Γf ] ·

(
[Pn−r+j

k ]× [Pn−j
k ]

))
. The projec-

tion formula thus implies that

(3.5) nj = [Γf ] ·
(
[H]r−j × [H]j

)
,

and the result follows from Lefschetz trace formula [And04, Section 3.3.3].
□

Definition 3.2. The homological Gromov algebra AGr
hom(f, ω)Q

3 (resp. the
numerical Gromov algebra, AGr

num(f, [H])Q) is the smallest f∗-stable (unital)
sub-algebra of A∗

hom(X)Q (resp. A∗
num(X)Q) containing ω (resp. [H]).

The numerical Gromov algebra with real coefficients AGr
num(f, [H])R is

the R-algebra AGr
num(f, [H])Q ⊗Q R.

Let λi (resp. χi) be the spectral radius
4 of f∗ acting on Ai

num(X)Q, 0 ≤
i ≤ dim(X) (resp. Ai

hom(X)Q, 0 ≤ i ≤ dim(X)). Let λGr and χGr be the
spectral radii of f∗ acting on AGr

num(f, [H])Q and AGr
hom(f, ω)Q respectively.

Note that λGr is also the spectral radius of f∗ acting on AGr
num(f, [H])R.

Finally let µj be the spectral radius (with respect to τ in (2.1)) of f∗

acting on Hj(X,Qℓ), 0 ≤ j ≤ 2dim(X). Following lemma is obvious.

Lemma 3.3. Using the above notations we have inequalities

λGr ≤ max
0≤i≤dim(X)

λi ≤ max
0≤i≤dim(X)

χi ≤ max
0≤j≤ 2dim(X)

µj .

Further

λGr ≤ χGr ≤ max
0≤i≤dim(X)

χi.

3In what follows when k = C, we use Betti cohomology instead of ℓ-adic coho-
mology to define homological equivalence and hence to define AGr

hom(f, ω)Q. Thus
when k = C there is no dependence on an auxillary prime ℓ.

4In what follows the spectral radius of a linear endomorphism of a vector space
over a sub field of C is defined to be the maximum in absolute value of its complex
eigenvalues.
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We will also need the following lemma.

Lemma 3.4. Let {am,i}m≥1, 1 ≤ i ≤ s be a collection of sequences of com-
plex number. Let bi, i ≤ i ≤ s be arbitrary complex numbers. Then

lim sup
m

|
∑s

i=1 am,ibi|
1/m ≤ max

1≤i≤s
lim sup

m
|am,i|

1/m.

Proof. 5 The radius of absolute convergence of
∑

m≥0

∑s
i=1 biam,iz

m is at
least as large as the minimum of the radius of absolute convergence of∑

m≥0 am,iz
m. The desired result is now an immediate consequence of the

Cauchy-Hadamard formula for the radius of absolute convergence. □

Let V be any finite dimensional vector space over R (or C) and T : V →
V a linear map. Let || · || be any matrix norm. In what follows we will make
use of the following theorem due to Gelfand [Rud87, Theorem 18.9].

Theorem 3.5. lim sup
m

||Tm||1/m = ρ(T ), where ρ(T ) is the spectral radius

of T .

Let K be a normed field such that there exists an embedding τ : K →֒ C

of normed fields. Let V be any finite dimensional vector space over K and
T : V → V a linear map. We shall need the following standard result which
we state without a proof.

Proposition 3.6. lim sup
m

|Tr(Tm)|1/m = ρ(T ), where ρ(T ) is the spectral

radius of T .

Now we prove the principal result of this article.

Theorem 3.7. Let X be a smooth, projective variety over an arbitrary
algebraically closed field k of dimension r. Let [H] ∈ A1(X) (respectively
ω ∈ H2(X,Qℓ)) be the class of an hyperplane section in the Chow group
(respectively ℓ-adic cohomology). Let f : X → X be a self map of X. Then
all the inequalities in Lemma 3.3 are in fact equalities.

Thus the spectral radius of f∗ acting on H∗(X,Qℓ) (with respect to
τ : Qℓ →֒ C) is independent of τ , and coincides with the spectral radius of
f∗ on the numerical Gromov algebra.

5The short and elegant proof here was suggested to us by the referee.
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Proof. Let i : X →֒ Pn
k be an embedding with [H] being the class of the

hyperplane section under i. Clearly it suffices to show that

(3.6) λGr ≥ µi, 0 ≤ i ≤ 2r.

Let [Γfm ] ∈ Ar(X ×k X) be the graph of the mth iterate of f . As before
we denote by δj(f

m) = [H]r−j · (fm∗[H]j) = (fm∗[H]j) · [H]r−j (see Defini-
tion (3.1)). We shall first show that for any integer i ∈ [0, 2r],

(3.7) µi ≤ max
0≤j≤r

lim sup
m

|δj(f
m)|1/m.

It is clear from the definition of µi and δj(f
m) (see Equation 3.2) that

they specialise well, and thus it suffices to prove the bound (3.7), when k is
an algebraic closure of a finite field. Note that this is not the case with the
bound in (3.6). Hence we need this intermediate step. Hence we now assume
that k is an algebraic closure of a finite field, and that X and the self map
f are defined over this finite field.

The work of Katz-Messing [KM74, Theorem 2.1] and the Lefschetz trace
formula imply that for every integer i ∈ [0, 2r], there exist an algebraic cycle
πi
X ∈ Zr(X ×X)Q (the ith ‘Kunneth component’, see [And04, Section 3.3.3])

such that

(3.8) Tr(fm∗;H i(X,Qℓ)) = (−1)i[Γfm ] · π2r−i
X ,

representing the trace as an intersection product (on the product vari-
ety X ×k X). Recall that we have fixed an embedding τ : Qℓ →֒ C (see
(2.1)). Thus Qℓ is a normed field via this embedding. Proposition 3.6 and
(3.8) together imply that,

(3.9) µi = lim sup
m

|[Γfm ] · π2r−i
X |1/m, 0 ≤ i ≤ 2r.

There exist finitely many subvarieties W 2r−i
j ⊆ X ×k X of codimension

r (the components of the ‘Kunneth components’) and a constant C ′ such
that for every m ≥ 1,

(3.10) |[Γfm ] · π2r−i
X | ≤ C ′

∑

j

|[Γfm ] · [W 2r−i
j ]|, 0 ≤ i ≤ 2r.

The estimate in Proposition 2.9 (applied to the smooth projective va-
riety X ×k X ⊆ Pn2+2n

k ) and (3.10) imply that there exists a constant C ′′
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(depending only on i : X →֒ Pn
k and the choice of Kunneth components) such

that for every m ≥ 1,

(3.11) |[Γfm ] · π2r−i
X | ≤ C ′′deg([Γfm ])(

∑

j

deg(W 2r−1
j )), 0 ≤ i ≤ 2r.

The degree in (3.11) is with respect to the embedding X ×k X ⊆ Pn2+2n
k .

Moreover Lemma 3.3 implies that

deg(Γfm) =
∑r

j=0 δr−j(f
m)deg([Pr−j

k ]× [Pj
k]).

Hence (3.9) and (3.11) together with Lemma 3.4 imply that for any
integer i ∈ [0, 2r],

(3.12) µi ≤ max
0≤j≤r

lim sup
m

|δj(f
m)|1/m.

Thus we have obtained the bound (3.7) over an arbitrary algebraically
closed field.

For the rest of the proof we work over the algebraically closed field
k we started with. Let AGr

num(f, [H])R be the numerical Gromov algebra
with R-coefficients. Let ||.|| be any norm on the finite dimensional R-vector
space AGr

num(f, [H])R. Note that f∗ is a graded linear transformation of
AGr

num(f, [H])R. For every integer m ≥ 1, we denote the norm of the linear
map fm∗ acting on AGr

num(f, [H])R by ||fm∗||.
Recall that δj(f

m) = fm∗([H]j) · [H]r−j . Since the intersection product
is bilinear, the map from the jth graded part of AGr

num(f, [H])R to R, obtained
by taking intersection product with [H]r−j is linear. Consequently there

exists a constant C̃ ′ independent of m, such that for any m ≥ 1,

(3.13) |δj(f
m)| ≤ C̃ ′||fm∗(Hj)||, 0 ≤ j ≤ r.

Since f∗ is a linear map, (3.13) implies that there exists a constant C̃
independent of m such that, for any m ≥ 1,

(3.14) |δj(f
m)|1/m ≤ C̃1/m||fm∗||1/m, 0 ≤ j ≤ r.

Thus Theorem 3.5, (3.12) and (3.14) together imply

µi ≤ λGr, 0 ≤ i ≤ 2r.

□
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Corollary 3.8. Let X be a smooth, projective variety over an arbitrary
algebraically closed field k of dimension r. Let f : X → X be a self map such
that f∗(ω) = λω for some ample class ω ∈ H2(X,Qℓ) and integer λ. Then
the spectral radius of f∗ on H∗(X,Qℓ) is λ

r.

When k is of characteristic 0, Corollary 3.8 is a consequence of Serre’s
result [Ser60, Théorème 1]. Also note that the assumption of Corollary 3.8
is automatic when Pic(X) = Z.

4. Gromov algebra as a Lefschetz Module

The aim of this section is to give a representation theoretic perspective to the
(homological) Gromov algebra by relating it to the work of Looijenga-Lunts
[LL97] and Verbitsky [Ver96]. In doing so we hope that this picture will give
the right generalization of Esnault-Srinivas’s result (Theorem 1.2, (2)) to
higher dimensional varieties over C.

In the language of Gromov algebra, the proof of Esnault-Srinivas (over
C) uses polarized Hodge structure on H2(X,Q) [ES13, Proposition 5.1] to
obtain restrictions on eigenvalues of an automorphism of a surfaces on the
orthogonal complement (with respect to cup-product) of the Gromov algebra
with respect to any ample class. A natural question then is how do we
decompose the cohomology of a higher dimensional variety into f∗-stable
subspaces such that the Gromov algebra is a ‘natural’ component?

We now give a plausible answer to this question.

4.1. The LLV Lie algebra

Now we summarize the key construction from [LL97] and [Ver96].
Let K be a field of characteristic 0. Let M• be a Z-graded finite dimen-

sional K-vector space. Let h ∈ End(M) be such that h acts by i in degree
i. Thus the eigenspaces of h determine the grading of M•, and u ∈ End(M)
has degree i iff [h, u] = iu.

An endomorphism e ∈ End(M) of degree 2 is said to have the Lefschetz

property, if for every i ∈ Z, ei : M−i → Mi is an isomorphism. Equivalently
by the Jacobson-Morozov lemma this is equivalent to existence of a linear
transformation f ∈ End(M) such that f is of degree −2 such that [e, f ] = h.

Let a be a finite dimensional K-vector space. We regard a as a graded
abelian Lie algebra which is homogeneous of degree 2. We say that a graded
Lie homomorphism e : a → gl(M) has the Lefschetz property if for some
a ∈ a, e(a) has the Lefschetz property. Clearly having Lefschetz property
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is a Zariski open condition on gl(M), and by Jacobson-Morozov we have a
rational morphism f : a → gl(M) defined on this open subset. The Lie sub-
algebra of gl(M) generated by e(a), f(a) for all possible choices of a (denoted
by g(a,M)) is the LLV lie algebra. Note that ad(h) induces a grading on
g(a,M) and that g(a,M) is evenly graded under this action.

Definition 4.1. [Lefschetz Modules] We say that the pair (a,M) is a Lef-

schetz a-Module if g(a,M) is semisimple.

Basic properties of the Lefschetz Module. In what follows we fix a

as above.

(i) The collection of Lefschetz a-modules is closed under direct sums, tak-
ing tensor products and taking duals.

(ii) The category of Lefschetz a-modules is a semi-simple, Artinian and
Noetherian category.

(iii) Given a Lefschetz module M , any representation of g(a,M) is also a
Lefshcetz module (under the natural a-action). Moreover this corre-
spondence preserves irreducibility.

(iv) For any Lefschetz module M , g(a,M) is naturally graded and compat-
ible with the action on M .

4.2. Connections with the Gromov algebra

Let X be a smooth projective variety over C of dimension r. Let f : X → X
be a finite self-map. Then f∗ is an isomorphism on the top Betti cohomology
and hence by non-degeneracy of the cup-product pairing it is so on all of
H∗(X,Q). Let ω ∈ H2(X,Q) be an ample class.

Let a be the f∗ stable subspace generated by ω, considered as a graded
Lie algebra in degree 2. Note that a is by definition the degree 2 summand
of AGr

hom(f, ω)Q. Let M := H∗(X,Q)[r] be the shifted (by r) total Betti co-
homology of X. Note that there is a natural graded map from a → gl(M)
given by cup product, and we denote the associated Lie algebra g(a,M)
by g(f, ω). Following result is an immediate consequence of [LL97, Proposi-
tion 1.6].

Proposition 4.2. g(f, ω) is semi-simple and hence H∗(X,Q)[r] is a Lef-
schetz module over the degree 2 summand of AGr

hom(f, ω)Q.
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Remark 4.3. To be precise [LL97, Proposition 1.6] would show that
g(f, ω)⊗Q C is semi-simple, which then implies the same for g(f, ω) since
non-degeneracy of the Killing form can be checked after an extension of base
field.

We end this brief section by showing that AGr
hom(f, ω)Q is an irreducible

summand of H∗(X,Q)[r] under the action of g(f, ω).

Proposition 4.4. The homological Gromov algebra AGr
hom(f, ω)Q[r] is an ir-

reducible representation of g(f, ω) and hence equivalently also an irreducible
Lefschetz module.

Proof. We will at once show that AGr
hom(f, ω)Q[r] is a representation of g(f, ω)

and that it is an irreducible one. First note that the lowest graded piece of
AGr

hom(f, ω)Q[r] lies in the kernel of g(f, ω)<0, the negatively graded part of
g(f, ω). Thus [LL97, Proposition 1.12] implies that the g(f, ω) stable sub-
space generated by the lowest graded piece of AGr

hom(f, ω)Q[r] is generated by
the action of Lefschetz operators and hence is equal to AGr

hom(f, ω)Q[r]. Irre-
ducibility is a consequence of [LL97, Corollary 1.13], since the lowest graded
piece of AGr

hom(f, ω)Q[r] is a one dimensional space. □

Proposition 4.4 seems to suggest that the Gromov algebra is one piece of
a natural decomposition of the cohomology into f∗ stable subspaces. Thus it
would be interesting to study constraints analogous to Theorem 1.2 and The-
orem 3.7 on the other pieces of this decomposition. A natural starting point
would be the cohomology of compact hyper-Kählerian manifolds, where both
the LLV lie algebra and questions of entropy are rather well studied (see for
example [GLR19], [Obe19], [Ogu07]). We hope to come back to this question
in the future.
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