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Symplectic realization is a longstanding problem which can be
traced back to Sophus Lie. In this paper, we present an explicit
solution to this problem for an arbitrary holomorphic Poisson man-
ifold. More precisely, for any holomorphic Poisson manifold (X , π)
with underlying real smooth manifold X, we prove that there ex-
ists a holomorphic symplectic structure in a neighborhood Y of the
zero section of T ∗X such that the projection map is a holomorphic
symplectic realization of the given holomorphic Poisson manifold,
and moreover the zero section is a holomorphic Lagrangian sub-
manifold. We describe an explicit construction for such a new holo-
morphic symplectic structure on Y ⊆ T ∗X.
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1. Introduction

The notion of “symplectic realizations” can be traced back to Sophus Lie
who used the name “function group”. In [22], Lie defined a “function group”
as a collection of functions of the canonical variables (q1, · · · , qn, p1, · · · , pn)
which is a subalgebra under the canonical Poisson bracket and generated by a
finite number of independent functions ϕ1, · · · , ϕr. In modern language, this
means that Rr has a Poisson structure induced from the canonical symplectic
structure R2n in the sense that Φ = (ϕ1, · · · , ϕr) : R

2n −→ Rr is a Poisson
map. In the C∞-context, a symplectic realization of a Poisson manifold M ,
as defined by Weinstein [34] (called a full symplectic realization), is a Poisson
map from a symplectic manifold V to M which is a surjective submersion.
Since Sophus Lie’s treasure work on the theory of transformation group [22],
the following has become a central question:

Problem A. Does a symplectic realization always exist for a given Poisson
manifold?

In fact, this question is closely related to Lie’s theory on Lie groups. To
get a flavor of this, consider the Lie-Poisson manifold g∗ corresponding to a
finite dimensional Lie algebra g. A natural choice of a symplectic realization
is Φ : T ∗G→ g∗ with the canonical cotangent symplectic structure on T ∗G
and Φ being the left translation, where G is a Lie group with Lie algebra
g, and g∗ ∼= T ∗

eG. Lie himself proved that a symplectic realization always
exists locally for any smooth Poisson manifold of constant rank [22]. A local
existence theorem for symplectic realizations of general smooth Poisson man-
ifolds, was proved by Weinstein in 1983 [34]. Subsequently, Karasev [13] and
Weinstein [35] independently proved the global existence theorem by gluing
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methods. Indeed, they proved a stronger result: for any C∞-Poisson mani-
fold, there exists an essentially unique, distinguished, symplectic realization
which possesses a compatible local groupoid structure [35], a device which is
now altogether called a symplectic local groupoid [5]. Furthermore, the in-
finitesimal object corresponding to this local Lie groupoid – its so-called Lie
algebroid, as introduced by Pradines [29] – can be proved [5] to be isomorphic
to the cotangent Lie algebroid (T ∗M)π canonically associated to the Poisson
manifold (M,π). The bracket of this Lie algebroid essentially extends the
natural Lie bracket relation on exact forms: [df, dg]∗ = d{f, g} in an obvious
way. For more details on symplectic local groupoids, see [5, 14, 35].

For a given Poisson manifold (M,π), the pair of Lie algebroids
((T ∗M)π, TM), where TM is the standard tangent Lie algebroid of M ,
constitute an example of the so-called Lie bialgebroids [24]. From the theory
of integration of Lie bialgebroids of Mackenzie–Xu [25] (which extends the
classical theory of Drinfeld [10, 11] for integrating Lie bialgebras), it follows
that, under some mild topological assumption, a Lie groupoid with Lie alge-
broid (T ∗M)π automatically carries a compatible symplectic structure, and
is therefore a symplectic groupoid. As a consequence, any local Lie groupoid
with Lie algebroid (T ∗M)π – the existence of which is guaranteed [29] – gives
automatically a symplectic realization of the underlying Poisson manifold.
In this way, the Mackenzie–Xu integration method provided an alternative
proof of the existence of global symplectic realizations [25]. However, all
these results are existence results and are not constructive.

In 2001, while investigating Poisson sigma models, Cattaneo–Felder [4]
discovered an explicit construction for the symplectic groupoid of an in-
tegrable Poisson manifold. Over the past 20 years, this construction — a
certain quotient space of the Banach manifold of what would eventually be
recognized in [6] as A-paths in the cotangent Lie algebroid of M — inspired
many important works in Poisson geometry, among which the solution to
the problem of integrability of Lie algebroids [6]. Although local symplec-
tic groupoids are not mentioned explicitly in [4], an explicit construction of
local symplectic groupoids is essentially given in [4, Theorem 4.7] since the
hypothesis [4, Assumption 4.6] actually holds in a neighborhood of the unit
space. We refer the interested reader to [2] for more details on the relation
between the approach to the integration of general Lie algebroids developed
in [6] and the results on the integration of Poisson manifolds exposed in [4].
In particular, it is shown in [2] that, provided integrability is assumed, the
integration construction for Lie algebroids can be seen as a particular case
of the integration construction for Poisson manifolds. Furthermore, around
the same time, Ševera observed independently that the approach of [4] can
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be generalized to all Lie algebroids [30]. The main novelty in [6] is the pre-
cise integrability criterion guaranteeing the existence of global smooth Lie
groupoids.

Although a lot of works focus on symplectic realizations in the C∞-
context, very little exists and is known in the holomorphic context. A holo-
morphic Poisson manifold is a complex manifold X whose sheaf of holomor-
phic functions OX is a sheaf of Poisson algebras. Symplectic realizations can
be defined in a similar fashion as in the C∞-case. Thus a natural question is

Problem B. Does a symplectic realization always exist for a given holo-
morphic Poisson manifold? And, if so, is it possible to describe an explicit
construction of a certain class of distinguished ones?

To any holomorphic Poisson manifold (X , π) with underlying real
smooth manifold X, one associates two C∞-Poisson bivector fields. To see
this, write the holomorphic Poisson tensor π ∈ Γ(∧2T 1,0X) as πR + iπI ,
where πR and πI ∈ Γ(∧2TX) are bivector fields. Then both πR and πI are
indeed C∞-Poisson bivector fields [19]. In 2009, Laurent-Gengoux, Stiénon
and Xu proved that a holomorphic Poisson manifold is integrable if and only
if either (X,πR), or (X,πI) are integrable as a real C∞-Poisson manifold
(Theorem 3.22 [20]). Since any C∞-Poisson manifold admits a symplectic
local groupoid, as a consequence, this result of Laurent-Gengoux, Stiénon
and Xu implies that symplectic realizations do exist for any holomorphic
Poisson manifolds. However, the conclusion is again not constructive. The
purpose of the present paper is to describe an explicit construction of such a
holomorphic symplectic local groupoid based on the Cattaneo-Felder’s Pois-
son sigma model approach [4], and therefore to give an explicit affirmative
answer to Problem B.

Our approach is based on the observation that a holomorphic Pois-
son manifold (X , π), where π = πR + iπI , gives rise to a Poisson–Nijenhuis
[17, 26] structure (X,πI , J) on the underlying real manifold X such that
π♯R = π♯I ◦ J

T [19], where J : TX → TX is the underlying almost complex
structure. Indeed, holomorphic Poisson manifolds are equivalent to a special
class of Poisson–Nijenhuis manifolds, namely those where the Nijenhuis ten-
sor is almost complex. Therefore, holomorphic symplectic local groupoids
are equivalent to a special class of symplectic-Nijenhuis local groupoids in
the sense of Stiénon–Xu [31]. Our goal is to describe an explicit construction
of such a symplectic-Nijenhuis local groupoid. For this purpose, it suffices
to construct explicitly two compatible symplectic structures on the local
groupoid.
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At this point, we must also mention the recent work of Crainic-Mǎrcuţ
[8], where they present a very simple explicit construction of a symplectic
realization of an arbitrary C∞-Poisson manifold (M,π) on an open neigh-
borhood of T ∗M . In fact, another goal of our paper is to present a conceptual
proof of their theorem. The idea is quite simple indeed. Given a local Lie
groupoid Σ with Lie algebroid A, it is well known that, by choosing an A-
connection on A, one can construct a local diffeomorphism – the exponential
map [27] — from an open neighborhood of the zero section of A onto an
open neighborhood of the unit space in Σ. Now, if Σ is a local symplectic
groupoid, its Lie algebroid A is known to be isomorphic to (T ∗M)π — see [5].
Pulling back the symplectic form on Σ, which Cattaneo-Felder described
explicitly using Poisson sigma models [4, Equation (3.1), Theorem 3.3 and
Section 4.3], via such an exponential map, one obtains a symplectic form on
an open neighborhood of the zero section of the cotangent bundle T ∗M . One
can then verify directly that this symplectic form coincides with the one ob-
tained in [8] (see also [3] for some related results). By applying a combination
of techniques developed in the study of symplectic-Nijenhuis local groupoids
[31] and the theory of Lie bialgebroids and Poisson groupoids [24, 25], we
are able to describe explicitly the two compatible symplectic structures on
the local groupoid, and thus obtain the following main result of the paper.

Theorem A. Let X be a holomorphic Poisson manifold with underlying
real smooth manifold X, almost complex structure J , and holomorphic Pois-
son bivector field π ∈ Γ(∧2T 1,0X). Choose an affine connection ∇ on X. Let
ξ ∈ X(T ∗X) be the Poisson geodesic vector field of ∇ as in Example 4.2. De-
note by φξ

t the flow of ξ on T ∗X, and ωcan the canonical symplectic form on
T ∗X. The following then holds.

(i) There is an open neighborhood Y ⊂ T ∗X of the zero section such that
ωR and ωI ∈ Ω2(Y ) given, respectively, by

ωI =

∫ 1

0
(φξ

t )
∗ωcan dt, and

ωR = −

∫ 1

0

(
JT ◦ φξ

t

)∗
ωcan dt

are well-defined symplectic forms, and the (1, 1)-tensor

J = (ω♭
R)

−1 ◦ ω♭
I : TY → TY
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is an integrable almost complex structure on Y . In particular, Y en-
dowed with J defines a complex manifold Y .

(ii) The 2-form ω ∈ Ω2(Y )⊗ C defined by

ω :=
1

4
(ωR − i ωI)

is holomorphic symplectic on Y and the natural projection pr |Y : Y →
X is a holomorphic symplectic realization of (X , π).

(iii) The zero section is a Lagrangian submanifold of (Y , ω).

Moreover, different choices of the affine connection ∇ give rise to isomorphic
holomorphic symplectic realizations.

Note that if the Poisson structure is trivial (i.e. π = 0), then (Y , ω) re-
duces to the canonical holomorphic symplectic manifold T ∗X . Therefore,
the holomorphic symplectic manifold (Y , ω) can be considered as a deforma-
tion of the canonical holomorphic symplectic manifold T ∗X parameterized
by the holomorphic Poisson structure π. It would be interesting to investi-
gate how our result is related to Kodaira theory of deformation of complex
structures [15].

The present paper was influenced in large measure by Petalidou’s splen-
did work [28] on symplectic realizations of non-degenerate Poisson–Nijenhuis
manifolds. Making use of the computational approach of [8], Petalidou dis-
covered an explicit expression for the 2-forms on the symplectic realization.
However, her proof of their compatibility is, to the best of our understand-
ing, not entirely sound. In our approach, which is more conceptual, tracing
the hidden underlying groupoid structures reveals crucial for proving the
compatibility.

Finally, we would like to point out that our approach draws from various
integration results valid only in the context of smooth manifolds. It is not
clear whether this method will be of any use in the context of algebraic va-
rieties. So the analogue of Problem B for algebraic Poisson varieties remains
open.

Acknowledgements

We wish to thank Alberto Cattaneo, Camille Laurent-Gengoux, Joana Mar-
garida Nunes da Costa, Fani Petalidou, Mathieu Stiénon, Izu Vaisman and
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2. Holomorphic Poisson manifolds and symplectic

realizations

In this section, we briefly recall, for the sake of completeness, some standard
definitions on holomorphic Poisson structures. As most of those elementary
notions closely parallel the real smooth Poisson case, we simply point the
reader to the appropriate references for further details.

In what follows, let X be a complex manifold and X its underlying
real manifold. We will denote the structure sheaf of X by OX . Recall that
a complex structure on X is equivalent to an integrable almost complex
structure J on X, i.e. an endomorphism J : TX → TX of the underlying
real tangent bundle TX with J2 = −1 and with the vanishing Nijenhuis
torsion. Furthermore, the holomorphic tangent bundle TX is isomorphic
(as a complex vector bundle) to T 1,0X ⊂ TX ⊗ C.

Definition 2.1. By a holomorphic Poisson structure on a complex mani-
fold X , we mean that its structure sheaf OX is endowed with a bracket

{·, ·}U : OX (U)×OX (U) → OX (U), ∀ U ⊂ X

such that (OX , {·, ·}) is a sheaf of Poisson algebras.

A holomorphic Poisson manifold is a complex manifold X endowed with
a holomorphic Poisson structure. As in the smooth case, Definition 2.1 is
equivalent to a holomorphic Poisson bivector field on X .

Proposition 2.1 ([19, 20]). Let X be a complex manifold with a holomor-
phic Poisson structure {·, ·}. There is a unique bivector field π ∈ Γ(∧2T 1,0X)
satisfying

(1) ∂̄π = 0 and [π, π] = 0

such that for any open subset U ⊂ X and any f, g ∈ OX (U),

{f, g}U = ⟨π, ∂f ∧ ∂g⟩.

Conversely, any bivector field π ∈ Γ(∧2T 1,0X) satisfying (1) defines a
unique holomorphic Poisson structure on X .

In particular, π is called a holomorphic Poisson bivector field on X and
(X , π) a holomorphic Poisson manifold. Note that π induces a morphism of
holomorphic vector bundles π# : T ∗X → TX .
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The next lemma, which connects holomorphic Poisson structures on X

with Poisson-Nijenhuis structures on X (see Appendix B), will be needed in
the proof of a slightly more general version of Theorem A.

Lemma 2.1 ([19]). Let X be a complex manifold with almost complex
structure J . Assume that π = πR + iπI ∈ Γ(∧2T 1,0X), where πR and πI ∈
Γ(∧2TX). Then π is a holomorphic Poisson tensor if and only if

(i) (πI , J) defines a Poisson–Nijenhuis structure on X, and

(ii) π♯R = π♯I ◦ J
T : T ∗X → TX, where JT : T ∗X → T ∗X denotes the dual

of J .

A complex manifold X endowed with a holomorphic Poisson bivector
field π ∈ Γ(∧2TX ) is called holomorphic symplectic if the associated mor-
phism π# : T ∗X → TX is invertible. In that case, we also say that π is
non-degenerate.

Remark 2.1. If π is a non-degenerate holomorphic Poisson bivector field,
for any k > 0, π# extends to an isomorphism

∧kπ# : ∧kT ∗
X → ∧kTX ,

of holomorphic vector bundles. Then ω = (∧2π#)−1(π) is a holomorphic
symplectic 2-form.

Assume (X , πX ) and (Y , πY ) are two holomorphic Poisson manifolds.
A holomorphic map f : X → Y is said to be Poisson if the pushforward
f∗(πX ) is well defined and f∗(πX ) = πY .

Definition 2.2. Let X be a holomorphic Poisson manifold. A holomorphic
symplectic realization of X is a holomorphic symplectic manifold Y together
with a holomorphic map q : Y → X such that:

1) q : Y → X is a surjective submersion, and

2) q is a Poisson map.

Example 2.1. Let X be a complex manifold. Let π = 0 be the zero bivec-
tor field on X . Then π is a Poisson bivector field and (X , π) is a holomor-
phic Poisson manifold. The holomorphic cotangent bundle T ∗X , endowed
with the canonical symplectic structure and the natural projection map
q : T ∗X → X gives a holomorphic symplectic realization of X .
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Example 2.2. Let g be a finite dimensional complex Lie algebra. Its com-
plex dual g∗ admits a canonical linear holomorphic Poisson structure, called
Lie-Poisson structure. Let G be a complex Lie group with Lie algebra g.
Then G is a complex manifold, and T ∗G, equipped with the canonical holo-
morphic symplectic structure and the left translation q : T ∗G→ T ∗

eG
∼= g∗,

defines a holomorphic symplectic realization of g∗.

3. Symplectic local groupoids: The Cattaneo-Felder

construction

Let M be a real smooth manifold endowed with a Poisson bivector field
π ∈ Γ(∧2TM). In this section, we recall an explicit construction, due to
Cattaneo–Felder [4], for the symplectic local groupoid associated with (M,π).
The fundamental idea is to construct it as a quotient of the space of all paths
of a certain type in the cotangent Lie algebroid of M . Cattaneo–Felder re-
fer to these paths as solutions of the constraint equation (“Gauss law”) [4,
Equation (3.2)]1. These paths characterize those whose values under the
momentum map of an infinite dimensional Hamiltonian action vanish. The
construction can be conceptually separated in two parts. The first is valid
for an arbitrary Lie algebroid and constructs a local Lie groupoid out of a
Lie algebroid (Theorem 3.1). The second explicitly deals with the symplectic
structure by inducing a symplectic form on the local groupoid constructed
in the first part (Theorem 3.2).

Let I = [0, 1] be the closed unit interval, and n the dimension of M .
For a smooth vector bundle E →M of rank k, consider the space P̃ p(E) =
Cp(I, E) of Cp-paths valued in E. It can be endowed with the structure of
a smooth Banach manifold [18] by choosing a trivializing C∞-atlas
(φi : E|Ui

→ Rn × Rk)i∈J for E and defining a family (φ̃i)i∈J by

φ̃i : C
p(I, E|Ui

) → Cp(I,Rn × R
k) : f 7→ φi ◦ f.

It is easily checked that the change of charts φ̃i ◦ φ̃
−1
j are indefinitely Frechet-

differentiable with respect to the Cp-norm on Cp(I,Rn+e), and therefore the
family {φ̃i} induces an atlas for paths that fit in a single trivializing local
chart for E. It is straightforward to extend it to an atlas for all paths and

1This construction was subsequently extended to arbitrary Lie algebroids in [6]
and the paths became known as A-paths. Note that in [4], Cattaneo–Felder did
not use the terminology ‘local symplectic groupoids.’ However, [4, Theorem 4.7]
essentially gave an explicit construction of the local symplectic groupoid since [4,
Assumtion 4.6] is always satisfied in a neighborhood of the unit space M .
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thus P̃ p(E) is an infinite dimensional smooth (i.e. a C∞-) Banach manifold.

Let A be a Lie algebroid over M with projection p : A→M and anchor
ρ : A→ TM . In what follows, we will mostly be concerned with the space
P̃ 1(A) of C1-paths valued in A. We will abbreviate the notation by letting
P̃ (A) = P̃ 1(A). Recall that an element a : I → A in P̃ (A) is called an A-path
if

(2) ρ
(
a(t)

)
=
dγ(t)

dt
,

where γ(t) = (p ◦ a)(t) is the base path. We will denote by P (A) the set
of all A-paths. It is easy to see that P (A) is a closed infinite dimensional
Banach submanifold of P̃ (A).

In a way that closely parallels the case of finite dimensional manifolds,
one can define [18] the tangent bundle T P̃ (A) of P̃ (A) as a certain collection
of derivations. However, for what we will need, it is enough to recall that
there exists a natural isomorphism

τ : T P̃ (A) → P̃ (TA)

of the tangent bundle of P̃ (A) with C1-paths valued in TA. Explicitly, for a
given v ∈ T P̃ (A), choose a path θ : I → P̃ (A) such that v = d

ds

∣∣
s=0

θs. Then

(3) (τv)(t) ≡
d

ds

∣∣∣∣
s=0

(θs(t)) ∈ Tθ0(t)A.

Fibrewise, τ then gives an isomorphism

τ : TaP̃ (A) → {X ∈ P̃ (TA) | X(t) ∈ Ta(t)A}

for all a : I → A in P̃ (A).
Now let Σ ⇒M be a local Lie groupoid with Lie algebroid A, source

and target maps α, β : Σ →M , and unit map ε :M → Σ. Let exp : Γ(A) →
Bis(Σ ⇒M) be the usual exponential map, where Bis(Σ ⇒M) is the set of
local bisections of Σ ⇒M [23]. Recall that Bis(Σ ⇒M) acts on A by the
differential of the conjugation map. Let us denote this action by

Ad : Bis(Σ ⇒M) → Aut(A).

Set

âd(X)
∣∣∣
a0

:=
d

dt

∣∣∣∣
t=0

Adexp(tX)(a0)
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for all X ∈ Γ(A) and all a0 ∈ A. In particular, we have a map âd : Γ(A) →
X(A), where X(A) denotes the space of all vector fields on A.

It is well known [2, 4, 6, 12] that Σ ⇒M can be reconstructed as a
quotient of P (A) by a certain integrable distributionD(PA) ⊂ TP (A). More
explicitly, for any a ∈ P (A), denote

Ha :=

{[
t 7→ âd(ξ(t))|a(t) +

dξ(t)

dt
|γ(t)

]
∈ P̃ (TA)

∣∣∣∣ ∀ξ : I → Γ(A), ξ(0) = ξ(1) = 0

}
,

where γ(t) is the base path of a(t), and

dξ(t)

dt

∣∣∣∣
γ(t)

∈ Aγ(t)

is naturally identified with a vertical tangent vector in Ta(t)A. Define, ∀a ∈
P (A),

Da(PA) := τ−1Ha,

where τ : T P̃ (A) → P̃ (TA) is the isomorphism (3). The most important
facts we will need are summarized in the following theorem. For details see
[6].

Theorem 3.1. The following statements hold.

(i). D(PA) is a finite codimensional integrable distribution on P (A).

(ii). Let F(A) be the foliation integrating D(PA). Then there is an open
neighborhood Ploc(A) ⊂ P (A) of the natural embedding ofM into P (A)
as constant paths, where the space of leaves

P̄loc(A) := Ploc(A)/(F(A) ∩ Ploc(A))

is a finite dimensional smooth manifold. By

(4) q : Ploc(A) → P̄loc(A)

we denote the quotient map.
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(iii). The maps

α : P (A) →M : a 7→ a(0),

β : P (A) →M : a 7→ a(1),

ε :M → P (A) : m 7→ a(t) ≡ 0m,

descend to smooth maps ᾱ : P̄loc(A) →M, β̄ : P̄loc(A) →M , and ε̄ :
M → P̄loc(A) on the quotient. Furthermore, there is an open neigh-
borhood of the constant diagonal embedding

M →֒M ×M →֒ Ploc(A)×β,M,α Ploc(A)

where the concatenation operation on paths induces a well defined local
multiplication

µ̄ : P̄loc(A)×β̄,M,ᾱ P̄loc(A) → P̄loc(A)

on P̄loc(A). Finally, with µ̄ as multiplication, and ᾱ, β̄ and ε̄ as, respec-
tively, source, target and unit maps, P̄loc(A) ⇒M has the structure of
a local Lie groupoid with Lie algebroid A.

When A is the cotangent Lie algebroid (T ∗M)π of a smooth Poisson
manifold (M,π), one obtains the following theorem.

Theorem 3.2 ([4, 7]). Let (M,π) be a Poisson manifold, and let A denote
its corresponding cotangent Lie algebroid (T ∗M)π. The following statements
hold.

(i). For all a ∈ P̃ (A), and all u, v ∈ TaP̃ (A), define

(5) ω̃can(u, v) =

∫ 1

0
ωcan((τu)(t), (τv)(t))dt.

Then ω̃can is a symplectic form on P̃ (A). Here ωcan ∈ Ω2(T ∗M) de-
notes the canonical symplectic form on T ∗M .

(ii). There exists a symplectic form ω on P̄loc(A), with which the local
groupoid P̄loc(A) ⇒M from Theorem 3.1 (iii) becomes a symplectic
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local groupoid. Moreover, we have

(6) q∗ω = ι∗ω̃can,

where q : Ploc(A) → P̄loc(A) is the quotient map, and ι : Ploc(A) →֒
P̃ (A) is the natural inclusion.

Remark 3.1. Some historical remarks are in order. Part (i) of Theorem 3.2
was proved in [4] — see [4, Equation (3.1), Theorem 3.3 and Section 4.3].
Part (ii) was explicitly proved in [4] in the case of an integrable Poisson
manifold — see [4, Theorem 4.7]. However, by restricting to a neighborhood
of the unit space, one can adapt the argument to prove the existence of
a local symplectic groupoid integrating a given Poisson manifold, since [4,
Assumption 4.6] holds automatically. This was done in full details in [7].

Before we close this section, let us record the following proposition, which
will be needed later on. Its proof is straightforward and follows immediately
from the standard construction of P̄loc(A).

Proposition 3.1. Let A and B be Lie algebroids over the same base man-
ifold M , and let ψ : A→ B be a Lie algebroid morphism over the identity
map.

(i) The induced map on path spaces

P̃ (ψ) : P̃ (A) → P̃ (B) : [t 7→ a(t)] 7→ [t 7→ ψ(a(t))]

preserves A-paths, and descends to a morphism of local Lie groupoids

P̄ (ψ) : P̄loc(A) → P̄loc(B)

making the diagram

(7)

Ploc(A) Ploc(B)

P̄loc(A) P̄loc(B)

P̃ (ψ)

q′q

P̄ (ψ)

commute. Here q and q′ are the respective quotient maps as in (4).



✐

✐

“1-Xu” — 2023/2/8 — 23:59 — page 916 — #14
✐

✐

✐

✐

✐

✐

916 D. Broka and P. Xu

(ii) The diagram

(8)

TP (A) TP (B)

P̃ (TA) P̃ (TB)

P̃ (ψ)∗

τ ◦ ι∗τ ◦ ι∗

P̃ (ψ∗)

commutes. Here, by abuse of notations, ι denotes both embeddings
P (A) → P̃ (A) and P (B) → P̃ (B), and P̃ (ψ∗) : P̃ (TA) → P̃ (TB) is
the map induced, as in part (i), from the tangent map ψ∗ : TA→ TB.

4. Exponential maps

In Lie theory, the classical exponential map establishes a local diffeomor-
phism from an open neighborhood of zero in a Lie algebra to the corre-
sponding local Lie group. This construction extends to Lie algebroids and
local Lie groupoids. Unlike the Lie algebra case, however, one needs to choose
some geometrical structure, namely an A-connection on A. In this section,
we recall some basic facts about the exponential map for Lie groupoids,
and describe the latter explicitly in the case of the local Lie groupoid of
Theorem 3.1 (iii).

Let A be, as before, a Lie algebroid over M . By an A-connection on A
we mean an R-bilinear map

∇ : Γ(A)× Γ(A) → Γ(A) : (X,Y ) 7→ ∇XY

satisfying the conditions

∇fXY = f∇XY, and

∇X(fY ) = (ρ(X)f)Y + f∇XY,

for all X,Y ∈ Γ(A) and f ∈ C∞(M).

Example 4.1. Any linear connection ∇̃ on the vector bundle A induces
an associated A-connection on A by the formula ∇XY = ∇̃ρ(X)Y . However,
not every A-connection on A is of this form.
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Definition 4.1. An A-geodesic (or a geodesic A-path) is an A-path a : I →
A satisfying the geodesic equation:

∇a(t)a(t) = 0

for any t ∈ I.

An A-connection on A also defines a map h : A×M A→ TA, called a
horizontal lifting [21]:

h(a, b) = b̄∗(ρ(a))− τb
(
(∇ab̄)|x

)
∈ TbA,

for any x ∈M and a, b ∈ Ax. Here b̄ ∈ Γ(A) is any section satisfying b̄(x) = b,
and τb denotes the canonical linear isomorphism between the fiber Ax and
the vertical tangent space of A at the point b. It is not hard to check that
h(a, b) does not depend on the choice of the extension b̄.

Definition 4.2. The geodesic vector field of ∇ is the vector field ξ ∈ X(A)
defined by

ξa = h(a, a)

for any a ∈ A.

In what follows, for a given A-connection ∇ on A, we will denote by φ∇
t

the flow of its geodesic vector field.

Proposition 4.1. Let A be a Lie algebroid, and ∇ an A-connection on A.
The following holds.

(i). There is a neighborhood U ⊂ A of the zero section such that φ∇
t is

defined for all t ∈ I and,

(ii). for all a0 ∈ U , the path [t ∈ I 7→ a(t) = φ∇
t (a0)] is A-geodesic.

Proof. (i) Denote by ms : A→ A the fibrewise scalar multiplication by
s ∈ R. Let ξ ∈ X(A) be the geodesic vector field of ∇. It is easily
checked that sξa = (ms)

−1
∗ ξsa for all s > 0 and all a ∈ A. It then fol-

lows that

sφ∇
ts(a) = φ∇

t (sa),

where one side is defined exactly when the other is. Rescaling locally,
this yields the claim.
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(ii) Fix any a0 ∈ U ⊂ A, and let a(t) = φ∇
t (a0). Denote by γ(t) = p(a(t))

the underlying base path. We have

p∗(ȧ(t)) = p∗(ξ(a(t))) = p∗(h(a(t), a(t))) = ρ(a(t)).

Hence a(t) is indeed an A-path. Choose any time-dependent section
ā : I ×M → A such that ā(t, p(a(t))) = a(t). Then

∇a(t)a(t) =
∂

∂t
ā(t, γ(t)) +∇a(t)ā(t, γ(t)),

=
[
ȧ(t)− āt∗(γ̇(t))

]
+∇a(t)ā(t, γ(t))

= ȧ(t)− ξ(a(t))

= 0.

Thus the conclusion follows. □

Example 4.2. Let (M,π) be a Poisson manifold, and (T ∗M)π its cotangent
Lie algebroid. Choose an affine connection ∇TM : X(M)× X(M) → X(M)
on M . Let ∇T ∗M : X(M)× Γ(T ∗M) → Γ(T ∗M) be the corresponding lin-
ear connection on T ∗M–the dual bundle of TM . Introduce a Lie algebroid
(T ∗M)π-connection ∇ : Γ(T ∗M)× Γ(T ∗M) → Γ(T ∗M) on (T ∗M)π by

∇λν = ∇T ∗M
π♯(λ) ν, ∀λ, ν ∈ Γ(T ∗M).

In local coordinates {qi} on M , assume that

∇TM
∂

∂qi

∂

∂qj
=

∑

k

Γk
ij

∂

∂qk
and π =

∑

ij

πij
∂

∂qi
∧

∂

∂qj
.

Then the corresponding geodesic vector field ξ ∈ X(T ∗M) has the local ex-
pression:

ξ =
∑

ij

piπ
ij ∂

∂qj
+
∑

ijkl

pkplπ
kiΓl

ij

∂

∂pj
,

where {qi, pi} are the induced local coordinates on T ∗M . We call ξ the
Poisson geodesic vector field of ∇TM (it was called Poisson spray in [8]).

Let ∇ be an A-connection on A, and Σ ⇒M a local Lie groupoid in-
tegrating A with source and target maps α and β, respectively. For any
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x ∈M , there is an affine connection on the source fiber Σx = α−1(x), which
we will denote by ∇̄x. It is defined [27] uniquely by

(9) ∇̄x
XL|α−1(x)

(Y L|α−1(x)) = (∇X Y )L|α−1(x),

for any X,Y ∈ Γ(A). Here XL denotes the left-invariant vector field on Σ
associated to X.

Definition 4.3 ([27]). Let∇ be an A-connection on A, and Σ ⇒M a local
Lie groupoid with Lie algebroid A. The groupoid exponential map defined by
∇ is the map exp∇ : A→ Σ, defined on a neighborhood of the zero section
in A, and which, on each fiber Ax, is given by the ordinary exponential map
of the affine connection ∇̄x on Σx.

When no risk of ambiguity exists, we shall simply denote “exp∇” by
“exp”, hiding the dependency on the A-connection ∇.

It can be proved that exp is smooth [27]. Also note that, by definition,
α ◦ exp = p, where p : A→M is the base point projection. In particular, for
any a0 ∈ A, the exponential path t 7→ exp(ta0) is a source-path in Σ.

Letting U ⊂ A as in Proposition 4.1 (i), we define

(10) Φ : U → P (A) : a0 ∈ U 7→ [t ∈ I 7→ φ∇
t (a0)],

i.e. Φ(a0) is the A-geodesic stemming from a0. One should think of Φ as a
kind of exponential map at the level of A-paths [6]. Formally, the relation
between Φ and the groupoid exponential map of Definition 4.3 is summa-
rized in Proposition 4.2. Its proof is a consequence of the following simple
lemma, which relates, for a given Lie algebroid element a0 ∈ A, the groupoid
exponential path exp(ta0) to the A-geodesic φ∇

t (a0) stemming from a0.

Lemma 4.1. Let U ⊂ A be as in Proposition 4.1 (i) and fix any a0 ∈ U .
Let a = Φ(a0) be the associated geodesic A-path, i.e. a(t) = φ∇

t (a0). Also
let r(t) = exp(ta0) be the associated exponential path in Σ. Then r(t) is a
source-path that satisfies the conditions:

{
[Lr−1(t)]∗ṙ(t) = a(t) ∀t ∈ I, and

r(0) = ε(p(a0)), ṙ(0) = a0.

Here, for any g ∈ Σ, the map Lg : Σβ(g) → Σα(g) denotes the left multiplica-
tion by g.
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Proof. From Eq. (9), it follows that

0 = ∇̄x
ṙ(t) ṙ(t) = [Lr(t)]∗

(
∇[Lr−1(t)]∗ṙ(t)

[Lr−1(t)]∗ṙ(t)
)
.

Hence the A-path [Lr−1(t)]∗ṙ(t) is A-geodesic. Since we also have

[Lr−1(0)]∗ṙ(0) = ε(p(a0)) · r(0) = a0,

the result follows from the unicity of geodesics. □

The proof of the following proposition is a straightforward consequence
of the construction of the local groupoid P̄loc(A) ⇒M of Theorem 3.1 com-
bined with Proposition 4.1 and Lemma 4.1 (see [6, 12]).

Proposition 4.2. Let ∇ be an A-connection on A and U ⊂ A be as in
Proposition 4.1. Then, up to choosing a sufficiently small open subset
Ploc(A) ⊂ P (A) as in Theorem 3.1 (ii), the restriction of the groupoid expo-
nential map exp |U : U → P̄loc(A) is a diffeomorphism onto its image. More-
over, the diagram

(11)

U Ploc(A)

P̄loc(A)

Φ

q
exp

commutes. Here q : Ploc(A) → P̄loc(A) is the quotient map as in (4).

The following simple technical lemma will be useful in our subsequent
discussions.

Lemma 4.2. Let ∇ be an A-connection on A, U ⊂ A and Ploc(A) ⊂ P (A)
as in Proposition 4.2. Let ψ : A→ A be a morphism of Lie algebroids over
the identity map, and Φ : U → Ploc(A) be the map as in (10).

(i) For any a ∈ U and v ∈ TaA, we have

(12) evt(τ(ι∗(Φ∗(v)))) = (φ∇
t )∗(v), ∀t ∈ I.

Here evt denotes the evaluation map of a path at time t. Also recall
that ι denotes the embedding P (A) →֒ P̃ (A).
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(ii) With the notation of Proposition 3.1, we have, for any a ∈ U and any
v ∈ TaA:

(13) evt(τ(ι∗(P̃ (ψ)∗(Φ∗(v))))) = (ψ∗ ◦ (φ
∇
t )∗)(v), ∀t ∈ I.

Proof.

(i) This follows immediately from Eq. (3).

(ii) By commutative diagram (8), we have τ ◦ ι∗ ◦ P̃ (ψ)∗ = P̃ (ψ∗) ◦ τ ◦ ι∗.
Hence

evt(τ(ι∗(P̃ (ψ)∗(Φ∗(v))))) = evt(P̃ (ψ∗)(τ(ι∗(Φ∗(v)))))) = (ψ∗ ◦ (φ
∇
t )∗)(v),

as claimed. □

5. Symplectic realizations of Poisson manifolds

Let (M,π) be a Poisson manifold, and A its cotangent Lie algebroid (T ∗M)π.
Consider the symplectic local groupoid (P̄loc(A) ⇒M,ω) as in Theorem 3.2
(ii).

Now, fix ∇ an A-connection on A, and let U ⊂ A be a sufficiently small
open neighborhood of the zero section as in Proposition 4.2. Set

(14) ω := exp∗ ω

to be the pullback of ω by the groupoid exponential map. Then ω is a
symplectic form on U .

Proposition 5.1. The symplectic form ω can be explicitly expressed as
follows:

(15) ω =

∫ 1

0
(φ∇

t )
∗ωcan dt,

where ωcan ∈ Ω2(T ∗M) is the canonical symplectic form on T ∗M , and φ∇
t

is the flow of the geodesic vector field ξ ∈ X(A) corresponding to ∇.

Proof. According to the commuting diagram (11), we have exp∗ = Φ∗ ◦ q∗,
and by Eq. (6), we have q∗ω̄ = ι∗ω̃can. Thus

ω = Φ∗ι∗ ω̃can.
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On the other hand, ∀a ∈ U and ∀u, v ∈ TaA, we have

(
Φ∗ι∗ω̃can

)
(u, v) =

∫ 1

0
ωcan([τ(ι∗(Φ∗(u)))](t), [τ(ι∗(Φ∗(v)))](t)) dt

=

∫ 1

0
ωcan((φ

∇
t )∗(u), (φ

∇
t )∗(v)) dt

=

∫ 1

0

(
(φ∇

t )
∗ωcan

)
(u, v) dt,

where we used Eq. (5) for the first equality, and Eq. (12) for the second
equality. The conclusion thus follows. □

As an immediate consequence of Eq. (15), we recover the following theo-
rem, part (i) of which was proved by Crainic-Mǎrcuţ by a direct computation
[8]. See also [3] for related results.

Theorem 5.1. Let (M,π) be a Poisson manifold and A = (T ∗M)π its
cotangent Lie algebroid. Fix ∇ an A-connection on A and let ξ ∈ X(A) be
the associated geodesic vector field. Also let U ⊂ A be, as in Proposition 4.2,
a sufficiently small open neighborhood of the zero section in A so that, in
particular, the flow φ∇

t (a0) of ξ is defined for all t ∈ I, and all a0 ∈ U . Then,

(i) the projection pr |U : U ⊂ T ∗M →M together with the symplectic form
ω ∈ Ω2(U), as defined by Eq. (15), is a symplectic realization of (M,π);
and

(ii) the zero section of T ∗M is a Lagrangian submanifold of U .

The geodesic vector field ξ ∈ X(A) is called a Poisson spray in [8, 28].

6. Symplectic-Nijenhuis local groupoids

There is a one-to-one correspondence between Poisson manifolds and sym-
plectic local groupoids. This is in fact a special case of the Mackenzie-Xu
correspondence (Theorem A.1) recalled in the appendix below. Such a cor-
respondence can also be extended to a one-to-one correspondence between
Poisson-Nijenhuis manifolds and symplectic-Nijenhuis local groupoids. This
result is due to Stiénon–Xu [31], which we recall in Theorem 6.1. In this sec-
tion, we briefly go over the main idea of its proof.

Let Σ ⇒M be a local Lie groupoid with source and target maps α : Σ →
M and β : Σ →M , respectively, and with unit map ε :M →֒ Σ. Recall that
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a (1, 1)-tensor N̄ : TΣ → TΣ on Σ is said to be multiplicative if it defines a
morphism of local Lie groupoids

(16)

TΣ TΣ

TM TM

N̄

α∗ β∗α∗ β∗

N̄ |ε∗(TM)

Here TΣ ⇒ TM is the tangent local groupoid. Note that it is implicitly
assumed, as part of the condition, that N̄(ε∗(TM)) ⊂ ε∗(TM).

Definition 6.1. A symplectic-Nijenhuis local groupoid is a symplectic local
groupoid (Σ ⇒M,ω) equipped with a multiplicative (1, 1)-tensor N̄ : TΣ →
TΣ such that the triple (Σ, ω, N̄) is a symplectic-Nijenhuis manifold.

Remark 6.1. Any symplectic-Nijenhuis local groupoid defines two Poisson
local groupoid structures on the same underlying local groupoid Σ ⇒M .
Indeed, let (Σ ⇒M,ω, N̄) be a symplectic-Nijenhuis local groupoid and de-
note by π̄ ∈ Γ(∧2TΣ) the Poisson bivector field given by inverting ω. Then
the pair (Σ ⇒M, π̄) is a Poisson local groupoid. Moreover, from Proposi-
tion B.1, it follows that the bivector field π̄N̄ defined by

(17) π̄♯
N̄

= N̄ ◦ π̄♯

is another multiplicative Poisson structure on Σ, and thus in particular gives
another Poisson local groupoid (Σ ⇒M, π̄N̄ ). Note that, in general, the
Nijenhuis tensor N̄ : TΣ → TΣ may not be invertible, and therefore the
Poisson bivector field π̄N̄ is not necessarily non-degenerate. In particular, we
do not automatically have two symplectic groupoid structures on Σ ⇒M .

The following theorem is due to Stiénon–Xu [31].

Theorem 6.1.

(i) The unit space of a symplectic-Nijenhuis local groupoid inherits an
induced Poisson–Nijenhuis manifold structure.

(ii) Given a Poisson–Nijenhuis manifold (M,π,N), there is a unique, up
to isomorphisms, symplectic–Nijenhuis local groupoid whose induced
Poisson–Nijenhuis structure on the unit space is (M,π,N).
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In other words, there is a one-to-one correspondence between Poisson–
Nijenhuis manifolds and symplectic-Nijenhuis local groupoids.

We will sketch a proof of this theorem since we will need some interme-
diate results for our argument later on (see Proposition 6.1), which seem to
not have appeared in the literature.

Proof of Theorem 6.1. To prove (i), let (Σ ⇒M,ω, N̄) be a symplectic-
Nijenhuis local groupoid. Let π̄ be the Poisson bivector field on Σ which
is the inverse of ω. The pair (Σ ⇒M,ω) is a symplectic local groupoid. It
is standard [5, 35] that the pushforward

(18) π := α∗π̄

is a well defined Poisson bivector field on M , and that the Lie algebroid of
Σ ⇒M is isomorphic to the cotangent Lie algebroid (T ∗M)π of (M,π).

Now, let π̄N̄ ∈ Γ(∧2TΣ) be the bivector field on Σ as defined by Eq.
(17). Then the pair (Σ ⇒M, π̄N̄ ) is a Poisson local groupoid. Analogous to
Eq. (18), set

(19) π′ := α∗π̄N̄ .

Then π′ is a well defined Poisson bivector field on M as well [36]. Finally,
from Proposition B.1, it follows that the Schouten bracket [π̄, π̄N̄ ] vanishes,
and thus we have [π, π′] = 0.

On the other hand, the Lie groupoid morphism N̄ : TΣ → TΣ as in
(16) induces a map N = N̄ |ε∗(TM) : TM → TM on its unit space, which
is, clearly, a (1, 1)-tensor. The Nijenhuis torsion free condition for N then
follows from that of N̄ . Moreover, it is clear that

(20) π′♯ = N ◦ π♯.

Thus (M,π,N) is indeed a Poisson–Nijenhuis manifold, as desired.
Conversely, to see (ii), let (M,π,N) be a Poisson–Nijenhuis manifold.

Let A = (T ∗M)π be the cotangent Lie algebroid of (M,π), and P̄loc(A) ⇒M
be the corresponding local Lie groupoid as in Theorem 3.1. Let ω be the
multiplicative symplectic form on P̄loc(A) as in Theorem 3.2 (ii), and π̄ be its
associated Poisson bivector field. Then, under the correspondence between
Lie bialgebroids and Poisson local groupoids spelled out in Theorem A.1,
the Poisson groupoid (P̄loc(A) ⇒M, π̄) is associated to the Lie bialgebroid
((T ∗M)π, TM).
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On the other hand, out of the same Poisson–Nijenhuis structure (M,π,N),
we can construct another natural Lie bialgebroid ((T ∗M)π, (TM)N ) [16].
Here, the Lie algebroid (T ∗M)π is, as usual, the cotangent Lie algebroid
of (M,π). The Lie algebroid (TM)N consists of the triple (TM, ρN , [·, ·]N )
defined as follows. The underlying vector bundle is the tangent bundle TM
of M , while the anchor ρN and bracket [·, ·]N are given, respectively, by

ρN (X) = NX, and

[X,Y ]N = [NX,Y ] + [X,NY ]−N [X,Y ], ∀X,Y ∈ Γ(TM).

One should think of (TM)N as a twisted version of the tangent Lie algebroid
TM , whose twist is given by the Nijenhuis tensor N .

To this Lie bialgebroid ((T ∗M)π, (TM)N ), we can apply Theorem A.1 to
obtain a second natural multiplicative Poisson bivector field π̄′ on P̄loc(A),
which makes the pair (P̄loc(A) ⇒M, π̄′) into a Poisson local groupoid.

To complete the proof of part (ii), it remains to prove that the two
multiplicative Poisson structures π̄ and π̄′ on P̄loc(A) satisfy the condition:

(21) [π̄, π̄′] = 0.

Indeed, assuming Eq. (21) holds, let

(22) N̄ = (π̄′)♯ ◦ ω♭ : T P̄loc(A) → T P̄loc(A).

From Proposition B.2, it follows that N̄ is indeed a Nijenhuis tensor, and
therefore (P̄loc(A), π̄, N̄) is a Poisson-Nijenhuis manifold. Moreover N̄ is a
multiplicative (1, 1)-tensor. Thus it follows that (P̄loc(A) ⇒M,ω, N̄) is a
symplectic-Nijenhuis local groupoid.

In order to prove Eq. (21), let δ : Γ(∧•T ∗M) → Γ(∧•+1T ∗M) be the
Chevalley–Eilenberg differential of the Lie algebroid (TM)N (see Eq. (A.1)).
Then one can easily check that

(23) [δ, dDR] = 0,

where dDR is the De Rham differential operator on Γ(∧•T ∗M) = Ω•(M)
[31, Lemma 5.3]. It is well known that when A = TM is the tangent Lie
algebroid of a manifold M , its Chevalley–Eilenberg differential is the De
Rham differential operator dDR. According to the Universal Lifting Theorem
[12], we see that Eq. (23) implies Eq. (21).
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Finally, it is simple to check that the two constructions we spelled out in
showing parts (i) and (ii) are indeed inverse to each other. This concludes
the proof of Theorem 6.1. □

Let us single out the following important fact that we will need later on.

Proposition 6.1. Let (Σ ⇒M,ω, N̄) be a symplectic-Nijenhuis local
groupoid with the induced Poisson–Nijenhuis structure (M,π,N) on its unit
space as in Theorem 6.1. Then the source map α : Σ →M is a Poisson–
Nijenhuis map. In particular, we have

α∗π̄ = π, α∗π̄N̄ = πN , α∗ ◦ N̄ = N ◦ α∗,

where π̄ denotes the bivector field on Σ inverse to ω.

Proof. The first identity is exactly Eq. (18). The second identity follows
from Eqs. (19)-(20). Finally, the last identity is a consequence of the fact
that N̄ : TΣ → TΣ is a groupoid morphism and therefore commutes with
the source map α∗ : TΣ → TM —see (16). □

7. The complete lift to the cotangent bundle

We start by recalling the definition of the complete lift of (1, 1)-tensors to
the cotangent bundle and some related standard facts. For details, we refer
the readers to [9] and references there in.

Let N : TM → TM be a (1, 1)-tensor on a manifold M . Denote by

⟨·, ·⟩ : T ∗M ×M TM →M × R

the canonical pairing. There is a natural 1-form θN ∈ Ω1(T ∗M) defined by

θN (u) = ⟨λ,N(p∗(u))⟩

∀u ∈ Tλ(T
∗M), where p : T ∗M →M is the canonical projection. In partic-

ular, if N = Id, then θN is just the Liouville form on T ∗M .

Definition 7.1. The complete lift of N to the cotangent bundle is the (1, 1)-
tensor

N c : TT ∗M → TT ∗M

on T ∗M defined by the property that

(24) ωcan(N
cu, v) = (dθN )(u, v),
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for any λ ∈ T ∗M and any u, v ∈ Tλ(T
∗M). Here ωcan ∈ Ω2(T ∗M) is the

canonical symplectic form on T ∗M .

It can be checked, by a direct computation, that

(25) ωcan(N
cu, v) = ωcan((N

T )∗u, (N
T )∗v),

∀λ ∈ T ∗M, u, v ∈ Tλ(T
∗M). Here NT : T ∗M → T ∗M is the dual of N , and

(NT )∗ : TT
∗M → TT ∗M denotes its tangent map.

Lemma 7.1. Let N : TM → TM be a Nijenhuis tensor on M . Denote
by π′ ∈ X2(T ∗M) the Poisson bivector field on T ∗M of the Lie–Poisson
structure corresponding to the Lie algebroid (TM)N . Then

(26) (π′)♯ ◦ ω♭
can = N c.

Proof. For anyX ∈ X(M), let ℓX ∈ C∞(T ∗M) be the fibrewise linear func-
tion on T ∗M defined by

ℓX(λ) = ⟨λ,Xx⟩,

for any λ ∈ T ∗
xM (x ∈M). By definition, for any X,Y ∈ X(M) and any

f, g ∈ C∞(M), we have:

{ℓX , ℓY }π′ = ℓ[N(X),Y ]+[X,N(Y )]−N([X,Y ]),(27)

{ℓX , p
∗f}π′ = p∗⟨df,N(X)⟩,(28)

{p∗f, p∗g}π′ = 0.(29)

For any given ψ ∈ C∞(T ∗M), we denote by H(ψ) ∈ X(T ∗M) the Hamilto-
nian vector field of ψ with respect to the canonical symplectic structure on
T ∗M , i.e. H(ψ) = π♯can(dψ), where π

♯
can = (ω♭

can)
−1. Note that Eq. (26) is

equivalent to

(30) N c ◦ π♯can = (π′)♯.

The latter is equivalent to

(31) N c(H(F ))(G) = (π′)♯(dF )(G)

for any F,G ∈ C∞(T ∗M).
From Eq. (24), it follows that ω♭

can ◦N
c is skew-symmetric. Since π♯can =

(ω♭
can)

−1, a simple linear algebra argument implies that N c ◦ π♯can =
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N c ◦ (ω♭
can)

−1 is also skew-symmetric. Note that C∞(T ∗M) is spanned lo-
cally by two types of functions of the form ℓX and p∗f , ∀X ∈ X(M) and
f ∈ C∞(M). In order to prove Eq. (31), it thus suffices to prove the follow-
ing identities:

N c(H(p∗f))(p∗g) = (π′)♯(d(p∗f))(p∗g), ∀f, g ∈ C∞(M)(32)

N c(H(ℓX))(ℓY ) = (π′)♯(dℓX)(ℓY ) ∀X,Y ∈ X(M),(33)

N c(H(ℓX))(p∗f) = (π′)♯(dℓX)(p∗f), ∀f ∈ C∞(M), X ∈ X(M).(34)

Since p∗
(
H(p∗f)

)
= 0, it follows from the definition of the complete lift

N c that p∗
(
N c(H(p∗f)

)
= 0. Hence both sides of Eq. (32) vanish.

Now we prove Eq. (33). Note that the following relation is standard [9,
Proposition 5.4.3]:

(35) N c(H(ℓX))−H(ℓN(X)) = π♯can(θLXN ),

where LXN denotes the usual Lie derivative of the (1, 1)-tensor N given
by (LXN)(Y ) = [X,N(Y )]−N([X,Y ]), ∀X,Y ∈ X(M). Also, the following
identity can be verified directly:

(36) [π♯can(θLXN )](ℓY ) = ℓ(LXN)(Y ).

From Eq. (35)-Eq. (36), it thus follows that

[N c(H(ℓX))](ℓY ) = H(ℓN(X))(ℓY ) + (π♯can(θLXN ))(ℓY )

= ℓ[N(X),Y ] + ℓ(LXN)(Y )

= ℓ[N(X),Y ]+[X,N(Y )]−N([X,Y ]).(37)

Now Eq. (33) follows from combining Eq. (37) with Eq. (27).
Finally, we prove Eq. (34). First, we have [π♯can(θLXN )](p∗f) = 0. Now,

applying Eq. (35) to the function p∗f , we have

[N c(H(ℓX))](p∗f) = H(ℓN(X))(p
∗f) + (π♯can(θLXN ))(p∗f)

= p∗
(
(NX)(f)

)

= (π′)♯(dℓX)(p∗f).(38)

This concludes the proof of the lemma. □

Remark 7.1. According to a theorem of Vaisman [32], the Poisson bivector
field π′ is compatible with the canonical Poisson structure πcan on T ∗M
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in the sense that the Schouten bracket [π′, πcan] vanishes. Therefore, from
Lemma 7.1, it follows that (T ∗M,πcan, N

c) is a Poisson–Nijenhuis structure
on T ∗M , and moreover its second Poisson tensor πNc defined, as usual, by

(39) π♯Nc = N c ◦ π♯can

coincides with the Lie–Poisson structure of the Lie algebroid (TM)N .

We now recall the following well-known fact from the general theory of
Poisson groupoids [24, 25]. For any Poisson local groupoid (Σ ⇒M, π̄) with
Lie bialgebroid (A,A∗), the following diagram of vector bundle morphisms:

(40)

Lie(T ∗Σ) Lie(TΣ)

T ∗A TA

Lie(π̄♯)

j′Σ jΣ

π♯A

commutes. Here πA denotes the Lie–Poisson structure on A induced by
the Lie algebroid structure on A∗, and j′Σ, jΣ are natural vector bundle
isomorphisms which we shall not make explicit for the sake of brevity. See
[24, 25] for more details.

Let N̄ : TΣ → TΣ be a multiplicative (1, 1)-tensor on Σ. There is an as-
sociated tensor TA→ TA on A, which we will denote by Lie(N̄) and call the
infinitesimal of N̄ following [20]. The relationship between the infinitesimal
of N̄ and the image of N under the usual Lie functor is given by the simple
identity

(41) Lie(N̄) = jΣ ◦ Lie(N̄) ◦ j−1
Σ .

Let (Σ ⇒M,ω, N̄) be a symplectic-Nijenhuis local groupoid with in-
duced Poisson–Nijenhuis structure (M,π,N) on the unit space M . We can
now show that the infinitesimal of the Nijenhuis tensor N̄ coincides with the
complete lift N c : TT ∗M → TT ∗M of N .

Proposition 7.1. Let (Σ ⇒M,ω, N̄) be a symplectic-Nijenhuis local
groupoid, and (M,π,N) the corresponding Poisson–Nijenhuis structure on
M , as in Theorem 6.1. Then

(42) Lie(N̄) = N c.
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Proof. By definition, N̄ = π̄♯
N̄
◦ ω♭, and hence

Lie(N̄) = jΣ ◦ Lie(π̄♯
N̄
) ◦ Lie(ω♭) ◦ j−1

Σ .

We now check that

(43) Lie(ω♭) = (j′Σ)
−1 ◦ ω♭

can ◦ jΣ.

Let π̄ be the Poisson bivector field on Σ inverse to ω. Then
(Σ ⇒M, π̄) is a Poisson groupoid, and, by Theorem A.1, its Lie bialgebroid
is ((T ∗M)π, TM). Since the Lie–Poisson structure induced by the tangent
bundle Lie algebroid TM coincides with the canonical symplectic structure
on T ∗M , the commutativity of diagram (40) implies that

Lie(π̄♯) = j−1
Σ ◦ π♯can ◦ j

′
Σ.

The latter is equivalent to Eq. (43), as claimed.
Finally, recall that the Lie bialgebroid of the Poisson groupoid

(Σ ⇒M, π̄N̄ ) is isomorphic to ((T ∗M)π, (TM)N ) according to the proof
of Theorem 6.1. From commutative diagram (40), we thus have

Lie(π̄♯
N̄
) = j−1

Σ ◦ (π′)♯ ◦ j′Σ.

Here π′ is the Lie–Poisson structure on T ∗M corresponding to the Lie alge-
broid (TM)N as in Lemma 7.1. In particular, we have

Lie(N̄) = jΣ ◦ Lie(π̄♯
N̄
) ◦ Lie(ω♭) ◦ j−1

Σ = (π′)♯ ◦ ω♭
can = N c.

Here we used Eq. (43) for the second equality, and Lemma 7.1 for the last
equality. This concludes the proof. □

8. Symplectic realizations of non-degenerate

Poisson–Nijenhuis manifolds

In this section, we conclude the proof of a more general version of Theorem A
that holds in the case of non-degenerate Poisson–Nijenhuis structures. The
main result here is Theorem 8.1. According to Lemma 2.1, it is clear that
this includes the case of holomorphic Poisson manifolds.

The following standard lemma is crucial to our proof.
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Lemma 8.1 ([16]). Let (M,π,N) be a Poisson-Nijenhuis manifold and
πN its second Poisson structure, as in Proposition B.1, defined by Eq. (43).
The pair of maps

NT : (T ∗M)πN
→ (T ∗M)π, N : (TM)N → TM

defines a morphism of Lie bialgebroids

(NT , N) : ((T ∗M)πN
, TM) → ((T ∗M)π, (TM)N ).

In particular, if N is invertible, the pair (NT , N) is an isomorphism of Lie
bialgebroids.

Let us assume, throughout the remainder of this section, that we are
given a Poisson–Nijenhuis manifold (M,π,N) whose Nijenhuis tensor
N : TM → TM is invertible. In this case, we also say that (M,π,N) is a
non-degenerate Poisson-Nijenhuis manifold. Also, in order to simplify nota-
tion, we denote by A (resp. AN ) the cotangent Lie algebroid (T ∗M)π (resp.
(T ∗M)πN

) of π (resp. πN ).
The pair (P̄loc(AN ) ⇒M,ω′) is a symplectic local groupoid, where ω′ is

the symplectic form as in Theorem 3.2. Let π̄′ be the corresponding Poisson
structure on P̄loc(AN ), which is the inverse of ω′. Then the Lie bialgebroid
of the Poisson local groupoid (P̄loc(AN ) ⇒M, π̄′) is (AN , TM).

On the other hand, we can construct another Poisson local groupoid
(P̄loc(A) ⇒M, π̄N̄ ) as follows. According to Theorem 6.1, there is a
symplectic-Nijenhuis local groupoid (P̄loc(A) ⇒M,ω, N̄), which induces the
Poisson–Nijenhuis structure (M,π,N) on the unit space M . Let π̄ be the
Poisson bivector field associated to ω, and let π̄N̄ be defined, as before, by the

relation π̄♯
N̄

= N̄ ◦ π̄♯. Then the Poisson local groupoid (P̄loc(A) ⇒M, π̄N̄ )
has Lie bialgebroid ((T ∗M)π, (TM)N ).

Now, according to Lemma 8.1, we have a Lie bialgebroid morphism

(44) (NT , N) : ((T ∗M)πN
, TM) → ((T ∗M)π, (TM)N ).

Thus, from Theorem A.1, it follows that the induced morphism of local Lie
groupoids

(45) P̄ (NT ) : P̄loc(AN ) → P̄ (A),

as in Proposition 3.1 (i), is a Poisson map. Hence we have

(46) P̄ (NT )∗π̄
′ = π̄N̄ .
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SinceN is invertible by assumption, the map in (44) is an isomorphism of Lie
bialgebroids. Therefore the map in (45) is indeed an isomorphism of Poisson
local groupoids. In particular, the bivector field π̄N̄ is non-degenerate, since
π̄′ is non-degenerate.

Let ωN̄ be the (necessarily multiplicative) symplectic form on P̄loc(A)
whose Poisson bivector field is π̄N̄ . Then (P̄loc(A) ⇒M,ωN̄ ) is a symplectic
local groupoid. Since P̄ (NT ) is a Poisson isomorphism, we must have

(47) ωN̄ = (P̄ (NT )−1)∗ω′.

Summarizing, we have proved the following

Proposition 8.1. The pair (P̄loc(A) ⇒M, ω̄N̄ ) is a symplectic local groupoid
which, as a Poisson groupoid, has Lie bialgebroid ((T ∗M)π, (TM)N ).

Now fix ∇ an A-connection on A, and let U ⊂ T ∗M be a sufficiently
small open neighborhood around the zero section, as in Proposition 4.2.
Define

ω = exp∗ ω, and

ωN = exp∗ ωN̄ ,
(48)

where exp : U → P̄loc(A) is the groupoid exponential map associated to ∇.
The formula (15) still holds for ω, since (P̄loc(A) ⇒M,ω) is exactly the
same symplectic local groupoid as in Theorem 3.2. On the other hand, we
also have

Proposition 8.2. The symplectic form ωN ∈ Ω2(U) can be explicitly ex-
pressed as follows:

(49) ωN =

∫ 1

0
((NT )−1 ◦ φ∇

t )
∗ωcan dt,

where ωcan ∈ Ω2(T ∗M) is the canonical symplectic form on T ∗M , and φ∇
t

is the flow of the geodesic vector field of ∇.

Proof. By Proposition 3.1 (i), we have

P ((N−1)T )∗ ◦ q′∗ = q∗ ◦ P̄ ((NT )−1)∗

where q : Ploc(A) → P̄loc(A) and q
′ : Ploc(AN ) → P̄loc(AN ) are the quotient

maps as in (4). It is also simple to see that P ((NT )−1) = (P (NT ))−1, and
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P̄ ((NT )−1) = (P̄ (NT ))−1. Since q′∗ω′ = ι′∗ω̃can, we have

q∗(P̄ (NT )−1)∗ω′ = P ((N−1)T )∗q′∗ω′ = P ((N−1)T )∗ι′∗ω̃can.

By commutative diagram (11), we have exp∗ = Φ∗q∗. Thus it follows that

ωN = exp∗(P̄ (NT )−1)∗ω′ = Φ∗q∗(P̄ (NT )−1)∗ω′ = Φ∗P ((N−1)T )∗ι′∗ω̃can.

Now ∀ a0 ∈ U and u, v ∈ Ta0
A, we have

ωN (u, v) = ω̃can(ι
′
∗P ((N

T )−1)∗Φ∗u, ι′∗P ((N
T )−1)∗Φ∗v)

=

∫ 1

0
ωcan((τ [ι

′
∗P ((N

T )−1)∗Φ∗u])(t), (τ [ι
′
∗P ((N

T )−1)∗Φ∗v])(t))dt

=

∫ 1

0
ωcan(((N

T )−1)∗(φ
∇
t )∗u, ((N

T )−1)∗(φ
∇
t )∗v)dt

=

(∫ 1

0
((NT )−1 ◦ φ∇

t )
∗ωcandt

)
(u, v),

where the second to last equality follows from Eq. (13). □

Combining Proposition 5.1, Proposition 6.1 and Proposition 8.2, we are
finally led to the following main theorem of this section.

Theorem 8.1. Let (M,π,N) be a non-degenerate Poisson–Nijenhuis man-
ifold, and A = (T ∗M)π the cotangent Lie algebroid of the Poisson manifold
(M,π). Fix ∇ an A-connection on A and let φ∇

t be the flow of the geodesic
vector field of ∇. Also let U ⊂ A be a sufficiently small open neighborhood
of the zero section of A as in Proposition 4.2. Then the following assertions
hold.

(i) The projection pr |U : U →M , together with the symplectic form ω
(resp. ωN ), defined by Eq. (15) (resp. Eq. (49)), is a symplectic re-
alization of π (resp. πN ).

(ii) The (1, 1)-tensor

(50) N := (ω♭
N )−1 ◦ ω♭ : TU → TU

is a Nijenhuis tensor on U . Furthermore, the triple (U, ω,N) is a
symplectic-Nijenhuis manifold.
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(iii) Denote by π the Poisson bivector field inverse to ω. Then the canonical
projection pr |U : U →M is a Poisson–Nijenhuis map with respect to
(U, π,N) and (M,π,N).

(iv) The zero section is a Lagrangian submanifold of U with respect to both
ω and ωN .

Following Petalidou [28], we will call the symplectic-Nijenhuis manifold
(U, ω,N), endowed with the projection pr |U : U →M , a symplectic realiza-
tion of the non-degenerate Poisson–Nijenhuis manifold (M,π,N). Note that
a symplectic realization of a Poisson–Nijenhuis manifold can only exist when
the Nijenhuis tensor is invertible.

Remark 8.1. As an immediate consequence of Eq. (25), Eq. (49) can be
rewritten as

(51) ωN (u, v) =

∫ 1

0

(
(φ∇

t )
∗ωcan

)
((N c)−1u, v) dt

∀ξ ∈ U and u, v ∈ Tξ(T
∗M). The explicit formula of Eq. (51) is due to Petal-

idou [28]. In fact, Theorem 8.1 (i)-(ii) essentially recovers a theorem claimed
by Petalidou [28], which was obtained by following closely the computational
approach in [8]. From the discussion of this section, we see that both sym-
plectic forms ω and ωN are in fact conceptually parts of the data involved
in constructing a (a priori hidden) symplectic-Nijenhuis local groupoid.

Remark 8.2. Theorem 8.1 was reproved using a different method in the
preprint [1], which appeared after the present paper was posted on arXiv.
See [1, Section 3.2] for details. We also refer the reader to [3] for results
closely related to those in [1].

9. Holomorphic symplectic realizations of holomorphic

Poisson manifolds

It remains to explain how Theorem A follows from Theorem 8.1. First, recall
the following standard fact.

Proposition 9.1 ([19]). Let (X,ω), where ω = ωR + iωI ∈ Ω2,0(X), be a
holomorphic symplectic manifold. Denote by π = πR + iπI ∈ Γ(∧2T 1,0X) the
associated holomorphic Poisson bivector field. Then the real differential 2-
forms ωR and ωI ∈ Ω2(X) are symplectic, and their corresponding Poisson
bivector fields are 4πR and −4πI , respectively.
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We are now ready to conclude the proof of the main theorem of this
paper.

Proof of Theorem A. Let (X , π = πR + iπI) be a holomorphic Poisson man-
ifold with almost complex structure J and the underlying real manifold X.
By Lemma 2.1, (X,πI , J) is a Poisson–Nijenhuis manifold. Let A = (T ∗X)πI

be the cotangent Lie algebroid of the real Poisson manifold (X,πI). Also fix
an affine connection ∇TX on X, and denote by ∇T ∗X the induced linear con-
nection on T ∗X. Finally, let ∇ be the A-connection on A as in Example 4.2,
which is defined by

∇ab = ∇T ∗X
ρ(a) b ∀a, b ∈ Γ(A),

where ρ : A→ TX is the anchor of A.
From Theorem 8.1 (i), it follows that there is an open neighborhood

Y ⊂ T ∗X of the zero section where the symplectic forms ωR and ωI , given,
respectively, by Eq. (49) and Eq. (15), together with the projection pr |Y :
Y → X, give symplectic realizations of πR and πI , respectively. Furthermore,
by Theorem 8.1 (ii), the (1, 1)-tensor

(52) J := (ω♭
R)

−1 ◦ ω♭
I : TY → TY

is Nijenhuis, and (Y, ωI , J) is a symplectic-Nijenhuis manifold. Moreover, the
canonical projection pr |Y : Y → X is a Poisson-Nijenhuis map according to
Proposition 6.1.

We have the following lemma.

Lemma 9.1. The (1, 1)-tensor J in (52) is an almost complex structure
on Y , i.e. J2 = −1.

Proof. Recall that the (1, 1)-tensor J̄ : T P̄loc(A) → T P̄loc(A), defined as in
Eq. (22), is a local groupoid morphism with respect to the groupoid structure
P̄loc(A) ⇒M of Theorem 3.1. Also note that, by definition,

J = exp−1
∗ ◦J̄ ◦ exp∗ .

On the other hand, we have Lie(J̄) = Jc by Proposition 7.1. Further-
more, since J is an almost complex structure, it follows (see [9] for example)
that (Jc)2 = (J2)c = −1. Thus Lie(J̄2) = (Lie(J̄))2 = −1. Since J̄ is multi-
plicative on a local Lie groupoid, it follows that J̄2 = −1. Therefore we have
J2 = −1 as well. This concludes the proof. □
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Returning to the proof of Theorem A: since J is already a Nijenhuis ten-
sor, from Lemma 9.1, it follows that J indeed induces a complex structure
on the manifold Y , whose underlying complex manifold is denoted by Y .
Moreover, since (Y, ωI , J) is a symplectic-Nijenhuis manifold and its induced
second Poisson structure is the Poisson structure corresponding to ωR, it fol-
lows that ω := 1

4 (ωR − iωI) ∈ Ω2(Y )⊗ C yields a holomorphic symplectic
form on Y with respect to the new complex structure J [19]. In particu-
lar, (Y, ω, J) is a holomorphic symplectic manifold. The triple (Y, ω, J) is
indeed the underlying holomorphic symplectic manifold of the holomorphic
symplectic local groupoid integrating the given holomorphic Poisson struc-
ture π (see [20, Theorem 3.22] for an explanation of the factor 1

4). Denote
by π the associated holomorphic Poisson bivector field on Y . From Theo-
rem 8.1 (ii), Proposition 9.1 and Proposition B.3, it follows that the projec-
tion pr |Y : Y → X is indeed a holomorphic Poisson map with respect to the
holomorphic Poisson structures (Y, π, J) and (X,π, J). This concludes the
proof. □

Appendix A. Lie bialgebroids and Poisson groupoids

Definition A.1. A Poisson local groupoid (Σ ⇒M, π̄) is a local Lie
groupoid Σ ⇒M endowed with a Poisson bivector field π̄ ∈ X2(Σ) such
that the Poisson graph Λ of multiplication in Σ:

Λ ≡ {(x, y, x · y) | (x, y) ∈ Σ× Σ composable } ⊂ Σ× Σ× Σ̄

is a coisotropic submanifold. Here Σ̄ denotes Σ endowed with the Poisson
bivector field −π̄.

A bivector field π̄ ∈ X2(Σ) as in Definition A.1 is also called multiplica-
tive. In this context, the following is standard [24].

Proposition A.1. Let A be the Lie algebroid of Σ ⇒M . The bivector
field π̄ is multiplicative if and only if the map π̄♯ : T ∗Σ → TΣ is a local Lie
groupoid morphism. Here T ∗Σ ⇒ A∗ is the cotangent local Lie groupoid [5]
and TΣ ⇒ TM is the tangent local Lie groupoid of Σ ⇒M .

Definition A.2. A symplectic local groupoid is a Poisson local groupoid
(Σ ⇒M, π̄) such that π̄ is non-degenerate.
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We now recall some fundamental facts regarding Lie bialgebroids. In the
rest of this section, let A be a Lie algebroid with anchor ρ and Lie bracket
[·, ·].

The Lie bracket, [·, ·] : Γ(A)× Γ(A) → Γ(A), can be extended to a bi-
linear bracket of multisections Γ(∧kA)× Γ(∧lA) → Γ(∧k+l−1A). We will
denote both the initial bracket and its extension by [·, ·]. The triple
(Γ(∧•A),∧, [·, ·]) then forms a Gerstenhaber algebra [37].

Recall that Lie bialgebroids are a certain class of Lie algebroids A for
which the dual vector bundle A∗ also admits a compatible Lie algebroid
structure. In order to define the compatibility condition, recall that the
Chevalley–Eilenberg differential of the Lie algebroid A is the operator
d : Γ(∧kA∗) → Γ(∧k+1A∗) defined by

(dλ)(a1, . . . , ak+1) =

k+1∑

i=1

(−1)i+1ρ(ai) · λ(a1, . . . , âi, . . . , ak+1)(A.1)

+
∑

i<j

(−1)i+jλ([ai, aj ], a1, . . . , âi, . . . , âj , . . . , ak+1).(A.2)

for any λ ∈ Γ(∧kA∗), and any a1, . . . , ak+1 ∈ Γ(A).

Example A.1. When A = TM is the tangent Lie algebroid of a mani-
fold M , the Chevalley–Eilenberg differential d coincides with the De Rham
differential operator dDR on Γ(∧•T ∗M) = Ω•(M).

When A∗ happens to be a Lie algebroid as well, we denote by
d∗ : Γ(∧

kA) → Γ(∧k+1A) the associated Chevalley–Eilenberg differential (act-
ing on sections of A ∼= (A∗)∗).

Definition A.3 ([16, 24]). Let A be a Lie algebroid such that A∗ also
carries a Lie algebroid structure. Then (A,A∗) is a Lie bialgebroid if the Lie
algebroid structures on A and A∗ are compatible in the following sense. For
any a, a′ ∈ Γ(A), one has

(A.3) d∗[a, a
′] = [d∗a, a

′] + [a, d∗a
′].

The compatibility condition (A.3) is equivalent to asking that d∗ is a
derivation of the Gerstenhaber algebra (Γ(∧•A),∧, [·, ·]) [37].

Example A.2. Let A=TM be the tangent Lie algebroid and A∗=(T ∗M)π
the cotangent Lie algebroid of a Poisson manifold (M,π). It is easy to
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see that (A,A∗) is a Lie bialgebroid. In fact, the graded Lie bracket [·, ·] :
Γ(∧kA)× Γ(∧lA) → Γ(∧k+1−1A) coincides with the Schouten bracket [·, ·]S
on Γ(∧•TM), and d∗ = [π, ·]S . Thus (A.3) follows from the graded Jacobi
identity of the Schouten brackets.

Definition A.4. Let (A,A∗) and (B,B∗) be Lie bialgebroids over the same
base manifold M . A Lie bialgebroid morphism (ψ, ψT ) : (A,A∗) → (B,B∗)
is a vector bundle map ψ : A→ B over the identity map such that

i.) ψ : A→ B is a Lie algebroid morphism, and

ii.) its dual ψT : B∗ → A∗ is also a Lie algebroid morphism.

One can prove that the definition of a Lie bialgebroid (A,A∗) is symmet-
ric in A and A∗ [24, Theorem 3.10]. In particular, according to Example A.2,
we have

Proposition A.2. LetM be a Poisson manifold with Poisson bivector field
π ∈ X2(M). Then ((T ∗M)π, TM) is a Lie bialgebroid.

The “d∗” operator of the Lie bialgebroid in Proposition A.2 is simply
the De Rham differential operator. The following theorem is standard [12,
24, 25]2, which extends a well-known classical result of Drinfeld concerning
Poisson Lie groups [10, 11].

Theorem A.1.

(i). Lie bialgebroids (A,A∗) are in one-to-one correspondence with Poisson
local groupoids (Σ ⇒M, π̄).

(ii). The correspondence in (i) is functorial. More precisely, let (A,A∗)
and (B,B∗) be Lie bialgebroids over M . Then morphisms
(ψ,ψT ) : (A,A∗) → (B,B∗) of Lie bialgebroids are in one-to-one cor-
respondence with morphisms of the associated Poisson local groupoids

ψ̄ : (ΣA ⇒M, π̄A) → (ΣB ⇒M, π̄B).

(iii). Let (Σ ⇒M,ω) be a symplectic local groupoid, and let π̄ be the multi-
plicative Poisson bivector field on Σ inverse to ω. Then, as a Poisson

2In literature, this theorem is normally stated for global Lie groupoids, for which
one needs to assume source connectedness and source simply connectedness. The
conclusion (as well as the proof) holds for local Lie groupoids without such topo-
logical assumptions.
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groupoid, (Σ ⇒M, π̄) has Lie bialgebroid ((T ∗M)π, TM). Here TM is
the tangent bundle Lie algebroid of M .

For completeness, let us recall that, by a morphism of local Lie groupoids,
we mean a smooth map ψ̄1 : Σ → Σ′, defined on neighborhoods of the unit
spaces of Σ and Σ′, together with a smooth map ψ̄0 :M →M ′ such that

Σ Σ′

M M ′

ψ̄1

ψ̄0

satisfies the usual axioms of a Lie groupoid morphism.

Appendix B. Poisson–Nijenhuis manifolds

Recall that a (1, 1)-tensor N : TM → TM on a smooth manifoldM is called
Nijenhuis if its Nijenhuis torsion TN : ∧2TM → TM vanishes, where

TN (X,Y ) = [NX,NY ]−N([NX,Y ](B.4)

+ [X,NY ]) +N2[X,Y ], ∀X,Y ∈ X(M).

Definition B.1. Let π be a Poisson bivector field on M and N be a Nijen-
huis (1, 1)-tensor. We say that the triple (M,π,N) is a Poisson–Nijenhuis
manifold [17, 26] if π and N satisfy the following compatibility relations for
all ξ, η ∈ Ω1(M):

N ◦ π♯ = π♯ ◦NT ,(B.5)

[ξ, η]πN
= [NTξ, η]π + [ξ,NTη]π −NT [ξ, η]π.(B.6)

Here πN is the bivector field on M defined by π♯N = N ◦ π♯ and [·, ·]πN
is the

associated bracket on Ω1(M).

The following is standard in the theory of Poisson–Nijenhuis manifolds
[17, 26, 33].
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Proposition B.1. Let (M,π,N) be a Poisson–Nijenhuis manifold. Then
the bivector field πN ∈ X2(M) defined by the property that

(B.7) π♯N = N ◦ π♯

is a Poisson bivector field.

An alternative description of various compatibility relations between π
and N is summarized in the following well-known result.

Theorem B.1 ([17, 32]). Let π ∈ X2(M) be a Poisson bivector field on a
manifold M and let N : TM → TM be a (1, 1)-tensor. Then the tensor πN
defined by

πN (ξ, η) = η
(
Nπ♯ξ

)
, ∀ξ, η ∈ Ω1(M)

is skew-symmetric if and only if Eq. (B.5) holds. In this case, we also have
the following assertions:

(i) [π, πN ] = 0 if Eq. (B.6) holds, and the converse holds if π is non-
degenerate;

(ii) [πN , πN ] = 0 if N is Nijenhuis.

Definition B.2. A symplectic-Nijenhuis manifold is a Poisson–Nijenhuis
manifold (M,π,N) whose Poisson bivector field π is non-degenerate.

A symplectic-Nijenhuis manifold is also denoted by (M,ω,N), where ω
is the symplectic form corresponding to π.

The following theorem, due to Vaisman [32], essentially asserts that
symplectic-Nijenhuis manifolds are equivalent to biHamiltonian systems with
one Poisson structure being non-degenerate.

Proposition B.2. [32, Corollary 1.5] Let π and π′ be compatible Poisson
structures on a smooth manifold M , i.e.,

[π, π] = [π′, π′] = [π, π′] = 0.

Assume that π is non-degenerate. Then (M,π,N) is a symplectic-Nijenhuis
manifold such that πN = π′, where N is the (1, 1)-tensor on M defined by
N = (π′)♯ ◦ (π♯)−1 : TM → TM .
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Definition B.3. Let (X,πX , NX) and (Y, πY , NY ) be Poisson–Nijenhuis
manifolds. A Poisson–Nijenhuis map is a smooth map f : X → Y such that

f∗ ◦NX = NY ◦ f∗, and f∗πX = πY .

If f : X → Y is a Poisson–Nijenhuis map, then f∗πNX
= πNY

as well.
The following is easily seen.

Proposition B.3. Let (X,π = πR + iπI) and (Y, π′ = π′R + iπ′I) be holo-
morphic Poisson manifolds with almost complex structures JX and JY , re-
spectively. Let f : X → Y be a smooth map. Then

(i) the map f is holomorphic Poisson if and only if it is a Poisson–
Nijenhuis map from (X,πI , JX) to (Y, π′I , JY ).

(ii) In particular, if f is a holomorphic map, then f is holomorphic Poisson
if and only if f∗πI = π′I .
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