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Uniqueness of higher integrable solution

to the Landau equation with

Coulomb interactions

Jann-Long Chern and Maria Gualdani

We are concerned with the uniqueness of weak solution to the spa-
tially homogeneous Landau equation with Coulomb interactions
under the assumption that the solution is bounded in the space
L∞(0, T, Lp(R3)) for some p > 3/2. The proof uses a weighted
Poincaré-Sobolev inequality recently introduced in [11].

1. Introduction

The Landau equation was introduced in 1936 by Lev Landau as a correction
of the Boltzmann equation to describe collision of particles interacting under
a potential of Coulomb type. Collisions of such kind are predominant in hot
plasma. In its homogeneous form the Landau equation reads as

∂tf = Q(f, f),(1)

where f = f(v, t) for v ∈ R
3, t > 0 is a nonnegative function describing the

evolution of the particle density and

(2) Q(f, f) :=

1

8π
div

(∫

R3

1

|v − w| (Π(v − w)(f(w)∇vf(v)− f(v)∇wf(w)) dw

)

,

with Π(z) the projection onto the orthogonal subspace of z,

Π(z) := I− z ⊗ z

|z|2 , z ̸= 0.
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Equation (1)-(2) has been extensively studied in the literature but the main
question whether or not after a certain time solutions could become un-
bounded is still open. The possible blow-up in the L∞-norm could be caused
by the quadratic nonlinearity in (2): assuming that f is smooth enough, one
can rewrite (2) as

Q(f, f) = div (A[f ]∇f − f∇a[f ]),

where A[f ] is the diffusion matrix defined as

A[f ](v, t) = {ai,j}i,j :=
1

8π

∫

R3

1

|w|

(

I− w ⊗ w

|w|2
)

f(v − w, t) dw,

and

a[f ](v, t) := tr(A[f ]) = (−∆)−1f,

or in non-divergence form

Q(f, f) = tr(A[f ]D2(f)) + f2.

In the last formulation the quadratic nonlinearity is explicit.
Before we state the main result of this manuscript we briefly review the

literature for (1)-(2), omitting the rather large literature on non-Coulomb
potentials and spatially inhomogeneous case. Existing literature for (1)-(2)
includes results on (i) local in time well-posedness of solutions, (ii) global
in time existence and uniqueness of smooth solution for initial data close
to equilibrium [14], (iii) global in time existence of (very) weak solutions
[1, 5, 19] , and (iv) convergence of weak solutions towards the equilibrium
function (Maxwellian) in the L1-norm [2]. Very recently the second author
and collaborators studied the partial regularity of weak solutions to (1)-(2)
and showed in [7] that the Hausdorff measure of the set of singular times
(i.e. times at which the function could be unbounded) is at most 1

2 . Partial
regularity in space and velocity has been recently studied in [8]. We also
mention an important result from [10]; there the authors study an isotropic
version of the Landau equation, previously introduced by Krieger and Strain
in [15],

∂tf = div (a[f ]∇f − f∇a[f ]),(3)

and show that (3) with spherically symmetric and radially decreasing initial
data (but not small neither near equilibrium!) has smooth solutions which
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remain bounded for all times. Global existence of solutions for the isotropic
Landau equation for a range of soft-potentials is shown in [12].

Since the main question of global well-posedness for general initial data
for (1)-(2) is still open, in the most recent years there have been several
conditional proofs of existence of bounded solutions and their regularity. In
this directions we mention [9–11, 17].

In the current manuscript we are concerned with uniqueness of weak
solutions in the class of higher integrable solutions, namely we assume that
weak solutions belong to L∞(0, T, Lp(R3)) for some p > 3

2 and have high
enough bounded moments. Conditional uniqueness of bounded weak solu-
tions for Landau-Coulomb has been previously studied in [6]; via a prob-
abilistic approach using a stochastic representation of (1)-(2) the author
shows uniqueness in the class of solutions L1(0, T, L∞(R3)). A similar ap-
proach was recently used in [18] for the relativistic Landau-Coulomb equa-
tion.

Here is our main result:

Theorem 1. The homogeneous Landau-Coulomb equation with initial data
such that

fin ≥ 0,

∫

R3

f2
in(1 + |v|)5 dv ≤ C,

∫

R3

fin(1 + |v|)q dv ≤ C,(4)

for q = 46(p−1)
p−3/2 , has at most one solution in the time interval [0, T ], T > 0,

in the class of functions

f ∈ L∞(0, T, Lp(R3)), p > 3/2.(5)

The proof of Theorem 1 differs from the one in [6] in several aspects.
We only require our solution to belong to some Lp(R3) space with p >
3/2, uniformly in time. Our method uses the weak representation of (1)-
(2) provided in [13] and a new weighted Poincaré inequality (10) recently
introduced in [11]. This inequality is shown to be valid for any solution f to
the Landau equation that is uniformly in time Lp(R3)-integrable, for some
p > 3/2 (and has high enough bounded moments). The question whether
(10) holds without the extra integrability assumption is still open and very
interesting. In [11] the authors showed that (10) nearly holds if we only
assume uniformly in time L1(R3)- integrability for f ; this means that the
diffusion div(A[f ]∇f) and the reaction f2 are of the same order. In this
regard we should think of (1)-(2) as a critical equation.
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The rest of the manuscript is organized as follows: in Section 2 we re-
call some useful well-known results, in Section 3 we present the weighted
Poincaré inequality. In Section 4 we show integrability and weighted esti-
mates for the gradient. Section 5 contains the proof of Theorem 1.

2. Well-known results

The following quantities will be frequently used throughout the paper. We
respectively define the mass, momentum and entropy of a nonnegative func-
tion h(v) the quantities

∫

R3

h(v) dv,

∫

R3

h(v)|v|2 dv,
∫

R3

h(v) lnh(v) dv.

We start by recalling the definition of weak solution [5]: given initial data
fin with finite mass, first, second moment and entropy, a weak solution to
the Landau is a nonnegative function f such that

(1 + |v|2)−3/2f ∈ L1(0, T, L3(R3)),

has finite mass, first, second momentum and entropy and for all ϕ ∈
C2
c ([0, T ]× R

3)

−
∫

R3

fin(v)ϕ(v, 0) dv −
∫ T

0

∫

R3

f(v, t)∂tϕ(v, t) dvdt(6)

=
1

2

3
∑

i=1

3
∑

j=1

∫ T

0

∫

R3

∫

R3

f(v, t)f(w, t)aij(v − w)

× (∂ijϕ(v, t) + ∂ijϕ(w, t)) dvdwdt

+

3
∑

i=1

∫ T

0

∫

R3

∫

R3

f(v, t)f(w, t)(divvA[f ])i(v − w)

× (∂iϕ(v, t)− ∂jϕ(w, t)) dvdwdt.

Recently the authors in [13] improved the regularity of the weak solutions:
let f be a weak solution to the Landau equation as in (6); then

A[f ] ∈ L∞(0, T ;L3
loc(R

3)), ∇a[f ] ∈ L∞(0, T ;L
3/2
loc (R

3)),
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and for all φ ∈ L∞(0, T ;W 1,∞
c (R3)) the function f satisfies

∫ T

0
⟨∂tf , φ ⟩dt+

∫ T

0

∫

R3

(A[f ]∇f − f∇a[f ]) · ∇φ dvdt = 0.(7)

Next we recall some well-known results used later in the manuscript.
The first one concerns lower bounds for a[f ] and A[f ].

Lemma 1. (Bound from below) There is a constant c only determined by
the mass, energy, and entropy of f , such that for all v ∈ R

3

a[f ](v) ≥ c⟨v⟩−1,

A[f ](v) ≥ a∗(v)I ≥ c⟨v⟩−3
I,

where ⟨v⟩ := (1 + |v|2)1/2 and a∗(v) is the smallest eigenvalue of A[f ] defined
as

a∗(v) = inf
e∈S2

(A[f ](v)e, e).

Lemma 2. (Propagation of moments, [5] Proposition 4.) Let f be a weak
solution to the Landau equation with initial datum fin. Assume also that
f satisfies the conservation of mass, momentum and energy. For all k ≥ 0
such that

∫

R3

fin(1 + |v|2)k dv < +∞,

we have that

sup
[0,T ]

∫

R3

f(1 + |v|2)k dv ≤ C(1 + T ),

where C depends on the energy, mass, entropy and k-moments of the initial
data.

We also recall the Boltzmann H-Theorem: let ρin denote the Maxwellian
with same mass, center of mass, and energy as fin. We have

∫ T

0

∫

R3

4(A[f ]∇f1/2,∇f1/2)− f2 dvdt ≤ H(fin)−H(ρin).(8)

3. The ε-Poincaré inequality

In this section we present a weighted Poincaré inequality; this inequality
plays a key role in the proof of Theorem 1. It is an adaptation of another
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inequality proven in [11] and is based on the general weighted Poincaré-
Sobolev inequality shown in [16].

Theorem 2. Let N ≥ 1 and assume there exist s > 1, a nonnegative func-
tion f and a modulus of continuity η(·) such that for any cube Q ⊂ R

3 with
side length r ∈ (0, 1) the following inequality holds:

|Q| 13
(

1

|Q|

∫

Q
(1 + |v|)Ns/2f s dv

) 1

2s
(

1

|Q|

∫

Q
(1 + |v|)3s dv

) 1

2s

≤ η(r).(9)

Then, given any ε ∈ (0, 1), for any smooth functions φ we have the the fol-
lowing ε-Poincaré inequality:

∫

R3

(1 + |v|)N/2fφ2 dv ≤ ε

∫

R3

(1 + |v|)−3|∇φ|2 dv + η̃(ε)

∫

R3

φ2 dv,(10)

where η̃ : (0, 1) 7→ R is a decreasing function with η̃(0+) = ∞ determined
by η.

Proof. The proof can be found in Theorem 2.7 in [11]. □

The validity of (10) depends on certain properties of the function f , see
(9). The next proposition shows that (9) is satisfied if f ∈ L∞(0, T, Lp ∩
L1(R3)) for some p > 3

2 and has high enough moments.

Proposition 1. Let f be a nonnegative function with f ∈ L∞(0, T, Lp ∩
L1(R3)) for some p > 3

2 . Assume also that f has bounded moments of order
(N+6)(p−1)

p−3/2 . Then there exists a number s ≤ 2 with 3
2 < s < p and a modulus

of continuity η(r) such that for any Q cube in R
3 with length r inequality

(9) holds.

Proof. Let Q a cube of length r and center v0. Hölder inequality yields

∫

Q
(1 + |v|)Ns/2f s dv ≤

(∫

Q
(1 + |v|)Nsα/2f dv

) 1

α
(∫

Q
f (s−1/α)α′

dv

) 1

α′

≤ ∥f∥α′p
Lp

(∫

Q
(1 + |v|)Nsα/2f dv

) 1

α

,

by choosing α = p−1
p−s , p > s, so that

(s− 1/α)α′ = p.
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Then

|Q| 13
(

1

|Q|

∫

Q
(1 + |v|)Ns/2f s dv

) 1

2s
(

1

|Q|

∫

Q
(1 + |v|)3s dv

) 1

2s

≤ C(∥f∥Lp)|Q| 13− 1

2s (1 + |v0|)3/2
(∫

Q
(1 + |v|)Nsα/2f dv

) 1

2sα

≤ C(∥f∥Lp)|Q| 13− 1

2s

(∫

Q
(1 + |v|)(N+6)sα/2f dv

) 1

2sα

≤ C(∥f∥Lp)|Q| 13− 1

2s ∥f⟨v⟩(N+6)sα/2∥
1

2sα

L1 .

The modulus of continuity η(r) is proportional to C(T )r1−
3

2s , where C(T )

depends on the (N+6)sα
2 -moments of f and on the Lp norm of f . □

4. Higher integrability and weighted gradient estimates

The first immediate consequence of Proposition 1, Theorem 2 and Boltz-
mann’s H Theorem is a L2((0, T ), L2(R3)) integrability estimate for f .

Theorem 3. Let f be a solution to the Landau equation with initial datum
fin such that f ∈ L∞((0, T ), Lp(R3)) for some p > 3/2. Assume moreover
that

∫

R3

fin(1 + |v|)k dv < +∞,

for any 1 ≤ k ≤ 6(p−1)
p−3/2 . Then f ∈ L2((0, T ), L2(R3)) and

∥f∥L2((0,T ),L2(R3)) ≤ C(fin, T, ∥f∥L∞(Lp)).

Proof. The function f satisfies the assumptions for (9), following Proposi-
tion 1. Then, combining (10) with φ =

√
f , N = 0 and (8), we get:

∫ T

0

∫

R3

f2 dvdt ≤ ε

∫ T

0

∫

R3

(A[f ]∇
√

f,∇
√

f) dvdt+ C(fin)η̃(ε)T

≤ ε

(

H(fin)−H(ρfin) +

∫ T

0

∫

R3

f2 dvdt

)

+ C(fin)η̃(ε)T.

The thesis follows by choosing ε < 1. □

Once we have the bound L2((0, T ), L2(R3)), we can get an estimate for
f in the space L∞((0, T ), L2(R3)), as shown in the following theorem:
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Theorem 4. Let f and fin as is Theorem 3. Assume moreover that fin ∈
L2(R3). Then f ∈ L∞((0, T ), L2(R3)) and ∥f∥L∞(L2) ≤ C(fin, T, ∥f∥L∞(Lp)).

Proof. The proof is a simple consequence of Gronwall’s lemma. Take f as
test function in (7) and integrate by parts; this gives

∫

R3

f2(T ) dv =

∫

R3

f2
in dv −

∫ T

0

∫

R3

(A[f ]∇f,∇f) dvdt(11)

+

∫ T

0

∫

R3

f3 dvdt.

Since f ∈ L2((0, T ), L2(R3)) by Theorem 3, we use (10) with φ = f , N = 0,
and ε < 1 and get

∫

R3

f2(T ) dv ≤
∫

R3

f2
in dv +

1

ε

∫ T

0

∫

R3

f2 dvdt.

Gronwall’s inequality yields

∫

R3

f2(T ) dv ≤ e
1

ε
T

∫

R3

f2
in dv.

Note that the above computations are formal. To make them rigorous one
first considers a truncation of f of the form fηR(v) where ηR(v) = η(v/R)
and η(v) = 1 inside a ball of center 0 and radius 1, η(v) = 0 outside the ball
of center 0 and radius 2 and smooth in between. Thanks to the condition
that f ∈ L∞((0, T ), Lp ∩ L1(R3)) for some p > 3/2 both A[f ] and a[f ] are
uniformly bounded and one can take fηR(v) as test function in (7). Since
∇ηR → 0 as R → +∞ and both A[f ] and a[f ] are uniformly bounded one
can pass to the limit R → +∞ and obtain (11). □

For proving our uniqueness result, we also need the following weighted
gradient bound.

Proposition 2. Let N ≥ 0 and f ∈ L∞(0, T, Lp) with p > 3/2 be a weak
solution to the Landau equation with initial data fin ∈ L1 ∩ L2(R3) and
(4N+6)(p−1)

p−3/2 -moments bounded. Let moreover
∫

R3 f
2
in(1 + |v|)N dv < +∞. For
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any T > 0 we have

∫

R3

f2(1 + |v|)N dv +
1

2

∫ T

0

∫

R3

(1 + |v|)N−3|∇f |2 dvdt

≤ C(T, fin, ∥f∥L∞(0,T,Lp)).

Proof. There exists a universal constant C such that

∥a[f ]∥L∞(R3) ≤ C∥f∥1−q/3
L1 ∥f∥q/3

Lq/(q−1) , ∀ 1 ≤ q < 3.(12)

In particular

∥a[f ]∥L∞(R3) ≤ C∥f∥1/3L1 ∥f∥2/3L2 ≤ C∥f⟨v⟩m/2∥L2 ,(13)

for m > 3 and ⟨v⟩ := (1 + |v|2)1/2. For large v, one can obtain a sharper
estimate:

a[f ](v, t) ≤ C(∥f∥L3/2+ , fin, T )

1 + |v| , ∀v ∈ R
3 t ∈ [0, T ].(14)

Let |v| be large enough; for 2 ≥ s > 3/2 Hölder inequality yields:

|a[f ]| ≤ |v| 3−s′

s′





∫

B |v|
2

(|v|)
f s dy





1/s

+
1

|v|∥f∥L1(R3)

≤ c
|v| 3−s′

s′

(1 + |v|)λ/s
(∫

R3

f s(1 + |y|)λ dy

)1/s

+
1

|v|∥f∥L1(R3),

with 1
s +

1
s′ = 1 and s′ < 3. Chose λ = 3(s− 1) so that 3−s′

s′ − λ
s = −1 and

get

|a[f ](v)| ≤ 1

(1 + |v|)

(∫

R3

f s(1 + |y|)3(s−1) dy

)1/s

+
1

|v|∥f∥L1(R3).

Hölder’s inequality yields

∫

R3

f s(1 + |y|)3(s−1) dy ≤
(∫

R3

fpdy

)1/α′ (∫

R3

f(1 + |y|)
3(p−1)

(p−3/2)dy

)1/α

,

with α = (p− 1)/(p− 3/2). We use Lemma 2 to bound the last integral and
get (14).
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Take now φ := f(1 + |v|)N as test function in (7):
∫

R3

ftf(1 + |v|)N dv ≤ −
∫

R3

⟨A[f ](1 + |v|)N∇f,∇f⟩ dv

+N

∫

R3

a[f ](1 + |v|)N−1f |∇f | dv

+

∫

R3

f(1 + |v|)N∇f · ∇a[f ] dv

+N

∫

R3

f2(1 + |v|)N−1|∇a[f ]| dv

= I1 + I2 + I3 + I4.

By Lemma 1 we have

I1 ≤ −c1

∫

R3

(1 + |v|)N−3|∇f |2 dv.

Using (12) to bound the L∞-norm of a[f ], Young’s inequality yields

I2 ≤ ω

∫

R3

(1 + |v|)N−3|∇f |2 dv + C2

ω

∫

R3

(1 + |v|)N−2f2 dv,

where C only depends on the L∞(0, T, Lp) and on the L∞(0, T, L1)-norm of
f . From integration by parts one obtains

I3 + I4 ≤ c1

∫

R3

(1 + |v|)N−1f2|∇a[f ]| dv + c2

∫

R3

(1 + |v|)Nf3 dv

≲

∫

R3

|∇a[f ]|3 dv +
∫

R3

(1 + |v|)2Nf3 dv

≤ C∥f∥3L3/2 + ε

∫

R3

(1 + |v|)−3|∇f |2 dv + η̃(ε)

∫

R3

f2 dv,

using Hardy-Littlewood-Sobolev inequality

∥∇a[f ]∥L3p/(3−p)(R3) ≤ C∥f∥Lp(R3) ∀ p ∈ (1, 2],(15)

and (10) with weight (1 + |v|)2Nf to bound the weighted cubic norm of f .
Summarizing we have

∂t

∫

R3

f2(1 + |v|)N dv ≤− (c− ε)

∫

R3

(1 + |v|)N−3|∇f |2 dv

+ C

∫

R3

(1 + |v|)N−2f2 dv + C(∥f∥Lp).
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Taking ε sufficiently small we get the desired estimate. □

5. The contraction argument

We have the following uniqueness result.

Theorem 5. Let u, φ ∈ L∞(0, T, Lp) for some p > 3/2 be two solutions to
the Landau equation with nonnegative initial data fin such that

∫

R3

fin⟨v⟩k dv < +∞,

∫

R3

f2
in⟨v⟩10 dv < +∞,

for any 0 ≤ k ≤ 46(p−1)
p−3/2 . Then u = φ .

Proof. Define w = u− φ. Take w⟨v⟩m with m = 4 as test function in the
resulting equation for w, After integration by parts one obtains

∫

R3

w2(T )⟨v⟩m dv = −
∫ T

0

∫

R3

A[u]∇w · ∇(w⟨v⟩m) dvdt

−
∫ T

0

∫

R3

A[w]∇φ · ∇(w⟨v⟩m) dvdt

+
1

2

∫ T

0

∫

R3

w∇a[u] · ∇(w⟨v⟩m) dvdt

+

∫ T

0

∫

R3

φ∇a[w] · ∇(w⟨v⟩m) dvdt

+

∫

R3

w2
in⟨v⟩m dv

=: I1 + I2 + I3 + I4 + I5.

Using Lemma 1 one gets

I1 ≤ −(1− ε)

∫ T

0

∫

R3

⟨v⟩m
(1 + |v|)3 |∇w|2 dvdt

+
m2

ε

∫ T

0
∥A[u]∥L∞

∫

R3

w2⟨v⟩m dvdt.
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To estimate ∥A[u]∥L∞ we use (12). For I2, we use (13) with m = 4 and
Young’s inequality:

I2 ≤ ε

∫ T

0

∫

R3

⟨v⟩m
(1 + |v|)3 |∇w|2 dvdt

+
1

ε

∫ T

0

∫

R3

A2[w]⟨v⟩m(1 + |v|)3|∇φ|2 dvdt

+m

∫ T

0

∫

R3

wA[w]⟨v⟩m−2∇φ · v dvdt

≤ ε

∫ T

0

∫

R3

⟨v⟩m
(1 + |v|)3 |∇w|2 dvdt

+
1

ε

∫ T

0

∫

R3

A2[w]⟨v⟩m(1 + |v|)3|∇φ|2 dvdt

+m

∫ T

0

∫

R3

⟨v⟩mw2 dvdt+m

∫ T

0

∫

R3

A2[w]⟨v⟩m−2|∇φ|2 dvdt

≤ ε

∫ T

0

∫

R3

⟨v⟩m
(1 + |v|)3 |∇w|2 dvdt+

∫ T

0
B(t)

∫

R3

⟨v⟩mw2 dvdt

with B(t) :=
∫

R3⟨v⟩m+3|∇φ|2 dv + 1. Note that B(t) is integrable, as shown
in Proposition 2 for N = m+ 6 = 10. We rewrite I3 as

I3 =
1

4

∫ T

0

∫

R3

⟨v⟩−m∇a[u] · ∇(w2⟨v⟩2m) dvdt

=
1

4

∫ T

0

∫

R3

u⟨v⟩mw2 dvdt+m

∫ T

0

∫

R3

w∇w · v⟨v⟩m−2a[u] dvdt

+
m

2

∫ T

0

∫

R3

w2v · ∇⟨v⟩m−2a[u] dvdt+
3m

2

∫ T

0

∫

R3

w2⟨v⟩m−2a[u] dvdt

≤ 1

4

∫ T

0

∫

R3

u⟨v⟩mw2 dvdt+ cm∥a[u]∥L∞(R3)

∫ T

0

∫

R3

w2⟨v⟩m−2 dvdt

+ ε

∫ T

0

∫

R3

⟨v⟩m
(1 + |v|)3 |∇w|2 dvdt+ 1

ε

∫ T

0

∫

R3

w2a2[u]⟨v⟩m+1 dvdt.

To bound the first integral we use (10) with N = 2m and get

∫

R3

u⟨v⟩mw2 dv ≤ ε

∫

R3

|∇w|2
(1 + |v|)3 dv + C

∫

R3

w2 dv.
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This yields

I3 ≤ ε

∫ T

0

∫

R3

⟨v⟩m
(1 + |v|)3 |∇w|2 dvdt

+

∫ T

0
B1(t)

∫

R3

⟨v⟩mw2 dvdt,

with B1(t) := C(∥a[u]∥L∞(R3) + ∥a[u]⟨v⟩∥L∞(R3) + 1). Note that B1(t) is in-
tegrable, thanks to (14). Finally,

I4 ≤
∫ T

0
∥∇a[w]∥L6(R3)

∥

∥

∥

∥

⟨v⟩m/2∇w

(1 + |v|)3/2

∥

∥

∥

∥

L2(R3)

∥

∥

∥
φ⟨v⟩m/2+3/2

∥

∥

∥

L3(R3)
dt

+m

∫ T

0
∥∇a[w]∥L6(R3)

∥

∥

∥
w⟨v⟩m/2

∥

∥

∥

L2(R3)

∥

∥

∥
φ⟨v⟩m/2−1

∥

∥

∥

L3(R3)
dt

≤ 1

ε

∫ T

0
∥w∥2L2(R3)

(∫

R3

φ3(1 + |v|)3m/2+9/2 dv

)2/3

dt

+ ε

∫ T

0

∫

R3

|∇w|2⟨v⟩m
(1 + |v|)3 dvdt

+m

∫ T

0

∥

∥

∥
w⟨v⟩m/2

∥

∥

∥

2

L2(R3)

(∫

R3

φ3(1 + |v|)3m/2−3 dv

)1/3

dt.

Thanks again to (10), we get

∫

R3

φ3(1 + |v|)3m/2+9/2 dv ≤ Cε,m,φin

∫

R3

|∇φ|2
(1 + |v|)3 dv +

∫

R3

φ2 dv,

and conclude that

I4 ≤ Cε,m,φin

∫ T

0
B2(t)

∥

∥

∥
w⟨v⟩m/2

∥

∥

∥

2

L2(R3)
dt+ ε

∫ T

0

∫

R3

|∇w|2⟨v⟩m
(1 + |v|)3 dvdt

with

B2(t) :=

(∫

R3

|∇φ|2
(1 + |v|)3 dv +

∫

R3

φ2 dv

)2/3

+

(∫

R3

|∇φ|2
(1 + |v|)3 dv +

∫

R3

φ2 dv

)1/3

.

The function B2(t) is integrable thanks to Proposition (2) with N = 0.
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Summarizing the estimates for I1, .., I4, for ε small enough we get

∫

R3

w2(T )⟨v⟩m dv ≤
∫

R3

w2
in⟨v⟩m dv

+ C

∫ T

0
(B(t) +B1(t) +B2(t))

∫

R3

w2⟨v⟩m dvdt,

with
∫ T
0 B(t) +B1(t) +B2(t) dt < +∞.

Since win(·) = 0, Gronwall’s inequality yields

∫

R3

w2(T )⟨v⟩m dv ≤ 0,

and this concludes the proof. □
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