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It is a folklore theorem that the Kuranishi slice method can be
used to construct the moduli space of semistable Higgs bundles on
a closed Riemann surface as a complex space. The purpose of this
paper is to provide a proof in detail. We also give a direct proof
that the moduli space is locally modeled on an affine GIT quotient
of a quadratic cone by a complex reductive group.
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1. Introduction

Let X be a closed Riemann surface with genus g ≥ 2. Introduced by Hitchin
in the seminal paper [16], a Higgs bundle on X is a pair (E ,Φ) consisting of
a holomorphic bundle E → X and a holomorphic section Φ ∈ H0(EndE ⊗
KX), where KX is the canonical bundle of X. To obtain a nice moduli space,
we recall that a Higgs bundle (E ,Φ) is stable if µ(F ) < µ(E ) for every Φ-
invariant holomorphic subbundle 0 ⊊ F ⊊ E , where µ(F ) is the slope of
F . The semistability is defined by replacing µ(F ) < µ(E ) by µ(F ) ≤ µ(E ).
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1012 Yue Fan

Finally, (E ,Φ) is polystable if it is a direct sum of stable Higgs bundles with
the same slope. In [16], Hitchin used the Kuranishi slice method to construct
the moduli space of stable Higgs bundles first as a smooth manifold and then
as a hyperKähler manifold. Such a method was first introduced by Kuranishi
in [23] and has been used in several papers to construct moduli spaces in
different contexts (for example, see [3, 4, 21, 24] and [20, Chapter 7]). On the
other hand, the moduli space of semistable Higgs bundles was constructed by
Nitsure in [27] where X is a smooth projective curve and by Simpson in [32]
where X is a smooth projective variety. They both used Geometric Invariant
Theory (GIT for short), and the method is entirely algebro-geometric. As a
consequence, the resulting moduli space is a quasi-projective variety.

It is a folklore theorem that the Kuranishi slice method can be used
to construct the moduli space of semistable Higgs bundles as a complex
space (for example, see [5, 37]). The purpose of this paper is to provide
a proof in detail. More precisely, the problem is stated as follows. Fix a
smooth Hermitian vector bundle E → X and let gE → X be the bundle
of skew-Hermitian endomorphisms of E. For convenience, we assume that
the degree of E is zero. This condition is not essential. By the Newlander-
Nirenberg theorem, a holomorphic structure on E (described by holomorphic
transition functions) is equivalent to an integrable Dolbeault operator ∂E .
Since dimCX = 1, the integrability condition is vacuous. Therefore, via the
Chern correspondence, the space of holomorphic structures on E can be
identified with the space A of unitary connections on E, which is an infinite-
dimensional affine space modeled on Ω1(gE). Let C = A × Ω1,0(gCE). Then,
the configuration space of Higgs bundles (with a fixed underlying smooth
bundle E) is defined as

(1.1) B = {(A,Φ) ∈ C : ∂AΦ = 0}

(see [37] for more details). Since the complex gauge group G C = Aut(E)
naturally acts on the space of holomorphic structures of E, it acts on A

and hence also on C . Then, two Higgs bundles are isomorphic if and only if
they are in the same G C-orbit. Let Bss, Bs and Bps be the subspaces of B

consisting of semistable, stable and polystable Higgs bundles, respectively.
They are G C-invariant. The moduli space of semistable Higgs bundles is
defined as the quotient M = Bps/G C equipped with the C∞-topology. Our
main result is the following.

Theorem A. The moduli space M is a normal complex space.
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Construction of the moduli space of Higgs bundles 1013

More can be said about the local structure of M . To state the theorem,
we need some preparation. Recall that the space C has a natural L2-metric
g and a compatible complex structure I given by multiplication by

√
−1

(see [16, §6]). Let G be the subgroup of G C consisting of unitary gauge
transformations. Then, the G -action on C is Hamiltonian with respect to
the Kähler form ΩI = g(I·, ·). Hitchin’s equation can be interpreted as a
moment map

(1.2) µ(A,Φ) = FA + [Φ,Φ∗].

Then, the Hitchin-Kobayashi correspondence (see [16, 29]) states that a
Higgs bundle is polystable if and only if its G C-orbit intersects µ−1(0). More-
over, the inclusion µ−1(0) ∩ B →֒ Bps induces a homeomorphism

(1.3) (µ−1(0) ∩ B)/G
∼−→ B

ps/G C

whose inverse is induced by the retraction r : Bss → µ−1(0) defined by the
Yang-Mills-Higgs flow (see [38]). Finally, we recall the deformation complex
for a Higgs bundle (A,Φ):

(1.4) CµC
: Ω0(gCE)

D′′

−−→ Ω0,1(gCE)⊕ Ω1,0(gCE)
D′′

−−→ Ω1,1(gCE),

where D′′ = ∂A +Φ. It is an elliptic complex. Let K be the G -stabilizer at
(A,Φ). Since the G -action is proper, K is a compact Lie group. Moreover, its
complexification KC is precisely the G C-stabilizer at (A,Φ) (see Section 3)
and acts on H1 linearly. Then, the local structure of M is described as
follows.

Theorem B. Let [A,Φ] ∈ M be a point such that µ(A,Φ) = 0 and H1 its
deformation space, the harmonic space H1(CµC

) defined in CµC
. Then, the

following hold:

1) H1 is a complex symplectic vector space.

2) The KC-action on H1 is complex Hamiltonian with a complex moment
map given by

(1.5) ν0,C(x) =
1

2
H[x, x],

where H is the harmonic projection defined in CµC
.
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3) Around [A,Φ], the moduli space M is locally biholomorphic to an open
neighborhood of [0] in the complex symplectic quotient ν−1

0,C(0) �KC,
which is an affine GIT quotient.

There are two reasons why this result is not surprising. In [32, §10],
Simpson proved that the differential graded Lie algebra CµC

is formal. As a
consequence, the moduli space is locally biholomorphic to a GIT quotient
of a quadratic cone in H1(CµC

) by a complex reductive group. Another rea-
son is the following. Recall that C is more than just a Kähler manifold.
It has a hyperKähler structure (see [16, §6]) and admits a complex mo-
ment map µC(A,Φ) = ∂AΦ for the G C-action. Hence, the moduli space M

is homeomorphic, by the Hitchin-Kobayashi correspondence, to a singular
hyperKähler quotient. Then, Theorem B is an infinite-dimensional general-
ization of Theorem 1.4(iv) in Mayrand [25] to Higgs bundles. We will extend
all other statements in Theorem 1.4 to M in a forthcoming paper.

The major step in the proof of Theorem A and B is to construct a
Kuranishi local model for M at every Higgs bundle (A,Φ) that satisfies
Hitchin’s equation. This is done in Section 3. Here, a Kuranishi local model
is the analytic GIT quotient (developed by Heinzner and Loose in [15]) of a
Kuranishi space in H1 by the G C-stabilizer at (A,Φ), and is homeomorphic
to an open neighborhood of (A,Φ) in M . After that, we will show that the
transition functions associated with Kuranishi local models are holomorphic
so that M is a complex space. This is done in Section 4. To prove Theorem B,
we adapt Huebschmann’s argument in [17, Corollary 2.20] which is further
based on Arms-Marsden-Moncrief [1]. This is done in Section 5.

The techniques in the construction of Kuranishi local models mainly
come from [34], [9] and [19]. Let K be the G -stabilizer at (A,Φ) with
µ(A,Φ) = 0 so that KC is the G C-stabilizer. We will construct a K-
equivariant perturbed Kuranishi map Θ (following Székelyhidi’s argument
in [34, Proposition 7]) that is defined on a Kuranishi space in H1 and takes
values in Bss such that the pullback moment map Θ∗µ is a moment map
for the K-action on H1 with respect to the pullback symplectic form Θ∗ΩI .
Then, roughly speaking, a KC-orbit is closed in H1 if and only if it contains
a zero of the pullback moment map Θ∗µ. The precise statement is given
in Theorem 3.6 (cf. [9, Theorem 2.9], [19, Proposition 3.8], [6, Proposition
2.4] and [36, Proposition 3.3.2]). Since the perturbed Kuranishi map Θ is no
longer holomorphic, Θ∗ΩI is not a Kähler form on H1, which causes some
trouble. To remedy this problem, in the proof of Theorem 3.6, the Yang-
Mills-Higgs flow will be used to detect polystable orbits in Bss. Since Ku-
ranishi spaces are locally complete, every Yang-Mills-Higgs flow near (A,Φ)
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induces a “reduced flow” in H1 that stays in a single KC-orbit and converges
to a zero of Θ. Therefore, if a KC-orbit is closed, it contains a zero of Θ.
Hence, Θ maps polystable KC-orbits in H1 to polystable orbits in Bss so
that Θ induces a map from a Kuranishi local model to M . The rest of the
proof is to show that this map is an open embedding.

After the construction of the moduli space M , it is natural to com-
pare the analytic and the algebraic moduli spaces. More precisely, let us
also use Man to mean the quotient Bps/G C and Malg the moduli space of
semistable Higgs bundles of rank r and degree 0 in the category of schemes,
where r is the rank of E. By construction, Malg parametrizes S-equivalence
classes of Higgs bundles. Let us recall the definition of S-equivalence. Ev-
ery semistable Higgs bundle (E ,Φ) admits a filtration, called the Seshadri
filtration, whose successive quotients are stable, all with slope µ(E). Let
Gr(E ,Φ) be the graded object associated with the Seshadri filtration of
(E ,Φ). It is uniquely determined by the isomorphism class of (E ,Φ). Then,
two Higgs bundles (E1,Φ1) and (E2,Φ2) are S-equivalent if Gr(E1,Φ1) and
Gr(E2,Φ2) are isomorphic as Higgs bundles. As a consequence, there is a
natural comparison map i : Man → Malg of the underlying sets that sends
each G C-orbit of a point (A,Φ) in Bps to the S-equivalence class of the
Higgs bundle (EA,Φ) defined by (A,Φ). The following result will be proved
in Section 6.

Theorem C. The comparison map i : Man → Malg is a biholomorphism.

The outline of the proof is the following. It is easy to see that i is
a bijection. To show that it is continuous, recall that Nitsure constructed
a scheme F ss in [27] that parameterizes semistable Higgs bundles on X,
and Malg is a good quotient of F ss. We show that the comparison map i
can be locally lifted to a map σ, called a classifying map, that is defined
locally on Bss and takes values in F ss. Here, the terminology comes from
Sibley and Wentworth’s paper [28], and we adapt the proof of Theorem
6.1 in this paper to show that σ is continuous with respect to the C∞-
topology on Bss and the analytic topology on F ss. Therefore, i is continuous.
By the properness of the Hitchin fibration defined on Man, we see that i
is proper and hence a homeomorphism. Then, by constructing Kuranishi
families of stable Higgs bundles, we show that the restriction i : M s

an → M s
alg

is a biholomorphism, where M s
an and M s

alg are the open subsets of Man and
Malg consisting of stable Higgs bundles, respectively. By the normality of
Malg, the holomorphicity of i−1|M s

alg
can be extended to i−1. Then, we use

Theorem B to prove that Man is normal. The rest of the proof follows
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from the fact that a holomorphic bijection between normal, reduced and
irreducible complex spaces of the same dimension is a biholomorphism.

After this paper was complete, we became aware of Buchdahl and Schu-
macher’s paper [7]. Note that Theorem 3.6 is similar to [7, Theorem 3],
which applies to holomorphic vector bundles over a compact Kähler mani-
fold. However, our approach is different. In this paper, the Yang-Mills-Higgs
flow plays a major role. Since dimCX = 1, the necessary analytic inputs
are from Wilkin [38]. By contrast, the Yang-Mills flow is not involved in
Buchdahl and Schumacher’s argument. It is expected that Buchdahl and
Schumacher’s argument can be adapted to the case of Higgs bundles and
used to provide another proof of Theorem A, possibly without the assump-
tion that dimCX = 1.

Finally, we remark that we only work with reduced complex spaces in
this paper. The reason is that the analytic GIT developed by Heinzner and
Loose in [15] only applies to reduced complex spaces.

2. Deformation complexes

In this section, after reviewing the deformation complex for Higgs bundles,
we introduce another useful Fredholm complex that will be used later. Let
(A,Φ) ∈ B such that µ(A,Φ) = 0. Then, consider the deformation complex

(2.1) CµC
: Ω0(gCE)

D′′

−−→ Ω0,1(gCE)⊕ Ω1,0(gCE)
D′′

−−→ Ω1,1(gCE),

where D′′ = ∂A +Φ. Recall that CµC
is obtained by linearizing the equation

∂AΦ = 0 and the G C-action.

Proposition 2.1 ([30, §1] and [32, §10]). CµC
is an elliptic complex and

a differential graded Lie algebra. Moreover, the Kähler identities,

(2.2) (D′′)∗ = −i[∗, D′], (D′)∗ = +i[∗, D′′],

hold, where D′ = ∂A +Φ∗ and ∗ is the Hodge star.

There is another useful sequence

(2.3) Cµ : Ω0(gE)
d1−→ kerD′′ d2−→ Ω2(gE),
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where d2 is the derivative of µ from (1.2) at (A,Φ), and d1(u) = (dAu, [Φ, u]).
The operator d2, viewed as a map Ω1(gE)⊕ Ω1,0(gCE) → Ω2(gE), has a sur-
jective symbol. Hence, d2d

∗
2 : Ω

2(gE) → Ω2(gE) is a self-adjoint elliptic op-
erator. As a consequence, the Hodge decomposition

(2.4) Ω2(gCE) = im d2d
∗
2 ⊕ ker d2d

∗
2,

holds. Moreover, since d2(D
′′)∗ = 0 and

(2.5) Ω0,1(gCE)⊕ Ω1,0(gCE) = kerD′′ ⊕ im(D′′)∗,

we have

(2.6) d2(kerD
′′) = d2(Ω

1(gE)⊕ Ω1,0(gCE))

(In this paper, we routinely identify Ω1(gE) with Ω0,1(gCE) using the map
α 7→ α′′, where α′′ is the (0, 1)-component of α). As a consequence, the nat-
ural map ker d∗2 → H2(Cµ) is an isomorphism. We denote ker d∗2 by H2(Cµ).
Finally, we note thatH1(Cµ) is equal to the first cohomology of the following
elliptic complex that is used by Hitchin in [16, p. 85]

(2.7) CHit : Ω0(gE)
d1−→ Ω1(gE)⊕ Ω1,0(gCE)

d2⊕D′′

−−−−→ Ω2(gE)⊕ Ω1,1(gCE).

In fact, by direct computation, the identification Ω1(gE)
∼−→ Ω0,1(gCE) induces

an isomorphism H1(CHit)
∼−→ H1(CµC

). Therefore, in the rest of the paper,
if no confusion can appear, we will simply use H1 to mean the harmonic
space H1(CµC

). In summary, we have obtained

Proposition 2.2. The sequence Cµ is a Fredholm complex with Hodge de-
composition

(2.8) Ω2(gE) = H2(Cµ)⊕ im d2.

Lastly, note that the natural non-degenerate pairing Ω0(gE)× Ω2(gE) →
R restricts to a non-degenerate pairing H0(Cµ)×H2(Cµ) → R so that
H2(Cµ) can be identified with the dual space H0(Cµ)

∗ of H0(Cµ).
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3. Kuranishi local models

3.1. Kuranishi maps

A crucial ingredient in the Kuranishi slice method is the Kuranishi maps.
They relate polystable orbits in H1 and polystable orbits in B. Moreover,
they eventually induce local charts for the moduli space. To construct Ku-
ranishi maps, we need to use the implicit function theorem, and it is a
standard practice to work with the Sobolev completions of relevant spaces.
In this paper, we will use Yk to mean the completion of the space Y with
respect to the Sobolev L2

k-norm. For example, Ω∗(gE)k means the comple-
tion of Ω∗(gE) with respect to the L2

k-norm. Otherwise, we generally use
C∞-topology. Fix k > 1.

Now, we describe the Kuranishi maps. Let (A,Φ) ∈ B with µ(A,Φ) = 0.
Recall that G C

k+1 and Gk+1 are Hilbert Lie groups and act smoothly on the
Hilbert affine manifold Ck. Moreover, the Gk+1-action on Ck is proper (see
[11, Section 4.4]). Therefore, if K is the Gk+1-stabilizer at (A,Φ), then K is
a compact Lie group with Lie algebra H0(Cµ). The following result relates
the G C

k+1-stabilizer to the Gk+1-stabilizer at (A,Φ).

Proposition 3.1. The G C

k+1-stabilizer at (A,Φ) is the complexification of
K and acts on H1.

Proof. This follows from [33, Proposition 1.6]. The rest follows from direct
computation. □

If H2(CµC
) = 0, then the implicit function theorem implies that Bk is

locally a complex manifold around (A,Φ). In general, following Lyapunov-
Schmidt reduction, we consider

(3.1) B̃k = [(1−H)µC]
−1(0) ⊂ Ck,

where H is the harmonic projection defined in the elliptic complex CµC
. By

construction, the derivative of (1−H)µC at (A,Φ) is surjective. Hence, B̃k

is locally a complex manifold around (A,Φ). To parameterize B̃k, consider
the map

F : Ω0,1(gCE)k ⊕ Ω1,0(gCE)k → Ω0,1(gCE)k ⊕ Ω1,0(gCE)k,

F (α, η) = (α, η) + (D′′)∗G[α′′, η],
(3.2)

where α′′ is the (0, 1)-part of α. It has the following properties.
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Lemma 3.2.

1) F is KC-equivariant.

2) F is a local biholomorphism around 0.

3) D′′F (α, η) = (1−H)µC(A+ α,Φ+ η).

4) (D′′)∗F (α, η) = (D′′)∗(α, η).

Proof. (1) follows from the fact that the KC-action commutes with (D′′)∗

and G. Since the derivative of F at 0 is the identity map, the inverse function
theorem implies (2). Since (D′′)∗(D′′)∗ = 0, (4) follows. To prove (3), we
compute

(1−H)µC(A+ α,Φ+ η)

= D′′(D′′)∗G(D′′(α, η) + [α′′, η])

= D′′((α, η)−H(α, η)−D′′(D′′)∗G(α, η) + (D′′)∗G[α′′, η])

= D′′((α, η) + (D′′)∗G[α, η])

= D′′F (α, η).

(3.3)

□

As a consequence, F induces a well-defined map,

(3.4) F : B̃k ∩ [(A,Φ) + ker(D′′)∗] → kerD′′ ∩ ker(D′′)∗ = H1.

Since B̃k and (A,Φ) + ker(D′′)∗ intersect transversely at (A,Φ), their inter-
section is locally a complex manifold around (A,Φ). Hence, there are an open
ball U ⊂ H1 in the L2-norm around 0 and an open neighborhood Ũ of (A,Φ)
in B̃k ∩ [(A,Φ) + ker(D′′)∗] such that F : Ũ → U is a biholomorphism. The
Kuranishi map θ is defined as its inverse viewed as a map θ : U →֒ Ck, and
the Kuranishi space is defined as Z := θ−1(B ∩ Ũ). More concretely, by the
construction of B̃k,

(3.5) Z := {x ∈ U : H[θ(x), θ(x)] = 0}.

Here, (A,Φ) serves as the origin in the affine manifold Ck. Clearly, Z is a
closed complex subspace of U . Moreover, since Bss

k is open in Bk (see [38,
Theorem 4.1]), by shrinking U and hence Z if necessary, we may assume
that θ(Z) ⊂ Bss

k .
The next result shows that the Kuranishi space Z is locally complete.
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Proposition 3.3. The map

T : H0(Cµ)
⊥
k+1 ×H2(Cµ)

⊥
k+1 × [((A,Φ) + ker(D′′)∗) ∩ B

ss
k ] → B

ss
k ,

T (u, β,B,Ψ) = (B,Ψ) · exp(−i ∗ β) exp(u),
(3.6)

is a local homeomorphism around (0, 0, A,Φ). As a consequence, there exists
an open neighborhood W of (A,Φ) in Bss

k such that the G C

k+1-orbit of every
(B,Ψ) ∈W intersects the image θ(Z).

Proof. Consider the map

T : H0(Cµ)
⊥
k+1 ×H2(Cµ)

⊥
k+1 × ((A,Φ) + ker(D′′)∗) → Ck,

T (u, β,B,Ψ) = (B,Ψ) · exp(−i ∗ β) exp(u),
(3.7)

whereH0(Cµ)
⊥ andH2(Cµ)

⊥ are the L2-orthogonal complements ofH0(Cµ)
and H2(Cµ) in Ω0(gE) and Ω2(gE), respectively. Its derivative at (0, 0, A,Φ)
is given by

d(0,0,A,Φ)T (u, β, x) =
d

dt

∣∣∣∣
t=0

T (tu, tβ, (A,Φ) + tx)

=
d

dt

∣∣∣∣
t=0

(A,Φ) + tx) · exp(−i ∗ tβ) · exp(tu)

= x+
d

dt

∣∣∣∣
t=0

(A,Φ) · exp(−i ∗ tβ)

+
d

dt

∣∣∣∣
t=0

(A,Φ) · exp(tu)

= x+D′′(−i ∗ β) +D′′u

= D′′(u− i ∗ β) + x.

(3.8)

Note that

(3.9) H0(Cµ)
⊥ ⊕ i ∗H2(Cµ)

⊥ = H0(Cµ)
⊥ ⊕ iH0(Cµ)

⊥ = H0(CµC
)⊥.

Since

(3.10) Ω0,1(gCE)k ⊕ Ω1,0(gCE)k = ker(D′′)∗ ⊕ imD′′,

we conclude that d(0,A,Φ)T is an isomorphism. Hence, the inverse func-
tion theorem implies that there are open neighborhoods N1 ×N2 × V of
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(0, 0, A,Φ) and W of (A,Φ) such that T : N1 ×N2 × V →W is a diffeomor-
phism. Since Bss

k is G C

k+1-invariant, we conclude that

(3.11) T : N1 ×N2 × (V ∩ B
ss
k ) →W ∩ B

ss
k

is a homeomorphism. Finally, if U ⊂ H1 is sufficiently small, then θ is a
homeomorphism from Z to V ∩ Bss

k . □

Moreover, θ maps KC-orbits to G C-orbits in the following way.

Proposition 3.4 (cf. [8, Lemma 6.1]). If U is sufficiently small, then
the following hold:

1) If x1, x2 ∈ U are such that x1 = x2g for some g ∈ KC, then θ(x1) =
θ(x2)g. Hence, if x1 ∈ Z, then x2 ∈ Z.

2) Conversely, if dxθ(v)=u
#
θ(x) for some u∈Ω0(gCE)k+1, then u∈H0(CµC

),

and v = u#x , where u# is the infinitesimal action of u.

Proof. Since U is an open ball around 0, it is orbit-convex by [33, Lemma
1.14]. Hence, the holomorphicity of θ and [33, Proposition 1.4] imply that
θ(x1) = θ(x2)g. Since Bss

k is G C

k+1-invariant, if θ(x1) ∈ Bss
k , then θ(x2) ∈

Bss
k so that x2 ∈ Z. To prove (2), we claim that u ∈ H0(CµC

). Then, the
claim implies that
(3.12)

v = dθ(x)F (dxθ(v)) = dθ(x)F (u
#
θ(x)) =

d

dt

∣∣∣∣
t=0

F (θ(x)etu) =
d

dt

∣∣∣∣
t=0

xetu = u#x .

To prove the claim, write u = u′ + u′′ for some u′ ∈ H0(CµC
) and u′′ ∈

H0(CµC
)⊥k+1. Since θ takes values in (A,Φ) + ker(D′′)∗, (u′′)#

θ(x) ∈ ker(D′′)∗.
In the proof of Proposition 3.3, we see that the map

(3.13) T : H0(Cµ)
⊥
k+1 ×H2(Cµ)

⊥
k+1 × ((A,Φ) + ker(D′′)∗) → Ck

is a local diffeomorphism around (0, 0, A,Φ). Hence, there are open neigh-
borhoods N1 ×N2 × V of (0, 0, A,Φ) and W of (A,Φ) such that T : N1 ×
N2 × V →W is a diffeomorphism. If U is sufficiently small, θ : Z → V ∩ Bss

k

is a homeomorphism. Therefore, the derivative d(0,0,θ(x))T of T is injective.
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Note that

(3.14) H0(Cµ)
⊥ ⊕ i ∗H2(Cµ)

⊥ = H0(CµC
)⊥.

Then, we see that

(3.15) d(0,0,θ(x))T (u
′′, 0) = D′′

θ(x)u
′′ = d(0,0,θ(x))T (0, (u

′′)#
θ(x))

so that u′′ = 0. □

3.2. Perturbed Kuranishi maps

The Hitchin-Kobayashi correspondence characterizes polystable orbits in
Bss via the moment map µ. Since θ should eventually induce a local chart
for the moduli space, we should be able to relate the polystable orbits in H1

with respect to the complex reductive group KC to the polystable orbits in
B. Therefore, we would like to pullback the moment map µ to U ⊂ H1 by θ
and then use the pullback moment map θ∗µ to characterize polystable orbits
in U . However, θ∗µ takes values in Ω2(gE)k−1 instead of H2(Cµ) ∼= H0(Cµ)

∗.
To fix this issue, we will perturb the Kuranishi map along G C-orbits in the
following way.

Lemma 3.5. If U ⊂ H1 is sufficiently small, then there is a unique smooth
function β defined on U and taking values in an open neighborhood of 0 in
H2(Cµ)

⊥
k+1 such that the perturbed Kuranishi map Θ := θe−i∗β is smooth

and K-equivariant, and ν := Θ∗µ takes values in H2(Cµ) and hence is a
moment map for the K-action on U with respect to the symplectic form
Θ∗ΩI . Moreover, the derivative of Θ at 0 is the inclusion map.

Before giving the proof, we remark that the perturbed Kuranshi map Θ
is no longer holomorphic and hence the form Θ∗ΩI is no longer Kähler.

Proof. We follow the proof of [34, Proposition 7]. Consider the map

L : U ×H2(Cµ)
⊥
k+1 → H2(Cµ)

⊥
k−1,

L(x, β) = (1−H)µ(θ(x)e−i∗β),
(3.16)

where H is the harmonic projection defined in Cµ. Then, the derivative of
L at (0, 0) along the direction (0, β) is given by

(3.17) d(0,0)L(0, β) = (1−H)d2(−Id1 ∗ β) = d2d
∗
2β,
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where the second equality follows from the formula d∗2 = −Id1∗. Since

(3.18) d2d
∗
2 : H

2(Cµ)
⊥
k+1 → H2(Cµ)

⊥
k−1

is an isomorphism, the implicit function theorem guarantees the existence of
the desired function β. Since L is K-equivariant, the uniqueness of β implies
that Θ is also K-equivariant. A direct computation shows that d0Θ is the
inclusion map. □

Although we cannot prove a local slice theorem for the G C-action, the fol-
lowing is a substitute that relates the polystability of Higgs bundles to that
of points in H1 with respect to the KC-action.

Theorem 3.6. If U is sufficiently small, then the induced map

(3.19) U ×K Gk+1 → Ck, [x, g] 7→ Θ(x)g,

is injective. Moreover, there is an open ball B ⊂ U around 0 in the L2-norm
such that the following are equivalent for every x ∈ B ∩ Z:

1) xKC is closed in H1.

2) xKC ∩ ν−1(0) ̸= ∅.

Proof. The derivative of the induced map at [0, 1] is given by

(3.20) H1 ⊕H0(Cµ)
⊥
k+1 → Ω0,1(gCE)k ⊕ Ω1,0(gCE)k, (x, u) 7→ x+D′′u.

Since it is injective, we see that the induced map is locally injective around
[0, 1]. Then, we assume to the contrary that such U does not exist. Therefore,
there are sequences [xn, gn] and [x′n, g

′
n] such that

1) xn, x
′
n converge to 0 in H1.

2) Θ(xn)gn = Θ(x′n)g
′
n.

3) [xn, gn] ̸= [x′n, g
′
n] for all n.

Since the Gk+1-action is proper, by passing to a subsequence, we may assume
that g′ng

−1
n converges to some g ∈ Gk+1. Letting n→ ∞, we see that Θ(0) =

Θ(0)g so that g ∈ K. Now, on the one hand, [x′n, g
′
ng

−1
n ] ̸= [xn, 1] for any

n. On the other hand, both [x′n, g
′
ng

−1
n ] and [xn, 1] converge to [0, 1] so that

they are equal when n≫ 0, since the induced map is locally injective around
[0, 1]. This is a contradiction.
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Now, we prove the second part of the proposition. By Proposition 3.3,
there are open neighborhoods N1 ×N2 × V of (0, 0, A,Φ) and W of (A,Φ)
such that T : N1 ×N2 × V →W is a homeomorphism. Here, V and W
are open subsets in Bss

k . If U is sufficiently small, θ : Z → V is a home-
omorphism so that Proposition 3.4 holds. Let O be an open neighbor-
hood of 0 in H2(Cµ)

⊥
k+1 such that the smooth function β : U → O and

hence Θ := θe−i∗β are defined. By shrinking N2 if necessary, we may assume
that N2 ⊂ O. Then, by [38, Proposition 3.7], there is an open neighbor-
hood W ′ ⊂W of (A,Φ) in Bss

k such that the Yang-Mills-Higgs flow start-
ing at any Higgs bundle inside W ′ stays and converges in W . Moreover,
we may assume that T (N ′

1 ×N ′
2 × V ′) =W ′ for some open neighborhood

N ′
1 ×N ′

2 × V ′ ⊂ N1 ×N2 × V of (0, 0, A,Φ) such that θ : Z ∩B → V ′ for
some open ball B ⊂ U around 0.

Now, suppose x ∈ B ∩ Z is such that xKC is closed inH1. Let (Bt,Ψt) be
the gradient flow starting at θ(x). By the previous setup, θ(x) ∈ V ′ ⊂W ′ so
that (Bt,Ψt) stays in W . Therefore, we may write (Bt,Ψt) = θ(xt)e

−i∗βteut

for some xt ∈ Z and (ut, βt) ∈ N1 ×N2. We claim that xt stays in the KC-
orbit of x. Since the gradient of ∥µ∥2 is tangent to G C

k+1-orbits, we may write

dxθ(ẋt) = (ut)
#
θ(xt)

for some ut ∈ Ω0(gCE)k+1 that depends on t smoothly.

Here, u#t is the infinitesimal action of ut. Then, Proposition 3.4 implies that

ut ∈ H0(CµC
) and ẋt = (ut)

#
xt
. On the other hand, the ordinary differential

equation in KC,

(3.21) g−1
t ġt = ut, g0 = 1,

has a unique solution gt ∈ KC. By the uniqueness, we see that xt = xgt.
Therefore, the claim follows. Then, the fact that T is a homeomorphism
implies that both xt, βt and ut converge. Therefore, letting t→ ∞, we
have θ(x∞)e−i∗β∞eu∞ = (B∞,Ψ∞) and µ(B∞,Ψ∞) = 0. Since eu∞ ∈ Gk+1,
θ(x∞)e−i∗β∞ ∈ µ−1(0). Since N2 ⊂ O, the uniqueness of β in Lemma 3.5
implies that β(x∞) = β∞. Hence,

(3.22) Θ(x∞) = θ(x∞)e−i∗β∞ ∈ µ−1(0).

Finally, since xKC is closed in H1, we see that x∞ ∈ xKC. Again, by the
previous setup, x∞ ∈ Z ⊂ U .

Conversely, suppose xKC is not closed in H1. Note that the complex
structure I (the one given by multiplication by

√
−1) on C restricts to H1.

Since the K-action on H1 is linear, I-holomorphic and preserves the L2-
metric, it admits a standard moment map ν0 such that ν0(0) = 0. Since
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(grad ∥ · ∥2L2 , grad ∥ν0∥2)L2 = 8∥ν0∥2 (see [33, Example 2.3]), the gradient
flow of ∥ν0∥2 starting at x stays in B and converges to some y ∈ B ∩ Z
such that ν0(y) = 0. By the Kempf-Ness theorem, yKC is closed in H1.
Of course, y ∈ xKC \ xKC. Hence, by the previous paragraph, we can find
y∞ ∈ yKC ∩ U such that µ(Θ(y∞)) = 0. Hence, we have

(3.23) Θ(y∞) ∼G C
k+1

Θ(y) ∈ Θ(x)G C

k+1,

where ∼G C
k+1

is the equivalence relation generated by the G C

k+1-action. Now,

since xKC contains a zero of ν in U , we may assume that µ(Θ(x)) = 0. Then,
the following Lemma 3.7 implies that Θ(y∞) ∼G C

k+1
Θ(x) so that Θ(y∞) ∼Gk+1

Θ(x) by the Hitchin-Kobayashi correspondence. Then, the injectivity of
[x, g] 7→ Θ(x)g implies that y∞ ∼K x. This is a contradiction. □

The following result is nothing but the fact that the closure of the G C

k+1-
orbit of a semistable Higgs bundle contains a unique polystable orbit. Since
we cannot find a proof in the literature, we provide one here:

Lemma 3.7. Let (B,Ψ) be a semistable Higgs bundle. If (Bi,Ψi) ∈
(B,Ψ)G C

k+1 (i = 1, 2) are polystable Higgs bundles, then (B1,Ψ1) ∼G C
k+1

(B2,Ψ2).

Proof. We may assume that µ(Bi,Ψi) = 0 for i = 1, 2. Let r : Bss
k → µ−1(0)

be the retraction (see [38, Theorem 1.1]) given by the Yang-Mills-Higgs flow.

Suppose there are sequences (Bj
i ,Ψ

j
i ) ∈ (B,Ψ)G C

k+1 such that (Bj
i ,Ψ

j
i )

j→∞−−−→
(Bi,Ψi). By the openness of Bss

k , each (Bj
i ,Ψ

j
i ) is semistable if j ≫ 0. By

the continuity of r, we have

(3.24) r(Bj
i ,Ψ

j
i )

j→∞−−−→ r(Bi,Ψi) = (Bi,Ψi).

By [38, Theorem 1.4], we see that each r(Bj
i ,Ψ

j
i ) is the graded object of

the Seshadri filtration of (Bj
i ,Ψ

j
i ). Since graded objects are determined by

G C

k+1-orbits, we conclude that

(3.25) r(Bj
1,Ψ

j
1) ∼G C

k+1
Gr(B,Ψ) ∼G C

k+1
r(Bl

2,Ψ
l
2)

for each j, l so that r(Bj
1,Ψ

j
1) ∼Gk+1

r(Bl
2,Ψ

l
2). Since the Gk+1-action is

proper, Gk+1-orbits are closed. Letting j → ∞, we see that (B1,Ψ1) ∈
r(Bl

2,Ψ
l
2)Gk+1. Now, letting l → ∞, we see that (B1,Ψ1) ∼Gk+1

(B2,Ψ2). □
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3.3. Open embeddings into the moduli space

Let Z := Z ∩B which is a closed complex subspace of B. Note that Z isK-
invariant but not KC-invariant. To fix this issue, recall that every open ball
around 0 (in the L2-norm) in H1 is K-invariant and orbit-convex (see [33,
Definition 1.2 and Lemma 1.14]). By [13, §3.3, Proposition], ZKC is a closed
complex subspace of BKC, and Z is open in ZKC. Recall the standard
moment map ν0 : H

1 → H2(Cµ) used in the proof of Theorem 3.6. This is
the moment map for the K-action on H1 with respect to the L2-metric and
the restricted complex structure I. Then, by the analytic GIT developed in
[15] or [14, §0], there is a categorical quotient π : ZKC → ZKC �KC in
the category of reduced complex spaces such that every fiber of π contains a
unique closed KC-orbit, and the inclusion ν−1

0 (0) ∩ ZKC →֒ ZKC induces
a homeomorphism

(3.26) (ν−1
0 (0) ∩ ZKC)/K

∼−→ ZKC �KC.

Moreover, as a topological space, ZKC �KC is the quotient space defined
by the equivalence relation that x ∼ y if and only if xKC ∩ yKC ̸= ∅.

A corollary of Theorem 3.6 is that ZKC �KC can be realized as a
singular symplectic quotient with respect to ν instead of ν0.

Corollary 3.8. The inclusion j : ν−1(0) ∩ ZKC →֒ ZKC induces a home-
omorphism

(3.27) j : (ν−1(0) ∩ ZKC)/K
∼−→ ZKC �KC.

As a consequence, the perturbed Kuranishi map Θ induces well-defined con-
tinuous maps Θ and φ in the following commutative diagram

(3.28) ZKC �KC
ϕ // B

ps
k /G

C

k+1

(ν−1(0) ∩ ZKC)/K
Θ //

∼

OO

(µ−1(0) ∩ Bk)/Gk+1

∼

OO

More explicitly, φ is given by the formula

(3.29) φ[x] = [rθ(x)], x ∈ Z ,

where r : Bss
k → µ−1(0) is the retraction defined by the Yang-Mills-Higgs

flow.
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Proof. Clearly, Θ is a well-defined continuous map. To define φ, it suffices to
show that j is a homeomorphism. Therefore, we show that it has a continuous
inverse and follow the notations and the setup in the proof of Theorem 3.6.
Let π : ZKC → ZKC �KC be the quotient map. If xg ∈ ZKC with x ∈ Z ,
by using the gradient flow of ∥ν0∥2, we see that there is a closed KC-orbit
x̃KC ⊂ xKC with x̃ ∈ Z . Then, Theorem 3.6 implies that there exists

(3.30) x∞ ∈ ν−1(0) ∩ x̃KC ⊂ ν−1(0) ∩ xKC.

Therefore, if π(xg) = π(yh), then π(x∞) = π(y∞) so that

(3.31) Θ(x∞)G C

k+1 ∩Θ(y∞)G C

k+1 ̸= ∅.

If we can show that x∞ ∼K y∞, then the map

(3.32) j
−1

: ZKC �KC → (ν−1(0) ∩ ZKC)/K, [xg] 7→ [x∞],

is well-defined. Now, x∞ ∼K y∞ follows from the following Lemma.

Lemma 3.9. If (Ai,Φi) (i = 1, 2) are Higgs bundles such that µ(Ai,Φi) = 0

and (A1,Φ1)G C

k+1 ∩ (A2,Φ2)G C

k+1 ̸= ∅, then (A1,Φ1) ∼Gk+1
(A2,Φ2).

Proof. Let (B,Ψ) be a Higgs bundle in the intersection of the closures.
Hence, there is a sequence (Aj

i ,Φ
j
i ) ∈ (Ai,Φi)G

C

k+1 converging to (B,Ψ). The

continuity of r implies that r(Aj
i ,Φ

j
i )

j→∞−−−→ r(B,Ψ). By [38, Theorem 1.4],

(3.33) r(Aj
i ,Φ

j
i ) ∼G C

k+1
Gr(Ai,Φi) = (Ai,Φi)

so that r(Aj
i ,Φ

j
i ) ∼Gk+1

(Ai,Φi). Hence, there is a sequence of gji ∈ G such

that (Ai,Φi)g
j
i

j→∞−−−→ r(B,Ψ). Since the Gk+1-action is proper, by passing to

a subsequence, we may assume that gji
j→∞−−−→ gi for some gi ∈ Gk+1. Hence,

(Ai,Φi)gi = r(B,Ψ). □

Continuing with the proof of Corollary 3.8, we show that j
−1

is continuous.
Recall that x∞ is determined by the equation θ(x∞)e−i∗β∞eu∞ = r(θ(x̃)).
By the continuity of r, T−1 and θ−1, we see that the map Z ∋ x̃ 7→ x∞
is continuous. Moreover, Z ∋ x 7→ x̃ is also continuous, which is a general
property of the gradient flow of ∥ν0∥2. Since Z is open in ZKC, we conclude

that j
−1

is continuous.
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It remains to show that j
−1

is indeed the inverse of j. If xg ∈ ν−1(0) ∩
ZKC with x ∈ Z , then xKC is closed in H1 (Theorem 3.6). Since j

−1
is

well-defined, we see that

(3.34) (xg)∞ ∼K x∞ ∼KC x̃ ∼KC x ∼KC xg.

Then, ν((xg)∞) = ν(xg) = 0 implies that (xg)∞ ∼K xg. Conversely, if xg ∈
ZKC with x ∈ Z , then x∞ ∈ xKC so that π(xg) = π(x∞).

Finally, to obtain a formula for φ, note that

(3.35) Θ(x∞) ∈ Θ(x)G C

k+1 = θ(x)G C

k+1.

Moreover, r(θ(x)) ∈ θ(x)G C

k+1. Hence, by Lemma 3.7, Θ(x∞) ∼G C
k+1

r(θ(x)).
□

The next result shows that ZKC �KC is a local model for the quotient
Mk = B

ps
k /G

C

k+1. Strictly speaking, Mk is not the moduli space M . That
said, there is a natural map M → Mk. Note that [2, Lemma 14.8] and the
elliptic regularity for ∂A with A ∈ A imply that every point in Mk has a
C∞ representative. As a consequence, the natural map M → Mk is surjec-
tive. Its injectivity follows from [2, Lemma 14.9]. Later, as a consequence
of Theorem 3.10, we will show that M → Mk is a homeomorphism, which
justifies our use of Sobolev completions.

Theorem 3.10. If B is sufficiently small, φ : ZKC �KC → Mk is an open
embedding.

Proof. We will follow the notations and the setup in the proof of Theo-
rem 3.6. Since Θ is injective, φ is injective. Let Π: B

ps
k → Mk be the quotient

map, and consider the open set O = Π(W ′ ∩ B
ps
k ). If (B,Ψ) ∈W ′ ∩ B

ps
k ,

then (B,Ψ) = θ(x)e−i∗βeu for some x ∈ Z . We claim that φ[x] = [B,Ψ].
By the construction of φ in the proof of Corollary 3.8, we see that φ[x] =
[Θ(x∞)] for some x∞ ∈ ν−1(0) ∩ ZKC ∩ xKC so that

(3.36) Θ(x∞) ∈ θ(x)G C

k+1 = (B,Ψ)G C

k+1.

By Lemma 3.7, we have Θ(x∞) ∼G C
k+1

(B,Ψ). As a consequence, the open
set O is contained in the image of φ. Hence, we obtain a bijective continuous
map φ : Õ → O, where Õ = φ−1(O).

To show that φ|
Õ

is a homeomorphism, we will show that its inverse
is continuous. From the previous paragraph, we see that its inverse should
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be [B,Ψ] 7→ [x]. The continuity follows from the continuity of θ−1 and T−1.
Therefore, it remains to prove that it is well-defined. If (B′,Ψ′) ∈W ′ ∩ B

ps
k

lies in the G C

k+1-orbit of (B,Ψ), then

(3.37) Θ(x∞) ∼G C
k+1

(B,Ψ) ∼G C
k+1

(B′,Ψ′) ∼G C
k+1

Θ(x′∞)

so that

(3.38) xKC ∋ x∞ ∼K x′∞ ∈ x′KC.

Hence, xKC ∩ x′KC ̸= ∅.
Finally, we show that if B is sufficiently small, then φ is an open em-

bedding. Write π−1(Õ) = ZKC ∩Q for some open set Q in H1, where
π : ZKC → ZKC �KC is the quotient map. Since 0 ∈ Q, choose some
open ball B′ ⊂ Q ∩B around 0. By [33, Lemma 1.14], we know that B
and B′ are ν0-convex (see [15, (2.6), Definition]). Hence, by definition of
Z , Z is also ν0-convex. Hence, by [15, (3.1), Lemma], we see that ZKC ∩
B′KC = (Z ∩B′)KC. Then, we claim that (Z ∩B′)KC ⊂ π−1(Õ). In fact,
if xg ∈ (Z ∩B′)KC with x ∈ Z ∩B′, then x ∈ ZKC ∩Q. Since ZKC ∩Q
is KC-invariant, xg ∈ ZKC ∩Q. Finally, we claim that (Z ∩B′)KC is also
π-saturated so that (Z ∩B′)KC �KC is an open neighborhood of [0] in
ZKC �KC. Therefore, if B is shrunk to B′, and Z is shrunk to Z ∩B′,
we see that φ is an open embedding.

Suppose π(xg) = π(yh) for some x ∈ Z and y ∈ Z ∩B′. We want to
show that xg ∈ (Z ∩B′)KC. By using the gradient flow of ∥ν0∥2, we can find
a closed orbit y′KC ⊂ yKC with y′ ∈ Z ∩B′. Since every fiber of π contains
a unique closed orbit, y′KC ⊂ xKC. Since B′ is open, xKC ∩B′ ̸= ∅. Hence,
x ∈ B′KC ∩ ZKC = (Z ∩B′)KC. □

To show that M → Mk is a homeomorphism, we need the following lemma.

Lemma 3.11. Elements in Bk ∩ [(A,Φ) + ker(D′′)∗] are of class C∞.

Proof. Suppose (D′′)∗(α′′, η) = 0 and (∂A + α′′)(Φ + η) = 0, where α′′ is the
(0, 1)-part of α. The second equation is also equivalent to D′′(α′′, η) + [α′′, η]
= 0. Hence, ∆(α, η) = −(D′′)∗[α′′, η] where ∆ = D′′(D′′)∗ + (D′′)∗D′′ is the
Laplacian defined in CµC

. Since k > 1, the Sobolev multiplication theorem
(see [11, Theorem 4.4.1]) implies that [α′′, η] is in L2

k and hence (D′′)∗[α′′, η]
is in L2

k−1. By the elliptic regularity, (α′′, η) is hence in L2
k+1. By induction,

(α′′, η) is in C∞. □
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Lemma 3.12. The map φ in Corollary 3.8 factors through the natural map
M → Mk.

Proof. Recall that the formula for φ is given by φ[x] = [rθ(x)] where x ∈
Z . By Lemma 3.11, θ restricts to a continuous map Z → Bss ∩ ((A,Φ) +
ker(D′′)∗). Since r : Bss → µ−1(0) is continuous, Z ∋ x 7→ [rθ(x)] ∈ M is
continuous. Finally, [2, Lemma 14.9] and the fact that φ is well-defined
imply that φ factors through M → Mk. □

Corollary 3.13. The natural map M → Mk is a homeomorphism. There-
fore, the map φ : ZKC �KC → M is an open embedding.

Proof. By Lemma 3.12 and Theorem 3.10, M → Mk is locally an open map
and hence open. □

4. Gluing local models

For the rest of the paper, we will drop the subscripts that indicate Sobolev
completions for notational convenience. By Lemma 3.11, 3.12 and Corol-
lary 3.13, this should not cause any confusion. The main result in this sec-
tion is the following, which is part of Theorem A. The normality of M will
be proved in Lemma 6.7.

Theorem 4.1. The moduli space M is a complex space locally biholomor-
phic to a Kuranishi local model ZKC �KC.

Let (Ai,Φi) (i = 1, 2) be Higgs bundles such that µ(Ai,Φi) = 0. We will
use subscript i to denote relevant objects associated with (Ai,Φi). Let Zi

be their Kuranishi spaces and ZiK
C

i �KC

i Kuranishi local models, where
Ki is the G -stabilizer of (Ai,Φi). Let

(4.1) φi : ZiK
C

i �KC

i
∼−→ Oi ⊂ M

be the map constructed in Theorem 3.10 such that O1 ∩O2 ̸= ∅. Hence, the
transition function is given by

(4.2) φ−1
2 φ1 : φ

−1
1 (O1 ∩O2) → φ−1

2 (O1 ∩O2).

Our goal is to show that φ−1
2 φ1 is holomorphic so that M is a complex

space. Since holomorphicity is a local condition, the idea is that the tran-
sition function φ−1

2 φ1 should be locally induced by a holomorphic KC
1 -

invariant map from an open set in Z1K
C
1 to Z2K

C
2 �KC

2 . Then, the rest
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of the argument follows from the universal property of the quotient map
πi : ZiK

C

i → ZiK
C

i �KC

i . Here, the technical difficulty is to find an appro-
priate open set in Z1K

C
1 that is also π1-saturated. This will be overcome in

the following Lemma 4.2.
To proceed, we follow the notations and the setup in the proof of Theo-

rem 3.6. Let [x] ∈ φ−1
1 (O1 ∩O2). Using the gradient flow of ∥ν0∥2, we may

assume that x ∈ Z1 has a closed KC
1 -orbit. Hence, θ1(x) is polystable (The-

orem 3.6), and φ1[x] = [rθ1(x)] = [θ1(x)]. Similarly, there is some x′ ∈ Z2

with closedKC
2 -orbit such that φ2[x

′] = φ1[x] so that θ1(x) ∼G C θ2(x
′). Since

θi : Zi → V ′
i ⊂W ′

i is a homeomorphism, θ1(x) ∈W ′
1 ∩W ′

2h
−1 for some h ∈

G C.

Lemma 4.2. There is an open neighborhood C of x in Z1 such that

1) CKC
1 is π1-saturated.

2) θ1(C) ⊂W ′
1 ∩W ′

2h
−1.

3) [x] ∈ π1(C) ⊂ φ−1
1 (O1 ∩O2).

Proof. Since T1 : N
′
1 × V ′

1 →W ′
1 and θ1 : Z1 → V ′

1 are homeomorphisms,
there is an open ball Q around x such that

(4.3) θ1(Z1 ∩Q) ⊂W ′
1 ∩W ′

2h
−1.

Since Z1 is open in Z1K
C
1 , (Z1 ∩Q)KC

1 is open in Z1K
C
1 . Then, set

(4.4) C = π−1
1 π1(ν

−1
1 (0) ∩ (Z1 ∩Q)KC

1 ) ∩ (Z1 ∩Q).

By Corollary 3.8, C is open in Z1. Clearly, (2) follows and x ∈ C.
To show that CKC

1 is π1-saturated, let y ∈ Z1K
C
1 be such that π1(y) =

π1(y
′) for some y′ ∈ C. By definition of C, π1(y

′) = π1(y
′′) for some y′′ ∈

ν−1
1 (0) ∩ (Z1 ∩Q)KC

1 . Since y
′′KC

1 is closed, y′′KC
1 ⊂ yKC

1 . Since y
′′KC

1 ∩
C ̸= ∅, and C is open, we conclude that yKC

1 ∩ C ̸= ∅. This shows (1). If y ∈
C, then π1(y) = π1(y

′g) for some y′g ∈ ν−1
1 (0) ∩ (Z1 ∩Q)KC

1 with y′ ∈ Z1 ∩
Q. Therefore, φ1[y] = [θ1(y

′)]. By the construction of φi in Corollary 3.8 and
Theorem 3.10, we see that

(4.5) Oi = Πrθi(Zi) = Πr(V ′
i ) = Πr(W ′

i ),

where Π: Bps → M is the quotient map. Since θ1(y
′) ∈W ′

1 ∩W ′
2h

−1 is
polystable, it is easy to see that [θ1(y

′)] ∈ O1 ∩O2. This proves (3). □
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Now, for y ∈ C, θ1(y)h ∈W ′
2. Since T2 is a homeomorphism, there is g(y) ∈

G C, as a function of y ∈ C, such that θ1(y)hg(y) ∈ V ′
2 . Hence, we have ob-

tained a map

(4.6) ψ21 : C → Z2K
C

2 �KC

2 , ψ21(y) = π2θ
−1
2 (θ1(y)hg(y)).

Lemma 4.3.

1) ψ21 is holomorphic.

2) If y, y′ ∈ C are in the same KC
1 -orbit, then ψ(y) = ψ(y′).

Proof. Explicitly, we have

(4.7) g(y) = exp(−p1T−1
2 (θ1(y)h)),

where p1 is the projection onto the first factor. Since

(4.8) T2 : H
0(C2

µC
)⊥ × ((A2,Φ2) + kerD′′∗

2 ) → C

is holomorphic, its inverse, when restricted to appropriate open neighbor-
hoods, is also holomorphic. Moreover, since the Kuranishi map is holomor-
phic, θ1 is also holomorphic when the codomain is appropriately extended.
Therefore, we conclude that g : C → G C is holomorphic. Finally, since the
G C-action is holomorphic, we conclude that ψ21 is holomorphic.

To show (2), suppose there are z, z′ ∈ Z2 such that

θ2(z) = θ1(y)hg(y),

θ2(z
′) = θ1(y

′)hg(y′).
(4.9)

We want to show that π2(z) = π2(z
′). Since y and y′ are in the same KC

1 -
orbit,

(4.10) θ2(z) ∼G C θ1(y) ∼G C θ1(y
′) ∼G C θ2(z

′)

so that rθ2(z) ∼G rθ2(z
′). This means that φ2[z] = φ2[z

′]. Since φ2 is injec-
tive, [z] = [z′]. □

Lemma 4.4. The transition function φ−1
2 φ1 is holomorphic.
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Proof. By Lemma 4.3, ψ21 extends to a KC
1 -invariant holomorphic map

(4.11) ψ21 : CK
C

1 → Z2K
C

2 �KC

2 .

Since CKC
1 is a π1-saturated open set (Lemma 4.2),

(4.12) π2 : CK
C

1 → π1(CK
C

1 ) =: CKC

1 �KC

1

is also a categorical quotient. As a consequence, ψ21 descends to a holomor-
phic map

(4.13) ψ21 : CK
C

1 �KC

1 → Z2K
C

2 �KC

2 .

Let [c] ∈ CKC
1 �KC

1 with c ∈ C and z = θ−1
2 (θ1(c)hg(c)). Hence, θ2(z) ∼G C

θ1(c). Therefore,

(4.14) φ2ψ21[c] = φ2ψ21(c) = φ2π2(z) = Π(rθ2(z)) = Π(rθ1(z)) = φ1[c].

This shows that the transition function φ−1
2 φ1 coincides with a holomorphic

map ψ21 on an open neighborhood CKC
1 �KC

1 of [x] in φ−1
1 (O1 ∩O2). This

completes the proof. □

Proof of Theorem 4.1. By the properness of the G -action, (µ−1(0) ∩ B)/G
is Hausdorff. The Hitchin-Kobayashi correspondence implies that M is Haus-
dorff. The Kuranishi local models are constructed in Corollary 3.8 and The-
orem 3.10. By Lemma 4.4, the transition functions are holomorphic. □

5. Singularities in Kuranishi spaces

In this section, we will show that Kuranishi spaces have only cone singulari-
ties. We will use the same notations as in Section 3. The main result in this
section is the following (cf. [17, Theorem 2.24] and [1, Theorem 3]).

Theorem 5.1. The following diagram commutes:

(5.1) B̃ ∩ ((A,Φ) + ker(D′′)∗)
F //

µC

��

H1

1

2
H[·,·]vv

H2(CµC
)
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Proof. By construction of B̃, the restriction of µC to B̃ is given by

µC(A+ α,Φ+ η) = HµC(A+ α,Φ+ η)(5.2)

=
1

2
H[α′′, η;α′′, η] = H[α′′, η],

where (A+ α′′,Φ+ η) ∈ B̃. By definition of the Kuranishi space Z, it suf-
fices to prove

1) H[(α′′, η), (D′′)∗G[α′′, η;α′′, η]] = 0, and

2) H[(D′′)∗G[α′′, η;α′′, η], (D′′)∗G[α′′, η;α′′, η]] = 0

for any (α′′, η) ∈ ker(D′′)∗. By Kähler identities,

(5.3) H[(α′′, η), (D′′)∗G[α′′, η;α′′, η]] = ±iH[(α′′, η), D′ ∗G[α′′, η;α′′, η]]

and (α′′, η) ∈ kerD′. Since D′ is a derivation with respect to [·, ·], we see
that

(5.4) H[(α′′, η), D′ ∗G[α′′, η;α′′, η]] = ±HD′[(α′′, η), ∗G[α′′, η;α′′, η]] = 0.

This proves (1). The same argument shows (2). This completes the proof. □

As a corollary, we obtain a description of singularities in the Kuranishi
spaces.

Corollary 5.2. The Kuranishi space Z is an open neighborhood of 0 in the
quadratic cone

(5.5) Q = {x ∈ H1 :
1

2
H[x, x] = 0}.

Proof. This is clear by definition of Kuranishi spaces and Theorem 5.1. □

It is easy to see that the complex structures on C restrict to H1 so that H1

has a linear hyperKähler structure. In particular, the complex symplectic
form ΩC on C restricts to H1. Hence, there is a standard complex moment
map ν0,C : H

1 → H2(CµC
) for the KC-action with respect to the linear com-

plex symplectic structure. More precisely, ν0,C is defined by

(5.6) ⟨ν0,C(x), ξ⟩ =
1

2
ΩC(x · ξ, x), ξ ∈ H0(CµC

).

Since i : H1 →֒ C is KC-equivariant, and µC is a complex moment map,
Hi∗µC is a complex moment map for the KC-action on H1, where H is
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the harmonic projection onto H2(CµC
). Since Hi∗µC(0) = 0, we see that

Hi∗µC = ν0,C. On the other hand, Hi∗µC = 1
2H[·, ·]. Hence, Q is the zero

set of the standard complex moment map ν0,C.
Obviously, ν−1

0,C(0) is a closed complex subspace of H1. In fact, it is an

affine variety. Therefore, the affine GIT quotient ν−1
0,C(0) �KC exists such

that the inclusion ν−1
0 (0) ∩ ν−1

0,C(0) →֒ ν−1
0,C(0) induces a homeomorphism (see

[15, (1.4)])

(5.7) (ν−1
0 (0) ∩ ν−1

0,C(0))/K
∼−→ ν−1

0,C(0) �KC.

Note that (ν−1
0 (0) ∩ ν−1

0,C(0))/K is precisely the hyperKähler quotient

with respect to the standard hyperKähler moment maps on H1.

Theorem 5.3 (=Theorem B). Let [A,Φ] ∈ M be a point such that
µ(A,Φ) = 0 and H1 its deformation space, a harmonic space defined in CµC

.
Then, the following hold:

1) H1 is a complex-symplectic vector space.

2) The G C-stabilizer KC at (A,Φ) is a complex reductive group, acts
on H1 linearly and preserves the complex-symplectic structure on H1.
Moreover, the KC-action on H1 admits a canonical complex moment
map ν0,C such that ν0,C(0) = 0.

3) Around [A,Φ], the moduli space M is locally biholomorphic to an open
neighborhood of [0] in the complex symplectic quotient ν−1

0,C(0) �KC

which is an affine GIT quotient.

Proof. It remains to show (3). Since Z is open in Z which is also open in
Q, we have ZKC is open in Q. Since ZKC is saturated with respect to
the quotient Q→ Q �KC, ZKC �KC is an open neighborhood of [0] in
Q �KC. The rest follows from Theorem 3.10 and 4.1. □

6. Comparison with the algebraic construction

Let Man be the moduli space Bps/G C and Malg the coarse moduli space of
the semistable Higgs bundles of rank r and degree 0, where r is the rank of
E. By [32, Theorem 4.7, Theorem 11.1], Malg is a normal irreducible quasi-
projective variety. By abusing the notation, we also use Malg to mean its
analytification. Then, there is a natural comparison map

(6.1) i : Man → Malg, [A,Φ] 7→ [EA,Φ]S .
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Here, (EA,Φ) is the Higgs bundle determined by (A,Φ), and [EA,Φ]S means
the S-equivalence class of (EA,Φ). We will prove Theorem C in this section.
By [38, Proposition 5.1], we see that i is a bijection of sets.

6.1. Continuity

The first step towards our goal is to show that i is a homeomorphism. To this
end, we need some preparations. First, we may assume that the degree of E
is sufficiently large. This can be arranged as follows. Fix a holomorphic line
bundle L = (L, ∂L) of degree d > 0. Here, L is the underlying smooth line
bundle of L , and ∂L is the ∂-operator defined by the holomorphic structure
on L . We may also fix a Hermitian metric on L so that the Chern connection
of ∂L is dL. Then, there is a map

(6.2) B(E) → B(E ⊗ L), (A,Φ) 7→ (A⊗ 1 + 1⊗ dL,Φ⊗ 1).

Here, B(E) and B(E ⊗ L) are the configuration spaces of Higgs bundles
with underlying smooth bundles E and E ⊗ L, respectively. Since (E ,Φ) is
(semi)stable if and only if (E ⊗ L ,Φ) is (semi)stable, this map restricts to
a map

(6.3) B(E)ps → B(E ⊗ L)ps

and eventually descends to a homeomorphism (in the C∞-topology)

(6.4) Man
⊗L−−→ Man(rd),

where Man(rd) = Bps(E ⊗ L)ps/Aut(E ⊗ L), and rd is the degree of E ⊗ L.
On the other hand, there is a homeomorphism (in the analytic topology)
Malg → Malg(rd) given by tensoring by L . Here, Malg(rd) is the moduli
space of the semistable Higgs bundles of rank r and degree rd in the category
of schemes. Finally, these maps fit into the following commutative diagram

(6.5) Man
i //

⊗L

��

Malg

⊗L

��
Man(rd)

i // Malg(rd)

Therefore, the bottom map is a homeomorphism if and only if the top one
is a homeomorphism.
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Now, let us recall Nitsure’s construction of Malg in [27]. By the previous
paragraph, we may assume that the degree d of E is sufficiently large so
that if (EA,Φ) is a semistable Higgs bundle defined by (A,Φ) ∈ B then
EA is generated by global sections and H1(X,EA) = 0. Let p = d+ r(1− g)
and Q be the Quot scheme parameterizing isomorphism classes of quotients
O

p
X → E → 0, where E is a coherent sheaf on X with rank r and degree d,

and OX is the structure sheaf of X. Let O
p
X×Q → U → 0 be the universal

quotient sheaf on X ×Q, and R ⊂ Q be the subset of all q ∈ Q such that

1) the sheaf Uq is locally free, and

2) the map H0(X,Op
X) → H0(X,Uq) is an isomorphism.

It is shown that R is open in Q. Moreover, Nitsure constructed a lin-
ear scheme F over R such that closed points in Fq correspond to Higgs
fields on Uq for any q ∈ Q. Let F ss denote the subset of F consisting of
semistable Higgs bundles (Op

X → E → 0,Φ). It is open in F . Moreover, the
group PGL(p) acts on Q, and the action lifts to F . Finally, Nitsure showed
that the good quotient of F ss by the group PGL(p) exists and is the moduli
space Malg.

Following [28], if U is an open subset of Bss (in the C∞-topology), a
map σ : U → F ss is called a classifying map if σ(A,Φ) is a Higgs bundle
isomorphic to (EA,Φ).

Lemma 6.1. Fix (A0,Φ0) ∈ Bss. There exists an open neighborhood U of
(A0,Φ0) in Bss in the C∞-topology such that a classifying map σ : U → F ss

exists and is continuous with respect to the analytic topology on F ss.

Before giving the proof, we first show how it implies the continuity of i.

Corollary 6.2. The comparison map i : Man → Malg is a homeomorphism.

Proof. Fix [A0,Φ0] ∈ Man such that (A0,Φ0) ∈ Bps. By Lemma 6.1, there
exists an open neighborhood U of (A0,Φ0) such that a continuous clas-
sifying map σ : U → F ss exists. Composed with the categorical quotient
F ss → Malg, which is continuous in the analytic topology, we obtain a con-
tinuous map U → Malg. By construction, it descends to the restriction of i
to the open set π(U), where π : Bps → Man is the quotient map.

To see that i is a homeomorphism, we show that it is proper. Since
Malg is locally compact in the analytic topology, if i is proper, then it is
a closed map and hence a homeomorphism. Let us recall the definitions
of Hitchin fibrations in the analytic and algebraic settings. Given a Higgs
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bundle (E ,Φ), the coefficient of λn−i in the characteristic polynomial det(λ+
Φ) is a holomorphic section of K i

X , where n is the rank of E , i = 1, · · · , n,
and KX is the canonical bundle on the Riemann surface X. Since these
sections are clearly G C-invariant, we have obtained a well-defined map

(6.6) han : Man →
n⊕

i=1

H0(X,K i
X).

It is known that han is a proper map (see [16, Theorem 8.1] or [37, The-
orem 2.15]). On the other hand, let (V ,Φ) be the local universal family
of semistable Higgs bundles parameterized by the scheme F ss. Therefore,
(V ,Φ) is a pair of a vector bundle V → X × F ss and a section Φ ∈ H0(X ×
F ss, p∗XKX ⊗ EndV ), where pX : X × F ss → X is the projection onto the
first factor. Moreover, if q = (E ,Φ) ∈ F ss is a semistable Higgs bundle then
the restriction (Vq,Φq) of (V ,Φ) to X × {q} is isomorphic to (E ,Φ). Hence,

there is a map h̃alg : F
ss → ⊕n

i=1H
0(X,K i

X) sending a closed point q ∈ F ss

to the coefficients of the characteristic polynomial det(λ+Φq). Since the
Higgs fields of two S-equivalent Higgs bundles have the same characteristic
polynomial, h̃alg induces a well-defined map halg : Malg → ⊕n

i=1H
0(X,K i

X)
(see [27, §6] for more details). The maps han and halg are called Hitchin fibra-
tions. Therefore, if [A,Φ] ∈ Man and q = (EA,Φ) ∈ F ss is the Higgs bundle
determined by (A,Φ), then

(6.7) halg ◦ i[A,Φ] = halg([EA,Φ]S) = h̃alg(q).

By definition, h̃alg(q) ∈ ⊕n
i=1H

0(X,K i
X) is the coefficients of the charac-

teristic polynomial det(λ+Φq). Since (Vq,Φq) is isomorphic to (EA,Φ),

h̃alg(q) = han(A,Φ), and we have proved that halg ◦ i = han.
As a consequence, if K is a compact subset in Malg in the analytic

topology, then i−1(K) ⊂ h−1
anhalg(K). Since halg is continuous, halg(K) is

compact and hence h−1
anhalg(K) is compact by the properness of han. Since

Malg is a separated scheme, Malg is Hausdorff in the analytic topology.
Hence, K is closed and i−1(K) is also closed and contained in a compact
set. Therefore, i−1(K) is compact. □

Proof of Lemma 6.1. The proof is essentially taken from that of [28, The-
orem 6.1]. We first show that a classifying map σ exists and then prove
its continuity. Let V0 = ker ∂A0

⊂ Ω0(E). By definition of ∂-operators, V0 =
H0(X,EA). Since H1(EA) = 0, the Riemann-Roch theorem implies that
dimV0 = p. Hence, by choosing a basis for V0, we may identify V0 with
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Cp. Moreover, since EA0
is generated by global sections, the evaluation map

(6.8) X × V0 → EA, (x, s) 7→ s(x),

realizes EA0
as a quotient of V0 ⊗ OX

∼= O
p
X . Let (A,Φ) be another point in

Bss, and consider the map defined by the composition

(6.9) πA : VA = ∂A →֒ Ω0(E) → V0,

where Ω0(E) → V0 is given by the harmonic projection defined in the fol-
lowing elliptic complex

(6.10) C(A0) : Ω
0(E)

∂A0−−→ Ω0,1(E).

We claim that there exists an open neighborhood U of (A0,Φ0) such that
πA is an isomorphism for every (A,Φ) ∈ U . Write πA(s) = s+ us for some
us ∈ V ⊥

0 and ∂A = ∂A0
+ a for some a ∈ Ω0,1(gCE). Let G0 be the Green

operator in the elliptic complex C(A0). Since us ∈ V ⊥
0 ,

(6.11) us = ∂
∗

A0
∂A0

G0us = ∂
∗

A0
G0∂A0

us = ∂
∗

A0
G0(−∂A0

s) = ∂
∗

A0
G0(as).

Hence, πA has a natural extension

(6.12) π̃A : Ω0(E) → Ω0(E), s 7→ s+ ∂
∗

A0
G0(as),

satisfying the following estimate

∥∂∗A0
G0(as)∥L2

k
≤ C∥as∥L2

k−1
≤ C∥as∥L2

k
(6.13)

≤ C∥a∥L2
k
∥s∥L2

k
≤ C∥a∥C∞∥s∥L2

k
,

where we have used the Sobolev multiplication theorem (see [11, Theo-
rem 4.4.1]). Therefore, if A1, A2 ∈ Bss and ∂Ai

= ∂A0
+ ai for some ai ∈

Ω0,1(E), we have

(6.14) ∥(π̃A2
− π̃A1

)s∥L2
k
= ∥∂∗A0

G0(a2 − a1)s∥L2
k
≤ C∥a2 − a1∥C∞∥s∥L2

k
.

Now if U is sufficiently small, we may assume that

(6.15) ∥∂∗A0
G0(as)∥L2

k
≤ (1/2)∥s∥L2

k

so that

(6.16) ∥π̃As∥L2
k
≥ (1/2)∥s∥L2

k
.
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This shows that π̃A is injective. Since H1(EA) = 0, dimVA = dimV0 = p, πA
is an isomorphism. Therefore, the map

(6.17) X × V0
1×π−1

A−−−−→ X × VA
(x,s) 7→s(x)−−−−−−−→ EA

realizes EA as a quotient of V0 ⊗ OX
∼= O

p
X , since EA is generated by global

sections. As a consequence, the classifying map

(6.18) σ : U → F ss, (A,Φ) 7→ (Op
X → EA → 0,Φ),

is well-defined.
Now, we show that σ is continuous. Let G(p, r) be the Grassmannian

parameterizing isomorphism classes of quotients Cp → V → 0, where V is
a vector space of dimension r. Over G(p, r), there is a universal quotient
bundle H → G(p, r). Fix x ∈ X and choose a basis for the fiber (KX)x of
the canonical bundle KX over x. Therefore, any Higgs field Φ ∈ H0(EndE ⊗
KX) induces an endomorphism Φx : Ex → Ex ⊗ (KX)x ∼= Ex. Then, Nitsure
showed in [27] that there is a morphism
(6.19)
τx : F → EndH, (Op

X → EA → 0,Φ) 7→ (Cp → Ex,Φx : Ex → Ex),

where Cp → Ex is obtained by evaluating the map O
p
X → EA at x. Moreover,

[27, Proposition 5.7] states that there are N points x1, · · · , xN ∈ X such
that {τxi

} induces an injective and proper morphism (in the category of
schemes) τ : F ss →W for some open subset W of (EndH)N . Therefore, the
underlying continuous map of τ is a closed embedding with respect to the
analytic topology. Hence, σ is continuous if the composition

(6.20) σx : U
σ−→ F ss τx−→ EndH

is continuous for any x ∈ X. More explicitly, σx is given by

(6.21) (A,Φ) 7→ (V0 → Ex → 0,Φx : Ex → Ex),

where V0 → Ex is defined by

(6.22) V0
π−1

A−−→ VA
s 7→s(x)−−−−→ Ex.

Clearly, the map Φ 7→ Φx is continuous. It suffices to show that

(6.23) A 7→ (V0 → Ex → 0)
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is continuous. Fix s ∈ V0 and A1, A2 ∈ U . Write ∂Ai
= ∂A0

+ ai for some
ai ∈ Ω0,1(E) (i = 1, 2). Then, the following estimate follows from (6.14),
(6.16), and Sobolev embedding L2

k →֒ C0,

|(π−1
A1

− π−1
A2

)s(x)| ≤ ∥(π−1
A1

− π−1
A2

)s∥C0

≤ C∥(π−1
A1

− π−1
A2

)s∥L2
k

≤ C∥π̃−1
A1

(s− π̃A1
π̃−1
A2
s)∥L2

k

≤ C∥s− π̃A1
π̃−1
A2
s∥L2

k

= C∥(π̃A2
− π̃A1

)π−1
A2
s∥L2

k

≤ C∥a2 − a1∥C∞∥π̃−1
A2
s∥L2

k

≤ C∥a2 − a1∥C∞∥s∥L2
k
.

(6.24)

Hence, A 7→ (V0 → Ex → 0) is continuous. □

6.2. Holomorphicity

We continue to show that the comparison map i is a biholomorphism. Let
M s

an and M s
alg be the subsets of Man and Malg consisting of stable Higgs

bundles, respectively. We first show that the restriction i : M s
an → M s

alg is
a biholomorphism. By [31, Theorem 4.7], M s

alg is open in Malg. By [31,
Corollary 11.7] and [27, Proposition 7.1], we see that M s

alg is smooth. On the

other hand, a polystable Higgs bundle (A,Φ) is stable if and only if its G C-
stabilizer is equal to C∗ or equivalently dimH0(CµC

(A,Φ)) = 1. Since C∗ is
contained in every G C-stabilizer, by the upper semicontinuity of dimensions
of cohomology (see [20, Chapter VII, (2.37)]), we conclude that M s

an is open
in Man.

Proposition 6.3. M s
an is a smooth submanifold of Man.

Proof. Fix (A,Φ) ∈ Bs that satisfies Hitchin’s equation. Let K be its G -
stabilizer so that KC is its G C-stabilizer. To show that M s

an is smooth,
we will use Theorem B. It is enough to show that ν−1

0,C(0) �KC = H1. In

fact, since KC = C∗, KC acts on H1 trivially. Moreover, ν0,C(x) =
1
2H[x, x]

is trace-free for every x ∈ H1. Since H2(CµC
) = C∗ωX , we conclude that

H[x, x] = 0 for every x ∈ H1, where ωX is a fixed Kähler form on X. □

Fix [A,Φ] ∈ M s
an such that (A,Φ) ∈ Bs satisfies Hitchin’s equation. By

Corollary 3.13 and Proposition 6.3, we see that φ : Z → M s
an is a biholo-

morphism onto an open neighborhood of [A,Φ] in M s
an, where Z is an open
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neighborhood of 0 in H1 and φ the map induced by the Kuranishi map
θ : Z → Bs (see Section 3). Therefore, to show that i|M s

an
is holomorphic, it

is enough to show that iφ : Z → M s
alg is holomorphic. By the remark after

the proof of [31, Corollary 5.6], we see that the analytification of Malg is the
coarse moduli space of semistable Higgs bundles in the category of complex
spaces. Therefore, to show that iφ is holomorphic, we need to construct
a family (V ,Φ), called the Kuranishi family associated with θ, of stable
Higgs bundles over Z such that (Vt,Φt) is isomorphic to (EAt

,Φt) for every
t ∈ Z , where (At,Φt) = θ(t). In general, a family (V ,Φ) of Higgs bundles
over a complex space T is a holomorphic vector bundle V → X × T to-
gether with a holomorphic section Φ ∈ H0(X × T, p∗XKX ⊗ EndV ), where
pX : X × T → X is the projection onto the first factor.

Proposition 6.4. For any (A,Φ) ∈ Bs, let θ : Z → Bs be the Kuranishi
map defined by (A,Φ). Then, there exists a Kuranishi family (V ,Φ) of stable
Higgs bundles over Z such that (Vt,Φt) is isomorphic to (EAt

,Φt) for every
t ∈ Z , where (At,Φt) = θ(t).

Proof. We adapt the proof of [10, Proposition 2.6]. Let V = p∗XE be the
smooth vector bundle over X × Z , and Φ(x, t) := Φt(x) can be regarded
as a smooth section of p∗XΛ1,0X ⊗ End(U) ⊂ Ω1,0(X × Z ,EndU). Then,
we need to put a holomorphic structure on V so that Φ is a holomorphic
section.

Let {si} be a smooth local frame for E. Then {p∗Xsi} is a smooth local
frame for V . Then, we define a ∂-operator ∂V : Ω0(V ) → Ω0,1(V ) by the
requirement that

(6.25) ∂V (p
∗
Xsi) = ∂At

si.

Here, ∂At
si is regarded as a local section of Λ0,1(X × Z )⊗ V . It is easy

to show that ∂V is independent of the choices of smooth local frames {si}.
Therefore, ∂V is a well-defined ∂-operator on V .

Then, we show that ∂V is integrable so that V = (V, ∂V ) is a holomor-
phic vector bundle over X × Z . Write ∂At

si = f ji sj for some smooth local

function f ji on X × Z . Since θ is holomorphic, each f ji is holomorphic in
the direction of Z . As a consequence,

(6.26) ∂
2
V (p

∗
Xsi) = ∂X×Z f

j
i ∧ sj + f ji ∂At

sj = ∂Xf
j
i ∧ sj + f ji ∂At

sj ,
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where ∂X×Z and ∂X are usual ∂-operators on the complex manifoldsX × Z

and X, respectively. On the other hand,

(6.27) 0 = ∂
2
At
si = ∂Xf

j
i ∧ sj + f ji ∂At

sj .

Then, we show that ∂V Φ = 0. Write Φs = ϕisi for some smooth local
function ϕi on X × Z . Since θ is holomorphic, ϕi is holomorphic in the
direction of Z . As a consequence,

(6.28) ∂V Φ = ∂X×Z ϕ
i ∧ si + ϕi∂At

si = ∂Xϕ
i ∧ si + ϕi∂At

si = ∂At
Φt = 0.

Finally, we need to show that if (Vt,Φt) is isomorphic to (EAt
,Φt) for

any t ∈ Z . If it(x) = (x, t) is the holomorphic map X → X × Z , then the
holomorphic structure on i∗tV is given by the pullback ∂-operator i∗t∂V .
Since

(6.29) [i∗t (∂V )](i
∗
t p

∗
Xs) = i∗t (∂V s) = ∂At

s

for any smooth local section s of E, we see that i∗tV is isomorphic to EAt
.

Moreover, i∗tΦ = Φt = Φ. □

Corollary 6.5. The comparison map i : M s
an → M s

alg is a biholomorphism.

Proof. Since the analytification of Malg is the coarse moduli space of semi-
stable Higgs bundles in the category of complex spaces, the family (V ,Φ)
constructed in Proposition 6.4 induces a holomorphic map

(6.30) Z → M
s
alg, t 7→ [Vt,Φt].

On the other hand, the map iφ : Z → M s
alg is given by

(6.31) iφ(t) = i[At,Φt] = [EAt
,Φt] = [Vt,Φt].

Hence, iφ is holomorphic. Since both M s
an and M s

alg are smooth complex
manifolds, and i is a holomorphic bijection, i is a biholomorphism. □

Then, we extend the holomorphicity of i−1 on M s
alg to the full moduli space

Malg.

Corollary 6.6. The map i−1 : Malg → Man is holomorphic.
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Proof. Recall that Man is assumed to be reduced, and Malg is reduced.
Take a holomorphic f : U → C where U is an open subset of Man. Then,
the pullback (i−1)∗f is continuous on the open set i(U) and holomorphic
on i(U) ∩ M s

alg. By [22], the normality of Malg implies the normality of
its analytification. Since M s

alg is open in the Zariski topology, Malg \ M s
alg

is a closed analytic subset of Malg in the analytic topology. Since (i−1)∗f
is already continuous on i(U), the Riemann extension theorem for normal
complex spaces implies that the restriction (i−1)∗f : M s

alg ∩ i(U) → C can
be extended to a holomorphic function g on i(U). Since Malg is irreducible,
the open set M s

alg is dense in the Zariski topology and hence in the analytic

topology ([26, §10, Theorem 1]). Since both (i−1)∗f and g are continuous
and agree on an open dense subset M s

alg ∩ i(U) of i(U), (i−1)∗f = g. This

shows that i−1 is holomorphic. □

The final ingredient is the normality of Man.

Lemma 6.7. Man is a normal complex space.

Proof. Let us temporarily use Q to mean ν−1
0,C(0) viewed as an affine variety

in H1 and Qan to mean the analytification of Q. By Theorem 5.3, it suffices
to prove that Qan �KC is normal at the origin [0]. Here, Qan �KC is the
analytic GIT quotient of Qan by KC. By [15], the analytification of the affine
GIT quotient Q �KC is Qan �KC.

Now, we fix a Higgs bundle (A,Φ) such that µ(A,Φ) = 0. By choosing
a point x ∈ X, the holomorphic bundle (EA,Φ, x) defines a point in the
moduli space RDol(X,x, n) of the semistable Higgs bundles of rank n and
degree 0 and with a frame at x. In [32, Corollary 11.7], it is shown that
RDol(X,x, n) is normal. Moreover, in the proof of [32, Proposition 10.5],
it is shown that the formal completion of Q (regarded as an affine variety
in H1) at 0 is isomorphic to the formal completion of a subscheme Y at
(EA,Φ, x). Here, Y is a local slice, provided by Luna’s slice theorem (see
[18, Theorem 4.2.12]) at (EA,Φ, x) for the GLn(C) action on RDol(X,x, n).
Moreover, since RDol(X,x, n) is normal at (EA,Φ, x), Y can be taken to
be normal at (EA,Φ, x). As a consequence, the formal completion of Q is
normal at 0. By [35, Tag 0FIZ], Q is normal at 0. Since taking invariants
commutes with localizations and preserves the normality, we conclude that
Q �KC is normal at [0]. Since normality is preserved by the analytification
(see [22]), we see that Qan �KC is normal at [0]. □

The proof of Theorem C rests on the following theorem.

https://stacks.math.columbia.edu/tag/0FIZ
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Theorem 6.8 ([12, Theorem, p.166]). Let f : X → Y be an injective
holomorphic map between reduced and pure dimensional complex spaces. As-
sume that Y is normal and that dimX = dimY . Then f is open, and f maps
X biholomorphically onto f(X). In particular, the space X is normal.

Proof of Theorem C. Now the map

(6.32) i−1 : Malg → Man

is a holomorphic homeomorphism. To use Theorem 6.8, we verify that Man

is pure dimensional, normal and dimMan = dimMalg. By Lemma 6.7, Man

is normal. Since Malg is connected in the analytic topology, Man is con-
nected. Then, the normality and connectedness of Man implies that Man is
irreducible and hence pure dimensional (see [12, Theorem, p.168]). Finally,
by Corollary 6.5, dimMan = dimMalg. □
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