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Donaldson-Thomas invariants, linear

systems and punctual Hilbert schemes

Amin Gholampour and Artan Sheshmani

We study certain DT invariants arising from stable coherent sheaves
in a nonsingular projective threefold supported on the members of
a linear system of a fixed line bundle. When the canonical bun-
dle of the threefold satisfies certain positivity conditions, we relate
the DT invariants to Carlsson-Okounkov formulas for the “twisted
Euler number” of the punctual Hilbert schemes of nonsingular sur-
faces, and conclude they have a modular property.

1. Introduction

1.1. Overview

S-duality predicts that certain generating functions of DT invariants of
semistable 2-dimensional sheaves inside a Calabi-Yau threefold are modular
(see for example [OSV, DM, GST]). In [GS] we studied these DT invari-
ants for K3 fibration over curves (which are not necessarily Calabi-Yau) and
still got a modular answer. In this paper, we study a certain type of these
DT invariants in some other special cases of non-Calabi-Yau geometries and
show that they have modular properties. To do this, we express them in
terms of integrals over the Hilbert scheme of points on nonsingular surfaces.
Carlsson-Okounkov [CO] found an explicit formula for the generating series
of the integrals that arise this way extending Göttsche’s formula for the
generating series of Euler numbers of the Hilbert schemes. We give several
examples of threefolds for which our required conditions are all satisfied.

1.2. Statement of the result

Let (X,O(1)) be a nonsingular polarized threefold over C with

H1(OX) = 0 = H2(OX)
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1050 A. Gholampour and A. Sheshmani

and L be a fixed line bundle on X generated by its global sections (equiva-
lently, L is base point free) and satisfying the following further conditions:

Assumption 1. Assume that H0(L⊗KX) = 0 = H1(L⊗KX) and

−KX · L2 > L3, −KX · L · O(1) > 0.

We think of the condition −KX · L2 > L3 as saying that −KX is suf-
ficiently positive with respect to L. The condition −KX · L · O(1) > 0 is
immediate for example if −KX and L are ample. In Lemma 2 we prove
some consequences of this assumption.

Consider the moduli space of coherent sheaves inX, which are supported
on the members of the linear system |L|. For this, fix a Chern character
vector

(1) ch =
(

ch0 = 0, ch1 = L, ch2 = γ, ch3 = ξ
)

∈ ⊕3
i=0H

2i(X,Q).

We denote the moduli space of Gieseker semistable sheaves (with respect to
O(1)) with Chern character ch by M(X, ch). It is a projective scheme. The
Hilbert polynomial of coherent sheaves with Chern character ch is of degree
2, and the coefficients of degree 2 and degree 1 terms are respectively given
by

a2 = L · O(1)2/2, a1 = γ · O(1) + b/2,

where b = −KX · L · O(1).
We make the following assumption on ch1, ch2 to ensure that for any

choice of ch3 the semistability implies stability (Lemma 3) and thatM(X, ch)
carries a perfect obstruction theory (Lemma 4):

Assumption 2. Assume that L and γ satisfy the following condition: for
any decomposition L = L1 + L2, where L1 and L2 are the classes of nonzero
effective divisors, and for any m ∈ Z, one has1

2m+ (L1 −KX) · L1 · O(1)

L1 · O(1)2
̸=

a1
a2

,
−2KX · L1 · O(1)

L1 · O(1)2
≤

b

a2
.

For example, if L is an irreducible class the conditions above are immediate
(as in Example 1). If O(1) = −kKX for a k > 0 then the right side condition
is satisfied (as in Example 2).

1These conditions are stated for L1, and can be stated with the same right hand
sides for L2.
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The moduli space M(X, ch) then carries a virtual cycle (Lemma 4)

(2) [M(X, ch)]vir ∈ Av(M(X, ch)), v := 1−KX · L2/2.

An interesting feature for us is that the virtual dimension v only depends on
ch1 = L (and not on ch2, ch3) and is equal to the dimension of the linear sys-
tem |L| (Lemma 5). We define the Donaldson-Thomas invariant DT(X, ch)
as follows. Let

ρ : M(X, ch) → |L|, ρ(F ) := Div(F ),

where Div(F ) is the divisor associated to the coherent sheaf F in the sense of
[F, KM]. To see ρ is a morphism of schemes one uses moduli space properties
of its source and target and the fact that the construction of Div(−) is well-
behaved under base change (see [G] for details). Define

DT(X, ch) = ρ∗ [M(X, ch)]vir ∈ Av(|L|) ∼= Z.

We put these invariants into a generating series in which ch1 = L and ch2 = γ
are kept fixed and ch3 = ξ is allowed to vary:

(3) DTL,γ(X, q) = q−γ·L/2−L3/12
∑

ξ

DT(X, ch) q−ξ.

We will shortly motivate this choice of prefactor in (3).
To state the main result of the paper, let S be a general member of |L|,

and

(4) β ∈ H2(S,Z) such that (i∗β
PD)PD = γ + L2/2,

where PD denotes the Poincaré dual, and i : S →֒ X is the inclusion2.
Given β and ch as above define

(5) n(β, ch) = β2/2− γ · L/2− L3/12− ξ.

In the right hand side of (5), the first term is an intersection number on S,
and the second and third terms are intersection numbers on X. In Lemma 6
we will show that provided M(X, ch) is nonempty n(β, ch) is a nonnegative
integer. By Proposition 7 the converse is also true. In particular, for fixed

2The term L2/2 is a correction term that comes out of the Grothendieck-
Riemann-Roch formula as in the proof of Lemma 6.
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L, γ, summing over ξ as in (3) is equivalent to summing over nonnegative
integers and β satisfying (4). This explains the choice of powers of q in (3).

Finally, define an invariant of the linear system |L|

(6) δ(L) = e(S)−KS · L|S + L3.

The main result of the paper is a closed formula for the generating series
(3):

Theorem 1. Suppose Assumptions 1 and 2 hold. Then

DTL,γ(X, q) = qδ(L)/24
∑

β as in (4)

q−β2/2 η(q)−δ(L),

where η(q) = q1/24
∏

k>0

(1− qk) is the eta function.

2. Proof of Theorem 1

Conventions: Given a map f : X → Y , we often use the same letter f to
denote its base change by any map Z → Y , i.e. f : X ×Y Z → Z. We also
sometimes suppress pullback maps f∗ on sheaves. In the following, we will
apply base change theorems for the perfect complexes of sheaves and their
cohomologies. See [StP] for a comprehensive reference.

Let X, L and ch be as in Section 1.2, and also suppose Assumptions 1,
2 in there are satisfied.

Lemma 2. Let S ∈ |L| be a general member. Then S is a nonsingular
surface and

(i) H1(OS) = 0 = H2(OS),

(ii) 2 ≤ dim |L| = h0(L|S),

(iii) H1(L|S) = 0 = H2(L|S).

Proof. Since |L| is base point free by Bertini’s theorem S is nonsingular.
The natural short exact sequence 0 → L∗ → OX → OS → 0 gives the exact
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sequence for i = 1, 2

H i(OX) → H i(OS) → H i+1(L∗) ∼= H2−i(L⊗KX)∗.

By our assumptions the first and the last terms vanish and hence so does
the middle term.

Again since |L| is base point free dim |L| ≠ 0 and if dim |L| = 1 any
two distinct members of the linear system do not intersect and so L2 = 0,
which contradicts the first inequality in Assumption 1. Therefore, we must
have dim |L| ≥ 2. Since H1(OX) = 0, the natural short exact sequence 0 →
OX → L → L|S → 0 gives the exact sequence

0 → H0(OX) → H0(L) → H0(L|S) → 0,

which proves that dim |L| = h0(L)− 1 = h0(L|S).
Next, consider the linear system |L|S | on S. It has to be base point free

because |L| is. Let C ∈ |L|S | be a general member, which must be smooth
by Bertini’s theorem. By Serre duality and adjunction formula

H1(L|C) ∼= H0(L∗|C ⊗KC)
∗ ∼= H0(KS |C)

∗ ∼= H0(L|C ⊗KX |C) = 0,

where the last vanishing is because deg(L|C ⊗KX |C) = KX · L2 + L3 < 0.
Also,H2(L|C) = 0 for dimension reason. So applying cohomology to the nat-
ural short exact sequence 0 → OS → L|S → L|C → 0, and using the vanish-
ings H i≥1(OS) = 0 proven above, we see that H i≥1(L|S) = 0 as claimed. □

Lemma 3. M(X, ch) contains no strictly semistable sheaves.

Proof. Suppose F is a strictly semistable sheaf with Chern character ch.
Then there exists a nonzero quotientG of F such that ch1(G) = L1, ch2(G) =
γ1, L− L1 is nonzero and effective, and

γ1 · O(1)− L1 ·KX · O(1)/2

L1 · O(1)2/2
=

a1
a2

.

Here, the left hand side is the ratio of coefficients of degree 1 and 2 terms
of Hilbert polynomial of G. But γ1 = −c2(G) + L2

1/2 and m := −c2(G) ·
O(1) ∈ Z, so we get

2m+ (L1 −KX) · L1 · O(1)

L1 · O(1)2
=

a1
a2

contradicting the left side condition in Assumption 2. □
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Lemma 4. M(X, ch) carries a perfect obstruction theory and hence a vir-
tual class as in (2).

Proof. Let F ∈ M(X, ch) be a closed point. By Lemma 3, F must be stable.
We show that F ⊗KX is semistable. If not, there exists a quotient sheaf G
of it such that the degree 1 term of the reduced Hilbert polynomial F ⊗KX

is bigger than or equal to that G. By the right side condition in Assumption
2 this will imply that the degree 1 term of the reduced Hilbert polynomial
F is bigger than or equal to that of G⊗K∗

X , which is a quotient of F ,
contradicting the stability of F .

By Serre duality

Ext3(F, F ) ∼= Hom(F, F ⊗KX)∗ = 0

for any closed point F ∈ M(X, ch). This is because by the inequalityKX · L ·
O(1) < 0 the Hilbert polynomial of F is greater than that of F ⊗KX and so
by the semistability of F and F ⊗KX there is no nontrivial homomorphism
between them ([HL, Proposition 1.2.7]).

Therefore, by [T, Theorem 3.30] M(X, ch) carries a perfect obstruction
theory. Its virtual dimension can be calculated by the Hirzebruch-Riemann-
Roch formula:

v =ext1(F, F )− ext2(F, F ) = 1− χ(F, F )

=1− (−L+ γ − ξ) · (L+ γ + ξ) · td(X) = 1−KX · L2/2.

□

Lemma 5. dim |L| = 1−KX · L2/2.

Proof. The right hand side is the virtual dimension v (2) and it does not
depend on ch2 and ch3. So by choosing ch2 and ch3 suitably we may assume
that OS corresponds to a closed point of M(X, ch) for some general member
S ∈ |L|. We can write

v = ext1(OS ,OS)− ext2(OS ,OS) = 1− χ(OS ,OS).

Applying Hom(−, L|S) to the natural short exact sequence 0 → OX → L →
L|S → 0 and taking Euler characteristics, we get

χ(OS ,OS) = χ(OS)− χ(L|S) = h0(OS)− h0(L|S) = 1− h0(L|S).
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Here the second equality is because of the vanishing

hi≥1(OS) = 0 = hi≥1(L|S)

by Assumption 1 and Lemma 2. So we showed that v = h0(L|S) = dim |L|
by Lemma 2. □

Lemma 6. (i) If M(X, ch) ̸= ∅ then n(β, ch) as defined in (5) is a non-
negative integer for any choice of β satisfying (4).

(ii) For a given integer n and ch, there are finitely many classes β satisfying
(4) and (5) with n(β, ch) = n.

Proof. Let F ∈ M(X, ch) be a closed point corresponding to a coherent sheaf
supported on the general member S ∈ |L|, such that ch(F ) = ch. Then, S
is nonsingular and F is rank 1 on its support, so F ∼= i∗(N ⊗ I), where
i : S →֒ X is the inclusion, N is a line bundle, and I is an deal sheaf of
points on S. By Grothendieck-Riemann-Roch,

ch(i∗(N ⊗ I)) = i∗
(

ch(N ⊗ I) · (1− L/2 + L2/6)|S
)

.

Setting this equal to (1), we find that i∗c1(N) = γ + L2/2 and c2(I) =
c1(N)2/2− γ · L/2− L3/12− ξ are respectively given by (4) and (5) with
c1(N) = β and c2(I) = n(β, ch). Since c2(I) is the colength of I it must be
a nonnegative integer. This proves (i).

Suppose n and γ are fixed. Since H i≥1(OS) = 0 we know that Pic(S) ∼=
H2(S,Z) is a finitely generated abelian group. Clearly there are finitely
many contributions from its torsion part. For the contributions of the free
part, by Hodge index theorem we can find a basis e1, . . . , es for H2(S,R)
such that e21 = 1 and e2i = −1 for i ≥ 2 and ei · ej = 0 for i ̸= j and e1 is a
(real) multiple of the class of O(1)|S . Any β ∈ H2(S,Z) can be written as
β =

∑s
i=1 αiei where (α1, . . . , αs) varies in a lattice in Rs. Since γ and L

are fixed, (4) implies that α1 must be fixed. (5) then implies that
∑s

i=2 α
2
i

is fixed, and hence there are finitely many choices for αis. This establishes
(ii).

□

Suppose that S ∈ |L| is a general member, and n = n(β, ch) is related
to ch by (4) and (5). Let S[n] be the Hilbert scheme of n points on S. It is
nonsingular of dimension 2n. By Lemma 6 part (ii) and using H1(OS) = 0,
we see that ρ−1(S) is isomorphic to a finite disjoint union of these Hilbert
schemes.
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Proposition 7. The morphism ρ : M(X, ch) → |L| is smooth of relative
dimension 2n over an open neighborhood V ⊂ |L| of S consisting of nonsin-
gular divisors. Let MV := ρ−1(V ). Then

MV
∼= Hilbn(D/V )×V Picγ(D/V ),

where D ⊂ X × V is the (restriction of the) universal divisor, and

Hilbn(D/V ), Pic(D/V )

are respectively the relative Hilbert scheme of length n subschemes and the
relative Picard scheme of D/V 3, and Picγ(D/V ) is the union of components
of Pic(D/V ), whose S-fiber is one of Picβ(S) with β is as in (4).

Proof. Since D/V has nonsingular fibers of dimension 2, Hilbn(D/V ) is non-
singular of dimension 2n+ v. Moreover, since by Lemma 2 we have

h0,1 = 0 = h0,2

for the fibers of D/V , by [K, Theorem 5.19] Pic(D/V ) is smooth of relative
dimension 0 and locally of finite type over V . By Lemma 6, Picγ(D/V ) is
of finite type. So the smoothness of ρ follows from the second statement in
the Proposition.

To prove the statement about MV , let B be a scheme over V . If F is a
flat family over X ×B define

DB := Div(F)
i
−֒→ X ×B.

Since Div(−) is well-behaved with respect to base change [F, KM], DB
∼=

D ×V B. We can then regard F as i∗G for some rank 1 torsion free sheaf
G over DB/B. By construction G is flat and DB is smooth over B. Taking
double duals G ⊂ G∗∗, by [Ko, Lemma 6.13] N := G∗∗ is a line bundle, and
hence we get a family of ideal sheaves G ⊗N ∗ ⊂ ODB

flat over B, where
each B-fiber is an ideal of colength n. Therefore, G ⊗N ∗ and N determine
a B-valued point of

Hilbn(D/V )×V Picγ(D/V ).

Conversely, if a pair (I,N ), of B-flat families of ideals of colength n and line
bundles of class γ on the fibers of DB := D ×V B is given then i∗(I ⊠N )

3By [K, Theorem 4.8], Pic(D/V ) represents the sheafification of the Picard func-
tor in étale topology.
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determines a B-valued point ofMV . These assignments are evidently inverse
of each other, and so the claim is proven. □

Note that the Poincaré line bundles exist only after an étale base change.
Therefore, by construction above there is an étale base change

MV ét

ρ

��

// MV

ρ

��

V ét // V

such that the universal sheaf exists over X ×MV ét . Let us denote it by F

again and let DV ét := Div(F)
i
−֒→ X × V ét. Also, denote by I the universal

ideal sheaf over DV ét ×V ét Hilbn(DV ét/V ét).
Our goal is to write DT(X, ch) as an integral over S[n]. For this, we find

a relation between tangent/obstruction theory of MV and S[n] using the
identification above. Note that Picγ(D/V ) consists of finitely many nonsin-
gular components each isomorphic to V . We can work over each connected
component of MV at a time, which is thus identified with Hilbn(D/V ).
This shows in particular each connected component of MV is nonsingular
of dimension 2n+ v.

We denote the tangent and the obstruction sheaves (of the fixed compo-
nent) of MV by Tan and Ob, respectively. If π : X ×MV ét → MV ét is the
projection then

Ext1π(F ,F), Ext2π(F ,F)

descend to Tan and Ob, respectively (see [HL, Section 10.2] or Remarks
before the proof of Theorem 3.30 in [T]). These are the first and second
cohomologies of the perfect complex RHomπ(F ,F). We claim Ob is locally
free. Consider the Cartesian diagram

DM
V ét

��

�

� i
// MV ét ×X

(ρ,id)
��

DV ét
�

� i
// V ét ×X

and let π′ = i ◦ π. By the proof of Proposition 7 F = i∗(G), where G = I ⊗ N
for a line bundleN . Applying the functor RHomπ(−,G) to the exact triangle
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[H, Corollary 11.4]

G(−DM
V ét )[1] → Li∗i∗G → G,

and using adjoint functors Li∗ ⊢ i∗, we get an exact triangle

RHomπ′(I, I) → RHomπ(F ,F) → RHomπ′(I, I(DM
V ét ))[−1].

Taking cohomology, we get the exact sequence

0 = Ext2π′(I, I) → Ext2π(F ,F) → Ext1π′(I, I(DM
V ét )) → 0

in which the first vanishing is by base change and Nakayama Lemma and the
vanishing H2(OS) = 0 for all closed S ∈ V (Lemma 2) that in turn implies
Ext2S(I, I) = 0 for any colength n ideal I ⊂ OS .

Next, we show that Ext1π′(I, I(DM
V ét )) is locally free of rank 2n and

hence the same will be true for Ext2π(F ,F) by the exact sequence above.
To do this we use base change again and show that over any closed point
S ∈ V the cohomologies of RHomπ′(I, I(DM

V ét )), given by ExtiS(I, I ⊗ L|S)
for colength n ideals I ⊂ OS have constant dimensions. For i > 2 they are
0 because S is nonsingular of dimension 2. For i = 2, it is 0 because of
H2(L|S) = 0 (Lemma 2). Finally, HomS(I, I ⊗ L|S) ∼= H0(L|S) has dimen-
sion v. Therefore, by Riemann-Roch Ext1S(I, I ⊗ L|S) has dimension 2n.
This proves the claim.

Now (any connected component of) MV is nonsingular of dimension
2n+ v and the obstruction sheaf Ob is locally free of rank 2n. By [BF,
Proposition 5.6],

(7) [MV ]
vir = c2n(Ob) ∩ [MV ].

The exact sequence above together with Lemma 2 also show that the restric-
tion of the obstruction bundle Ob to (any component of) the fiber ρ−1(S)
is equivalent to the Carlson-Okounkov K-theory element

Rp∗(L|S)−RHomp(I, I ⊗ L|S)

where p : S × S[n] → S[n] is the projection.
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Now let j : Spec C →֒ |L| be the inclusion corresponding to the general
member S ∈ |L|, and form the fibered square

ρ−1(S)

ρ

��

�

�

// M(X, ch)

ρ

��

Spec C �

� j
// |L|.

By the definition of DT(X, ch) and [Fu, Theorems 6.2], we can write

DT(X, ch) = j∗ρ∗[M(X, ch)]vir = ρ∗j
![M(X, ch)]vir.

Since j factors as Spec C
j′

−֒→ V ⊂ |L| by [Fu, Theorems 6.5]

ρ∗j
![M(X, ch)]vir = ρ∗j

′![MV ]
vir.

Using (7) we therefore have

DT(X, ch) = ρ∗j
′!e(Ob) ∩ [MV ]

=
∑

β as in (4)

∫

S[n]

c2n
(

Rp∗(L|S)−RHomp(I, I ⊗ L|S)
)

,

where n = n(β, ch) and the last equality is because of the discussion after
(7) and that the components of ρ−1(S) correspond to the classes β as in (4).

According to (5), n(β, ch)− β2/2 = −γ · L/2− L3/12− ξ, so the gener-
ating series (3) gives

DTL,γ(X, q)

=
∑

β as in (4)

q−β2/2
∞
∑

n=0

qn
∫

S[n]

c2n
(

Rp∗(L|S)−RHomp(I, I ⊗ L|S)
)

.

By [CO, Corollary 1]

∞
∑

n=0

qn
∫

S[n]

c2n
(

Rp∗(L|S)−RHomp(I, I ⊗ L|S)
)

=
∏

k>0

(1− qk)−δ(L),

where δ(L) = e(S)−KS · L|S + L3 as introduced in (6). This completes the
proof of Theorem 1.
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3. Examples

Example 1 (hypersurfaces in P4). Let X ⊂ P4 be a nonsingular hyper-
surface of degree d ≤ 3 with the choices

O(1) := OP4(1)|X =: L.

Then H i≥1(X,OX) = 0, and we have KX
∼= O(d− 5), so −KX · L · O(1) =

5− d > 0 and −KX · L2 = (5− d)d > d = L3 are satisfied for d ≤ 3. More-
over, by the Lefschetz hyperplane theorem L is an irreducible class. There-
fore, both Assumption 1 and Assumption 2 (for any γ) are satisfied for these
three geometries. Note that if d = 4, the first inequality in Assumption 1 is
not satisfied but the second one is, and if d ≥ 5 none of the inequalities
are satisfied. For d = 4, 5 the DT invariants of X are still defined but they
don’t fit into the framework of this paper. When d ≥ 6 even the DT invari-
ants of X are not defined. Here, by DT invariants we mean DT(X, ch) for
ch = (0, L, γ, ξ).

In the rest of this example, we consider the case d = 2. By Lefschetz
hyperplane theorem

H2(X,Z) ∼= Z ∼= Pic(X), H4(X,Z) ∼= Z

are respectively generated by the class of L and the class of line ℓ = L2/2.
Tensoring by ⊗L±1 induces an isomorphism M(X, ch) ∼= M(X, ch′), where
ch1 = L = ch′1 and ch2 = ch′2∓2ℓ. Because of this identification, we have
only two different generating series of DT invariants

DTL,ℓ(X, q), DTL,2ℓ(X, q).

A general member of |L| is a nonsingular quadratic surface in P3 and so is
isomorphic to P1 × P1. Let e1, e2 be the generators of Pic(P1 × P1). Accord-
ing to (4) for any k ∈ Z, the classes β = k(e1 − e2) correspond to γ = ℓ and
the classes β = e1 + k(e1 − e2) correspond to γ = 2ℓ. By Theorem 1

DTL,ℓ(X, q) =
∑

k∈Z

qk
2

η(q)−10,

DTL,2ℓ(X, q) =
∑

k∈Z

qk
2+k η(q)−10.
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Example 2 (Blow ups of P3). Let X be the blow up of P3 at a disjoint
union of m points and n lines, with n < 16. Let E be the exceptional divisor
and L be the (pullback of) hyperplane class. Take O(1) = −kKX for some
k ≫ 0 for the polarization. X is birational to P3 and hence H1(X,O) =
H2(X,O) = 0.

KX = −4L+ E, so−KX · L2 = 4 > 1 = L3 and−KX · L · O(1) = (16−
n)k > 0. Suppose Q ⊂ X is the proper transform of a general cubic surface.
Let 0 → O(−3L+ E) → O(E) → OQ(E) → 0 be the natural short exact se-
quence. Then H0(O(E)) ∼= H0(OQ(E)) ∼= C, and hence

H0(L⊗KX) ∼= H0(O(−3L+ E)) = 0,

H1(L⊗KX) ∼= H1(O(−3L+ E)) ∼= H1(O(E)) = 0.

To see the last vanishing, note that E is a disjoint union of finitely many
copies of P2 and P1 × P1, and over each copy OE(E) is either OP2(−1)
or OP1×P1(−∆), so H1(OE(E)) = 0. Together with the natural short exact
sequence 0 → O → O(E) → OE(E) → 0 we conclude that H1(O(E)) = 0.
We have checked that the conditions of Assumption 1 are satisfied for this
geometry.

The right side condition on Assumption 2 trivially holds. For simplicity,
we only verify the left side condition in Assumption 2 in the case X is the
blow up of P3 at one point or one line. In the case of blow up of a point,
a2 = L · k2(4L− E)2/2 = 8k2 and

a1 = γ · k(4L− E) + L · k(4L− E)2/2 = (2r − s+ 8)k,

where γ = rL2/2 + sE2 for some r, s ∈ Z. In the case of blow up of a line,
a2 = L · k2(4L− E)2/2 = 15k2/2 and

a1 = γ · k(4L− E) + L · k(4L− E)2/2 = (2r + 4s1 + s2 + 15/2)k,

where γ = rL2/2 + s1e1 + s2e2 for some r, s1, s2 ∈ Z, and e1, e2 the genera-
tors of H2(E).

Now if L1 = E the condition is for any m ∈ Z

2m ̸=
2r − s+ 8

k
(for blow up at a point),

m+ 2 ̸=
(4r + 8s1 + 2s2 + 15)

k
(for blow up at a line).

So for a given γ, it suffices to pick k ≫ 0 such that the right hand side is
not an integer.
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For an example of the generating series of DT invariants let us try the
case γ = L2/2. A general member of S ∈ |L| is isomorphic to P2 blown up
at n points, and only the class β = 0 on S corresponds to the class γ = L2/2
on X under (4). So by Theorem 1 we have

DTL,L2/2(X, q) = η(q)−n−7.
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