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Inverse mean curvature flow over

non-star-shaped surfaces

Brian Harvie

We derive an upper bound on the waiting time for a variational
weak solution to Inverse Mean Curvature Flow in R

n+1 to be-
come star-shaped. As a consequence, we demonstrate that any
connected surface moving by the flow which is not initially a topo-
logical sphere develops a singularity or self-intersection within a
prescribed time interval depending only on initial data. Finally, we
establish the existence of either finite-time singularities or inter-
sections for certain topological spheres under IMCF.

1. Introduction

Inverse mean curvature flow (IMCF) has proven to be an important tool
in modern geometric analysis. Given a closed oriented manifold Σn, we say
that a smooth one-parameter family of immersions Ft : Σ

n × [0, T ) → R
n+1

is a classical solution of inverse mean curvature flow if

(1.1)
∂

∂t
Ft(p) =

1

H
ν(p, t), p ∈ Σn, 0 ≤ t ≤ T.

where H(p, t) > 0 and ν(p, t) are the mean curvature and outward unit nor-
mal of the surface Σt = Ft(Σ) at the point Ft(p). Although one may consider
a solution of (1.1) for hypersurfaces with boundary, c.f. [10], we will restrict
ourselves to considering a closed manifold Σn throughout this note.

Purely geometric applications of this flow include a proof of the
Minkowski Inequality

∫

ΣHdµ ≥ 4π|Σ| for outward-minimizing hypersurfaces
Σ ⊂ R

n+1 in [6] and a proof of the Poincare conjecture for manifolds with
Yamabe Invariant greater than that of RP3 in [2]. Additionally, IMCF has
been used in recent decades to solve mathematical problems in general rel-
ativity: the highest-profile of these applications has been the use of weak
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solutions of (1.1) developed in [7] to prove the Riemannian Penrose Inequal-
ity, and these solutions have subsequently been used to derive a number of
other geometric inequalities in relativity ([3], [11], [12] ).

One of the most natural questions about classical IMCF is: what condi-
tions can one impose on a mean-convex surface Σ0 to guarantee global ex-
istence? Gerhardt originally answered this question in [5], where he showed
that solutions to (1.1) are smooth, exist for all time, and homothetically
approach round spheres as t → ∞ if Σ0 is star-shaped. Additional existence
and regularity results both in Euclidean space and more exotic Riemannian
manifolds typically involve obtaining first-order estimates on the support
function ω = ⟨ν, ∂r⟩ before obtaining second-order estimates on the second
fundamental form A. Such approaches require ω be initially non-negative,
i.e. that Σ0 be star-shaped, in order to apply the appropriate maximum
principles. For this reason, most literature on classical IMCF requires some
star-shapedness assumption on Σ0.

It is known that in general solutions to (1.1) do not exist for all time
in the non-star-shaped case. For example, a thin torus in R

n+1 moving by
IMCF will fatten up until the mean curvature over the inner ring reaches
zero, thereby terminating the flow in finite time. With this in mind, one
asks if finite-time singularities may also happen for topological spheres. As
a first step toward answering these questions, we prove several results in this
paper related to global existence as well as the formation of singularities and
self-intersections for IMCF.

In Section 2, we demonstrate that the variational weak solutions to the
flow first introduced in [7] respect a reflection property first proposed by
Chow and Gulliver in [4]. We use this property to conclude that these solu-
tions must be star-shaped by the time they lie entirely outside of the smallest
sphere they are initially enclosed by. This implies an upper bound on the
“waiting time” for a variational solution to become star-shaped depending
only on the diameter and largest principal curvature of the initial surface.

Section 3 concerns the applications of this waiting time result to classical
solutions. We show that, assuming initial connectedness, a classical solution
defines a weak solution in the sense of [7] if and only if it remains embedded.
Using this result, we then establish a correspondence between the global
variational solution of IMCF and the one defined by the classical solution.
This correspondence reveals that embedded solutions to (1.1) which exist
for twice the afforementioned waiting time exist globally and homothetically
converge to spheres. It also implies that all initial surfaces which are not
topological spheres must either cease to be embedded or develop a finite-
time singularity within twice the waiting time.
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Since all initial surfaces without spherical topology must develop inter-
sections or singularities, one naturally asks if the converse is true. That is,
does the solution to (1.1) always exist globally and remain embedded if Σ0

has spherical topology? In Section 4, we show this not to be the case by con-
structing a mean convex with spherical topology S

n which is not outward
minimizing. In particular, the corresponding weak solution must “jump” at
the initial time before the classical solution either terminates or self inter-
sects. All results hold in any dimension.
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2. An Aleksandrov reflection approach to level set solutions

In the following section, we will demonstrate that solutions to classical IMCF
respect a reflection property first explored in [4], where Chow and Gulliver
show an identical property for viscosity solutions of flows with normal speed
non-decreasing in each principal curvature. Our approach applies this “mov-
ing plane” approach for the type of weak solution of the flow first detailed
in [7]. We begin by discussing the nature of these solutions.

Suppose a solution {Σt}0≤t<T to (1.1) foliates its image, that is, Σt1 ∩
Σt2 = ∅ for t1 ̸= t2. Then it is possible to define a function u : U = ∪t∈[0,T )Σt

⊂ R
n+1 → R over the foliated region by u(x) = t for x ∈ Σt (Note this is

not well defined if x ∈ Σt1 ∩ Σt2 for t1 ̸= t2). One can then verify that this
u solves the following degenerate elliptic Dirichlet problem:

div(
∇u

|∇u|) = |∇u| in U,(2.2)

u|Σ0
= 0.

With the level set function u in mind, Huisken and Ilmanen in [7] devel-
oped a notion of variational solutions to (2.2), and the comparison principle
we shall utilize in this section crucially applies to these.
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Definition 1. Given an open set U ⊂ R
n+1, a function u ∈ C

0,1
loc

(U) is a
variational solution to IMCF if for any K ⊂⊂ U and v ∈ C0,1(K) with
{v ̸= u} ⊂⊂ K we have

JK(u, u) ≤ JK(u, v)

where JK is the functional defined by

(2.3) JK(u, v) =

∫

K

|∇u|+ u|∇v|.

Furthermore, given an open, bounded subset E0 ⊂ R
n+1, a function u :

R
n+1 → R is a variational solution to IMCF with initial condition

E0 if E0 = {u < 0} and u minimizes (2.3) on U = R
n+1 \ E0.

By picking the appropriate one-parameter family of test-functions, one
can verify that a C2 function u : U → R with nonvanishing gradient which
minimizes JK must satisfy |∇u(x)| = H(x), where H(x) is the mean curva-
ture of the level set of u at x. Thus every solution to (2.2) over some open
set U minimizes (2.3) over U . For general variational solutions, however,
there may exist points where ∇u = 0, and the presence of regions where the
gradient of a solution vanishes also allows for the presence of points where
it is not differentiable.

Huisken and Ilmanen nevertheless demonstrated that, given any open
set E0 ⊂ R

n+1 with C1 boundary there is a unique variational solution u

with initial condition E0 for which the sets {u < t} are precompact for each
t (Notice that if ∂E0 = Σ0 then this means u|Σ0

= 0), and all of our results
in this section apply specifically to these solutions. Key to our approach is
a comparison principle from [7] which applies to any variational solution u.
More specifically, given any locally Lipchitz u and v which solve (2.2) over
some open U , we know that if {u < 0} ⊂ {v < 0} then {u < t} ⊂ {v < t} for
each t ∈ R on U , provided the level sets of v are precompact in R

n+1. Let us
now give a few more definitions neccessary for our moving plane approach.

Consider the plane Pλ,ν = {x ∈ R
n|⟨x, ν⟩ = λ} with unit normal vec-

tor ν ∈ S
n and upper and lower half-spaces H+

λ,ν = {x ∈ R
n|⟨x, ν⟩ > λ} and

H−
λ,ν = {x ∈ R

n|⟨x, ν⟩ < λ} respectively. Let σλ,ν : Rn+1 → R
n+1 denote the

reflection about Pλ,ν .

Definition 2. Given a subset E ⊂ R
n+1, we say that Pλ,ν is admissible

with respect to E if σλ,ν(E ∩H−
λ,ν) ⊂ E ∩H+

λ,ν .
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Figure 1: Given a set E0 which is initially admissible with respect to some
plane, the corresponding solution {Et}0≤t≤T to weak IMCF remains admis-
sible for every t.

Our first result concerns the admissibility of the flow surfaces of IMCF.
Given a plane Pλ,ν with corresponding reflection σλ,ν : Rn+1 → R

n+1, first
note that if u solves (2.2), then so does u∗(x) = u ◦ σλ,ν(x) since σλ,ν is
an isometry of Rn+1. Let Et = {x ∈ R

n+1|u(x) < t} and E∗
t = {x ∈ R

n+1|
u∗(x) < t}.

Proposition 1. For some bounded, open E0 ⊂ R
n+1 with C1 boundary, let

u : Rn+1 → R be the variational solution to IMCF with initial condition E0

such that {u < t} is precompact for each t. If E∗
0 ∩H+

λ,ν ⊂ E0 ∩H+
λ,ν , then

u∗(x) ≥ u(x) for every x ∈ H+
λ,ν . In particular, E∗

t ∩H+
λ,ν ⊂ Et ∩H+

λ,ν for
every t > 0.

Remark 1. If Σt is a classical solution to IMCF, then Et corresponds to the
region enclosed by Σt. Then this theorem implies for classical solutions that
if for a particular plane the portion of Σ0 in the lower half-plane reflected
into the upper half-plane lies inside the portion already within the upper
half-plane, then this remains true for each Σt.

Proof. From Remark 1.18 in [7], if u is a solution of (2.2) over R
n+1, then

so is min{u, c} for any constant c ∈ R
+. Then for some t ∈ R

+, consider the
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set U = (E∗
t \ E0) ∩H+

λ,ν and the cut-off solution ut = min{u, t} to (2.2).

We claim that {ut > u∗ + δ} ⊂⊂ U for every δ > 0.
Observe that ∂U ⊂ ((u∗)−1{t} ∩H+

λ,ν) ∪ (Σ0 ∩H+
λ,ν) ∪ Pλ,ν . Since ut ≤

t, we have ut ≤ u+ δ near (u∗)−1{t} ∩H+
λ,ν . Since E∗

0 ∩H+
λ,ν ⊂ E0 ∩H+

λ,ν ,

we have u∗(x) ≥ 0 and therefore u∗(x) + δ ≥ δ ≥ u(x) ≥ ut(x) near Σ0 ∩
H+

λ,ν . Finally, since u∗(x) = u(x) on Pλ,ν , we have u∗(x) + δ ≥ u(x) near

Pλ,ν . Then we may conclude that {ut > u∗ + δ} ⊂⊂ U , meaning by Theorem
2.2(i) in [7] we get ut ≤ u∗ + δ in U , implying ut ≤ u∗ in U . But since u∗ < t

in U we have u = ut ≤ u∗ in U . Since H+
λ,ν ∩ U is foliated by such W , we

may conclude u∗(x) ≥ u(x) over H+
λ,ν ∩ U . Then E∗

t ∩H+
λ,ν ⊂ Et ∩H+

λ,ν , so
Pλ,ν is admissible for every Et. □

Corollary 1. Let E0, u be as in Proposition 1. Suppose P
λ̃,ν

be admissible

with respect to E0 for every λ̃ ∈ (−∞, λ). Then u(x) is nonincreasing in the
ν direction over H−

λ,ν .

Proof. Take x1, x2 ∈ H−
λ,ν which lie on the same line perpendicular to Pλ,ν ,

i.e. x1 = s1ν + y and x2 = s2ν + y for y ∈ Pλ,ν . Without loss of generality,
say s2 < s1 < 0.

Let P
λ̃,ν

be the plane parallel to Pλ,ν which bisects x1 and x2. Note then

that P
λ̃,ν

is admissible with respect to Σ0 since λ̃ < λ. Then by Proposition 1,

we have that u∗(x) = u ◦ σ̃λ,ν(x) ≥ u(x) for every x ∈ H̃+
λ,ν . In particular,

since x1 ∈ H̃+
λ,ν , we must have u∗(x1) ≥ u(x1). But u

∗(x1) = u ◦ σ̃λ,ν(x1) =
u(x2), so u(x2) ≥ u(x1). □

Now we may use this result to represent the part of the surface in the
lower half-plane as a locally Lipschitz graph. For the purpose of extending
these results to weak solutions, we also prove this for the boundary of E+

t =
Int({x ∈ R

n|u(x) ≤ t}).

Proposition 2. Let u, E0 be as Proposition 1. For a given λ ∈ R, ν ∈ S
n,

suppose for some ϵ > 0 that P
λ̃,ν̃

is admissible with respect to E0 for every

λ̃ ∈ (−∞, λ) and ν̃ with |ν̃ − ν| < ϵ. Then ∂Et ∩H−
λ,ν and ∂E+

t ∩H−
λ,ν are

each locally Lipschitz graphs in the ν direction over Pλ,ν .

Proof. We prove the result for ∂E+
t ∩H−

λ,ν , as the proof for ∂Et ∩H−
λ,ν is

identical. We begin by noting that u is nonincreasing in the ν̃ direction over
Hλ,ν̃ for every ν̃ with |ν̃ − ν| < ϵ by Corollary 1.

Fix x1, x2 ∈ ∂E+
t ∩H−

λ,ν . Write x1 = s1ν + y1, x2 = s2ν + y2 for y1, y2 ∈
Pλ,ν0

, and say without loss of generality that s1 ≤ s2 < 0. There exists ϵ̃ so
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that x1, x2 ∈ H−
λ,ν̃ for every unit vector ν̃ ∈ S

n satisfying |ν̃ − ν| < ϵ. Define
ϵ̂ = min{ϵ, ϵ̃}. We will show that

(2.4) |s1 − s2| ≤ cot ϵ̂|y1 − y2|.

To see this, suppose that (2.4) is false. Then for the unit vector

(2.5) ν̂ =
x2 − x1

|x2 − x1|

we must have

(2.6) ⟨ν̂, ν⟩ = ⟨y2 − y1, ν⟩+ (s2 − s1)
√

|y1 − y2|2 + (s1 − s2)2
>

1√
tan2 ϵ̂+ 1

= cos ϵ̂.

Now, pick x̃2 with u(x̃2) > t sufficiently close to x2 so that for the vec-
tor ν̃ = x̃2−x1

|x̃2−x1|
we have ⟨ν̃, ν⟩ > cos(ϵ̂) and ⟨x̃2, ν̃⟩ < λ. Note that the first

inequality implies |ν̃ − ν| < ϵ̂. Then Pλ,ν̃ is admissible with respect to Σ0,
and x1, x̃2 lie in H−

λ,ν̃ . In fact, we have that x1, x̃2 lie on a line perpendicu-
lar to Pλ,ν̃ with dist{x1, Pλ,ν̃} > dist{x̃2, Pλ,ν̃} by construction. But we also
have that u(x1) = t and u(x̃2) > t, and this contradicts the nonincreasing
property from Corollary 1.

Thus (2.4) holds, and therefore y1 = y2 implies s1 = s2, so ∂E+
t ∩H−

λ,ν ,

and likewise ∂Et ∩H−
λ,ν , is a graph over Pλ,ν (Recall ∂Et = Σt for classical

solutions). Furthermore, the Lipschitz bound cot ϵ̂ is independent of t. □

Theorem 1. For some bounded, open E0 with C1 boundary, let u : Rn+1 →
R be the variational solution to IMCF with initial condition E0 such that
{u < t} is precompact for each t. Then, choosing 0 ∈ R

n+1 to be the midpoint
of the two furthest points apart on ∂E0, the region of the surface ∂Et which
lies outside B diam(Σ0)

2

(0) can be written as a graph r = rt(θ) over S
n in polar

coordinates with respect to the origin. Furthermore, this graph satisfies the
gradient estimate

(2.7) |Drt| ≤
rtΛ

√

r2t − Λ2

for some Λ ≤ diam(Σ0)
2 .

Proof. We follow the proof of Theorem 4 in [4]. For a given E0, take 0 ∈ R
n+1

to be the midpoint of the line connecting a pair of distance-maximizing
points on ∂E0. For a given ν ∈ S

n, define λmax to be the supremum over
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all λ ∈ R such that P
λ̃,ν

is admissible with respect to E0 for each λ̃ ∈
[−∞, λ), then define Λ = supν∈Sn −λmax. Then 0 ≤ Λ ≤ diam(Σ0)

2 . Given x0 ∈
∂Et with |x0| = r0 > Λ, we know x0 ∈ H−

λmax,ν
for each ν ∈ S

n and associated

λmax. Write x0 = r0
∂
∂r
. Then for ν0 = − ∂

∂r
we have ⟨ν0, x0⟩ = −r0 < −Λ, so

by Proposition 2 ∂Et is a Lipschitz graph r = rt(θ) in some neighborhood
of x0. Letting

∂
∂θ

be a unit tangent over Sn, the vector τ = −r ∂
∂θ

−Drt(θ)ν0
is tangent to ∂Et. Also by Proposition 2, τ is transverse to ν for all ν ∈ S

n

with ⟨ν, x0⟩ < −Λ, so

(2.8)
rDrt(θ)

(r2 + (Drt(θ))2)
1

2

= ⟨ τ

|τ | , x0⟩ ≥ −Λ.

Rearranging this yields

(2.9) Drt(θ) ≤
rΛ

(r2 − Λ2)
1

2

.

□

Theorem 2. (Waiting Time for Star-shapedness) For bounded, open E0

with C2 boundary, suppose u : Rn+1 → R is the variational solution to IMCF
with initial condition E0 such that the sets {u < t} are precompact for each t.
Let λmax be the largest principal curvature over Σ0. Then the level sets Σt =
∂Et of u lie entirely outside B diam(Σ0)

2

(0) for any t≥ t∗=n log (λmaxdiam(Σ0)).

In particular, Et is star-shaped and hence smooth for every t ≥ t∗ and thus
u may be extended to all of Rn+1.

Proof. Pick 0 to be the midpoint between the pair of points x, y ∈ Σ0 which
maximize |x− y|. Then Σ0 ⊂ B diam(Σ0)

2

(0). Since λmax is the highest principal

curvature over Σ0, there exists some x ∈ E0 such that B 1

λmax

(x) ⊂ E0. By

Theorem 2.2 in [7], we must have B 1

λmax
e

t

n
(x) ⊂ Et for each t ∈ [0, T ). We

must have that B diam(N0)

2

(0) ⊂ B 1

λmax

e
t∗

n (x) = Bdiam(N0)(x). Conclude then

that B diam(N0)

2

(0) ⊂ Et and thus ∂Et is star-shaped. Theorem 2 then follows

from the long-time existence results in [5]. □

Remark 2. In Remark 2.8(b) of [8], the authors suggested a similar “wait-
ing time” for star-shapedness of the flow depending on the diameter and area
of Σ0 if the reflection property was shown to apply to their variational solu-
tions. We were unable to determine how they derived this time, and so we
instead include the above one.
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3. Consequences for classical solutions

In this section, we show that an embedded connected classical solution of
(1.1) always gives rise to a variational weak solution. Later, we show that if
this solution exists and is embedded beyond the time 2t∗ defined in Theo-
rem 2, then its flow surfaces equal the level sets of the variational solution
with initial condition E0 which has Et precompact. This allows us to apply
Theorem 2 to these classical solutions, establishing star-shapedness beyond
the time t∗. Key to showing this is a comparison principle for IMCF which is
slightly weaker than the well-known two-sided avoidance principle for MCF:

Theorem 3. (One-Sided Avoidance Principle) Let Σ0 ⊂ R
n+1 be a con-

nected, closed hypersurface, and {Σt}0≤t<T the corresponding solution to
(1.1). Suppose Σt is embedded for each t ∈ [0, T ), and let Et ⊂ R

n+1 be the
open domain enclosed by Σt. Now let Σ̃0 ⊂ E0 be a closed, connected hyper-
surface, and {Σ̃t}0≤t<T̃ the corresponding solution to (1.1) with Σ̃t embed-

ded for each t ∈ [0, T ). Then Ẽt ⊂ Et for each t ∈ [0, T ), and dist{Σt, Σ̃t} is
non-decreasing.

Proof. Calling Σ̃t = F̃t(Σ̃), Σt = Ft(Σ) consider the function f : Σ̃× Σ×
[0, T ) → R defined by f(p, q, t) = |F̃t(p)− Ft(q)|2. Define ℓ : [0, T ) → R by
ℓ(t) = min(p,q)∈Σ̃×Σ f(p, q, t), where ℓ(0) > 0 by hypothesis. Since f is smooth

and Σ̃× Σ is closed, ℓ is locally Lipschitz in (0, T ) according to Lemma 2.1.3
in [9]. Also by this lemma, for any t0 ∈ [0, T ) where ℓ(t) is differentiable we
have

(3.10)
d

dt
ℓ(t0) = ∂tf(p0, q0, t0)

for any pair of points (p0, q0) ∈ Σ̃× Σ satisfying ℓ(t0) = f(t0, p, q). We know
ℓ is positive at least for small times, so let A ⊂ [0, T ) be the largest interval

containing 0 over which ℓ is strictly positive. Note that Ẽt ⊂ Et for t ∈ A.
Take t0 ∈ A where ℓ is differentiable and let (p0, q0) ∈ Σ̃× Σ be a minimizing
pair of points of f at t0. The outward pointing normals at p0 and q0 must
be parellel, since the line segment joining F̃t0(p0) and Ft0(q0) is contained
in Et and does not intersect Ẽt. Calling ν0 the outward unit normal at
F̃t0(p0) ∈ Σ̃t0 , F̃t(q0) ∈ Σt0 , we consider the translated surface Σ′

t0
defined

by

Σ′
t0
= {x+

√

ℓ(t0)ν0|x ∈ Σ̃t0}.
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Σ′
t0

and Σt0 share the same tangent plane at F̃t0(p0) +
√

ℓ(t0)ν0 ∈ Σ′
t0

and Ft0(q0) ∈ Σt0 . Since
√

ℓ(t0) = dist{Σt0 , Σ̃t0}, we have the inclusion E′
t0
⊂

Et0 , where E
′
t0
is the set enclosed by Σ′

t0
. Since F̃t0(p0) +

√

ℓ(t0)ν0 = Ft0(q0),
this inclusion particularly tells us that

λi ≤ λ′
i, 1 ≤ i ≤ n

where λi and λ′
i are the principal curvatures of Σt0 and Σ′

t0
at this intersec-

tion point respectively. Translating back to Σ̃t0 , this tells us

(3.11) H(p0, t0) ≥ H(q0, t0).

Now we compute ∂tf(p0, q0, t0):

∂tf(p0, q0, t0) = ∂t⟨F̃t0(p0)− Ft0(q0), F̃t0(p0)− Ft0(q0)⟩

= 2⟨ ∂
∂t

F̃t0(p0)−
∂

∂t
Ft0(q0), F̃t0(p0)− Ft0(q0)⟩

= 2⟨( 1

H(p0, t0)
− 1

H(q0, t0)
)ν0,−

√

ℓ(t0)ν0⟩

= 2
√

ℓ(t0)(
1

H(q0, t0)
− 1

H(p0, t0)
) ≥ 0.

So d
dt
ℓ(t) ≥ 0 wherever differentiable in A. Taking times t1 < t2 in A and

using the fact that ℓ has total bounded variation in [t1, t2], an application
of the Fundamental Theorem of calculus reveals

(3.12) ℓ(t2) = ℓ(t1) +

∫ t2

t1

d

dt
ℓ(t)dt ≥ ℓ(t1).

Then if t̃ = supA < T , we would obtain the bound ℓ(t̃) ≥ ℓ(0) > 0, which
would contradict A being the largest interval containing 0 over which ℓ is

positive. Thus A = [0, T ) and hence Ẽt ⊂ Et over [0, T ). The non-decreasing
property also follows from (3.12). □

Notice that the above argument would not work if the normal vectors at
the distance-minimizing point were anti-parallel, which happens in the case
that the two disjoint surfaces enclose disjoint subsets. For this same reason,
initially embedded solutions to (1.1) need not remain embedded as long
as they exist. For example, two initially disjoint spheres, which eventually
intersect under IMCF, respect neither a two-sided avoidance principle nor
an embeddedness principle. Furthermore, the flow surfaces in this case do
not foliate their image. This particularly means that, after a sufficiently
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long time, the two spheres will not define a weak solution to the flow, even
though their classical solution continues. An application of the previous
theorem shows, however, that the latter inconvenience cannot happen if the
flow surfaces remain embedded.

Theorem 4. Let {Σt}t∈[0,T ) solve (1.1) with Σ0 a connected hypersurface.
Then the function u : U = ∪0≤t<TΣt ⊂ R

n+1 → R given by u(x) = t if x ∈
Σt is well-defined and differentiable with nonvanishing gradient if and only
if the corresponding Ft are embeddings for every t ∈ [0, T ).

Proof. ⇒ We have by hypothesis that the function u over the region U

given by u(x) = t if x ∈ Σt has nonvanishing gradient. Then the flow sur-
faces Σt are each level sets of u. Since Σt are the compact level sets of a
function with nonvanishing gradient, they are necessarily diffeomorphic to
one another, and hence remain embedded. ⇐ Since each Σt is a closed, con-
nected, embedded hypersurface, we let Et be defined as in Theorem 3. In
order for the function given by u(x) = t for x ∈ Σt over the region U to be
well-defined, we must have that Σt1 ∩ Σt2 = ∅ for t1 ̸= t2 ∈ [0, T ). To show
this, first assume T is finite and define A to be the largest interval of [0, T )
containing 0 with the property that Σt1 ∩ Σt2 = ∅ for any t1, t2 ∈ A. We
demonstrate in fact that A = [0, T ). Define t̃ = supA. We will argue that
t̃ = T by contradiction.

First notice for two times ta < tb in A, we have the inclusion Eta ⊂ Etb .
Indeed, for 0 < δ < tb − ta small we know Eta ⊂ Et for t ∈ (ta, ta + δ] by the
positive outward flow speed. Then if Eta ̸⊂ Etb , letting t0 be the first time
over t ∈ (ta + δ, tb] for which Eta ̸⊂ Et we would have ∂Eta ∩ ∂Et0 ̸= ∅. But
this would contradict the fact that ta, t0 ∈ A so that Σta and Σt0 cannot
intersect. Thus Eta ⊂ Etb , which also means Σta ⊂ Etb .

We claim by contradiction that if t̃ < T then A is closed. Indeed, if
A = [0, t̃) then [0, t̃] properly contains A (assuming t̃ ̸= 0, in which case A is
automatically closed). Then there are two times t1 < t2 in [0, t̃] with Σt2 ∩
Σt1 ̸= ∅. We must have t2 = t̃ since otherwise t1, t2 ∈ A. On the other hand,
the positive outward flow speed tells us that for some small δ > 0, we have

Ẽt ⊂ Et̃ for every t ∈ [t̃− δ, t̃). But for 0 ≤ t < t̃− δ the above nesting result
yields Et ⊂ Et̃−δ and so Et ⊂ Et̃ for each t ∈ A. This implies Σt̃ cannot
intersect any Σt with t ∈ A. So A = [0, t̃] for t̃ < T .

Now take δ < T − t̃ and small enough so that E t̃ ⊂ Et for each t ∈ (t̃, t̃+
δ). Since A ⊂ [0, t̃+ δ), there are two times t1 < t2 in [0, t̃+ δ) with Σt1 ∩
Σt2 ̸= ∅. We cannot have t1, t2 ∈ A by definition, and if t1 ∈ A, t2 ̸∈ A, we
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would get Et1 ⊂ E t̃ ⊂ Et2 by nesting in A, meaning Σt1 ∩ Σt2 = ∅. So t̃ <

t1 < t2 < t̃+ δ.
Define a new solution {Σ̃t}t̃≤t<T−(t2−t1)

to (1.1) by Σ̃t = Σt+(t2−t1). Then

Σt̃ ⊂ Ẽt̃ = Et̃+(t2−t1)
since 0 < t2 − t1 < δ. By the One-Sided Avoidance

Principle, this implies Et1 ⊂ Ẽt1 = Et2 , but this once again contradicts Σt1 ∩
Σt2 ̸= ∅. Conclude A = [0, T ). According to Lemma 2.3 in [7], the corre-
sponding u must then minimize (2.3) over U , and since the level sets are
smooth hypersurfaces, u must be differentiable with H = |∇u| > 0. The case
T = ∞ follows via a continuation argument. □

We would like to establish that if a classical solution Σt to IMCF induces
a variational solution u over every t ∈ [0, T ) for sufficiently large T , then Σt

must be star-shaped by some time within [0, T ). We know this must be true
for the flow surfaces of variational solution ũ : Rn+1 → R with initial condi-
tion E0 from Theorem 2, so we seek to establish a correspondence between u

and ũ. Recall the sets Ẽt = {ũ < t} and Ẽ+
t = Int({ũ ≤ t}) from Section 2.

First we observe that if Ẽt1 fails to be strictly outward minimizing for some
t1 ∈ [0, T ) (See Definition 3 in the following section), or equivalently that
Ẽ+

t1
̸= Ẽ+

t1
, then the classical solution Σt cannot fully escape the minimizing

hull Ẽ+
t1

of Ẽt1 before the time T without self-intersecting.

Lemma 1 (No Escape Lemma). Let {Σt}t∈[0,T ) be a solution to (1.1)
with Σt a connected, embedded hypersurface for each t ∈ [0, T ), and Et as
in Theorem 3. Let ũ : Rn+1 → R be the variational solution to IMCF with
initial condition E0 and precompact Ẽt. Suppose there exists a time t1 ∈
[0, T ) so that Ẽt1 ̸= Ẽ+

t1
. Then there does not exist a time t2 > t1 in [0, T )

so that Ẽ+
t1
⊂ Et2.

Proof. We proceed by contradiction. Define

t1 = inf{t ≥ 0|Ẽ+
t ̸= Ẽt}

By the Smooth Start Lemma 2.4 and Minimizing Hull Property 1.4
of Ẽ+

t from [7], we know for the classical solution Σt that Σt = ∂Ẽt for
t < t1. We claim that Ẽt1 ̸= Ẽ+

t1
. By (1.10) from [7], ∂Ẽt = Σt → ∂Ẽt1 = Σt1

in C1,β as t ↗ t1. If Ẽt1 = Ẽ+
t1
, we would have since H > 0 on ∂Ẽt1 = Σt1

that ∂Ẽt = Σt over some interval [t1, t1 + ϵ) by the Smooth Start Lemma.
This would mean Ẽt = Ẽ+

t over [t, t+ ϵ) since Σt = ∂Ẽt → Σt0 = ∂Ẽ+
t0

in
C1,β as t ↘ t0 in [t1, t1 + ϵ) by the second part of (1.10). So W.L.O.G. we

prove the result for Ẽ+
t1
, as the Ẽ+

t ’s are nested in time. Ẽ+
t1
\ Ẽt1 is open by
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definition and nonempty by assumption, so it must have positive Hausdorff
Measure. Furthermore, according to the Minimizing Hull Property 1.4(iv)
and Exponential Growth Lemma 1.6 from [7], we have

(3.13) |Σt1 | = |∂Ẽt1 | = |∂Ẽ+
t1
| = e

t

n |∂E0|.

If there exists a t2 ∈ [0, T ) with Ẽ+
t1
⊂ Et2 , then take the domain U =

Et2 \ E0. According to Theorem 4, the classical solution {Σt}t∈[0,t2) induces
a variational solution u with nonvanishing gradient over U . If ∂Ẽ+

t1
⊂ U we

would have, in view of the positivity of |∇u|, positivity of |Ẽ+
t1
\ Ẽt1 |, and

the Divergence Theorem that

0 <

∫

Ẽ+
t1
\Ẽt1

|∇u| =
∫

Ẽ+
t1
\Ẽt1

div(
∇u

|∇u|)

=

∫

∂Ẽ+
t1

∇u

|∇u| · ν +

∫

Σt1

∇u

|∇u| · ν

≤ |∂Ẽ+
t1
| − |Σt1 |,

but this contradicts the equality (3.13). Conclude then that we must

have Ẽ+
t1
̸⊂ Et for any t ∈ [0, T ). □

Remark 3. This paper’s author originally found this result for weak IMCF
in an earlier version of [1], where it was shown instead using p-harmonic
potentials. However, their proof of this theorem appears to have since been
removed from [1] for the sake of brevity.

Next we confine the minimizing hull of some Ẽt which is not strictly
outward minimizing to a ball in R

n+1 depending only on initial data.

Lemma 2. Let E0 ⊂ R
n+1 be an open bounded domain with C2 boundary

Σ0, and let ũ : Rn+1 → R be the variational solution with initial condition
E0 and precompact Ẽt. Choose 0 ∈ R

n+1 so that E0 ⊂ B diam(Σ0)

2

(0). Then for

each t ≥ 0, we have Ẽ+
t ⊂ B

e
t

n
diam(Σ0)

2

(0). In particular, if E+
t1
̸= Et1 for some

t1 ∈ R, then E+
t1
⊂ Bλmax

2
(diam(Σ0))2

(0), where λmax is the largest principal

curvature of Σ0.

Proof. Observe that the sets Ft = B
e

t

n
diam(Σ0)

2

(0) define a variational solu-

tion of IMCF with compact level sets and E0 ⊂ F0, so Ẽt ⊂ Ft by Theorem
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2.2(ii) of [7]. In the case that Ẽt1 ̸= Ẽ+
t1

for some t1 ≥ 0, we show Ẽ+
t1

re-

mains contained in Ft1 . By definition Ẽ+
t1
⊂ Ẽt for t > t1. Then choosing the

sequence

{ti = t1 + n ln (1 + i−1)}∞i=1,

we have the inclusion Ẽ+
t1
⊂ Fti = B

(1+i−1)e
t1
n

diam(Σ0)

2

(0). Thus

Ẽ+
t1
⊂ Int(∩∞

i=1Fti) = B
e

t1
n

diam(Σ0)

2

(0)

For the second part of the statement, according to Theorem 2, ∂Ẽt is
star-shaped whenever t ≥ t∗. Thus ũ is C1 with |∇ũ| ≠ 0 over R

n+1 \ Ẽt∗

by Theorem 0 for star-shaped hypersurfaces in [5] and uniqueness. There-
fore, we cannot have ũ = t0 over a positive measure set for t0 ≥ t∗, so
Ẽt = Ẽ+

t for these times. So if Ẽ+
t1
̸= Ẽt1 then t1 < t∗, meaning Ẽ+

t1
⊂ Ft∗ =

Bλmax
2

(diam(Σ0))2
(0). □

Combining Lemmas 1 and 2 reveals that if the classical solution Σt

escapes the ball Bλmax
2

(diam(Σ0))2
(0) while remaining embedded, then we must

have Ẽt = Ẽ+
t inside this ball. This is sufficient to ensure Σt = ∂Ẽt, making

Σt star-shaped beyond the time t∗. For the main theorem of this section, we
estimate the time this escape takes to occur. This theorem both establishes
global existence, embeddedness, and rapid convergence to spheres for Σt

existing and remaining embedded for a time greater than 2t∗, and establishes
the formation of singularities and self-intersections within the time 2t∗ for
Σ0 without spherical topology. The latter is akin to the well-known upper
bound on extinction time for closed surfaces moving by MCF.

Theorem 5. (Singularity Formation and Self-Intersection for IMCF) Let
{Σt}t∈[0,Tmax] be a solution to (1.1), where Σ0 is a connected hypersurface and
Tmax is the maximal time of existence. Then one of the following alternatives
holds:

1) Tmax = ∞ and Σt is embedded for every t ∈ [0, Tmax). Furthermore, Σt

is star-shaped for any t ≥ t∗ = n log (λmaxdiam(Σ0)).

2) Σt develops either a singularity or a self-intersection within the time
interval [0, 2t∗] for t∗ defined above.

Theorem 5 implies that strictly embedded solutions of (1.1) which de-
velop singularities do so within a prescribed time interval. Furthermore, this
result sharply characterizes the behavior for initial data without spherical
topology.
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Corollary 2. Suppose a connected hypersurface Σ0 is not homeomorphic to
S
n. Then the corresponding solution Σt to IMCF develops either a singularity

or a self-intersection by the time 2t∗ = 2n log (λmaxdiam(Σ0))

Proof. Let E0 be the set enclosed by Σ0, ũ : Rn+1 → R be the variational so-
lution with initial condition E0 and precompact Ẽt, and 0 ∈ R

n+1 be chosen
so that E0 ⊂ B diam(Σ0)

2

(0). Suppose that the classical solution {Σt}t∈[0,T ) to

(1.1) with initial data Σ0 exists and is embedded a time T > 2t∗. We claim
then that the global solution ũ satisfies Ẽt = Ẽ+

t for each t ≥ 0, and we es-
tablish this by contradiction. Take a nonnegative time t1 so that Ẽt1 ̸= Ẽ+

t1
.

Lemma 2 states that Ẽt1 ⊂ Bλmax
2

(diam(Σ0))2
(0).

On the other hand, we may take x ∈ E0 so that B 1

λmax

(x) ⊂ E0. The

classical solution {Σt}0≤t<T induces a variational solution u over U = ET \
E0, with Et being as in Theorem 3. By the Comparison Principle 2.2 of
[7], we must have B 1

λmax
e

t

n
(x) ⊂ Et. However, evaluating at t = 2t∗ we get

B 1

λmax
e

2t∗
n

(x) = Bλmax(diam(Σ0))2(x). Then we have the containment

Ẽ+
t1
⊂ Bλmax

2
(diam(Σ0))2

(0) ⊂ Bλmax(diam(Σ0))2(x) ⊂ E2t∗ .

This contradicts the No-Escape Lemma. Thus we know Ẽt = Ẽ+
t for t ≥ 0.

Letting A ⊂ [0, T ) be the largest interval containing 0 over which ∂Ẽt = Σt,
we then have supA > 0 by Lemma 2.4 in [7]. If t̃ = supA < T , we would
have that Et̃ = Ẽt̃ = Ẽ+

t̃
by the above result. Then sinceH > 0 on ∂Ẽt̃ = Σt̃,

Lemma 2.4 and Property 1.4 would once again imply Σt = ∂Ẽt over some
larger interval t ∈ [0, t̃+ ϵ). Conclude then that t̃ = T , i.e. that ∂Ẽt = Σt

over [0, T ).
∂Ẽt is star-shaped for t ≥ t∗ by Theorem 2, so by Theorem 0 of [5] and

continuation, we must have for Tmax = +∞ and Σt embedded for all times.
The alternative is then that Σt does not exist or remain embedded past
the time 2t∗. For Corollary 2, solutions which satisfy the first alternative
are star-shaped and therefore topological spheres for any t > 2t∗, but since
they are also embedded for all times [0, T ), this implies that Σ0 must also
be a topological sphere. Thus any initial surface without spherical topology
necessarily satisfies the second alternative. □

Remark 4. From [5], star-shaped data are known to homothetically con-
verge to spheres, so Theorem 4 shows that the sphere is the unique blow-down
limit of embedded solutions to (1.1) which exist at least for the time 2t∗.
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4. Intersections and singularities for topological spheres

To conclude this note, we will prove the following:

Theorem 6. There exists an H > 0 Σn
0 ⊂ R

n+1 with spherical topology
which either self-intersects or develops a singularity within the time Tmax ≤
2t∗ under IMCF for the time t∗ given in Theorem 2.

In particular, this establishes that Corollary 2 is not an if-and-only-
if. Before proceeding, we introduce a definition alluded to in the previous
section which the reader familiar with [7] can skip:

Definition 3. A subset E ⊂ R
n is said to be outward minimizing if for

every F containing E with F \ E ⊂⊂ R
n we have |∂F | ≤ |∂E|.

Furthermore, E is strictly outward minimizing if the above inequality
is strict for every F ̸= E.

One can easily see using equation (2.2) that the flow surfaces Σt for
an embedded, connected classical solution to IMCF which exists globally
are strictly outward minimizing. Indeed, this solution induces a variational
solution u : Rn+1 \ E0 → R with |∇u| > 0 by Theorem 4. Then given any
open set F containing Σt, we can perform the same integration as in (3.13)
from Lemma 1 over N = F \ Et using the Divergence Theorem:

0 <

∫

N

|∇u| =
∫

N

div(
∇u

|∇u|)

=

∫

∂F

∇u

|∇u| · ν +

∫

Σt

∇u

|∇u| · ν

≤ |∂F | − |Σt|.

Proof of Theorem 6 Our construction utilizes the fact that by Lemma 1,
an open set E0 with ∂E0 = Σ0 must be strictly outward minimizing for the
classical flow Σt to exist longer than 2t∗. Therefore, we need only construct
an H > 0 topological sphere which is not strictly outward minimizing to
assure that its flow develops a finite-time singularity or intersection.

Consider two disjoint balls B(p,R) and B(−p,R) with centerpoints p =
(p1, . . . 0) and −p and identical radii R, and take the Hausdorff distance d

between the balls to be small enough so that their union is not outward
minimizing. Take the minimizing hull E′ of E = B(p,R) ∪B(−p,R). We
seek first to establish some symmetry for E:
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Proposition 3. E′ is rotationally symmetric about the x1 axis, and ∂E′ \
∂E is a C∞ minimal hypersurface.

Proof. Rotations R : Rn+1 → R
n+1 about the x1 axis are isometries of Rn+1,

and thus send E′ to the minimizing hull of R(E). Since this axis contains
that centerpoints of each sphere, we know these R also fix the associated
balls, i.e. R(E) = E. Then by the uniqueness of strictly minimizing hulls,
E′ is also the minimizing hull of R(E), implying R(E′) = E′.

The regularity of ∂E′ \ ∂E follows from Theorem 5.3(ii) of [1] (Also men-
tioned on page 369 of [7]: if the singular set Sing(∂E′ \ ∂E) is nonempty,
then its Hausdorff dimension is at least n− 1 by rotational symmetry. But
this dimension cannot exceed n− 8. Thus Sing(∂E′ \ ∂E) = ∅, and as the
surface is smooth outside Sing(∂E′ \ ∂E) we obtain the regularity. Further-
more, H = 0 on this surface by (1.15) in [7]. □

Next, we are going to show that the bridge joining the two spheres does
not extend past their equators. This will allow us to glue the spheres together
over regions away from ∂E′ \ ∂E, so that the minimizing hull of the resulting
surface must still include this part.

Proposition 4. The set E′ \ E is contained within the set {x ∈ R
n+1||x1| ≤

p1}.

Proof. We claim first that E′ is contained within the cylinder CR = {x ∈
R
n+1|x22 + · · ·+ x2n+1 ≤ R2. Suppose not: define the vector field ŵ = y⃗

|y⃗| ,

where y⃗(x1, . . . , xn) = (0, x2, . . . xn) points radially away from the x1 axis,
and let u(x⃗) = ⟨ŵ, x⃗⟩ be the distance from this axis or “height” of a point
x⃗ ∈ ∂E′ \ ∂E. Since E is contained within CR and a = sup∂E′\∂E u > R we
must have that this supremum occurs at an interior point x0 of ∂E′ \ ∂E.
The n− 1 principal curvatures corresponding to rotation all must equal 1

a

at x0, and the other principal curvature must be nonnegative since x0 is a
local maximum of the height function u. Thus H(x0) > 0, contradicting the
minimality of this complement. Thus sup∂E′\∂E u ≤ R, and therefore E′ lies
in CR.

Now, no connected component of E′ \ E lies entirely outside {x ∈ R
n+1|

|x1| < p1} since a single ball is strictly outward minimizing. Thus we can
have E′ \ E intersect {|x1| ≥ p1} only if (E′ \ E) ∩ {|x1| = p1} ≠ ∅, but this
would require E′ \ E ̸⊂ CR. □

Now that we have established that the H = 0 part of E′ is contained
between the equators of the two spheres, we are ready to construct our
example. Our surface will be of class C0 before smoothing.
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Figure 2: Given sufficiently close disjoint balls, one can attach handles and
glue them together so that the resulting C2, H > 0 surface is not strictly
outward minimizing.

Begin by attaching a cylinder of radius r for some r < R and finite length
about the x1 axis to the opposite end of the sphere in the x1 < 0 plane (See
diagram). Then attach one end of a half torus with small radius r and large
radius R∗ to the end of this cylinder. Attach another cylinder extending to
x1 = 0 to its other end, and reflect this surface about {x1 = 0}.

The resulting surface must not be outward minimizing, since the original
spheres were not outward minimizing and, by Proposition 4, the new surface
does not touch the H = 0 part of the original hull E.

It remains to show that one may refine this surface to an H > 0 surface
which is of class C2. We require one additional lemma for this purpose.

Lemma 3. Let U be any open subset of R containing 0. Let f : U → R be
any function of the form

(4.14) f(x) =

{

0 x ≤ 0

g(x) x > 0

for some g : U ∩ {x > 0} → R. Then for every 0 < ϵ < dist{0, ∂U} there ex-
ists a function p : (0, ϵ) → R so that the the function

(4.15) f̃(x) =











0 x ≤ 0

p(x) 0 < x < ϵ

g(x) x ≥ ϵ

is in C2(U).
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Proof. Take the polynomial p(x) = Ax3 +Bx4 + Cx5 for some constants
A,B,C ∈ R. Clearly p(0) = p′(0) = p′′(0) = 0. Furthermore, derivatives of
p are related to the coefficients A, B, and C by

(4.16)





p(x)
p′(x)
p′′(x)



 =





x3 x4 x5

3x2 4x3 5x4

6x 12x2 20x3









A

B

C



 .

One may readily compute for the above matrix M that detM = 2x9 ̸= 0
for any x ̸= 0. This means that for any triple (X,Y, Z) ∈ R

3 and any fixed
point x ̸= 0 we may select coefficients A, B, and C so that (p(x), p′(x), p′′(x))
= (X,Y, Z). In fact, inverting the above matrix reveals that for a given
(g(ϵ), g′(ϵ), g′′(ϵ)) ∈ R

3

A =
10

ϵ3
g(ϵ)− 4

ϵ2
g′(ϵ) +

1

2ϵ
g′′(ϵ)

B = −15

ϵ4
g(ϵ) +

7

ϵ3
g′(ϵ)− 1

ϵ2
g′′(ϵ)(4.17)

C =
6

ϵ5
g(ϵ)− 3

ϵ4
g′(ϵ) +

1

2ϵ3
g′′(ϵ).

Then restricting the domain of this p to (0, ϵ), the first two derivatives
of the function

(4.18) f̃(x) =











0 x ≤ 0

p(x) 0 < x < ϵ

g(x) x ≥ ϵ

are everywhere continuous. □

Now, we must establish C2 regularity at the overlap between regions I
and II, II and III, and III and IV (See figure).

Regions I-II The union of these regions is a surface of revolution about
the x1 axis and is therefore given by a graph in the x1 coordinate. Choose
0 to be the point on the x1 axis corresponding to the equator of the sphere,
and let ϵ =

√
R2 − r2. Then this graph is explicitly g(x) = f(x) + r, where

(4.19) f(x) =

{

0 x ≤ 0√
R2 − x2 − r x > 0

.

Now apply Lemma 1 for this f and ϵ. The resulting function is C2, and
it remains only to show that the corresponding surface of revolution will be
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mean convex if the tube radius r is sufficiently close to the sphere radius
R. Explicitly computing the interpolating polynomial p(x) by inverting the
matrix in the proof of Lemma 1, we find

A =
4

ϵ

1

r
− 1

2ϵ

R2

r3
≤ 7

2ϵ

1

r

B =
−7

ϵ2
1

r
+

1

ϵ2
R2

r3
=

1

r3
− 6

ϵ2r
(4.20)

C =
3

ϵ3
1

r
− 1

2ϵ3
R2

r3
≤ 5

2ϵ3
1

r
.

In particular, for every x ∈ (0, ϵ) p(x) = r +Ax3 +Bx4 + Cx5 and
p′′(x) = 6Ax+ 12Bx2 + 20Cx3 obey the estimates

p(x) ≤ r +Aϵ3 +Bϵ4 + Cϵ5 = r +
ϵ2

r3
(4.21)

p′′(x) ≤ 6Aϵ+ 12Bϵ2 + 20Cϵ3 ≤ 12

r3
ϵ2.(4.22)

Then choosing ϵ small enough to ensure the H = 0 part of the original
minimizing hull strictly lies in the region {x1 > ϵ} and that p(x)p′′(x) <
1, the C2 surface of revolution is not outward minimizing and has H =

1

(1+f ′(x)2)
3
2
(1 + f ′(x)2 − f(x)f ′′(x)) > 0.

Regions II-III/III-IV: One may apply an identical gluing construction
to each of these overlap regions, so we only present the construction for
Regions III-IV here. The union of regions III and IV corresponds to a curve
which is the union of a semicircle of a line. Parametrizing the lower half of
the semicircle and the line as

(4.23) g(x1) =

{

0 x < 0

−
√

(R∗)2 − x2 +R∗ x ≥ 0
.

Here we chose the origin to be the point where the arc meets the line. For
some sufficiently small ϵ > 0, we apply Lemma 1. It remains only to show
that the surface obtained by taking a circle of radius r in each plane normal
to the curve at each point is mean convex for R∗ sufficiently large. From
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Lemma 1, the interpolating polynomial p(x) has second derivative given by

p′′(x) = 6(
10

ϵ3
(−

√

(R∗)2 − ϵ2 +R∗)− 4

ϵ2
(

ϵ

((R∗)2 − ϵ2)
3

2

)

+
1

2ϵ

(R∗)2

((R∗)2 − ϵ2)
3

2

)x+ 12(
−15

ϵ4
(−

√

(R∗)2 − ϵ2 +R∗)

+
7

ϵ3
(

ϵ

((R∗)2 − ϵ2)
3

2

) +
−1

ϵ2
(R∗)2

((R∗)2 − ϵ2)
3

2

)x2

+20(
6

ϵ5
(−

√

(R∗)2 − ϵ2 +R∗)− 3

ϵ4
(

ϵ

((R∗)2 − ϵ2)
3

2

)

+
1

2ϵ3
(R∗)2

((R∗)2 − ϵ2)
3

2

)x3.

Since 0 < x < ϵ, we have

p′′(x) ≤ 180

ϵ2
(−

√

(R∗)2 − ϵ2 +R∗)(4.24)

+13
(R∗)2

((R∗)2 − ϵ2)
3

2

+
84

((R∗)2 − ϵ2)
3

2

.

For a fixed ϵ each of these terms can be made arbitrarily small by choos-
ing R∗ large enough to guarantee that p′′(x) ≤ 1

r
for every x ∈ [0, ϵ), where

1
r
is the curvature of the surface in a direction orthogonal to the graph. This

in turn guarantees that H > 0 in this region, so the entire surface is C2 and
mean convex.

Remark 5. Since the spheres in this construction can be chosen to be ar-
bitrarily close to one another without changing the initial flow speed at the
closest points, we suspect that this surface develops an intersection rather
than a singularity first.
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