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Decay rates for the damped wave

equation with finite regularity damping

Perry Kleinhenz

Decay rates for the energy of solutions of the damped wave equa-
tion on the torus are studied. In particular, damping invariant
in one direction and equal to a sum of squares of nonnegative
functions with a particular number of derivatives of regularity is
considered. For such damping energy decays at rate 1/t2/3. If ad-
ditional regularity is assumed the decay rate improves. When such
a damping is smooth the energy decays at 1/t4/5−δ. The proof uses
a positive commutator argument and relies on a pseudodifferential
calculus for low regularity symbols.
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1. Introduction

Let W be a bounded, nonnegative damping function on a compact Rieman-
nian manifold M , and let v solve

{
∂2t v −∆v +W (x)∂tv = 0 t > 0,

(v, ∂tv)|t=0 = (v0, v1) ∈ C∞(M)× C∞(M) t = 0.
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The primary object of study in this paper is the energy

E(v, t) =
1

2

∫
|∇v|2 + |∂tv|

2dx.

When W is continuous it is classical that uniform stabilization is equivalent
to geometric control by the positive set of the damping. That is E(t) ≤
Cr(t)E(0), with r(t) → 0 as t→ ∞, if and only if there exists L, such that
all geodesics of length at least L intersect {W > 0}. Furthermore, in this
case the optimal r(t) is exponentially decaying in t.

When the geometric control condition does not hold decay is instead of
the form.

(1) E(t)1/2 ≤ Cr(t) (||v0||H2 + ||v1||H1) .

Then the optimal r(t) depends on the geometry of M and {W > 0}, as well
as properties of W in a neighborhood of {W = 0}. This paper explores this
dependence for translation invariant damping functions on the torus, and
proves decay of the form

(2) E(t)1/2 ≤ C(1 + t)−α (||v0||H2 + ||v1||H1) .

Such decay is guaranteed on the torus with α = 1/2 when {W > 0} is open
and nonempty by [1].

First, when the damping is a sum of squares of sufficiently regular y-
invariant functions there is an improved decay rate.

Theorem 1.1. LetM be the torus (R/2πZ)x × (R/2πZ)y. SupposeW (x, y)
=W (x) and satisfies

1) For some σ ∈ (0, π),W is bounded below by a positive constant for
x ∈ [−π, π]\[−σ, σ],

2) There exists σ1 ∈ (0, π − σ) and there exist functions vj(x) ≥ 0, vj ∈
W 9,∞(−σ − σ1, σ + σ1), such thatW (x) =

∑
j vj(x)

2 on (−σ − σ1, σ +
σ1).

Then there exists C such that (2) holds with α = 2
3 .

If the damping is instead smooth and y-invariant there is an additional
improvement.

Theorem 1.2. LetM be the torus (R/2πZ)x × (R/2πZ)y. SupposeW (x, y)
=W (x) and satisfies
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Decay rates for the damped wave equation 1089

1) For some σ ∈ (0, π),W is bounded below by a positive constant for
x ∈ [−π, π]\[−σ, σ],

2) W ∈ C∞(R/2πZ).

Then for all ε > 0 there exists C such that (2) holds with α = 4
5 − ε.

Both of these theorems are actually consequences of the following result.
When the damping is a sum of squares of functions with k0 derivatives there
is an improved decay rate which depends on k0.

Theorem 1.3. LetM be the torus (R/2πZ)x × (R/2πZ)y. SupposeW (x, y)
=W (x) and satisfies

1) For some σ ∈ (0, π),W is bounded below by a positive constant for
x ∈ [−π, π]\[−σ, σ],

2) There exists k0 ≥ 9, σ1 ∈ (0, π − σ) and there exist functions vj(x) ≥
0, vj ∈W k0,∞(−σ − σ1, σ + σ1), such thatW (x) =

∑
j vj(x)

2 on (−σ −
σ1, σ + σ1).

Let τmin > max
(

k0+2
2k0−4 ,

7
k0−1

)
then there exists C such that (2) holds with

α = 2
τmin+2 .

Remarks.

• The two constraints for τmin in terms of the regularity k0 are needed
to guarantee error terms in composition expansions are small. In par-
ticular τmin >

k0+2
2k0−4 is needed to ensure (15) holds and τmin >

7
k0−1

is needed to ensure (19) holds. These constraints are sharp on these
inequalities, but are also used in other estimates in the proof.

• Theorem 1.1 is just Theorem 1.3 when k0 = 9. So τmin can be taken
= 1 which gives decay at α = 2/3.

• On the other hand by [3] if W ∈ C2k0(a, b) then there exist v1, v2 ∈
Ck0(a, b) such thatW = v21 + v22 on (a, b). Therefore ifW ∈ C2k0(−σ −
σ1, σ + σ1) it satisfies hypothesis 2 of the theorem. Theorem 1.2 then
follows from Theorem 1.3 and the result of Bony. In particular for any
fixed k0 there is an appropriate expansion and so τmin can be taken
arbitrarily close to 1/2 which gives decay at α = 4/5− δ.
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The equivalence of uniform stabilization and geometric control for con-
tinuous damping functions was proved by Ralston [23], and Rauch and Tay-
lor [24] (see also [2] and [7], whereM is also allowed to have a boundary). For
some more recent finer results concerning discontinuous damping functions,
see Burq and Gérard [8].

Decay rates of the form (1) go back to Lebeau [20]. When W ∈ C(M)
is nonnegative and {W > 0} is open and nonempty, then decay of the form
(1) holds with r(t) = 1/ log(2 + t) in [6, 20]. Furthermore, this is optimal on
spheres and some other surfaces of revolution [20]. At the other extreme, ifM
is a negatively curved (or Anosov) surface, andW ∈ C∞(M),W nonnegative
and not identically zero, then (1) holds with r(t) = Ce−ct [14].

When M is a torus, these extremes are avoided and the best bounds are
polynomially decaying as in (2). Anantharaman and Léautaud [1] show (2)
holds with α = 1/2 when W ∈ L∞, W ≥ 0, and W > 0 on some open set,
as a consequence of Schrödinger observability/control [10, 17, 22]. The more
recent result of Burq and Zworski on Schrödinger observability and control
[11] weakens the final requirement to merely W ̸≡ 0. Anantharaman and
Léautaud [1] further show that if supp W does not satisfy the geometric
control condition then (2) cannot hold for any α > 1. They also show if
there exists C > 0 such that W satisfies |∇W | ≤ CW 1−ε for ε < 1/29 and
W ∈W k0,∞ for k0 ≥ 8 then (2) holds with α = 1/(1 + 4ε).

Note that Theorem 1.3 improves the dependence between |∇W | ≤W 1−ε

estimates and decay rate with slightly different hypotheses. That is a damp-
ing satisfying the hypotheses of Theorem 1.3 has |∇W | ≤ CW 1/2, which, if
the [1] result applied to ε = 1/2, would only give (2) with α = 1/3, no better
than the generic upper bound, whereas Theorem 1.3 gives (2) with at least
α = 2/3.

Additionally, because of the result in [3], Theorem 1.3 applies to suffi-
ciently regular damping, which is invariant in one direction, without addi-
tional hypotheses. In particular [1] mention that their results do not give an
improvement over the Schrödinger observability bound for smooth damping
vanishing like W = e−1/x sin(1/x)2, while Theorem 1.3 does.

For earlier work on the square and partially rectangular domains see
[21] and [9] respectively, and for polynomial decay rates in the setting of a
degenerately hyperbolic undamped set, see [12].

In [19], it was shown that if W = (|x| − σ)β+ near [−σ, σ], then (2) holds
with α = (β + 2)/(β + 4) and cannot hold for all solutions with α > (β +
2)/(β + 3). In the case of constant damping on a strip the result that (2)
holds with α = 2/3 is due to Stahn [26], and the result that it does not
hold for α > 2/3 is due to Nonnenmacher [1]. In [13] it was shown that for
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W ∼ (|x| − σ)β+ near [−σ, σ], (2) holds with α = (β + 2)/(β + 3), which is

sharp when W = (|x| − σ)β+ near [−σ, σ].
These results along with Theorem 1.3 suggest that sharp decay rate

on the torus could be determined by the regularity of the damping at the
boundary of its support. The other likely alternative is that the sharp decay
rate is determined by the value of ε for which W satisfies |∇W | ≤ CW 1−ε.
Although the sharp decay rate for polynomial damping W = (|x| − σ)β+ de-
pends on β, this does not disambiguate between these cases as W ∈W β,∞

and W satisfies |∇W | ≤W 1−1/β . A good candidate for distinguishing these
is W smooth and vanishing like e−1/x sin(1/x)2, as it only satisfies |∇W | ≤
CW 1/2.

If regularity determines the sharp decay rate for any δ > 0 such an oscil-
lating damping should decay at 1/t1−δ as there are other smooth dampings
which decay this fast. As in [1], a smooth damping vanishing like e−1/x sat-
isfies |∇W | ≤ CW 1−ε for any ε > 0 and so for any δ > 0 decays at 1/t1−δ.
If on the other hand the derivative bound condition |∇W | ≤ CW 1−ε de-
termines the sharp decay rate, the fact that W = (|x| − σ)2+ also satisfies
|∇W | ≤W 1/2 and has solutions which decay no faster than 1/t4/5, means
an oscillating damping also should have solutions which decay no faster
than 1/t4/5. Theorem 1.3 does not guarantee or rule out either of these, so
resolving this question would be an interesting area for future work.

1.1. Outline of proof

By a Fourier transform in time, it is enough to study the associated sta-
tionary problem. More precisely, by Theorem 2.4 of [4], as formulated in
Proposition 2.4 of [1], decay with α = 2

τmin+2 follows from showing that
there are constants C, q0 > 0 such that, for any q ≥ q0,

∣∣∣∣(−∆+ iqW − q2)−1
∣∣∣∣
L2(T2)→L2(T2)

≤ Cq1/α−1 = Cqτmin/2.

Because the damping W depends only on x this can be reduced to a 1
dimensional problem by expanding in a Fourier series in the y variable. Let
k be the vertical Fourier mode, set β = q2 − k2, take f ∈ L2(R/2πZ) and
consider u ∈ H2(R/2πZ) solving

(3) −u′′ + iqWu− βu = f.
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Then it is enough to show that there are C, q0 > 0, such that for any f, any
q ≥ q0 and any real β ≤ q2, if u solves (3) then

∫
|u|2 ≤ Cqτmin

∫
|f |2.

Here, and below, all integrals are over R/2πZ. A more precise dependence
on β is obtained, for any ε1, ε2 > 0 there exists a constant C such that

(4)

∫
|u|2 ≤ C

∫
|f |2, when β <

π2

16(σ + ε1)2
, q ≥ q0,

and

(5)

∫
|u|2 ≤ Cqτmin

∫
|f |2, when ε2 < β ≤ q2, q ≥ q0.

It is clear that for ε1, ε2 small enough, (4) and (5) cover all β ≤ q2. This β
can be thought of as the “horizontal energy” of the solution. The larger it
is, the larger u is relative to q in the ξ direction in phase space.

Equation (4) is the low horizontal energy case and is proved in section
2. Equation (5) is the high horizontal energy case and is the main estimate.
It follows by an elliptic estimate and a positive commutator argument. Sec-
tion 3 contains an outline of the proof of (5), and sections 4 and 5 contain
proofs of the subsidiary estimates in the proof of (5). Appendix A contains
some important facts about pseudodifferential operators with finite regular-
ity symbols.

The following is a frequently invoked and important estimate.

Lemma 1.4. For any β ∈ R, q > 0 and u, f solving (3)

(6)

∫
W |u|2 ≤ q−1

∫
|fu|.

Proof. Multiply (3) by ū then take the imaginary part, integrating by parts
to see that the term ⟨∆u, u⟩ is real. □
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2. Proof of low horizontal energy estimate (4)

Proof. To prove (4) multiply (3) by ū and a nonnegative function bε1 ∈
C∞(R/2πZ) with

bε1(x) =

{
cos
(

π
2(σ+ε1)

x
)

|x| < σ + ε1/2,

0 |x| > σ + ε1.

Then integrate and take the real part to obtain

−Re

∫
bε1u

′′ū− β

∫
bε1 |u|

2 = Re

∫
bε1fū.

Integrating by parts once gives

∫
bε1 |u

′|2 +Re

∫
ub′ε1 ū

′ − β

∫
bε1 |u|

2 = Re

∫
bε1fū.

Integrating by parts the ub′ε1 ū
′ term again and taking advantage of the Re

gives

(7)

∫
bε1 |u

′|2 +

∫ (
−
b′′ε1
2

− βbε1

)
|u|2 = Re

∫
bε1fū.

Now note that −
b′′ε1
2 = π2

8(σ+ε1)2
bε1 for |x| < σ + ε1

2 . Thus for β <
π2

16(σ+ε1)2

−
bε1
2

− βbε1 > c on |x| < σ +
ε1
2
.

So adding a multiple of (6), the damping estimate, to (7) gives

∫
|u|2 ≤

(
Cε1 +

1

q

)∫
|fu| ≤ Cε1

(∫
|f |2
)1/2(∫

|u|2
)1/2

.

Dividing both sides by
(∫

|u|2
)1/2

gives exactly (4). □

3. Proof of high horizontal energy estimate (5)

Now that the proof of (4) is complete for β < π2

16(σ+ε1)2
it remains to show (5)

for ε2 < β ≤ q2. This estimate will actually be assembled from estimates on
microlocalized regions of phase space, in order to do so I take a semiclassical
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rescaling. Let γ ∈ {1, 2}, then divide both sides of (3) by q2/γ and set h =
q−1/γ

(8) Pu = (−h2∂2x + ih2−γW − h2β)u = h2f.

In this rescaling the bounds ε2 < β ≤ q2 become ε2 < β ≤ h−2γ . Let τ ∈
[τmin, 1]. Take σ1 as specified by hypothesis 1 and divide phase space
(R/2πZ)x × Rξ = T ∗S1 into 3 regions:

1) The set where the damping is nontrivial, {(x, ξ) : σ + σ1/4 < |x| < π}

2) The h dependent elliptic set of P , {(x, ξ) : |ξ| > 1.5h1−τ}

3) The propagating region, {(x, ξ) : |x| < σ + σ1/2 and |ξ| < 2h1−τ}.

Although γ and τ can be adjusted freely, for this proof they will have a spe-
cific relation. In particular, (τ, γ) will only take values in (τmin, 2), (3τmin, 2),
(1, 1).

Note that in composition expansions involving symbols at scale h1−τ

each additional term is only hτ smaller than the previous one, rather than
a full power of h. Regardless of the values of γ and τ there is a fixed size
error terms in the following calculations must be smaller than. Because of
this the number of expansion terms taken (and the number of derivatives of
regularity W must have) grows at least like 1

τ . τmin is the smallest possible
τ such that W has enough regularity to achieve the desired error size.

This behavior also clarifies why τ and γ are separate parameters. In

Proposition 3.5 the resolvent estimate is ||u||2L2 ≤ C q
2 τ
γ

β2 ||f ||2L2 . Because of
this a larger γ produces a better estimate without decreasing τ , so no addi-
tional regularity of W is required. However γ cannot always be taken large
because the estimate only applies to β < q2τ/γ which will not include all of
β < q2.

Note that in the case γ = τ = 1, the microlocalization has no h depen-
dence. The remainder of this section is the statement of the estimates for
these regions and then a proof of the high horizontal energy case, (5), using
those estimates. The damping estimate is immediate, the elliptic estimate
is proved in section 4 and the propagation estimate is proved in section 5.

3.1. Damping estimate

This lemma gives an estimate for the size of u on the set where the damping
is nontrivial.
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Lemma 3.1. For any β ∈ R, h > 0 and u, f solving (8)

(9)
∣∣∣
∣∣∣W 1/2u

∣∣∣
∣∣∣
2

L2
≤ hγ ||f ||L2 ||u||L2 .

This follows immediately from the rescaling and (6).

3.2. Elliptic estimate

Throughout the paper Op refers to the Weyl quantization on the torus (see
Appendix A for more details). These lemmas gives an estimate for the size
of u on the h dependent elliptic set of P , {(x, ξ) : |ξ| > 1.5h1−τ}. Note that
in order for P to be bounded away from zero on this set h2β must be smaller
than h2−2τ .

Because of a technicality in the proof there are separate elliptic estimates
on chτ−1 < ξ < 2 and 1.5 < ξ. The cause of this is that the low regularity
composition result (Lemma A.6 which is used in the elliptic parametrix
construction) requires bounded symbols but p = ξ2 + ih2−γW − h2β is un-
bounded for large ξ.

This lemma provides the estimate on chτ−1 < ξ < 2. This estimate has
additional importance as it is used multiple times in the proof of the prop-
agation estimate to provide additional control over error terms.

Lemma 3.2. Suppose W ∈W k0,∞ and τ ∈ [τmin, 1]. Set z1 ∈ C∞(R) with

z1(ξ) =

{
0 |ξ| < 1.25

1 |ξ| > 1.5,

and set z2 ∈ C∞
0 (R) with

z2(ξ) =

{
1 |ξ| < 2

0 |ξ| > 3,

then let z(ξ) = z1(h
τ−1ξ)z2(ξ) and Z = Op(z(ξ)). There exist C, h0 > 0, such

that for h ≤ h0, β such that h2β < h2−2τ , and u, f solving (8) then

(10) ||Zu||2L2 ≤ Ch5τ−1 ||f ||2L2 + o(h2) ||u||2L2 .

This lemma provides the estimate on 1 < ξ. It does not impose any
regularity assumptions on W nor does it have a size restriction on β



✐

✐

“8-Kleinhenz” — 2023/2/9 — 0:02 — page 1096 — #10
✐

✐

✐

✐

✐

✐

1096 Perry Kleinhenz

Lemma 3.3. Set z̃ ∈ C∞(R) with

z̃(ξ) =

{
0 |ξ| < 1

1 |ξ| > 1.5,

and let Z̃ = Op(z̃). There exist C, h0 > 0 such that for h ≤ h0 and u, f solv-
ing (8) then

(11)
∣∣∣
∣∣∣Z̃u

∣∣∣
∣∣∣
2

L2
≤ Ch4 ||f ||2L2 + Ch4−γ ||f ||L2 ||u||L2 .

Lemmas 3.2 and 3.3 are proved in section 4.

3.3. Propagation estimate

This lemma gives an estimate for the size of u on the propagating region
{(x, ξ) : |x| < σ + σ1/2 and |ξ| < 2h1−τ}.

Define ψ ∈ C∞
0 (R)

ψ(ξ) =

{
1 on |ξ| < 2

0 on |ξ| > 3,

and χ ∈ C∞
0 (−π, π)

χ(x) =

{
1 on |x| < σ + σ1/2

0 on |x| > σ + σ1,

where both are chosen to have smooth square roots.

Lemma 3.4. Suppose vj ∈W k0,∞ and fix τ ∈ [τmin, 1], ε2 > 0. Set J =
Op(χ1/2(x)ψ1/2(hτ−1ξ)). There exist C, h0 > 0, such that if h ≤ h0 and β
such that h2ε2 < h2β < h2−2τ , then for u, f solving (8)

||Ju||2L2 ≤ C

(
h−τ

β

)
||f ||L2 ||u||L2 + C

h6τ−γ−1

β
||f ||2L2 + o(1) ||u||2L2 .(12)

Lemma 3.4 is proved in section 5. h2β ≤ h2−2τ is assumed in order to
apply the elliptic region estimate in the proof.
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3.4. Combination of estimates

This subsection completes the proof of (5), the high horizontal energy esti-
mate, using the following proposition on different regimes for β, τ and γ.

Proposition 3.5. Suppose W ∈W k0,∞ and fix τ ∈ [τmin, 1], γ ∈ {1, 2} and
ε2 > 0. There exist C, q0 > 0, such that if q ≥ q0 and β satisfies ε2 ≤ β ≤
q2τ/γ then for u and f solving (3)

||u||2L2 ≤ C
q

2τ

γ

β2
||f ||2L2 .

The form of this estimate helps show why τ and γ are taken as two
separate parameters. Taking γ = 2 produces a better estimate for all values
of τ , however the estimate then only applies to β < q which does not cover
the required range of β < q2.

This proposition will be proved using the estimates on the damped region
(Lemma 3.1), the elliptic region (Lemmas 3.2 and 3.3) and the propagating
region (Lemma 3.4).

Proof of Proposition 3.5. Note that β ≤ q2τ/γ guarantees h2β ≤ h2−2τ and
taking q0 large enough ensures that h is small enough to apply the Lemmas.
Add together (9), (10), (11) and (12),

∣∣∣
∣∣∣W 1/2u

∣∣∣
∣∣∣
2

L2
+ ||Zu||2L2 +

∣∣∣
∣∣∣Z̃u

∣∣∣
∣∣∣
2

L2
+ ||Ju||2L2

≤ (hγ + Ch4−γ + C
h−τ

β
) ||f ||L2 ||u||L2

+ C(h5τ−1 + h4 +
h6τ−γ−1

β
) ||f ||2L2

+ (o(h2) + o(1)) ||u||2L2 .

Since γ≤2 and τ≥1/2, the (hγ + h4−γ) ||f ||L2 ||u||L2 and (h4 + h5τ−1) ||f ||L2

terms on the right hand side are automatically smaller than other terms and
can be safely ignored.

Now, rewrite the LHS as
〈
(W + Z2 + Z̃2 + J2)u, u

〉
and use the fact

that W (x) + z(ξ)2 + z̃(ξ)2 + χ(ξ)ψ(hτ−1ξ) is strictly positive on T ∗S1 to
bound that term from below by c ||u||2L2 . Then for h small enough, absorb
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all the ||u||2L2 terms from the right hand side into the left

c ||u||2L2 ≤ C
h−τ

β
||f ||L2 ||u||L2 + C

h6τ−γ−1

β
||f ||2L2 .

Now use Young’s inequality on the h−τ

β ||f ||L2 ||u||L2 term and group the

resultant ||u||2L2 onto the left hand side to obtain

||u||L2 ≤ C

(
h−2τ

β2
+
h6τ−γ−1

β

)
||f ||L2 ≤ C

h−2τ

β2
||f ||L2 .

Where the second inequality follows because τ ≥ τmin > 1/2 and γ ≤ 2 im-
ply 6τ − γ − 1 > 3− γ − 1 > 0, so the second term goes to 0 as h→ 0 re-
gardless of β.

Finally the rescaling q = 1/hγ gives the desired inequality. □

To finish the proof of (5) it is necessary to consider different regimes for
β, τ and γ in order to ensure that β ≤ q2τ/γ and to obtain the best possible
estimate. Suppose q ≥ q0 and consider three cases for ε2 ≤ β ≤ q2 (recalling
that 1/2 < τmin ≤ 1)

1) ε2 ≤ β ≤ qτmin

2) 1
2q

τmin ≤ β ≤ q3τmin

3) q3τmin

2 ≤ β ≤ q2.

In case 1 choose τ = τmin, γ = 2. Then by Proposition 3.5 there exists C > 0
such that

||u||2L2 ≤ Cqτmin ||f ||2L2 .

In case 2 choose τ = 3τmin, γ = 2. Then by Proposition 3.5, since 1
β ≤ 2

qτmin
,

there exists C > 0 such that

||u||2L2 ≤ C
q3τmin

q2τmin
||f ||2L2 ≤ Cqτmin ||f ||2L2 .

If 3τmin ≥ 2, skip case 3 and for case 2 instead take τ = 1, γ = 1. Then by
Proposition 3.5, since 1

β ≤ 2
qτmin

, there exists C > 0 such that

||u||2L2 ≤ C
q2

q2τmin
||f ||L2 ≤ Cq2−2τmin ||f ||2L2 ≤ Cqτmin ||f ||2L2 .

where the final inequality follows since 3τmin ≥ 2 implies 2− 2τmin ≤ τmin.
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In case 3 choose τ = 1, γ = 1. Then by Proposition 3.5, since 1
β ≤ 2

q3τmin
,

there exists C > 0 such that

||u||2L2 ≤ C
q2

q6τmin
||f ||2L2 ≤ Cq2−6τmin ||f ||2L2 ≤ Cqτmin ||f ||2L2 ,

where the final inequality holds because τmin > 1/2 > 2/7 implies 2−
6τmin ≤ τmin.

Since all q, β such that ε2 ≤ β ≤ q2 are covered by these three cases this
proves the high energy estimate (5). This along with the low energy estimate
(4) completes the proof of Theorem 1.3.

So it now remains to prove the elliptic estimates (Lemmas 3.2 and 3.3)
and the propagating estimate (Lemma 3.4). They are proved in sections 4
and 5, respectively.

4. Proof of elliptic region estimates Lemmas 3.2 and 3.3

IfW is smooth and τ = 1 then a conventional semiclassical parametrix argu-
ment produces the desired elliptic estimate (see for example [16] Proposition
E.32). Normally as part of that proof ξ2 is composed with 1/p. This becomes
an issue when W is not smooth as the low regularity composition expan-
sion (Lemma A.6) only works with bounded symbols. To address this cutoff
functions are used to split the estimate into estimates on a bounded elliptic
set (Lemma 3.2) and a standard elliptic set (Lemma 3.3).

Taking τ ̸= 1 produces additional issues. The bounded elliptic set is h
dependent and ξ is only bounded from below by a power of h, rather than
a constant. In order to ensure that p = ξ2 + ih2−γW − h2β is invertible on
this set β must satisfy h2β ≤ h2−2τ < cξ2. Therefore p is only bounded from
below by a power of h and every division by p creates unfavorable powers of
h. These unfavorable powers can be controlled, but this requires additional
regularity of W and the requirements grow as τ approaches 1/2.

In this section I will first prove the estimate on the h dependent elliptic
set (Lemma 3.2) and then prove the estimate on the standard elliptic set
(Lemma 3.3).

4.1. h dependent elliptic estimate, Lemma 3.2

The proof of Lemma 3.2 follows the conventional semiclassical parametrix
argument with adjustments made to handle the issues described above.

The first change is that the parametrix is constructed for a cutoff version
of P , Op(χp), which is bounded.
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Let χ ∈ C∞
0 (R) have

χ(ξ) =

{
1 |ξ| < 3.5

0 |ξ| > 4.

Define

q0(x, ξ) =
h2−2τz(ξ)

χ(ξ)(ξ2 + ih2−γW − h2β)
=

h2−2τz(ξ)

χ(ξ)p(x, ξ)
=
h2−2τz(ξ)

p(x, ξ)
,

where χ can be replaced by 1 because χ ≡ 1 on suppz ⊂ {1.5h1−τ < |ξ| < 3}.
The χ is included to simplify the composition with Op(χp).

For j ≥ 1, recursively define

qj = −
1

χp

j−1∑

l=0

ql,j−l,

where ql,j−l is the (j − l)th term in the composition expansion Op(ql)Op(χp)
and is given by

ql,j−l = Cj,lh
j−l(∂j−l

x (χp)∂j−l
ξ ql + (−1)j−l∂j−l

ξ (χp)∂j−l
x ql),

for j − l ≥ 1. Once again the χ can be replaced by 1 in the definitions of qj
and ql,j−l, since χ is identically 1 on the support of z and thus qj .

These qj are used to construct a parametrix for Op(χp), which in turn
is used to control QjOp(χ)P . In particular, I will show that for N large
enough

N∑

j=0

QjOp(χp) =

N∑

j=0

QjOp(χ)P = h2−2τZ + o(h3−2τ ).

To prove this, the qj are first shown to be in a particular symbol class
(Lemmas 4.2 and 4.3), which gives control of the size of Qj as operators
on L2 (Lemma 4.4). Then

∑
Qj and Op(χp) are composed in two different

ways, producing error terms of the appropriate size (Lemmas 4.5 and 4.6).
Finally, this composition formula is applied to u which gives the desired
elliptic estimate.

The following symbol style estimates for p and W
p on supp z =

{1.5h1−τ < |ξ| < 3} are needed to prove the symbol estimates for qj .



✐

✐

“8-Kleinhenz” — 2023/2/9 — 0:02 — page 1101 — #15
✐

✐

✐

✐

✐

✐

Decay rates for the damped wave equation 1101

Lemma 4.1.

1) For m, j, v ∈ N such that 2m ≥ 2j

sup
(x,ξ)∈supp z

∣∣∣∣∣
∂vξ (p(x, ξ)

j)

p(x, ξ)m

∣∣∣∣∣ ≤ Ch(τ−1)(2m−2j+v).

2) For α, j, t ∈ N with j ≥ t

sup
(x,ξ)∈supp z

∣∣∣∣h
(1−τ)2t∂

α
x (ih

2−γW )j−t

pj

∣∣∣∣ ≤ Ch(τ−1)α.

Proof. 1) To begin the binomial expansion formula gives

∂vξ p(x, ξ)
j =

j∑

l=0

Cl,j∂
v
ξ (ξ

2 − h2β)l(ih2−γW (x))j−l.

Again using the binomial expansion formula

∂vξ (ξ
2 − h2β)l = ∂vξ

l∑

k=0

Ck,lξ
2k(−h2β)l−k =

l∑

k=0

Ck,v,lξ
2k−v(−h2β)l−k.

Now note that on supp z, |ξ| > 1.5h1−τ while h2β ≤ h2−2τ and so h2β ≤
ξ2/2. Therefore

|∂vξ (ξ
2 − h2β)l| ≤

l∑

k=0

C|ξ|2k−v|h2β|l−k ≤

l∑

k=0

C|ξ|2l−v ≤ C|ξ|2l−v.

Now split supp z into two sets

1) A = {(x, ξ) ∈ supp z;h2−γW (x) ≤ ξ2}

2) B = {(x, ξ) ∈ supp z;h2−γW (x) ≥ ξ2}

For (x, ξ) ∈ A

|∂vξ p
j | ≤

j∑

l=0

|∂vξ (ξ
2 − h2β)l||h2−γW |j−l ≤

j∑

l=0

|ξ|2l−v|ξ2|j−l ≤ C|ξ|2j−v.

Also |p| =
√

(ξ2 − h2β)2 + (h2−γW )2 ≥ ξ2 − h2β ≥ cξ2.
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Therefore

sup
(x,ξ)∈A

∣∣∣∣∣
∂vξ p

j

pm

∣∣∣∣∣ ≤ sup
(x,ξ)∈A

C|ξ|2j−v

|p|m
≤ sup

(x,ξ)∈A
C|ξ|2j−v−2m ≤ Ch(1−τ)(2m−2j+v),

where the last inequality follows since ξ > 1.5h1−τ on supp z. This is the
desired inequality.

Now consider the second case when (x, ξ) ∈ B i.e. h2−γW ≥ ξ2. Then
∂vξ p

j ≤
∑j

l=0 |ξ|
2l−v|h2−γW |j−l ≤ |h2−γW |j and |p| ≥ h2−γW . Therefore

sup
(x,ξ)∈B

∣∣∣∣∣
∂vξ p

j

pm

∣∣∣∣∣ ≤ sup
(x,ξ)∈B

W j

(h2−γW )m

≤ sup
(x,ξ)∈B

1

ξ2(m−j)
≤ h(τ−1)(2m−2j) ≤ h(τ−1)(2m−2j+v)

since τ − 1 ≤ 0 and ξ > 1.5h1−τ on supp z. These two cases cover all of
supp z and so the desired inequality holds.

2) When 2j − 2t ≤ α this is true as |p|j ≥ h−2j(τ−1) and so

h(τ−1)(−2t)

|p|j
|∂αx (ih

2−γW )j−t| ≤ Ch(τ−1)(−2t+2j) ≤ Ch(τ−1)α.

So now assume 2j − 2t > α. Applying ∂αx to (ih2−γW )j−t produces a
sum of powers of derivatives of W . In particular letting j0, j1, . . . jα ∈ N

then

∂αxW
j−t =

∑
Cj0,...,jαW

j0(∂xW )j1(∂2xW )j2 · · · (∂αxW )jα ,

where the sum is taken over j0, . . . , jα such that j0 + j1 + · · ·+ jα = j − t
and j1 + 2j2 + · · ·+ αjα = α. These conditions guarantee that there are j −
t factors of W on the right hand side and that each term in the sum has α
total derivatives.

Rearranging the derivative equation and then substituting in a rear-
ranged version of the W powers equation gives

α− j1 = 2j2 + 3j3 + · · ·+ αjα ≥ 2(j2 + j3 + · · ·+ jα) = 2(j − t− j0 − j1).

Therefore 0 < 2(j − t)− α ≤ 2j0 + j1. That is the number of terms with no
derivatives or one derivative is somehow bounded from below.

Now note that since p = ξ2 + ih2−γW − h2β then |p| ≥ h2−γW and so∣∣∣h2−γW
p

∣∣∣ ≤ C. Similarly since W =
∑
v2j and the vj are bounded and have
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bounded derivatives then |∂xW | ≤ CW 1/2 and so
∣∣∣h2−γ∂xW

p1/2

∣∣∣ ≤ h2−γW 1/2

|p|1/2 ≤

C.
Therefore, again taking the sum over j0, j1, . . . , jα satisfying the deriva-

tive and powers ofW constraints, and using powers ofW and ∂xW to cancel
powers and half powers of p respectively

∣∣∣∣
∂αx (ih

2−γW )j−t

pj

∣∣∣∣ ≤
∑

Cj0,...,jα

h(2−γ)(j−t)W j0 |∂xW |j1 |∂2xW |j2 · · · |∂xW |jα

|p|j

≤
∑ C

|p|j−j0−
j1
2

.

Now using that |p| ≥ cξ2 and |ξ| > ch1−τ on supp z the above equation gives

sup
(x,ξ)∈supp z

∣∣∣∣h
(1−τ)2t∂

α
x (ih

2−γW )j−t

pj

∣∣∣∣

≤ sup
(x,ξ)∈supp z

Ch(1−τ)2t

|p|j−j0−
j1
2

≤ sup
(x,ξ)∈supp z

Ch(1−τ)2t

|ξ|2j−2j0−j1

≤ h(1−τ)2th(τ−1)(2j−2j0−j1) = Ch(τ−1)(2j−2t−2j0−j1) ≤ Ch(τ−1)α,

where the final inequality follows from 2j0 + j1 ≥ 2(j − t)− α. □

The proof of part 2 of this lemma is a key usage of the fact that |∇W | ≤W 1/2

in this paper. Because of this it is worth mentioning that this exact argument
does not give a meaningful improvement when |∇W | ≤ CW 1−ε for ε < 1/2.
With such an assumption there is still no improvement from factors of W
without any derivatives, the improvement can only come from factors of
∂xW . However when α is even there are always terms with j1 = 0 with no
improvement over the stated result.

With these symbol style estimates it is now possible to give the symbol
class for q0. Unlike other symbols in this paper, differentiating it in either ξ
or x produces factors of hτ−1.

Lemma 4.2.

q0 ∈W k0S1−τ,1−τ (T
∗
S
1).

Proof. Since supp z ⊂ {1.5h1−τ < |ξ| < 3} it is enough to show for |ξ| < 3
and θ ∈ N, |α| ≤ k0 that

|∂αx ∂
θ
ξ q0| ≤ h(τ−1)(α+θ).
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To begin, recall a classical fact about higher order derivatives of a quo-
tient.

(13) ∂αx

(
f(x)

g(x)

)
=

α∑

k=0

k∑

j=0

(−1)j
(
α

k

)(
k + 1

j + 1

)
1

gj+1
∂α−k
x f∂kxg

j .

This follows from the Leibniz rule and the Hoppe formula applied to 1/g,
(for the Hoppe formula see [18] (3.3))

Therefore

∂αx q0(x, ξ) = ∂αx

(
h2−2τz(ξ)

p(x, ξ)

)
=

α∑

j=0

(−1)j
(
α+ 1

j + 1

)
h2−2τz(ξ)

pj+1
∂αx p

j .

And so

∂θξ∂
α
x q0 =

α∑

j=0

(−1)j
(
α+ 1

j + 1

)
h2−2τ∂θξ

(
z

pj+1
∂αx p

j

)
.

Now applying (13) to ∂θξ

(
z

pj+1∂αx p
j
)

∂θξ∂
α
x q0 =

α∑

j=0

θ∑

v=0

v∑

w=0

Cj,α,v,θ,w
h2−2τ

p(j+1)(w+1)
∂θ−v
ξ (z∂αx p

j)∂vξ p
(j+1)w.

So it is sufficient to control each individual term in the sum, which is of the
form

(14) Ch2−2τ 1

p(j+1)(w+1)
∂θ−v
ξ (z∂αx p

j)∂vξ p
(j+1)w,

where 0 ≤ j ≤ α, 0 ≤ v ≤ θ and 0 ≤ w ≤ v.
Well by Lemma 4.1

sup
(x,ξ)∈supp z

∣∣∣∣∣
∂vξ (p

j+1)w

(pj+1)w

∣∣∣∣∣ ≤ O(h(τ−1)v).

This along with |p| ≥ h2−2τ gives

sup
(x,ξ)∈supp z

∣∣∣∣h
2−2τ 1

p(j+1)(w+1)
∂θ−v
ξ (z∂αx p

j)∂vξ p
(j+1)w

∣∣∣∣

≤ sup
(x,ξ)∈supp z

C

∣∣∣∣
1

pj
∂θ−v
ξ (z∂αx p

j)h(τ−1)v

∣∣∣∣
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Now use the product rule to expand out ∂θ−v
ξ (z∂αx p

j)

C

∣∣∣∣
1

pj
∂θ−v
ξ (z∂αx p

j)h(τ−1)v

∣∣∣∣ ≤
v∑

l=0

∣∣∣∣
1

pj
∂θ−v−l
ξ z∂lξ∂

α
x p

j

∣∣∣∣h
(τ−1)v.

Well |∂θ−v−l
ξ z| ≤ Ch(τ−1)(θ−v−l) which gives

v∑

l=0

∣∣∣∣
1

pj
∂θ−v−l
ξ z∂lξ∂

α
x p

jh(τ−1)v

∣∣∣∣ ≤
v∑

l=0

∣∣∣∣
1

pj
h(τ−1)(θ−l)∂lξ∂

α
x p

j

∣∣∣∣ .

Again use the binomial expansion to write

pj =

j∑

t=0

Cj,t(ξ
2 − h2β)t(ih2−γW )j−t,

and so

∂lξ∂
α
x p

j =

j∑

t=0

Cj,t∂
l
ξ(ξ

2 − h2β)t∂αx (ih
2−γW )j−t.

Combining this with the previous chain of inequalities and (14) gives

sup
(x,ξ)∈supp z

∣∣∣∣
h2−2τ

p(j+1)(w+1)
∂θ−v
ξ (z∂αx p

j)∂vξ p
(j+1)w

∣∣∣∣

≤ sup
(x,ξ)∈supp z

v∑

l=0

j∑

t=0

∣∣∣∣
Ch(τ−1)(θ−l)

pj
∂lξ(ξ

2 − h2β)t∂αx (ih
2−γW )j−t

∣∣∣∣ .

By the same argument used in part 1 of Lemma 4.1

sup
(x,ξ)∈supp z

∣∣∣∂lξ(ξ2 − h2β)t
∣∣∣ ≤ C(hτ−1)l−2t.

Therefore

sup
(x,ξ)∈supp z

v∑

l=0

j∑

t=0

∣∣∣∣
Ch(τ−1)(θ−l)

pj
∂lξ(ξ

2 − h2β)t∂αx (ih
2−γW )j−t

∣∣∣∣

≤ sup
(x,ξ)∈supp z

j∑

t=0

∣∣∣∣
Ch(τ−1)(θ−2t)

pj
∂αx (ih

2−γW )j−t

∣∣∣∣ .
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Now using part 2 of Lemma 4.1

sup
(x,ξ)∈supp z

∣∣∣∣
h(τ−1)θ

pj
h(1−τ)2t∂αx (ih

2−γW )j−t

∣∣∣∣ ≤ Ch(τ−1)(θ+α),

and combining this chain of inequalities gives the desired statement. □

Next I show that qj is a symbol with the same behavior under differen-
tiation by x and ξ but with size hj(2τ−1).

Lemma 4.3.

hj(1−2τ)qj ∈W k0−jS1−τ,1−τ (T
∗
S
1)

Proof. Since supp z ⊂ {1.5h1−τ < |ξ| < 3} it is enough to show for |ξ| < 3
and θ ∈ N, α ≤ k0 − j that

|∂αx ∂
θ
ξ qj | ≤ Chj(2τ−1)h(τ−1)(α+θ).

This will be proved inductively in j. By Lemma 4.2, q0 satisfies this. So
assume |∂αx ∂

θ
ξ ql| ≤ Chl(2τ−1)h(τ−1)(α+θ) for all 0 ≤ l ≤ k and it is enough to

show for θ ∈ N, α ≤ k0 − j

sup
|ξ|<3

|∂αx ∂
θ
ξ qk+1| ≤ Ch(k+1)(2τ−1)h(τ−1)(α+θ).

By definition

qk+1 = −
1

p

k∑

l=0

ql,k+1−l =
−qk,1
p

−
1

p

k−1∑

l=0

ql,k+1.

Since

ql,k+1−l = Chk+1−l(∂k+1−l
x p∂k+1−l

ξ ql + (−1)k+1−l∂k+1−l
ξ p∂k+1−l

x ql)

then by the inductive assumption

sup
|ξ|<3

|ql,k+1−l| ≤ sup
|ξ|<3

Ch(k+1−l)τ |ql| ≤ Ch(k+1−l)τhl(2τ−1).

Therefore
∣∣∣∣
ql,k+1−l

p

∣∣∣∣ ≤ Ch2τ−2h(k+1−l)τhl(2τ−1) = Ch2τ−2h(k+1)τhl(τ−1).
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Now for 0 ≤ l ≤ k − 1, since τ − 1 ≤ 0.

h2τ−2hτ(k+1)hl(τ−1) ≤ h2τ−2hτ(k+1)h(k−1)(τ−1).

Note that

2τ − 2 + τk + τ + kτ − τ − k + 1 = 2τk + 2τ − (k + 1) = (2τ − 1)(k + 1).

Therefore

|qk+1| ≤ |
qk,1
p

|+ Ch(k+1)(2τ−1).

The qk,1 term requires separate treatment. Recall qk,1=h(∂xp∂ξqk−∂ξp∂xqk).

Using the arguments of part 2 of Lemma 4.1 |∂xp
p | = |∂xW

p | ≤ Chτ−1 and

|∂ξp
p | ≤ Chτ−1 on supp z and by the inductive assumption |∂xqk|, |∂ξqk| ≤

Ch(τ−1)hk(2τ−1). Therefore

sup
|ξ|<3

∣∣∣∣
qk,1
p

∣∣∣∣ ≤ sup
|ξ|<3

Ch

(∣∣∣∣
∂xp

p

∣∣∣∣ |∂ξqk|+
∣∣∣∣
∂ξp

p

∣∣∣∣+ |∂xqk|

)

≤ Chhτ−1hτ−1hk(2τ−1) = Ch(k+1)(2τ−1).

It remains to be seen that qk+1 has the correct behavior under differentiation.
That is |∂αx ∂

θ
ξ qk+1| ≤ Ch(k+1)(2τ−1)h(τ−1)(α+θ). Well

∂αx ∂
θ
ξ qk+1 = −

k∑

l=0

∂αx ∂
θ
ξ

ql,k+1−l

p

= −

k∑

l=0

∂αx ∂
θ
ξ

(
hk+1−l

p
(∂k+1−l

x p∂k+1−l
ξ ql + (−1)k+1−l∂k+1−l

ξ p∂k+1−l
x ql)

)

If a derivative falls on ∂xp∂ξq or ∂ξp∂xq this only produces an additional
hτ−1. Furthermore, by the argument of Lemma 4.2 any derivatives which
fall on 1

p produce only hτ−1. Therefore

|∂αx ∂
θ
ξ qk+1| ≤ Ch(τ−1)(α+θ)|qk+1| ≤ Ch(τ−1)(α+θ)h(k+1)(2τ−1).

This is exactly the desired inductive statement, which completes the proof.
□

With these symbol estimates it is straightforward to control the size of
Op(qj) on L

2.
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Lemma 4.4.

∥Op(qj)∥L2→L2 = Chj(2τ−1)hτ−1

Proof. This follows immediately from Lemma A.2 and Lemma 4.3. In par-
ticular

∥Op(qj)∥L2→L2 ≤ C
∑

α,θ∈{0,1}

hθ
∣∣∣
∣∣∣∂αx ∂θξ qj

∣∣∣
∣∣∣
L∞

≤
∑

α,θ∈{0,1}

Chj(2τ−1)h(τ−1)(α+θ)hθ

=
∑

α,θ∈{0,1}

Chj(2τ−1)h(τ−1)αhθτ ≤ Chj(2τ−1)hτ−1.

□

Now using these symbol and operator norm estimates it is possible to
compute the composition of

∑
Qj with Op(χp).

Lemma 4.5. If W ∈W k0,∞ and τ ∈ [τmin, 1],




k0−6∑

j=0

Qj


Op(χp) = h2−2τZ + o(h3−2τ ).

Proof. Applying Lemma A.6 part 3 to the composition QjOp(χp), (with
N = k0 − j and Ñ = k0 − j − 5) produces

QjOp(χp) =

k0−6∑

k=0

Op(qj,k) +OL2→L2(hj(2τ−1)hτ(k0−j−5)h5(τ−1)).

The additional hj(2τ−1) in the remainder term comes from the fact that
hj(1−2τ)qj ∈W k0S1−τ,1−τ .

Now, to control the remainder term, since j ≤ k0 − 6 and τ − 1 < 0

j(2τ − 1) + τ(k0 − j − 5) + 5(τ − 1)

= τk0 + j(τ − 1)− 5 ≥ τk0 + (k0 − 6)(τ − 1)− 5.



✐

✐

“8-Kleinhenz” — 2023/2/9 — 0:02 — page 1109 — #23
✐

✐

✐

✐

✐

✐

Decay rates for the damped wave equation 1109

Furthermore τ ≥ τmin >
k0+2
2k0−4 and k0 ≥ 8 ≥ 8τ and so

τk0 + (k0 − 6)(τ − 1)− 5 = (2k0 + 4)τ − 10τ + 1(15)

> k0 + 2− 10τ + 1

= 3− 2τ + (k0 − 8τ) ≥ 3− 2τ,

and the remainder error term is always of size o(h3−2τ ).
Now summing these composition expansions from j = 0 to j = k0 − 6




k0−6∑

j=0

Qj


Op(χp) =

k0−6∑

j=0

(
k0−j−6∑

k=0

Op(qj,k)

)
+ o(h3−2τ )

= Op




q0,0 +q0,1 +q0,2 +q0,3 + · · · +q0,k0−6

+q1,0 +q1,1 +q1,2 + · · · +q1,k0−7

+q2,0 +q2,1 + · · · +q2,k0−8

+q3,0 + · · · +q3,k0−9

+ · · ·
+qk0−6,0




+ o(h3−2τ ).

By construction of the qj,k, all columns except for the first sum to zero
leaving




M−1∑

j=0

Qj


Op(χp) = Op(q0,0) + o(h3−2τ ) = Op(q0χp) + o(h3−2τ ).

Since q0 =
h2−2τz(ξ)

χp ,Op(q0χp) = Op(z(ξ)) = Z and this is the desired equal-
ity. □

The composition of
∑
Qj with Op(χp) can also be computed in a way

that separates Op(χ) and P .

Lemma 4.6. If W ∈W k0,∞ and τ ∈ [τmin, 1],

k0−6∑

j=1

QjOp(χp) =

k0−6∑

j=1

QjOp(χ)P + o(h3−2τ ).
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Proof. First, by Lemmas A.1 and A.6 part 1 (with Ñ = 3 ≤ k0 − 5 and ρ =
0))

Op(χ)P =

2∑

k=0

(ih)k

2kk!
Op(∂kξχ∂

k
xp) +OL2→L2(h3)

= Op(χp) +

2∑

k=1

Ckh
kOp(∂kξχ∂

k
xW ) +OL2→L2(h3).

Therefore

QjOp(χp) = QjOp(χ)P −

2∑

k=1

Ckh
kQjOp(∂kξχ∂

k
xW ) +OL2→L2(h3),

and it remains to control terms of the form QjOp(∂kξχ∂
k
xW ). Well by Lemma

A.6 part 3 (since ∂kxW ∈W k0−kS0 and hj(1−2τ)Qj ∈W k0−jS1−τ,1−τ take

Ñ = k0 −max(j, k)− 5)

hkQjOp(∂kξχ∂
k
xW )

= hk
Ñ−1∑

l=0

(ih)l

2ll!
(∂y∂ξ − ∂x∂η)

l(qj(x, ξ)∂
k
ηχ(η)∂

k
yW (y))

∣∣∣∣
y=x,η=ξ

+OL2→L2(hkhj(2τ−1)hτ(k0−max(j,k)−5)h5(τ−1)).

All the terms in the sum are 0 because χ ≡ 1 on supp z ⊃ supp qj and
so χ(k) ≡ 0 on supp qj .

The size of the remainders can also be controlled. Since j ≤ k0 − 6

k + j(2τ − 1) + τ(k0 −max(j, k)− 5) + 5(τ − 1)

= τk0 + j(τ − 1)− 5 + k + jτ −max(j, k)τ

≥ τk0 + j(τ − 1)− 5

≥ τk0 + (k0 − 6)(τ − 1)− 5 > 3− 2τ,

where the last inequality follows from (15). Therefore

QjOp(χp) = QjOp(χ)P + o(h3−2τ ),

and so
k0−6∑

j=1

QjOp(χp) =

k0−6∑

j=1

QjOp(χ)P + o(h3−2τ ),
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as desired. □

With these two composition results the proof of the h dependent elliptic
estimate can be completed.

Proof of Lemma 3.2. By Lemma 4.5

h2−2τZu =
(∑

Qj

)
Op(χp)u+ o(h3−2τ )u.

and by Lemma 4.6

h2−2τZu =
(∑

Qj

)
Op(χp)u+ o(h3−2τ )u

=
(∑

Qj

)
Op(χ)Pu+ o(h3−2τ )u

=
(∑

Qj

)
Op(χ)h2f + o(h3−2τ )u.

Take the L2 norm squared of both sides. Then by Lemma 4.4, the Qj are
bounded by Chτ−1 on L2 and Op(χ) is bounded on L2 by Lemma A.2.

h4−4τ ||Zu||2L2 ≤ h4
∣∣∣
∣∣∣
∑

QjOp(χ)f
∣∣∣
∣∣∣
2

L2
+ o(h6−4τ ) ||u||2L2

≤ Ch4hτ−1 ||f ||2L2 + o(h6−4τ ) ||u||2L2 .

Finally multiply both sides by h4τ−4 to obtain the desired inequality. □

4.2. ξ > c Elliptic estimate, Lemma 3.3

This proof follows the conventional semiclassical parametrix argument with
the caveat that W is treated as a perturbation. This allows the parametrix
construction to be exact, as it involves only Fourier multipliers. Because of
this there are no compositions involvingW and so the regularity ofW is not
involved in this proof. This same construction can also be used to prove an
h dependent elliptic estimate, however treating W perturbatively produces
an error term that weakens the estimate. This lessens the improvement the
estimate makes when applied to error terms in the propagation argument
and would weaken the overall conclusion.
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Proof. Define

q̃0 =
z̃(ξ)

ξ2 − h2β
.

Noting that q̃0 ∈ S0
0 since ξ > 1 on supp z̃ and h2β < 1. Now set Q̃0 =

Op(q̃0) and let p0 = ξ2 − h2β, P0 = −h2∂2x − h2β. Since q0 and p0 both de-
pend only on ξ their composition is exact

Q̃0P0 = Op(q̃0p0) = Z̃.

Now since P0 + ih2−γW = P

Z̃u = Q̃0Pu− Q̃0(ih
2−γWu)

= h2Q̃0f − Q̃0(ih
2−γWu).

Take the L2 norm squared of both sides then use that Q̃0 is bounded on L2

by Lemma A.2

∣∣∣
∣∣∣Z̃u

∣∣∣
∣∣∣
2

L2
≤ h4

∣∣∣
∣∣∣Q̃0f

∣∣∣
∣∣∣
2

L2
+ h4−2γ

∣∣∣
∣∣∣Q̃0Wu

∣∣∣
∣∣∣
2

L2

≤ Ch4 ||f ||2L2 + Ch4−2γ ||Wu||2L2 .

Finally use that W 2 ≤ CW and (9), the damped region estimate, to obtain

∣∣∣
∣∣∣Z̃u

∣∣∣
∣∣∣
2

L2
≤ Ch4 ||f ||2L2 + Ch4−γ ||f ||L2 ||u||L2 .

□

5. Proof of propagating region estimate Lemma 3.4

With the elliptic and damped region estimates proved, it remains to prove
the estimate for the propagating region, that is Lemma 3.4. The plan for this
section is as follows: first the computation of a commutator in two different
ways, second the estimation of terms in the computation using expansions
of compositions of pseudodifferential operators.

Proof of Lemma 3.4. Set a = xχ(x)(ξhτ−1)ψ(ξhτ−1) and A = Op(a). Note
that by Lemma A.2, A is bounded on L2. To begin, compute h1−τ (AP −
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P ∗A) in two different ways

h1−τ
〈
[h2∂2x, A]u, u

〉
+ ih3−γ−τ ⟨(AW +WA)u, u⟩(16)

= h1−τ ⟨(AP − P ∗A)u, u⟩ = 2ih3−τIm ⟨f,Au⟩ .

This equation is the basis of the proof. The right hand side is a term of the
form Ch3−τ ||f ||L2 ||u||L2 , which is the primary term in the estimate.

On the left hand side h3−γ−τ (AW+WA) will produce a h3−τ ||f ||L2 ||u||L2

and two error terms: h2−γ+6τ ||f ||2L2 and o(h3) ||u||
2
L2 . The h1−τ [h2∂2x, A] term

will provide the h3βJu term as well as another h3−τ ||f ||L2 ||u||L2 and error
terms o(h3) ||u||2L2 and h2−γ+6τ ||f ||2L2 .

Note that most of these terms have a common factor of h3 which will be
divided out in order to obtain the final conclusion. Because of this through-
out the section error terms must be of size o(h3) to be negligible.

I will first compute the AW and [h2∂2x, A] terms and then use them to
prove Lemma 3.4. Subsection 5.1 estimates the damping anti-commutator
(AW +WA), subsection 5.2 estimates the Laplacian commutator [h2∂2x, A]
and subsection 5.3 synthesizes these to complete the proof of Lemma 3.4.

Remark In this section I write

a(j)(ξhτ−1) = hj(1−τ)∂jξ(a(x, ξh
τ−1)) = hj(1−τ)xχ(x)∂jξ((ξh

τ−1)ψ(ξhτ−1)).

Note that a(j) ∈ S0
1−τ (T

∗S1), see Appendix A for the definition of Sm
ρ (T ∗S1).

The utility of this notation is that hj∂jξa = hjτa(j), which simplifies compo-
sition expansions. This agrees with the standard usage of the notation: if
ψ(k)(ξhτ−1) is the kth derivative of ψ evaluated at ξh1−τ then

hk(1−τ)∂kξ (ψ(ξh
τ−1)) = ψ(k)(ξhτ−1).

Also in this section, recall that there is a fixed ε2 > 0 and it is assumed
that h2ε2 < h2β < h2−2τ . This assumption is needed in order to apply the
elliptic estimate (Lemma 3.2) in order to control the size of error terms.

5.1. Damping anti-commutator estimate

In order to estimate h3−γ−τ (AW +WA) I will write it as h3−γ−τvjAvj plus
error terms. The h3−γ−τvjAvj term can be controlled using the damping
estimate and is of size h3−τ ||f ||L2 ||u||L2 . The error terms are either of size
o(h3), which is small enough to be negligible or are supported on the el-
liptic set of P and can be further controlled by the elliptic estimate and
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Lemma A.7. The terms controlled with the elliptic estimate will produce
the h2−γ+6τ ||f ||2L2 . In particular in this subsection I will show

h3−γ−τ | ⟨(AW +WA)u, u⟩ |(17)

≤ Ch3−τ ||f ||L2 ||u||L2 + Ch2+6τ−γ ||f ||2L2 + o(h3) ||u||2L2 .

To begin recall that W =
∑
v2j so

h3−γ−τ (AW +WA) = h3−γ−τ
∑

j

v2jA+Av2j

=
∑

j

h3−γ−τvjAvj +
∑

j

h2−γ [[h1−τA, vj ], vj ].

To control the first term use Lemma A.2 to see A is bounded on L2

h3−γ−τ
∑

j

| ⟨vjAvju, u⟩ | ≤ Ch3−γ−τ
∑

j

||vju||
2
L2 .

Then since v2j ≤
∑

j v
2
j =W use (9)

Ch3−γ−τ
∑

j

||vju||
2
L2 = Ch3−γ−τ

∣∣∣
∣∣∣W 1/2u

∣∣∣
∣∣∣
2

L2
≤ Ch3−τ ||f ||L2 ||u||L2 .

Combining these inequalities gives

h3−γ−τ | ⟨(AW +WA)u, u⟩ |(18)

≤ Ch3−τ ||f ||L2 ||u||L2 +
∑

j

h2−γ |
〈
[[h1−τA, vj ], vj ]u, u

〉
|.

The sum of double commutators will be error terms. Its size can be controlled
using the elliptic estimate, to do so the double commutator must first be
computed.

Lemma 5.1. If vj ∈W k0,∞ and τ ∈ [τmin, 1], then

[[h1−τA, vj ], vj ] =

k0−6∑

l=1

k0−6∑

k=1

im+l

2k+lk!l!
hτ(k+l)+1−τ (1− (−1)k)(1− (−1)l)Op(∂kxvj∂

l
xvja

(k+l))

+ o(h3)
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Before proving this in the finite regularity case it is useful outline the
proof when vj is smooth, as the argument is simpler but has the same struc-
ture. Fix M > ⌈ 2τ + 1⌉ and apply Lemma A.1 to compute the commutator

[h1−τA, vj ] = h1−τ
M−1∑

k=0

(ih)k

2kk!
(1− (−1)k)Op(∂kxvj∂

k
ξ a) +OL2→L2(hMτ+1−τ ).

Then apply Lemma A.1 again, to compute the double commutator

[[h1−τA, vj ], vj ] =

h1−τ
M−1∑

l=0

M−1∑

k=0

(ih)k+l

2k+lk!l!
(1− (−1)k)(1− (−1)l)Op(∂kxvj∂

l
xvj∂

k+l
ξ a)

+OL2→L2(hMτ+1−τ ).

Since M > ⌈ 2τ + 1⌉, Mτ + 1− τ > 3. Therefore

[[h1−τA, vj ], vj ] =

h1−τ
M−1∑

l=0

M−1∑

k=0

(ih)(k+l)

2k+lk!l!
(1− (−1)k)(1− (−1)l)Op(∂kxvj∂

l
xvj∂

k+l
ξ a)

+ o(h3).

The terms with l = 0 or k = 0 drop out because of the factors 1− (−1)k or
1− (−1)l. The final step is to substitute hk+l∂k+l

ξ a = hτ(k+l)a(k+l), which
gives an expansion of the desired form.

When W is not smooth there are two changes: the remainder term is
larger and additional care must be taken to track the exact number of deriva-
tives used. The computation of the size of the remainders in this proof are
the reason τmin >

7
k0−1 is required. Other remainder size calculations in this

section involving τ make use of this relationship between τmin and k0 but
are not sharp on it.

Proof of Lemma 5.1. Since vj ∈W k0,∞ use part 2 of Lemma A.6 (with N =
k0) to compute the commutator

[h1−τA, vj ] =

k0−6∑

k=0

(ih)k

2kk!
h1−τ (1− (−1)k)Op(∂kxvj∂

k
ξ a)

+OL2→L2(h(k0−5)τ−5(1−τ)+1−τ ).
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There are two key differences between this and the smooth case. The ex-
pansion can only be taken to the term k0 − 6 and the remainder term has
an additional h−5(1−τ). These two changes are connected; in order to show
that the remainder term is a bounded operator on L2 the symbol must be
in W 5,∞. Those derivatives of the symbol appear in the L2 operator norm
of the remainder and each ξ derivative of a produces a factor h1−τ . See
Appendix A for a more detailed proof and discussion.

The relationship between the regularity of the damping, k0, and τ guar-
antees that the remainder term is o(h3). In particular since τ ≥ τmin >

7
k0−1 .

(k0 − 5)τ − 5(1− τ) + 1− τ = (k0 − 5)τ − 4(1− τ)(19)

= (k0 − 1)τ − 4

> (k0 − 1)
7

k0 − 1
− 4 = 3.

Now replacing hk∂kξ a = hτka(k) gives

[h1−τA, vj ] =

k0−6∑

k=0

ikhkτ

2kk!
(1− (−1)k)h1−τOp(∂kxvja

(k)) + o(h3).

To finish computing [[A, vj ], vj ] Lemma A.6 will be applied again, paying
special attention to the terms in the sum that are not o(h3). In particular
these terms will be supported on the elliptic set of P and so can be further
estimated. However, these terms have derivatives of vj in them and so their
regularity must be carefully tracked.

Since vj ∈W k0,∞ and ∂kxvja
(k) ∈W k0−kSρ, I can apply Lemma A.6 part

1 with N = k0 (as k0 − k ≥ 6 > 5) and obtain

h1−τhkτ [Op(∂kxvja
(k)), vj ]

=

k0−6∑

l=0

il

2ll!
h1−τhτ(k+l)(1− (−1)l)Op(∂kxvj∂

l
xvja

(k+l))

+OL2→L2(h(k0−5)τ−5(1−τ)+1−τ+kτ ).

Where I have replaced hτkhl∂lξa
(k) = hτ(k+l)a(k+l). The remainder term is of

size (k0 − 5 + k)τ − 5(1− τ) + 1− τ . Since k ≥ 0, by the same argument as
above, the remainder term is o(h3).
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So combining

h1−τ [[A, vj ], vj ] =

k0−6∑

k=0

ik

2kk!
(1− (−1)k)h1−τhkτ [Op(∂kxvja

(k)), vj ] + o(h3)

=

k0−6∑

k=0

k0−6∑

l=0

ik+l

2k+lk!l!
(1− (−1)k)(1− (−1)l)h1−τh(k+l)Op(∂kxvj∂

l
xvja

(k+l))

+ o(h3).

The terms with k = 0 or l = 0 again vanish because of the factors 1− (−1)k

and 1− (−1)l. This gives the formula in the statement of the lemma. □

Now the size of [[A, vj ], vj ] can be further controlled since
Op(∂kxvj∂

l
xvja

(k+l)) has support contained in {2h1−τ < |ξ| < 3h1−τ}, which
is contained in the elliptic set of P . Because of this these terms can be
further estimated using the elliptic estimate.

Lemma 5.2. If vj ∈W k0,∞ and τ ∈ [τmin, 1] then

(20) |
〈
[[h1−τA, vj ], vj ]u, u

〉
| ≤ Ch6τ ||f ||2L2 + o(h3) ||u||2L2 .

Proof. For this proof I will use the notation bk,l = ∂kxvj∂
l
xvja

(k+l). In this
notation Lemma 5.1 is

[[h1−τA, vj ], vj ] =

k0−6∑

k=1

k0−6∑

l=1

Ck,lh
τ(k+l)h1−τOp(bk,l) + o(h3).

The elliptic estimate as written can’t be applied to Op(bk,l) directly because
the symbol is not smooth. Instead, I reintroduce the operator Z defined in
Lemma 3.2.

The key property here is that Z ≡ 1 on {1.5h1−τ < |ξ| < 2} ⊃ supp (bk,l).
This along with bk,l ∈W k0−max(k,l)S1−τ (T

∗S1), means Lemma A.7 can be
applied with N = k0 −max(k, l)

Op(bk,l) = ZOp(bk,l)Z +OL2→L2(hτ(k0−max(k,l))−5).

That is conjugating Op(bk,l) by Z is Op(bk,l) modulo an error term. Note
that there is less regularity for larger l, k and so the error term is larger.
However after reintroducing the h1−τh(k+l)τ from the sum the error terms
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can be uniformly controlled

h1−τh(k+l)τOp(bk,l) = h1−τh(k+l)τZOp(bk,l)Z

+OL2→L2(h(k0−max(k,l))τ−5hτ(k+l)h1−τ ).

In particular since τ ≥ τmin >
7

k0−1 and k, l ≥ 1

(k0 −max(k, l))τ − 5 + τ(k + l) + 1− τ

= (k0 +min(k, l)− 1)τ − 4 >
7

τ
τ − 4 + τ = 3 + τ,

and the error term is o(h3).
Therefore

h1−τh(k+l)τOp(bk,l) = h1−τh(k+l)τZOp(bk,l)Z + oL2→L2(h3).(21)

Now, apply (21) term by term to Lemma 5.1

|
〈
[[h1−τA, vj ], vj ]u, u

〉
| ≤ |

〈
Zh1−τ [[A, vj ], vj ]Zu, u

〉
|+ o(h3) ||u||2L2 .

Then use the self-adjointness of Z and the Hölder inequality to write

|
〈
Zh1−τ [[A, vj ], vj ]Zu, u

〉
| ≤

∣∣∣∣h1−τ [[A, vj ], vj ]Zu
∣∣∣∣
L2 ||Zu||L2 .

Now note that for k, l ≥ 1,

h1−τh(k+l)τOp(bk,l) = OL2→L2(h1+τ ),

and h1−τ [[A, vj ], vj ] =
∑

k,l≥1 h
1−τh(k+l)τOp(bk,l) + o(h3) = OL2→L2(h1+τ ).

Therefore

∣∣∣∣h1−τ [[A, vj ], vj ]Zu
∣∣∣∣
L2 ||Zu||L2 ≤ Ch1+τ ||Zu||2L2 .

Now apply the elliptic estimate Lemma 3.2 to Zu to see

Ch1+τ ||Zu||2L2 ≤ Ch6τ ||f ||2L2 + Ch1+τ+2 ||u||2L2 .

Combining this chain of inequalities gives (20). □
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So now use (20) to estimate the sum of double commutators in (18)

h3−γ−τ | ⟨(AW +WA)u, u⟩ |

≤ Ch3−τ ||f ||L2 ||u||L2 + Ch2+6τ−γ ||f ||2L2 + o(h3) ||u||2L2 ,

which is exactly the desired inequality (17).

5.2. Commutator estimate of A and h2∂2

x

The Laplacian commutator estimate follows from writing [h2∂2x, A] as a sum
of a cutoff version of P , J = Op(χ1/2(x)ψ1/2(ξhτ−1)) and error terms. The
error terms are supported in the elliptic or damped set and can be further
estimated.

In particular in this subsection I will show

2h3β ||Ju||2L2 ≤
∣∣〈[h2∂2x, A]u, u

〉∣∣+ Ch3−τ ||f ||L2 ||u||L2(22)

+ Ch2+6τ−γ ||f ||2L2 + (Ch3+2τβ + o(h3)) ||u||2L2 .

To begin note by Lemma A.1

[h2∂2x, h
1−τA] =

2∑

k=0

(ih)k

2kk!
(1− (−1)k)Op(∂kx(xχ(x))ξψ(ξh

τ−1)∂kξ ξ
2)

= 2ihOp((xχ′ + χ)ξ2ψ(ξh1−τ )),

where there are no terms for k ≥ 3 since ∂kξ ξ
2 = 0 for k ≥ 3, and the k = 0, 2

terms cancel because 1− (−1)k = 0 then.
Now recall that p = ξ2 + ih2−γW − h2β so

(23) 2ih(xχ′ + χ)ξ2ψ(ξhτ−1)

= 2ihxχ′ξ2ψ + 2ihχψ(ξhτ−1)(p− ih2−γW + h2β).

Each of the terms on the right hand side will be estimated in turn. The h3β
term will produce the h3J , the remaining terms produce errors.

5.2.1. Estimate of Op(ξ2ψxχ′). To estimate Op(ξ2ψxχ′) it is enough
to use that χ′ is supported only inside the damped set and apply (9). In
order to do so the ξ dependency of the operator must be eliminated, to do
so the approach of Lemma 5.2 is adapted. Lemma A.7 is still used, but the
localizing function now depends on x, and ξ2ψxχ′ is smooth in x so the error
term is O(h∞).
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In particular, define s ∈ C∞(−π, π) with

s =

{
0 |x| < σ

1 σ + σ1/2 < |x|,

and let S be the operator of multiplication by s. Note supp (χ′) ⊂ {σ +
σ1/2 < |x|} so s ≡ 1 on supp (ξ2ψxχ′). Then by Lemma A.7 (since χ′ ∈ C∞)

∣∣〈Op(ξ2ψ(ξhτ−1)xχ′(x))u, u
〉∣∣

=
∣∣〈SOp(ξ2ψ(ξhτ−1)xχ′(x))Su, u

〉∣∣+O(h∞) ||u||2L2 .

Use that S is self adjoint and the Hölder inequality to write

∣∣〈SOp(ξ2ψ(ξhτ−1)xχ′(x))Su, u
〉∣∣ =

∣∣〈Op(ξ2ψ(ξhτ−1)xχ′(x))Su, Su
〉∣∣

≤
∣∣∣∣Op(ξ2ψ(ξhτ−1)xχ′(x))Su

∣∣∣∣
L2 ||Su||L2 .

By Lemma A.2, h2τ−2Op(ξ2ψ(ξhτ−1)xχ′(x)) is bounded on L2, so

∣∣∣∣Op(ξ2ψ(ξhτ−1)xχ′(x))Su
∣∣∣∣
L2 ||Su||L2 ≤ Ch2−2τ ||Su||2L2 .

Then since s ≤ CW 1/2 and applying (9)

h2−2τ ||Su||2L2 ≤ Ch2−2τ
∣∣∣
∣∣∣W 1/2u

∣∣∣
∣∣∣
2

L2
≤ Ch2−2τ+γ ||f ||L2 ||u||L2 .

Combining this chain of inequalities and multiplying both sides by h gives

2h
∣∣〈Op(ξ2ψ(ξhτ−1)xχ′(x))u, u

〉∣∣(24)

≤ Ch3−2τ+γ ||f ||L2 ||u||L2 +O(h∞) ||u||2L2 .

5.2.2. Estimate of Op(h2βχψ). To estimate Op(χψ) write it as J2 plus
an error term. By Lemma A.1

Op(J)Op(J) = Op(χ1/2ψ1/2)Op(χ1/2ψ1/2) = Op(χψ)− h2τOp(r1),

where r1 ∈ S0
1−τ . Using that J is self adjoint and Op(r1) is bounded on L2

by Lemma A.2

||Ju||2L2 =
∣∣∣
〈
Op(χ1/2ψ1/2)Op(χ1/2ψ1/2)u, u

〉∣∣∣
≤ |⟨Op(χψ)u, u⟩|+ h2τ ⟨Op(r1)u, u⟩

≤ |⟨Op(χψ)u, u⟩|+ Ch2τ ||u||2L2 .
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Therefore, multiplying through by h3β

(25) h3β| ⟨Op(χψ)u, u⟩ | ≥ h3β ||Ju||2L2 − Cβh3+2τ ||u||2L2 .

5.2.3. Estimate of h Op(χψp). To estimate Op(χψp), write it as
Op(χψ)P plus error terms. The error terms are supported on the elliptic
set of P or the damped region and are further estimated using Lemma 3.2
or (9) respectively. In particular the following inequality will be shown.

h| ⟨Op(χψp)u, u⟩ | ≤ Ch3 ||f ||L2 ||u||L2(26)

+ Ch2+6τ−γ ||f ||2L2 + o(h3) ||u||2L2 .

Note this term appears in (23) as hOp(χψ)p, but to simplify notation this
extra factor of h is not carried through the intermediate calculations. Be-
cause of this remainders of size o(h2) are acceptably small, instead of the
o(h3) of other calculations.

To begin, Op(χψ)P is computed, where special care must be taken with
the regularity of the W terms. Since W ∈W k0,∞ by part 2 of Lemmas A.6
and A.1 (Lemma A.1 is used to compose Op(χψ) and −h2∂2x, as Lemma A.6
requires symbols to be bounded).

Op(χψ)P = Op(χψ)(−h2∂2x + ih2−γW − h2β)

= Op(χψp)

+

k0−6∑

k=1

(ih)k

2kk!
Op

(
(∂y∂ξ − ∂x∂η)

kχ(x)ψ(ξh1−τ )(η2 + ih2−γW (y))

∣∣∣∣
y=x,η=ξ

)

+OL2→L2(h(k0−5)τ−5(1−τ)).

As in Lemma 5.1 since τ ∈ [τmin, 1] with τmin >
7

k0−1

(k0 − 5)τ − 5(1− τ) = k0τ − 5 >
7

k0 − 1
k0 − 5 > 2,

which guarantees that the remainder term is of size o(h2).
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The sum splits into two separate sums, where the first is only taken to
k = 2 because ∂kξ ξ

2 = 0 for k ≥ 3.

Op(χψ)P = Op(χψp) +

2∑

k=1

(ih)k

2kk!
(−1)kOp

(
∂kxχ(x)ψ(ξh

τ−1)∂kξ ξ
2
)

+ ih2−γ
k0−6∑

k=1

(ih)k

2kk!
Op(χ(x)∂kξψ(ξh

1−τ )∂kxW ) + oL2→L2(h2)

= Op(χψp)−Op(ihχ′ψξ +
h2

4
χ′′ψ)

+ ih2−γ
k0−6∑

k=1

ik

2kk!
hτkOp(χψ(k)∂kxW ) + oL2→L2(h2).(27)

The two operators and the sum will each be estimated individually. The
Op(χψ)P term is straightforward to control. The second term is supported
inside the damped set and is controlled as in subsection 5.2.1. The sum will
be controlled by the elliptic estimate using the same argument as Lemma 5.2.

To begin, using the boundedness of Op(χψ) on L2 and that Pu = h2f

(28) | ⟨Op(χψ)Pu, u⟩ | ≤ Ch2 ||f ||L2 ||u||L2 .

For the second term, set g(x, ξ) = ihχ′ψξ + h2

4 χ
′′ψ. Note that χ′ and χ′′

are supported inside the damping set and so an argument as in subsection
5.2.1 will give an improvement. Recall s ∈ C∞(−π, π)

s(x) =

{
0 |x| < σ

1 σ + σ1/2 < |x|,

and S is the operator of multiplication by s. Since g ∈ C∞ and s ≡ 1 on
supp g, by Lemma A.7

|⟨Op(g)u, u⟩| = |⟨SOp(g)Su, u⟩|+O(h∞) ||u||2L2

Using that S is self adjoint, along with the Hölder inequality

|⟨SOp(g)Su, u⟩| ≤ ||Op(g)Su||L2 ||Su||L2 .

Now by Lemma A.2, hτ−2Op(g) is bounded on L2, so

||Op(g)Su||L2 ||Su||L2 ≤ h2−τ ||Su||2L2 .
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Then since s ≤ CW 1/2 and applying (9)

h2−τ ||Su||2L2 ≤ Ch2−τ
∣∣∣
∣∣∣W 1/2u

∣∣∣
∣∣∣
2

L2
≤ Ch2−τ+γ ||f ||L2 ||u||L2 .

Combining this chain of inequalities gives
∣∣∣∣
〈
Op(ihχ′ψξ +

h2

4
χ′′ψ)u, u

〉∣∣∣∣ ≤ Ch2−τ+γ ||f ||L2 ||u||L2(29)

+O(h∞) ||u||2L2 .

Now to estimate the sum, note that χψ(k)∂kxW is supported in {2h1−τ <
|ξ| < 3h1−τ} which is contained in the elliptic set. The proof of Lemma 5.2
will be imitated. Conjugate the χψ(k)∂kxW terms in the sum in (27) by Z
to take advantage of the location of their support. Once again care is taken
with the regularity of ∂kW when applying Lemma A.7.

Set bk(x, ξ) = χ(x)ψ(k)(ξh1−τ )∂kxW (x). Recall Z from Lemma 3.2. Since
z ≡ 1 on supp (bk) and ∂kxW ∈W k0−k,∞, Lemma A.7 can be applied with
N = k0 − k

Op(bk) = ZOp(bk)Z +OL2→L2(h(k0−k)τ−5).

So conjugating Op(bk) by Z is Op(bk) modulo an error term. Once again
terms with larger k have less regularity and have larger error terms. However,
as before, reintroducing the hτk from the sum improves the error terms

hτkOp(bk) = hτkZOp(bk)Z + hτkOL2→L2(h(k0−k)τ−5).

In particular, and as in Lemma 5.2, the error term is o(h2) because τ ≥
τmin >

7
k0−1 and

τk + (k0 − k)τ − 5 = k0τ − 5 >

(
7

k0 − 1

)
k0 − 5 > 2.

So ∣∣∣
〈
hτkOp(bk)u, u

〉∣∣∣ ≤ hτk |⟨ZOp(bk)Zu, u⟩|+ o(h2) ||u||2L2 .

Continuing to follow the proof of Lemma 5.2, use the self adjointness of Z
and the Hölder inequality to write

hτk |⟨ZOp(bk)Zu, u⟩| ≤ hτk ||Op(bk)Zu||L2 ||Zu||L2 .

Now by Lemma A.2, Op(bk) is bounded on L2

hτk ||Op(bk)Zu||L2 ||Zu||L2 ≤ hτk ||Zu||2L2 .
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Then apply the elliptic estimate, Lemma 3.2, to Zu

hτk ||Zu||2L2 ≤ Ch5τ+kτ−1 ||f ||2L2 + o(h2) ||u||2L2 .

Combining this chain of inequalities and multiplying both sides by h2−γ

gives

h2−γ
∣∣∣
〈
hτkOp(bk)u, u

〉∣∣∣ ≤ Ch1−γ+(5+k)τ ||f ||2L2 + o(h2) ||u||2L2(30)

≤ Ch1−γ+6τ ||f ||2L2 + o(h2) ||u||2L2 .

Where the second inequality follows since k ≥ 1.
Therefore using (28), (29) and (30) to estimate terms in (27)

| ⟨Op(χψp)u, u⟩ | ≤ Ch2 ||f ||L2 ||u||L2 + Ch2−τ+γ ||f ||L2 ||u||L2

+ Ch1−γ+6τ ||f ||2L2 + o(h2) ||u||2L2 .

Multiplying both sides by h and using that γ − τ ≥ 0 (since τ ∈ (1/2, 1] and
γ ∈ {1, 2}) gives the desired inequality

h| ⟨Op(χψp)u, u⟩ | ≤ Ch3 ||f ||L2 ||u||L2 + Ch2+6τ−γ ||f ||2L2 + o(h3) ||u||2L2 .

5.2.4. Estimate of Op(χψW ). To estimate Op(χψW ) I write it as
vjOp(χψ)vj plus error terms. The vjOp(χψ)vj terms are controlled by the
damped region estimate (9). The error terms are either small or are sup-
ported on the elliptic set of P and can be further estimated using Lemma
3.2. In particular the following inequality will be shown

h3−γ |⟨Op(χψW )u, u⟩| ≤ Ch3 ||f ||L2 ||u||L2(31)

+ Ch2+7τ−γ ||f ||2L2 + o(h3) ||u||2L2 .

Note this term appears in (23) as h2−γhOp(χψW ), but to simplify notation
these extra factors of h are not carried through the intermediate calculations.
Because of this remainders of size o(h2) are acceptably small, instead of the
o(h3) of other calculations.

To begin recall that W =
∑
v2j and so

Op(χψW ) = Op
(
χψ
∑

v2j

)
=
∑

Op(χψv2j ).

This is exactly the principal symbol of
∑
vjOp(χψ)vj , an expansion of which

will now be computed.
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First, since vj ∈W k0,∞ apply part 2 of Lemma A.6 with Ñ = k0 − 5, to
obtain

Op(χψ)vj =

k0−6∑

k=0

(ih)k

2kk!
Op(χ∂kξψ(ξh

τ−1)∂kxvj) +OL2→L2(h(k0−5)τ−5(1−τ)).

As in subsection 5.2.3, since τ ≥ τmin >
7

k0−1 the remainder term is o(h2).
In particular

(k0 − 5)τ − 5(1− τ) = k0τ − 5 >

(
7

k0 − 1

)
k0 − 5 > 2.

Replacing hk∂kξψ(ξh
τ−1) = hkτψ(k)(ξhτ−1) gives

Op(χψ)vj =

k0−6∑

k=0

ikhτk

2kk!
Op(χψ(k)∂kxvj) + oL2→L2(h2).

Now compute the following composition of vj and Op(χψ(k)∂kxvj), adjusting
the number of terms taken in the expansion based on how many derivatives
fallen on ∂kxvj .

(32) vjOp(χψ)vj = vj

k0−6∑

k=0

ik

2kk!
hτkOp(χψ(k)∂kxvj) + oL2→L2(h2).

In particular, since vj ∈W k0,∞ and χ∂kxvjψ
(k) ∈W k0−kS1−τ , apply part

1 of Lemma A.6 with Ñ = k0 − 5− k and k0 − k ≥ 5.

ik

2kk!
vjh

τkOp(∂kxvjψ
(k)χ) =

k0−k−6∑

l=0

(ih)l

2ll!

ik

2kk!
hτk(−1)lOp(χ∂lxvj∂

k
xvj∂

l
ξψ

(k))

+ hτkOL2→L2(h(k0−k−5)τ−5(1−τ)).

Although there are fewer terms taken in the expansion for larger values of
k, the additional hτk ensures that the remainder term is o(h2). In particular

τk + (k0 − k − 5)τ − 5(1− τ) = k0τ − 5 > k0

(
7

k0 − 1

)
− 5 > 2.
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Therefore

ik

2kk!
vjh

τkOp(∂kxvjψ
(k)χ)

=

k0−k−6∑

l=0

hτ(l+k)

2l+kl!k!
ik+l(−1)lOp(∂lxvj∂

k
xvjψ

(k+l)χ) + oL2→L2(h2).

Now plug this into (32) to obtain

vjOp(χψ)vj =

k0−6∑

k=0

(
k0−k−6∑

l=0

i(k+l)

2l+kl!k!
hτ(l+k)(−1)lOp(∂lxvj∂

k
xvjψ

(k+l)χ)

)

+ oL2→L2(h2).

Note that the k = 0, l = 1 term and k = 1, l = 0 term are identical except
for a minus sign and cancel. There are more cancellations which occur in
the sum, but only this first one is necessary for the proof. Note also that
k + l ≤ k + k0 − k − 6 = k0 − 6,

vjOp(χψ)vj = Op(v2jχψ)(33)

+

k+l≤k0−6∑

k,l=1

i(k+l)

2l+kl!k!
hτ(l+k)(−1)lOp(∂lxvj∂

k
xvjψ

(k+l)χ)

+ oL2→L2(h2).

In order to further control the size of the terms in this sum the technique
from Lemma 5.2 is used. Let b̃k,l = ∂kxvj∂

l
xvjψ

(k+l)χ. For k, l ≥ 1, b̃k,l has
support contained in the elliptic set which can be made use of byy conjugat-
ing by Z as in Lemma 5.2 and then applying the elliptic estimate to Zu. The
proof is almost identical to Lemma 5.2, but is written here for exactness.

As in Lemma 5.2, recall Z from Lemma 3.2. Note z ≡ 1 on supp b̃k,l
and b̃k,l ∈W k0−max(k,l)S1−τ (T

∗S1), so Lemma A.7 with N = k0 −max(k, l)
gives

Op(b̃k,l) = ZOp(b̃k,l)Z +OL2→L2(hτ(k0−max(k,l))−5).

Note that there is less regularity for larger l, k and so the error term is larger.
However after reintroducing the h(k+l)τ from the sum the error terms are
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improved

h(k+l)τOp(bk,l) = h(k+l)τZOp(bk,l)Z +OL2→L2(h(k0−max(k,l))τ−5hτ(k+l)).

In particular since τ ≥ τmin >
7

k0−1 and k, l ≥ 1

(k0 −max(k, l))τ − 5 + τ(k + l) = (k0 +min(k, l))τ − 5

> k0

(
7

k0 − 1

)
− 5 > 2.

Therefore

h(k+l)τOp(bk,l) = h(k+l)τZOp(bk,l)Z + oL2→L2(h2).(34)

Now, apply (34) term by term to b̃ =
∑k+l≤k0−6

k,l=1 Ck,lh
τ(l+k)b̃k,l, the sum in

(33)

|
〈
Op(̃b)u, u

〉
| ≤ |

〈
ZOp(̃b)Zu, u

〉
|+ o(h2) ||u||2L2 .

Then use the self-adjointness of Z and the Hölder inequality to write

|
〈
Op(̃b)u, u

〉
| ≤ |

〈
ZOp(̃(b))Zu, u

〉
| ≤

∣∣∣
∣∣∣Op(̃(b))Zu

∣∣∣
∣∣∣
L2

||Zu||L2 .

Now note, since b̃k,l is bounded on L2 by Lemma A.2, and k, l ≥ 1,

h(k+l)τOp(b̃k,l) = OL2→L2(h2τ ),

so Op(̃b) = OL2→L2(h2τ ) and

|
〈
Op(̃b)u, u

〉
| ≤

∣∣∣
∣∣∣Op(̃(b))Zu

∣∣∣
∣∣∣
L2

||Zu||L2 ≤ Ch2τ ||Zu||2L2 .

Now apply the elliptic estimate Lemma 3.2 to Zu to see

|
〈
Op(̃b)u, u

〉
| ≤ Ch2τ ||Zu||2L2 ≤ Ch7τ−1 ||f ||2L2 + Ch2+2τ ||u||2L2 .(35)

Now these pieces will be combined to give the final estimate of Op(χψW ).
Recall that W =

∑
j v

2
j so

| ⟨Op(χψW )u, u⟩ | ≤
∑

j

|
〈
Op(χψv2j )u, u

〉
|.



✐

✐

“8-Kleinhenz” — 2023/2/9 — 0:02 — page 1128 — #42
✐

✐

✐

✐

✐

✐

1128 Perry Kleinhenz

The composition computation (33) gives

∑

j

|
〈
Op(χψv2j )u, u

〉
| ≤

∑

j

| ⟨vjOp(χψ)vju, u⟩ |

+ |
〈
Op(̃b)u, u

〉
|+ o(h2) ||u||2L2 .

Then (35) gives

∑

j

|
〈
Op(χψv2j )u, u

〉
| ≤

∑

j

| ⟨vjOp(χψ)vju, u⟩ |(36)

+ Ch7τ−1 ||f ||2L2 + o(h2) ||u||2L2 .

It remains to control the vjOp(χψ)vj terms with the damping region esti-
mate. Using that vj is a multiplier and thus is self-adjoint, as well as the
Hölder inequality

| ⟨vjOp(χψ)vju, u⟩ | ≤ ||Op(χψ)vju||L2 ||vju||L2 .

Now note Op(χψ) is bounded on L2 by Lemma A.2 so

||Op(χψ)vju||L2 ||vju||L2 ≤ C ||vju||
2
L2 .

Again using that W =
∑
v2j so v2j ≤W ≤ CW 1/2 and (9)

||vju||
2
L2 ≤ C

∣∣∣
∣∣∣W 1/2u

∣∣∣
∣∣∣
2

L2
≤ Chγ ||f ||L2 ||u||L2 .

Combining this chain of inequalities and (36) gives

| ⟨Op(χψW )⟩ | ≤ Chγ ||f ||L2 ||u||L2 + h7τ−1 ||f ||2L2 + o(h2) ||u||2L2 .

Finally multiply both sides by h3−γ to obtain the desired inequality

h3−γ |⟨Op(χψW )u, u⟩| ≤ Ch3 ||f ||L2 ||u||L2

+ Ch2+7τ−γ ||f ||2L2 + o(h3) ||u||2L2 .

5.2.5. Combining estimates. Now use (24), (25), (26) and (31) to esti-
mate terms in (23)

2h3β ||Ju||2L2 ≤ h1−τ
∣∣〈[h2∂2x, A]u, u

〉∣∣+ C(h3 + h3−2τ+γ) ||f ||L2 ||u||L2

+ Ch2+6τ−γ ||f ||2L2 + (Ch3+2τβ + o(h3)) ||u||2L2 .
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Use that γ − τ > 0 to group the ||f ||L2 ||u||L2 terms to obtain the desired
estimate (22)

2h3β ||Ju||2L2 ≤ h1−τ
∣∣〈[h2∂2x, A]u, u

〉∣∣+ Ch3−τ ||f ||L2 ||u||L2

+ Ch2+6τ−γ ||f ||2L2 + (Ch3+2τβ + o(h3)) ||u||2L2 .

5.3. End of proof of Lemma 3.4

Recall (16) is

2h3−τIm ⟨f,Au⟩ = h1−τ
〈
[h2∂2x, A]u, u

〉
+ h3−γ−τ ⟨(AW +WA)u, u⟩ .

Now apply (17), (22), to estimate the terms on the right hand side, and
Lemma A.2 (to see that ||Au||L2 ≤ C ||u||L2)

2h3β ||Ju||2L2 ≤ Ch3−τ ||f ||L2 ||u||L2 + Ch2+6τ−γ ||f ||2L2

+ C
(
o(h3) + βh3+2τ

)
||u||2L2 .

Divide through by 2h3β to obtain the desired estimate, which can be done
since β is bounded away from 0. □

Appendix A. Pseudodifferential operators

This appendix contains the necessary background information on pseudod-
ifferential operators, as well as a lemma calculating the size of errors from
introducing cutoff operators and a careful calculation of the regularity re-
quired to have remainder terms in composition expansions bounded on L2.

This paper uses the semiclassical Weyl quantization, which takes in a
function on T ∗R and produces an operator Op(a) defined by

(A.1) Op(a)u(x) =
1

2πh

∫

R

∫

R

e
i(x−y)ξ

h a

(
x+ y

2
, ξ

)
u(y)dydξ.

On the torus this formula still makes sense. A function a ∈ C∞(T ∗S1) is
equivalent to a ∈ C∞(Rx × Rξ) periodic in the x variable. It is straight-
forward to see that for such a,Op(a) preserves the space of 2πZ periodic
distributions on R and thus preserves D′(S1).

Definition 1. a(x, ξ;h) ∈ Sm
ρ (T ∗S1) if a ∈ C∞(T ∗S1) and satisfies

(A.2) sup
x,ξ

|∂αx ∂
θ
ξa(x, ξ;h)| ≤ Cαθh

−ρ|θ| ⟨ξ⟩m−|θ| .
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Note that this definition is not the typical one for h dependent symbols.
In particular only derivatives in ξ produce unfavorable powers of h, deriva-
tives in x do not produce any. This structure would allow ρ ≥ 1/2 (see [15]
section 3) corresponding to τ < 1/2 which would give an improved decay
rate, however requirements of the elliptic estimate (Proposition 3.2) prevent
ρ from being taken this large.

The following lemma gives the standard composition and adjoint formula
for Sm

ρ (T ∗S1) symbols. It follows from Theorems 4.17 and 4.18 of [27].

Lemma A.1. Let a ∈ Sm
ρ (T ∗S1), b ∈ Sm′

ρ (T ∗S1) then

1) Op(a)Op(b) = Op(a#b) where a#b ∈ Sm+m′

ρ (T ∗S1) and for each N

a#b(x, y;h) =

N−1∑

k=0

(ih)k

2kk!
(∂y∂ξ − ∂x∂η)

k (a(x, ξ;h)b(y, η;h))

∣∣∣∣
y=x,η=ξ

(A.3)

+O
Sm+m′

ρ (T ∗S1)
(h(N(1−ρ)).

2) Op(a)∗ = Op(ā), in particular real symbols have self-adjoint Weyl quan-
tization.

The following two definitions are finite regularity analogs of Definition 1.
In particular they define two different symbol classes with a finite number
of derivatives in x and an infinite number of derivatives in ξ. The first
only produces unfavorable powers of h when differentiated in ξ while the
second produces unfavorable powers of h when differentiated in ξ and x.
The notation is again somewhat unusual but is made this way to mirror
Definition 1.

Definition 2. A distribution a ∈W kSρ(T
∗S1) if for α ≤ k, θ ∈ N

sup
x,ξ

|∂αx ∂
θ
ξa| ≤ Ch−ρθ ⟨ξ⟩−θ .

A distribution a ∈W kSρ,ρ(T
∗S1) if for α ≤ k, θ ∈ N

sup
x,ξ

|∂αx ∂
θ
ξa| ≤ Ch−ρ(α+θ) ⟨ξ⟩−θ .

The following theorem gives a sufficient condition for a pseudodifferential
operator to be bounded on L2. It follows immediately from Theorem 1.2 of
[5].
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Lemma A.2. There exists C > 0 such that for all b(x, ξ) ∈ S ′(T ∗S1)

||Op(b)||
L (L2(S1)) ≤ C

∑

α,θ∈{0,1}

hθ
∣∣∣
∣∣∣∂αx ∂θξ b

∣∣∣
∣∣∣
L∞

.

In particular if b ∈W 1Sρ(T
∗S1) then Op(b) is bounded on L2.

Proof. So

Op(b) = (2πh)−1

∫

R×R

e
i(x−y)ξ

h b

(
x+ y

2
, ξ

)
v(y)dydξ

= (2π)−1

∫

R×R

ei(x−y)ηb

(
x+ y

2
, ηh

)
v(y)dydη = Op(b(·, hη))

which by [5] Theorem 1.2 has

||Op(b)||
L (L2(S1)) ≤ C

∑

α,θ∈{0,1}

∣∣∣
∣∣∣∂αx ∂θηb(x, hη)

∣∣∣
∣∣∣
L∞

≤ C
∑

α,θ∈{0,1}

hθ
∣∣∣
∣∣∣∂αx ∂θξ b

∣∣∣
∣∣∣
L∞

.

□

In order to prove composition results for finite regularity symbols I will
make use of the notation and results of [25]

Definition 3. Let e1, . . . , em be a basis in Rn and Γ =
⊕n

1 Zej . Then let
χ0 ∈ S(Rn) be such that 1 =

∑
j∈Γ χj(x) where χj(x) = χ0(x− j) for j ∈ Γ.

Define Sw as the space of u ∈ S ′(Rn) such that

U(ξ) = sup
j∈Γ

|Fχju(ξ)| ∈ L1(Rn).

Then Sw is a Banach space with the norm

∥u∥Γ,χ0
=

∣∣∣∣∣

∣∣∣∣∣supj∈Γ
|Fχju|

∣∣∣∣∣

∣∣∣∣∣
L1

.

The following L2 boundedness result is from page 8 of [25] .

Lemma A.3. If a ∈ Sw then Op(a) is bounded on L2 and

∥Op(a)∥L2→L2 ≤ ||a||Sw
.
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If k is taken large enough then W kSm(Rn) is contained in Sw(R
n). Note

that this result is stated on a more general space than T ∗S1. This is because
in the computation of an expansion of the composition of symbols a, b there
is an intermediate step where c(x, ξ, y, η) = a(x, ξ)b(y, η) is considered as a
symbol on T ∗S1 × T ∗S1, which can be thought of as R4.

Lemma A.4. If a ∈W kSm
ρ (Rn) for k ≥ n+ 1 then a ∈ Sw(R

n) and

||a||Sw
≤ C sup

|γ|≤n+1
||∂γa||L∞ .

Proof. Starting with the definition of ||·||Sw

||a||Sw
=

∫

Rn

sup
j∈Γ

|F(χju)(ξ)|dξ

=

∫

Rn

⟨ξ⟩n+1 ⟨ξ⟩−(n+1) sup
j∈Γ

|F(χju)(ξ)|dξ

≤ C

∣∣∣∣∣

∣∣∣∣∣⟨ξ⟩
n+1 sup

j∈Γ
|F(χu)(ξ)|

∣∣∣∣∣

∣∣∣∣∣
L∞

≤ sup
|α|≤n+1

∣∣∣∣∣

∣∣∣∣∣ξ
α sup

j∈Γ
|F(χju)(ξ)|

∣∣∣∣∣

∣∣∣∣∣
L∞

.

Where the integrability of ⟨ξ⟩−(n+1) on Rn gives the first inequality. Then

sup
|α|≤n+1

∣∣∣∣∣

∣∣∣∣∣ξ
α sup

j∈Γ
|F(χju)(ξ)|

∣∣∣∣∣

∣∣∣∣∣
L∞

≤ sup
|α|≤n+1

∣∣∣∣∣

∣∣∣∣∣supj∈Γ
|ξαF(χju)(ξ)|

∣∣∣∣∣

∣∣∣∣∣
L∞

= sup
|α|≤n+1

∣∣∣∣∣

∣∣∣∣∣supj∈Γ
|F(∂α(χju))(ξ)|

∣∣∣∣∣

∣∣∣∣∣
L∞

.

and

|F(∂α(χju))(ξ)| =

∣∣∣∣
∫
e−ixξ∂α(χju)dx

∣∣∣∣

≤

∫
|∂α(χju)|dx ≤ C ||∂αu||L∞

∫
χjdx.

□

The following lemma gives an exact calculation of the regularity required
to show the remainder term in a composition is bounded on L2. The Sw
symbol class is used here as it allows a more straightforward proof than
proceeding directly with W kSρ symbols.
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Lemma A.5. If a, b ∈ S ′(R2n) with (∂y∂ξ − ∂x∂η)
Na(x, ξ)b(y, η) ∈ Sw(R

4n)
for some N ∈ N and Q is a symmetric nonsingular matrix define

RN (a, b)(x, ξ) =
∫ 1

0
(1− t)N−1eith⟨QD,D⟩ (∂y∂ξ − ∂x∂η)

N (a(x, ξ;h)b(y, η;h))dt

∣∣∣∣
y=x,η=ξ

.

then for h chosen small enough

(A.4) ||RN (a, b)||Sw
≤ C

∣∣∣
∣∣∣(∂y∂ξ − ∂x∂η)

N (a(x, ξ)b(y, η))
∣∣∣
∣∣∣
Sw

.

Therefore Op(RN ) is bounded as an operator on L2(Rn) with

||Op(RN )||L2→L2 ≤
∣∣∣
∣∣∣(∂y∂ξ − ∂x∂η)

N (a, b)
∣∣∣
∣∣∣
Sw

≤ sup
|γ|≤4n+1

∣∣∣
∣∣∣∂γ (∂y∂ξ − ∂x∂η)

N (a, b)
∣∣∣
∣∣∣
L∞

.

Proof. By [25] Theorem 1.4 and equation (1.21) (pg. 7), for any ε > 0 there
exists h0 > 0 such that for h < h0

∣∣∣∣
∣∣∣∣
∫ 1

0
eith⟨QD,D⟩ (∂y∂ξ − ∂x∂η)

N (a, b)dt− C (∂y∂ξ − ∂x∂η)
N (a, b)

∣∣∣∣
∣∣∣∣
Sw

≤ ε.

Then (A.4) follows by choosing ε <
∣∣∣
∣∣∣(∂y∂ξ − ∂x∂η)

N (a, b)
∣∣∣
∣∣∣
Sw

and using the

fact that restriction to a linear subspace (i.e. setting y = x, η = ξ) is bounded
on Sw (bottom of page 2 in [25]). The L2 bound then follows by Lemmas A.3
and A.4, where |γ| ≤ 4n+ 1 because a(x, ξ)b(y, η) is a function on R4n. □

The following lemma is a composition expansion result for low regularity
symbols. The expansion is of the same form as Lemma A.1, but the remain-
der term is larger by a factor of h−5ρ.

Lemma A.6. Suppose N ≥ 6 ∈ N is some fixed constant and a, b are dis-
tributions
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1) If b ∈WN,∞(S1), let Ñ ≤ N − 5 and assume for some ρ ∈ [0, 1/2) that
a ∈W 5Sρ(T

∗S1). Then

Op(a)Op(b) =

Ñ−1∑

k=0

(ih)k

2kk!
Op(∂kξ a(x, ξ)∂

k
xb(x)) +OL2→L2(hÑ(1−ρ)−5ρ).

Op(b)Op(a) =

Ñ−1∑

k=0

(ih)k

2kk!
(−1)kOp(∂kξ a(x, ξ)∂

k
xb(x)) +OL2→L2(hÑ(1−ρ)−5ρ).

2) If for some ρ ∈ [0, 1/2), b ∈WNSρ(T
∗S1) and a ∈ Sρ(T

∗S1) let Ñ ≤
N − 5 then

Op(a)Op(b) =

Ñ−1∑

k=0

(ih)k

2kk!
Op

(
(∂y∂ξ − ∂x∂η)

ka(x, ξ)b(y, η)

∣∣∣∣
y=x,η=ξ

)

+OL2→L2(hÑ(1−ρ)−5ρ).

Op(b)Op(a) =

Ñ−1∑

k=0

(ih)k

2kk!
Op

(
(∂y∂ξ − ∂x∂η)

kb(x, ξ)a(y, η)

∣∣∣∣
y=x,η=ξ

)

+OL2→L2(hÑ(1−ρ)−5ρ).

3) If for some ρ ∈ [0, 1/2), b ∈WNS0(T
∗S1) and a ∈WNSρ,ρ(T

∗S1) let

Ñ ≤ N − 5 then

Op(a)Op(b) =

Ñ−1∑

k=0

(ih)k

2kk!
Op

(
(∂y∂ξ − ∂x∂η)

ka(x, ξ)b(y, η)

∣∣∣∣
y=x,η=ξ

)

+OL2→L2(hÑ(1−ρ)−5ρ).

Cases 1 and 2 are stated separately to emphasize that when one symbol
depends only on x, less regularity is required of the other symbol. Also note
that in Case 3 one of the symbols does not produce unfavorable powers of
h under differentiation.

Proof. The proof relies on [25], although special attention is paid to the
minimal regularity necessary. Only the proof of the first part of 1) will be
show, the other parts follow by analogous arguments.

Set c(x, ξ, y, η) = a(x, ξ)b(y, η) and let Q be the symmetric nonsingular
matrix given by ⟨QD,D⟩

R4 = ⟨Dξ, Dy⟩R2 − ⟨Dη, Dx⟩R2 where D = (Dx, Dξ,
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Dy, Dη). I will first show that

(A.5) Op(a)Op(b) = Op((e
ih

2
⟨QD,D⟩c)(x, ξ, x, ξ)),

and then provide an expansion of the right hand side of the desired form.
To begin since a, b ∈W kSρ(T

∗S1) for k ≥= 2 + 1 = 3, then a, b ∈
Sw(T

∗S1) by Lemma A.4. Therefore by [25] [Theorem 2.2, and the discussion

on pages 7-8] (A.5) holds, where e
ih

2
⟨QD,D⟩ is defined as the unique extension

from S.
So it remains to provide an expansion of (e

ih

2
⟨QD,D⟩c)(x, ξ, x, ξ). Well

using a standard Taylor expansion of e
ih

2
⟨QD,D⟩ as in [25] equation (1.20)

e
ih

2
⟨QD,D⟩c(x, ξ, y, η)

=

Ñ−1∑

k=0

(ih)k

2kk!
⟨QD,D⟩k c(x, ξ, y, η)

+
(ih)Ñ

2Ñ Ñ !

∫ 1

0
(1− t)Ñ−1e

ih

2
⟨QD,D⟩ ⟨QD,D⟩Ñ c(x, ξ, y, η)dt

=

Ñ−1∑

k=0

(ih)k

2kk!
(∂y∂ξ − ∂x∂η)

ka(x, ξ)b(y)

+
(ih)Ñ

2Ñ Ñ !

∫ 1

0
(1− t)Ñ−1e

ih

2
⟨QD,D⟩(∂y∂ξ − ∂x∂η)

Ña(x, ξ)b(y)dt

=

Ñ−1∑

k=0

(ih)k

2kk!
∂kξ a(x, ξ)∂

k
y b(y)

+
(ih)Ñ

2Ñ Ñ !

∫ 1

0
(1− t)Ñ−1e

ih

2
⟨QD,D⟩∂Ñξ a(x, ξ)∂

Ñ
y b(y)dt.

Therefore

e
ih

2
⟨QD,D⟩c(x, ξ, x, ξ)

=

Ñ−1∑

k=0

(ih)k

2kk!
∂kξ a(x, ξ)∂

k
xb(x)

+
(ih)Ñ

2Ñ Ñ !

∫ 1

0
(1− t)Ñ−1e

ih

2
⟨QD,D⟩∂Ñξ a(x, ξ)∂

Ñ
y b(y)dt|y=x,η=ξ.
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First consider the terms in the sum. Since a is smooth in ξ, b ∈WN,∞ and
k ≤ Ñ − 1 ≤ N − 6, for α ≤ 1 and θ ∈ N

|∂k+θ
ξ a(x, ξ)∂k+α

x b(x)| <∞.

In particular each term in the sum is in W 1Sρ(T
∗S1) and so quantizing it

produces an operator bounded on L2 by Lemma A.2.
Now consider the integral term. By Lemma A.5 it is in Sw and its quan-

tization is bounded on L2 by

ChÑ sup
x,y,ξ,η,|γ|≤5

∣∣∣∂γ(∂y∂ξ)Ñ (a(x, ξ)b(y))
∣∣∣

≤ ChÑ sup
x,y,ξ,η

∑

γ1+γ2+γ3≤5

∣∣∣∂Ñ+γ1
y b(y)∂γ2

x ∂
Ñ+γ3

ξ a(x, ξ)
∣∣∣

≤ ChÑh−ρ(Ñ+5),

where the final inequality holds because a ∈W 5Sρ(T
∗S1) and b ∈WN,∞(S1)

with Ñ + 5 ≤ N . □

The following lemma calculates the size of errors from introducing cutoff
operators. It is a key tool used to take advantage of symbols with support
contained in regions of phase space where good estimates hold, namely the
elliptic set of P and the support of W .

Lemma A.7. Fix N ∈ N, N ≥ 6 and ρ ∈ [0, 1/2). Suppose b ∈WNSρ(T
∗S1)

and t ∈ S0
ρ(T

∗S1), such that t ≡ 1 on supp b, then

1)

Op(t)Op(b) = Op(b) +OL2→L2(hN(1−ρ)−5)

Op(b)Op(t) = Op(b) +OL2→L2(hN(1−ρ)−5).

2)

Op(t)Op(b)Op(t) = Op(b) +OL2→L2(hN(1−ρ)−5).
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Proof. Well by part 2 of Lemma A.6, setting Ñ = N − 5

Op(t)Op(b) =

N−6∑

k=0

(ih)k

2kk!
Op

(
(∂y∂ξ − ∂x∂η)

kt(x, ξ)b(y, η)

∣∣∣∣
y=x,η=ξ

)

+OL2→L2(h(N−5)(1−ρ)−5ρ)

= Op(tb) +OL2→L2(hN(1−ρ)−5)

= Op(b) +OL2→L2(h(N(1−ρ)−5),

where the terms with 1 ≤ k ≤ N − 6 all vanish, since ∂kξ t(x, ξ) = ∂kxt(x, ξ) =
0 on supp b, and Op(tb) = Op(b) as t ≡ 1 on supp b. The second equation
of part 1 follows by an analogous proof.

To see part 2 use the first half of part 1 of this Lemma

Op(t)Op(b)Op(t) = (Op(t)Op(b))Op(t)

=
(
Op(b) +OL2→L2(hN(1−ρ)−5)

)
Op(t)

= Op(b)Op(t) +OL2→L2(hN(1−ρ)−5)(A.6)

where Op(t) is bounded on L2 by Lemma A.2. Now apply the second half of
part 1 of this Lemma to Op(b)Op(t) to obtain the desired conclusion. □
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