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Decay rates for the damped wave

equation with finite regularity damping

PERRY KLEINHENZ

Decay rates for the energy of solutions of the damped wave equa-
tion on the torus are studied. In particular, damping invariant
in one direction and equal to a sum of squares of nonnegative
functions with a particular number of derivatives of regularity is
considered. For such damping energy decays at rate 1 /t2/ 3, If ad-
ditional regularity is assumed the decay rate improves. When such
a damping is smooth the energy decays at 1/t*/579. The proof uses
a positive commutator argument and relies on a pseudodifferential
calculus for low regularity symbols.

(1 Introduction|

|2 Proof of low horizontal energy estimate (4))|

I3 Proof of high horizontal energy estimate ()

[4  Proof of elliptic region estimates Lemmas [3.2| and |3.3|

[> Proof of propagating region estimate Lemma [3.4]

[Appendix A Pseudodifferential operators|
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Let W be a bounded, nonnegative damping function on a compact Rieman-

nian manifold M, and let v solve

02v — Av + W (z)ow =0 t>0,
(v, 0pv)|t=0 = (vo,v1) € C°(M) x C®(M) t=0.
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The primary object of study in this paper is the energy
1
E(v,t) = 2/\VU\2 + |Opv|*d.

When W is continuous it is classical that uniform stabilization is equivalent
to geometric control by the positive set of the damping. That is E(t) <
Cr(t)E(0), with r(t) — 0 as t — oo, if and only if there exists L, such that
all geodesics of length at least L intersect {WW > 0}. Furthermore, in this
case the optimal r(t) is exponentially decaying in t.

When the geometric control condition does not hold decay is instead of
the form.

(1) E(t)"/? < Cr(t) (Jvol | g2 + [Jon] [ 1) -

Then the optimal 7(¢) depends on the geometry of M and {WW > 0}, as well
as properties of W in a neighborhood of {WW = 0}. This paper explores this
dependence for translation invariant damping functions on the torus, and
proves decay of the form

(2) E(t)'? < C(L+ )7 (llollge + lloall) -

Such decay is guaranteed on the torus with o = 1/2 when {W > 0} is open
and nonempty by [1].

First, when the damping is a sum of squares of sufficiently regular y-
invariant functions there is an improved decay rate.

Theorem 1.1. Let M be the torus (R/27Z), x (R/27Z),. Suppose W (x,y)
= W (x) and satisfies

1) For some o € (0,m), W is bounded below by a positive constant for
T € [77[-771-]\[70-’ U]}

2) There exists o1 € (0,m — o) and there exist functions vj(x) > 0,v; €
W9 (—g — 01,0 + 01), such that W (z) = > v;(z)? on (=0 — 01,0 +
0'1).

Then there exists C such that holds with o« = %

If the damping is instead smooth and y-invariant there is an additional
improvement.

Theorem 1.2. Let M be the torus (R/27Z), x (R/2n7Z),. Suppose W (x,y)
=W (x) and satisfies
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1) For some o € (0,7), W is bounded below by a positive constant for
x € [_71-77(-]\[_0-7 U];

2) W e C®(R/2nZ).
Then for all € > 0 there exists C' such that holds with o = % —€.

Both of these theorems are actually consequences of the following result.
When the damping is a sum of squares of functions with kg derivatives there
is an improved decay rate which depends on k.

Theorem 1.3. Let M be the torus (R/2n7Z), x (R/27Z),. Suppose W (z,y)
= W (z) and satisfies

1) For some o € (0,m), W is bounded below by a positive constant for
x € [*71’,71‘]\[*0’, 0]7
2) There exists ko > 9,01 € (0,7 — o) and there exist functions vj(z) >

0,v; € Wko®®(—g — 01,0 + 1), such that W (z) = > v;(z)? on (—o —

01,0+ 01).
Let T, > max (legoti, WL) then there exists C' such that holds with
_ 2
a= Tmin+t2°
Remarks.

e The two constraints for 7,,;, in terms of the regularity kg are needed
to guarantee error terms in composition expansions are small. In par-
ticular 70 > 2k,;’0t24 is needed to ensure ([15)) holds and 7, > Wzl
is needed to ensure (19)) holds. These constraints are sharp on these
inequalities, but are also used in other estimates in the proof.

e Theorem is just Theorem when kg = 9. So Timin can be taken
= 1 which gives decay at o = 2/3.

e On the other hand by [3] if W € C?k¢(a,b) then there exist vy, vy €
C*o(a,b) such that W = v? 4 v3 on (a, b). Therefore if W € C?Fo(—o —
01,0 + 01) it satisfies hypothesis [2| of the theorem. Theorem then
follows from Theorem and the result of Bony. In particular for any
fixed kg there is an appropriate expansion and So 7,,;, can be taken
arbitrarily close to 1/2 which gives decay at o = 4/5 — 0.
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The equivalence of uniform stabilization and geometric control for con-
tinuous damping functions was proved by Ralston [23], and Rauch and Tay-
lor [24] (see also [2] and [7], where M is also allowed to have a boundary). For
some more recent finer results concerning discontinuous damping functions,
see Burq and Gérard [§].

Decay rates of the form go back to Lebeau [20]. When W € C(M)
is nonnegative and {W > 0} is open and nonempty, then decay of the form
holds with r(t) = 1/1log(2 + ¢t) in [0, 20]. Furthermore, this is optimal on
spheres and some other surfaces of revolution [20]. At the other extreme, if M
is a negatively curved (or Anosov) surface, and W € C°°(M), W nonnegative
and not identically zero, then (1) holds with r(t) = Ce~° [14].

When M is a torus, these extremes are avoided and the best bounds are
polynomially decaying as in ([2)). Anantharaman and Léautaud [1] show (| .
holds with a = 1/2 when W 6 L, W >0, and W > 0 on some open set,
as a consequence of Schrodinger observabﬂity/ control [10} 17, 22]. The more
recent result of Burq and Zworski on Schrodinger observability and control
[11] weakens the final requirement to merely W # 0. Anantharaman and
Léautaud [I] further show that if supp W does not satisfy the geometric
control condition then cannot hold for any o > 1. They also show if
there exists C' > 0 such that W satisfies [VIW| < CW!~¢ for e < 1/29 and
W € Wko for kg > 8 then (2) holds with o = 1/(1 + 4e).

Note that Theorem [1.3[improves the dependence between |[VW| < W=
estimates and decay rate with slightly different hypotheses. That is a damp-
ing satisfying the hypotheses of Theorem |1.3| has ]VW] < CWY2, which, if
the [1] result applied to € = 1/2, would only give (2) witha =1/ 37 no better
than the generic upper bound, whereas Theorem gives with at least
a=2/3.

Additionally, because of the result in [3], Theorem applies to suffi-
ciently regular damping, which is invariant in one direction, without addi-
tional hypotheses. In particular [I] mention that their results do not give an
improvement over the Schrédinger observability bound for smooth damping
vanishing like W = e~%/®sin(1/x)?, while Theorem does.

For earlier work on the square and partially rectangular domains see
[21] and [9] respectively, and for polynomial decay rates in the setting of a
degenerately hyperbolic undamped set, see 12

In [19], it was shown that if W = \a:| — o)} near [—o, 0], then (2]) holds
with o = (84 2)/(8 4+ 4) and cannot hold for all solutions with o > (3 +
2)/(8 + 3). In the case of constant damping on a strip the result that
holds with o =2/3 is due to Stahn [26], and the result that it does not
hold for @ > 2/3 is due to Nonnenmacher [I]. In [I3] it was shown that for
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W ~ (jz| — o) near [~0,0], (@) holds with a = (8 + 2)/(8 + 3), which is
sharp when W = (|z| — o*)f,jr near [—o,0].

These results along with Theorem suggest that sharp decay rate
on the torus could be determined by the regularity of the damping at the
boundary of its support. The other likely alternative is that the sharp decay
rate is determined by the value of & for which W satisfies [VW| < CW!1~,
Although the sharp decay rate for polynomial damping W = (|z| — U)i de-
pends on 3, this does not disambiguate between these cases as W € W5
and W satisfies [VW| < W'=1/8_ A good candidate for distinguishing these
is W smooth and vanishing like e~/*sin(1/z)?, as it only satisfies |VIW| <
Cwi/z,

If regularity determines the sharp decay rate for any § > 0 such an oscil-
lating damping should decay at 1/t!7% as there are other smooth dampings
which decay this fast. As in [I], a smooth damping vanishing like e~ /% sat-
isfies [VIW| < CW'~¢ for any £ > 0 and so for any § > 0 decays at 1/t 7.
If on the other hand the derivative bound condition |[VW| < CW!=¢ de-
termines the sharp decay rate, the fact that W = (|z| — 0)% also satisfies
IVW| < W'/2 and has solutions which decay no faster than 1/t%/°, means
an oscillating damping also should have solutions which decay no faster
than 1/t%/%. Theorem does not guarantee or rule out either of these, so
resolving this question would be an interesting area for future work.

1.1. Outline of proof

By a Fourier transform in time, it is enough to study the associated sta-
tionary problem. More precisely, by Theorem 2.4 of [4], as formulated in
Proposition 2.4 of [I], decay with a = ﬁ follows from showing that
there are constants C, ggp > 0 such that, for any ¢ > qo,

[(=A +igW — ¢° < Cg'lot = cgmm .

) M ooy oy

Because the damping W depends only on x this can be reduced to a 1
dimensional problem by expanding in a Fourier series in the y variable. Let
k be the vertical Fourier mode, set 8 = ¢> — k2, take f € L?(R/27Z) and
consider u € H%(R/27Z) solving

(3) —u" +igWu — Bu = f.
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Then it is enough to show that there are C, go > 0, such that for any f, any
q > qo and any real 8 < ¢2, if u solves then

/Iu!2 ngTm"/lf!z-

Here, and below, all integrals are over R/277Z. A more precise dependence
on (3 is obtained, for any &1, &9 > 0 there exists a constant C' such that

2
4 2<C 2 h .~ >
@ furse fiur wheas< g T oz
and
(5) /\UI2 < Cqmmin / |2, whenes <B<q% q> q.

It is clear that for €1, 9 small enough, and cover all < ¢%. This 3
can be thought of as the “horizontal energy” of the solution. The larger it
is, the larger wu is relative to ¢ in the & direction in phase space.

Equation is the low horizontal energy case and is proved in section
Equation is the high horizontal energy case and is the main estimate.
It follows by an elliptic estimate and a positive commutator argument. Sec-
tion (3| contains an outline of the proof of , and sections 4| and [5 contain
proofs of the subsidiary estimates in the proof of . Appendix |A| contains
some important facts about pseudodifferential operators with finite regular-
ity symbols.

The following is a frequently invoked and important estimate.

Lemma 1.4. For any 8 € R,q >0 and u, f solving

(6) Jwik<at [ 17l

Proof. Multiply by u then take the imaginary part, integrating by parts
to see that the term (Awu,u) is real. O
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2. Proof of low horizontal energy estimate (4))

Proof. To prove multiply by @ and a nonnegative function b, €
C>*(R/27Z) with

b (1) = cos (2(0151)5”) |z] <o +e1/2,
' 0 |z| > o +e1.

Then integrate and take the real part to obtain

_Re/b&u”?j_B/b&l’uP :Re/b€1fﬂ“

Integrating by parts once gives

/bsllu'P+Re/ubgla’—5/b51]ul2 :Re/balfﬁ.

Integrating by parts the ub_ @’ term again and taking advantage of the Re
gives

(7) Jralut [ (—1’2 - ﬁbal) uf = Re [ b, fu

7"

b
Now note that ——- = mbsl for |z| < o + 5. Thus for 8 < ﬁ

b
—%—Bb€1>con |:r:|<a+%1.

So adding a multiple of @, the damping estimate, to gives

/|u|2 < <cal +;> /Iful <C, </!f\2>1/2 </ Iu\z)m-

Dividing both sides by ([ |u]2)1/2 gives exactly (4)). O
3. Proof of high horizontal energy estimate ()

Now that the proof of is complete for 8 < m it remains to show (/5))
for 9 < B < ¢?. This estimate will actually be assembled from estimates on

microlocalized regions of phase space, in order to do so I take a semiclassical
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rescaling. Let v € {1, 2}, then divide both sides of . B) by ¢*/7 and set h =
—1/7
q

(8) Pu = (—h20? +ih®> "W — h?B)u = h?f.

In this rescaling the bounds €3 < 8 < g% become 3 < B3 < h™?7. Let 7 €

[Tmin, 1]. Take o1 as specified by hypothesis 1 and divide phase space
(R/27Z); x Re = T*S! into 3 regions:

1) The set where the damping is nontrivial, {(x,€) : 0 + 01/4 < |z| < 7}
2) The h dependent elliptic set of P, {(z,¢) : |¢| > 1.5A' "7}
3) The propagating region, {(z,¢) : |z| < o + 01/2 and [£] < 2R'~7}.

Although v and 7 can be adjusted freely, for this proof they will have a spe-
cific relation. In particular, (7,~) will only take values in (Tmin, 2), (3Tmin, 2),
(1,1).

Note that in composition expansions involving symbols at scale h'~7
each additional term is only A" smaller than the previous one, rather than
a full power of h. Regardless of the values of v and 7 there is a fixed size
error terms in the following calculations must be smaller than. Because of
this the number of expansion terms taken (and the number of derivatives of
regularity W must have) grows at least like % Tmin 1S the smallest possible
7 such that W has enough regularity to achieve the desired error size.

This behavior also clarifies why 7 and « are separate parameters. In
q 'Y

Proposition the resolvent estimate is ||ul|3. < C'%-||f||7.. Because of
this a larger produces a better estimate without decreasmg T, so no addi-
tional regularity of W is required. However « cannot always be taken large
because the estimate only applies to 8 < ¢2™/7 which will not include all of
B <.

Note that in the case v = 7 = 1, the microlocalization has no h depen-
dence. The remainder of this section is the statement of the estimates for
these regions and then a proof of the high horizontal energy case, , using
those estimates. The damping estimate is immediate, the elliptic estimate
is proved in section 4| and the propagation estimate is proved in section

3.1. Damping estimate

This lemma gives an estimate for the size of u on the set where the damping
is nontrivial.
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Lemma 3.1. For any 8 € R,h >0 and u, f solving
) | A T AT
This follows immediately from the rescaling and @

3.2. Elliptic estimate

Throughout the paper Op refers to the Weyl quantization on the torus (see
Appendix [A] for more details). These lemmas gives an estimate for the size
of u on the h dependent elliptic set of P, {(z,&) : |¢| > 1.5h'~"}. Note that
in order for P to be bounded away from zero on this set A28 must be smaller
than h2~27.

Because of a technicality in the proof there are separate elliptic estimates
on ch™ ' <& < 2and 1.5 < £ The cause of this is that the low regularity
composition result (Lemma which is used in the elliptic parametrix
construction) requires bounded symbols but p = &2 +ih?>~ YW — h23 is un-
bounded for large &.

This lemma provides the estimate on ch™! < & < 2. This estimate has
additional importance as it is used multiple times in the proof of the prop-
agation estimate to provide additional control over error terms.

Lemma 3.2. Suppose W € Wk and 7 € [Tyin, 1]. Set 21 € C®(R) with

)0 €< 125
“(8) = {1 €| > 1.5,

and set zp € C°(R) with

1 k<2
zz(g)_{o €] > 3,

then let 2(€) = z1(RT71€)22(&) and Z = Op(2(€)). There exist C, hg > 0, such
that for h < hg, 8 such that h*B < h*727, and u, f solving then

(10) 1Zullz. < CRTHIfIIZ2 + o(h®) [[ul 7z -

This lemma provides the estimate on 1 < &. It does not impose any
regularity assumptions on W nor does it have a size restriction on 3
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Lemma 3.3. Set z € C°(R) with

~o )0 ¢ <1
Z<€)_{1 €] > 1.5,

and let Z = Op(Z). There exist C,hg > 0 such that for h < hy and u, f solv-
mng then

~ 2
(11) | Zu]| |, < cnt 115 + R 1A e e
Lemmas [3.2] and [3.3] are proved in section

3.3. Propagation estimate

This lemma gives an estimate for the size of v on the propagating region
{(z,8) : |x| < 0+ 01/2 and || < 2h17T}.
Define ¢ € C3°(R)

~_Jlon <2
ve) = {O on [¢| > 3,

and x € C§°(—m,m)

() lon |z|<o+01/2
€Tr) =
O0on |z| >o0+o01,

where both are chosen to have smooth square roots.

Lemma 3.4. Suppose v; € Wk and fix T € [Tmin, 1], €2 > 0. Set J =
Op(x*?(x) ' 2(h7=1¢)). There exist C,hg > 0, such that if h < ho and S
such that h?cy < h?B < h®>727, then for u, f solving

—T

hOT—7—1

B

a2 ool <o (*

3 171172 + o(1) [[ul 7 -

)||f|L2 lull .+ C

Lemma is proved in section |5l h%B < h?727 is assumed in order to
apply the elliptic region estimate in the proof.
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3.4. Combination of estimates

This subsection completes the proof of , the high horizontal energy esti-
mate, using the following proposition on different regimes for 8,7 and ~.

Proposition 3.5. Suppose W € Wk and fix T € [Tyin, 1],7 € {1,2} and
g9 > 0. There exist C,qy > 0, such that if ¢ > qo and B satisfies o < <
¢*™/7 then for u and f solving

27

2 47 a2
[lullZ> < CﬁHfHLz‘

The form of this estimate helps show why 7 and v are taken as two
separate parameters. Taking v = 2 produces a better estimate for all values
of 7, however the estimate then only applies to 8 < ¢ which does not cover
the required range of f < ¢2.

This proposition will be proved using the estimates on the damped region

(Lemma , the elliptic region (Lemmas and and the propagating
region (Lemma [3.4)).

Proof of Proposition[3.3. Note that 8 < ¢*7/7 guarantees h?3 < h*~2" and
taking qo large enough ensures that h is small enough to apply the Lemmas.

Add together @D, , and ,

2
HI/Vl/QuHL2 + HZUH%z +
h*T
B

C(RFT1 4 hoT— 1 2
+ C( + +76 VI

+ (0(h?) + o(1) [Jul|Z: -

~ 2 9
Zul| |, +11ullZs

< (W7 + ChY + C—) || 1l e llull 2

Since y <2 and 7>1/2, the (RY + h*7) || f|| ;2 ||ul] - and (R* + B5T1) || £l 2
terms on the right hand side are automatically smaller than other terms and
can be safely ignored.

Now, rewrite the LHS as ( (W + Z2 + Z% + J2)u,u> and use the fact
that W(z) + 2(€)? + 2(€)? + x(&)w(hT1€) is strictly positive on T*S! to
bound that term from below by ¢ |[u||3.. Then for h small enough, absorb
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all the ||u/|7. terms from the right hand side into the left

h67‘— y—1
[Jull 2 + C=——5—II£I[7:

2
cflullz. <

Now use Young’s inequality on the 2.~ H fllz2 |l 2 term and group the
resultant ||ul? 7= onto the left hand 81de to obtain

h—2'r h6'r—'y—1 h_2

|ru||L2sc</32+ - )|\f||L2<c 111e

Where the second inequality follows because 7 > T, > 1/2 and v < 2 im-
ply 67 —v—1>3—+v—1>0, so the second term goes to 0 as h — 0 re-
gardless of 3.

Finally the rescaling ¢ = 1/h" gives the desired inequality. [l

To finish the proof of (5] it is necessary to consider different regimes for
8,7 and ~ in order to ensure that 5 < ¢?™/7 and to obtain the best possible
estimate. Suppose ¢ > qo and consider three cases for e < 8 < ¢* (recalling
that 1/2 < 7 < 1)

1) 62 S B S anL'in
2) %anlin S ﬁ S q37—min
3) T3 <B<

In case 1 choose T = Tynin,y = 2. Then by Proposition 3.5 there exists C' > 0
such that
2 min 2
lullz < Cq™ (| f]l72 -
In case 2 choose 7 = 37in, ¥ = 2. Then by PI‘OpOSitiOH since % < qﬂzm s
there exists C' > 0 such that

q
HUHLQ < qumm Hme < Cqm fHLz .
If 3Tmin > 2, skip case 3 and for case 2 instead take 7 =1,y = 1. Then by
Proposition since % < g there exists €' > 0 such that
¢ 2-2
llull7: < Cq ~|1fllze < CE72m |If 172 < Ca™ ||£[7-

where the final inequality follows since 37, > 2 implies 2 — 27iin < Tmin.
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In case 3 choose 7 = 1, = 1. Then by Proposition since % < 2
) q man
there exists C' > 0 such that

2
q 67 v
lul[7. < € 1fII72 < Cq*= 0™ || fI[7= < CqT

qGTmin

2
‘f“L?a

where the final inequality holds because Tpin > 1/2 > 2/7 implies 2 —
6Tmin < Tmin-

Since all ¢, B such that g5 < 8 < ¢? are covered by these three cases this
proves the high energy estimate . This along with the low energy estimate
completes the proof of Theorem

So it now remains to prove the elliptic estimates (Lemmas and |3.3])
and the propagating estimate (Lemma . They are proved in sections

and 5], respectively.
4. Proof of elliptic region estimates Lemmas and

If W is smooth and 7 = 1 then a conventional semiclassical parametrix argu-
ment produces the desired elliptic estimate (see for example [16] Proposition
E.32). Normally as part of that proof £2 is composed with 1/p. This becomes
an issue when W is not smooth as the low regularity composition expan-
sion (Lemma only works with bounded symbols. To address this cutoff
functions are used to split the estimate into estimates on a bounded elliptic
set (Lemma and a standard elliptic set (Lemma [3.3)).

Taking 7 # 1 produces additional issues. The bounded elliptic set is h
dependent and £ is only bounded from below by a power of h, rather than
a constant. In order to ensure that p = £2 4+ ih> YW — h2p is invertible on
this set 8 must satisfy h?3 < h?~2" < c£2. Therefore p is only bounded from
below by a power of h and every division by p creates unfavorable powers of
h. These unfavorable powers can be controlled, but this requires additional
regularity of W and the requirements grow as 7 approaches 1/2.

In this section I will first prove the estimate on the i dependent elliptic
set (Lemma and then prove the estimate on the standard elliptic set

(Lemma [3.3).

4.1. h dependent elliptic estimate, Lemma |3.2

The proof of Lemma follows the conventional semiclassical parametrix
argument with adjustments made to handle the issues described above.

The first change is that the parametrix is constructed for a cutoff version
of P, Op(xp), which is bounded.
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Let x € C§°(R) have

)1 gl<35
X@_{o €] > 4.

Define
h2—272(§) h2—272(§) - h2—272(§)

qo(,§) = X(E)(E2 +ih2 YW — h2B)  x(Op(z, &)  p(x,§)

where x can be replaced by 1 because Y = 1 on suppz C {1.5h'"7 < |¢| < 3}.
The x is included to simplify the composition with Op(xp).
For j > 1, recursively define

1 12
q; = —— q1,5—1
j ng j-b

where g j_; is the (j — [)th term in the composition expansion Op(q;)Op(xp)
and is given by

qj—1 = Ciah (@7 (xp)d a + (=170 (xp) 33 ),

for j —1 > 1. Once again the x can be replaced by 1 in the definitions of g;
and q; j—;, since x is identically 1 on the support of z and thus g;.

These g; are used to construct a parametrix for Op(xp), which in turn
is used to control @Q;Op(x)P. In particular, I will show that for N large
enough

N N
> @Q,;0p(xp) = > Q;0p(x)P = h*"*"Z + o(h*77).
=0 =0

To prove this, the g; are first shown to be in a particular symbol class
(Lemmas and , which gives control of the size of Q); as operators
on L? (Lemma |4.4). Then > Q; and Op(xp) are composed in two different
ways, producing error terms of the appropriate size (Lemmas and .
Finally, this composition formula is applied to u which gives the desired
elliptic estimate.

The following symbol style estimates for p and % on supp z =
{1.5R'7 < |¢| < 3} are needed to prove the symbol estimates for g;.
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Lemma 4.1.

1) For m,j,v € N such that 2m > 2j

0 (p(x,€)’)

< Ch(ffl)(2m72j+v).
p(z, ™ |~

sup
(z,£)€Esupp z

2) For a,j,t € N with j >t

9%

(ih2 =W )it

h(l—’r)?t i
P’

< CplTDe,

sup
(z,)€supp z

Proof. 1) To begin the binomial expansion formula gives

O¢p(w, &) chjag — h?B) (ih* W ()7

Again using the binomial expansion formula
O —n2p) = Z Cra&F(=h*B)~ Z Clow £ (—h2B)H

Now note that on supp z, |£| > 1.5h'=7 while h?8 < h?~2" and so h%B <
€2/2. Therefore

l l
02(6% = W2B)'| < Y ClePn*B7F < Y Clef' ™ < CleP.

k=0 k=0
Now split supp z into two sets
1) A= {(z,¢) € supp 2 h* "W (z) < &%}
2) B ={(,&) € supp z; > "W(x) > £}
For (z,&) € A

i i
0P| < Y |08(€? = W) IR TIWPTT < Y (g I < Cle

1=0 =0

Also |p| = /(€ — WZBY + (RZ W) > €2 — 128 > &2
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Therefore
oy’ 2j—v 4 .
sup 57‘:] < sup C|€| — < sup C‘§|2j71)72m < Ch(lfr)(2m72j+v)’
(@g)eA| P (@eed 1Pl (@.6)eA

where the last inequality follows since & > 1.5h'~7 on supp z. This is the
desired inequality.

Now consider the second case when (z,&) € B i.e. B> YW > ¢2. Then
32’1}7 <SP R W P < |R2TYW I and |p| > h*TYW. Therefore

sup agi < sup L
@oes | P | T @ees (RPTYW)™
1 ) )
< sup _ < h(T—l)(Qm—QJ) < h(T—l)(2m—2;+y)
(z,)eB &)

since 7 —1 <0 and & > 1.5h'~7 on supp z. These two cases cover all of
supp z and so the desired inequality holds.
2) When 2j — 2t < « this is true as |pJ/ > h~2("=1) and so

f(r=1)(~2t)

p|7 109 (ih2 Wt < CROD(264+2) < op=Da
p

So now assume 2j — 2t > a. Applying 9% to (ih>~YW )/~ produces a
sum of powers of derivatives of W. In particular letting jo,j1,..-Ja € N
then

BRWIT = Clgu WP (0 W) (OZW )2 - (D5 W ),

where the sum is taken over jg,...,Jjo such that jo+j1+ - +ja=j—1
and j; + 2j2 + - - - + ajo = a. These conditions guarantee that there are j —
t factors of W on the right hand side and that each term in the sum has «
total derivatives.

Rearranging the derivative equation and then substituting in a rear-
ranged version of the W powers equation gives

a—j1=2jo+3j3+ -+ aja>20j2+3+ - +ja) =2(j —t — Jo— j1)-

Therefore 0 < 2(j — t) — a < 2jp + j1. That is the number of terms with no
derivatives or one derivative is somehow bounded from below.

Now note that since p = &2 + ih?> =YW — h23 then |p| > h>~YW and so
WTVW’ < C. Similarly since W = 20]2 and the v; are bounded and have
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bounded derivatives then |9,W| < CW'/2 and so ‘hz;wl/ag‘w < h2|_;|}/y21/2 <
C.

Therefore, again taking the sum over jg, j1, . . ., jo satisfying the deriva-
tive and powers of W constraints, and using powers of W and 9, W to cancel
powers and half powers of p respectively

‘80‘(zh2 Wi

B (2- fy)(j—t)W]'o|6xW|j1 ‘8§W|j2 .. |8xW|jo<
p] ZCJm Ja

Ipl

< .
\plj —ho—%

Now using that |p| > c£? and |£] > ch!~7 on supp 2z the above equation gives

(1= T)2t8 (ih* W)~

sup
(z,€)€Esupp 2 P
COpA-—7)2t Ch1-7)2t
< sup — < sup

(z,g)esupp z ’p‘j_jo—J2 (z,g)esupp . W
< p=72tp(r=1)(2j=2jo=31) — Cp(T-D2i=2=2jo—j1) < Cp(T-De

)

where the final inequality follows from 2jy + j1 > 2(j — t) — a. O

The proof of part 2 of this lemma is a key usage of the fact that |VIW| < W1/2
in this paper. Because of this it is worth mentioning that this exact argument
does not give a meaningful improvement when |[VW| < CW1=¢ for e < 1/2.
With such an assumption there is still no improvement from factors of W
without any derivatives, the improvement can only come from factors of
0, W. However when « is even there are always terms with j; = 0 with no
improvement over the stated result.

With these symbol style estimates it is now possible to give the symbol
class for gg. Unlike other symbols in this paper, differentiating it in either &
or x produces factors of A7~ 1.

Lemma 4.2.
qo € WkoSl—T,l—T(T*Sl>-

Proof. Since supp z C {1.5h'~7 < [¢| < 3} it is enough to show for |¢| < 3
and 0 € N, |a| < ko that

|8gagq0‘ < h(T*l)(Oé*Fe).
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To begin, recall a classical fact about higher order derivatives of a quo-
tient.

«

w (5 -E e () () g ot

This follows from the Leibniz rule and the Hoppe formula applied to 1/g,
(for the Hoppe formula see [18] (3.3))

Therefore
N e h2_272(€) B [ - 4 Oé+1 h2_27—2(§) o
Iz qo(x, &) = 07 (M) —jz()( 1)/ <j+1>pj+16‘”p]'
And so

Oa:a_ja+1 2-2r00 (% aaj
otogan =Y (-1 (31 )il (aome )

§=0
Now applying to 8g <ﬁ8§pﬂ )

a 6 v
feY h2_2T —v a, 7\ v, (7 w
020%q0 = Z Z Z cjﬁa,v,gywpi(j D ag (z00p7) g pli+ e,
7=0 v=0 w=0

So it is sufficient to control each individual term in the sum, which is of the
form

1

22T
(14) L sy s

oL (z05p7)ogplI I,
where 0 < j<a,0<v<fand 0 <w <.
Well by Lemma [1.1]

8%1 (pj+1)w

: < ORIy,
e | <O

sup
(w,6)€supp 2z

This along with [p| > h?727 gives

1

221
h pl+D(w+1)

sup
(z,)€supp 2

1 .
< sup C ‘.82_”(26§]ﬂ)h(7_1)”
(@&esupp = [P

0f " (205" )oY
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Now use the product rule to expand out 82_”(2851}7 )

1 —v a, J - —v— «, J T—1)v
C‘pjag (205p7 ) Al -0 lzaéaxp]‘h( b

~1o < Z %
b

=0

Well |3§7”71z| < Ch{T=DO=v=D) wwhich gives

v

86 v—l aéagpjh(T—l)v ‘h(T—l)(Q—l)aéagpj' )

1
SZE

=0

=0
Again use the binomial expansion to write
. ] .
P= ] Cal€ = 12B) (W)
t=0

and so
J
0ROSp = Cja0k(€2 — h2B) L0 (ih*TW )T
t=0

Combining this with the previous chain of inequalities and gives

h2—27

Sb p<j+‘1)<w+1>

(x,6)€supp 2

< Y

(z.£)€supp z ;g 1—0

O (20507 ) gpl "

CRT-DO-D)

o OL(&* — W2R) oS (ih® W)~

By the same argument used in part 1 of Lemma

sup aé(gZ o h26)t‘ < C(hT_l)l_Qt.

(z,£)€supp z

Therefore

sup Z Z

(r=1)(6-1) )
On g€ — h2B) 0 (iYW i~

(z,€)Esupp 2 =0 1— 0 P’
B (r—1)(6-2¢)
< sup C—aa(th MW
(z.£)€supp 2z 1 P
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Now using part 2 of Lemma [4.1
p(r—1)0 .
sup %h(l_T)Qtag(ihQ_’YW)J_t < Crh(r—l)(d?—i-a)7
(z,£)Esupp 2 P

and combining this chain of inequalities gives the desired statement. [l
Next I show that g; is a symbol with the same behavior under differen-

tiation by z and & but with size h727—1).

Lemma 4.3.
hj(l—ZT)qj c Wko_jSl—T,l—T(T*Sl)

Proof. Since supp z C {1.5h177 < |€] < 3} it is enough to show for |¢] < 3
and 0 € Nya < kg — j that

This will be proved inductively in j. By Lemma qo satisfies this. So
assume yag;agql\ < CR!CT=Dpr=1(+9) for a]l 0 < I < k and it is enough to
show for 0 e Nav < kg — j

s 0| < e
£|<3

By definition

Lk ¢ =
kL
Qk+1 = —— Z%,k+1—l = - EQI,IH-L
P b Ly

Since
GLer1-1 = CRFIH O ol g+ (=)Mo po T gy)
then by the inductive assumption

sup |qups1-1] < sup ChETI7)g | < CRIHI=DT I,
lel<3 j€]<3

Therefore

ql,k+1-1
p

< ChQT*Qh(kJrlfl)Thl(QTfl) _ ChQT*Qh(lﬁ*l)Thl(Tfl)‘
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Now for 0 <<k —1,since 7 —1<0.
p2r =2 (k) plr=1) < p2r=2p 7 (k1) py (k=1)(7=1)
Note that
2r =24 7k+74+kr—T—k+1=2tk+21— (k+1)= (27— 1)(k+ 1).

Therefore
(k+1)(27-1)

The g1 term requires separate treatment. Recall gi, 1 = h(0,p0¢qi, — 0 P02 ;).
Using the arguments of part 2 of Lemma ]8“’\ | 2= W\ < Ch™ ! and

\8§p| < Ch™™! on supp z and by the inductive assumption [0,qx|, |Oeqr| <
0,
sup qk’l‘ < sup Ch ( G=P

P
Ch(T=Dpk27=1)  Therefore
0,
2] 4 o)
l¢l<3 | P l¢|<3 p

< Chh™ 1p = 1pk@r=1) — opk+1)(27-1)

It remains to be seen that g1 has the correct behavior under differentiation.
That is [00%qe11| < ChETDET=D =140 el

QI k:+1 l
03 0 a1 = Zaa o

k
-y (2
=0

If a derivative falls on 9,pde¢q or O¢pdrq this only produces an additional
Rt Furthermore by the argument of Lemma [4.2) E any derivatives which
fall on 5 produce only A" 1. Therefore

(a§>+1flp8§+l—lql + (_1)k+1la§+1—lpa§+llql)>

‘8§¢8qu+1| < Ch(r—l)(a+9)‘qk+1’ < Ch(T_l)(a+9)h(k+l)(2T_1).

This is exactly the desired inductive statement, which completes the proof.
O

With these symbol estimates it is straightforward to control the size of
Op(g;) on L?.
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Lemma 4.4.

10p(q))|| 2212 = CRIGT" D71

Proof. This follows immediately from Lemma and Lemma In par-
ticular

10p(g;)|| 1212 < C Z h‘"
a,0€{0,1}

< Z ORI (r=1)(a=+6) 1,0
a,0€{0,1}
_ Z Chj(ZTfl)h(Tfl)ahQTSChj(Qrfl)hTfl‘
«,0€{0,1}

oot .

O

Now using these symbol and operator norm estimates it is possible to
compute the composition of ) @Q); with Op(xp).

Lemma 4.5. If W € W*>® and 7 € [Tyin, 1],

]{20—6

> @Qj | Op(xp) =B Z + o(FT).
=0

Proof. Applying Lemma part 3 to the composition Q;Op(xp), (with
N =kop—jand N = ko — j — 5) produces

k‘o—6

QjOP(Xp) — Z Op(Qj,k) + OL"’%L?' (hj(QTfl)hT(ko*j*5)h5(771))'
k=0

The additional R271) in the remainder term comes from the fact that
hj(l_QT)q]‘ S Wk051_7—71_7.
Now, to control the remainder term, since j < kg —6and 7—1<0

j2r—=1)+7(ko—j—5)+5(r—1)
:Tk0+j(7—1)—5ZTko—i-(ko—ﬁ)(T—l)—E).
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Furthermore 7 > 7,5, > legoti and kg > 8 > 87 and so

(15) Tko + (ko —6)(7 — 1) =5 = (2ko +4)7 — 107 + 1
>ko+2—107+1
=3—-27+ (ko — 87) > 3 — 2r,

and the remainder error term is always of size o(h3727).

Now summing these composition expansions from j =0 to j = kg — 6

ko—6 ko—6 [ko—j—6
> Q| optxp) =D ( Z Op qjk>+0(h3_27)

j=0 Jj=0

@, *+9.,1 +q,2 +g3 +--- +Qqok—6
+q10 +@11 +tq2 +0 QU k-7
— Op +q20 +q21 +r QK-8 +o(h3727).
+q30 +:°  +G3k,—9
+qk,—6,0

By construction of the g;j, all columns except for the first sum to zero
leaving

M—-1

> Qi | Op(xp) = Op(g0.0) + o(h*~*7) = Op(goxp) + o(h*~*7).
=0

Since qg = WET2E) ,Op(goxp) = Op(2(£)) = Z and this is the desired equal-
XP
ity. O

The composition of ) Q; with Op(xp) can also be computed in a way
that separates Op(x) and P.

Lemma 4.6. If W € Wk and 7 € [T, 1],

k0—6

> Q;0p(xp) = Z Q; Op(x)P + o(h*~*7).

J=1
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Proof. First, by Lemmas and part 1 (with N=3< ko — b and p =
0))

> g

X)P = Op(9¢x95p) + Oz 12(h?)
k=0
= Op(xp) + Z CrhFOP(OEXOEW) + O 12 ().
k=1
Therefore
Q;0p(xp) = Q;0p(x Z Crh*Q;Op(IE xOyW) + Orz 12 (h?),

k=1

and it remains to control terms of the form @); Op(@éc XOEW). Well by Lemma
part 3 (since FW € Wko—FS, and hj(l_QT)Qj € Wkﬂ_jSl,ﬂl,T take
N = ko — max(j,k) — 5)

h*Q;0p(9f xOW)

13\
=153 0,0 - 0,0, (4. (O W (w)

=0 ° " -
+ OL2—>L2 (hkhj(QT—l)h’r(ko—max(j,k;)_5)h5(7_1))‘

All the terms in the sum are 0 because x =1 on supp z D supp ¢; and
SO X(k) = 0 on supp g;.
The size of the remainders can also be controlled. Since j < kg — 6

k4321 —1) 4+ 7(ko — max(j, k) — 5) + 5(1 — 1)
=71ko+j(r—1) =5+ k+j7 —max(j, k)7
>71ko+j(r—1) =5
> 1ko+ (kg —6)(7 —1) =5 >3 — 27,

where the last inequality follows from . Therefore

Q;O0p(xp) = Q;0p(X)P + o(h*~*7),

and so
kU —6

> Q;0p(xp) = Z Q;0p(X)P + o(h*~27),

J=1
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as desired. O

With these two composition results the proof of the h dependent elliptic
estimate can be completed.

Proof of Lemma[3.3. By Lemma
W Zu = (Z Qj) Op(xp)u + o(h* " )u.
and by Lemma [4.6]

R*% Zu = (Z Q]) p(xp)u + o(R**")u
(Z QJ) X)Pu+ o(h3 2 )y
= (32Qi) Op(OR2S + o).

Take the L? norm squared of both sides. Then by Lemma the @, are
bounded by Ch™~! on L? and Op() is bounded on L? by Lemma @L

2
Pzl < 1|32 Q0000+ ok [lull 7
< O W |1£113: + o(h*7) full:

Finally multiply both sides by h*"~% to obtain the desired inequality. ]

4.2. ¢ > c Elliptic estimate, Lemma

This proof follows the conventional semiclassical parametrix argument with
the caveat that W is treated as a perturbation. This allows the parametrix
construction to be exact, as it involves only Fourier multipliers. Because of
this there are no compositions involving W and so the regularity of W is not
involved in this proof. This same construction can also be used to prove an
h dependent elliptic estimate, however treating W perturbatively produces
an error term that weakens the estimate. This lessens the improvement the
estimate makes when applied to error terms in the propagation argument
and would weaken the overall conclusion.



1112 Perry Kleinhenz

Proof. Define

G = {22_(5;325'

Noting that ¢g € 58 since ¢ > 1 on supp z and h%B < 1. Now set @\6 =

Op(qo) and let pg = &2 — h?3, Py = —h?0% — h?B. Since qp and py both de-
pend only on & their composition is exact

QoPo = Op(Gopo) = Z.
Now since Py + ih> YW = P

Zu = QoPu — Qo(ih* W)
= h2Qof — Qo(ih* "W).

Take the L? norm squared of both sides then use that @6 is bounded on L?
by Lemma [A22]
|2 < 1 [[@ar], + == |ww
L2 = L2 L2
< CR (|l + CR* 2 [|[Woal |7

Finally use that W2 < CW and @, the damped region estimate, to obtain

Zull” < CR*||f]1%, + Ch*
ul|,, < 1172 + 12 Nullpe -

5. Proof of propagating region estimate Lemma (3.4

With the elliptic and damped region estimates proved, it remains to prove
the estimate for the propagating region, that is Lemma(3.4] The plan for this
section is as follows: first the computation of a commutator in two different
ways, second the estimation of terms in the computation using expansions
of compositions of pseudodifferential operators.

Proof of Lemma[3.4) Set a = xx(z)(ERT"1)p(€AT) and A = Op(a). Note
that by Lemma A is bounded on L2. To begin, compute h'~"(AP —
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P*A) in two different ways

(16) AT {[W202, Alu,u) + ih3 7T (AW + W A)u, u)
= W77 ((AP — P*A)u,u) = 2ih> " Im (f, Au) .

This equation is the basis of the proof. The right hand side is a term of the
form Ch3~7 || f|| 2 ||ul| 2, which is the primary term in the estimate.

On the left hand side h3~7~7 (AW +W A) will produce a h3~7 || f|| ;= ||u]| ;-
and two error terms: h2~7467|| £]|2, and o(h?) ||u||3.. The h1~7[h?02, A] term
will provide the h3Ju term as well as another A3~ ||f|| . ||u|| ;. and error
terms o(h%) |[ul 3 and h2-7+67 || |2

Note that most of these terms have a common factor of h? which will be
divided out in order to obtain the final conclusion. Because of this through-
out the section error terms must be of size o(h?®) to be negligible.

I will first compute the AW and [h202, A] terms and then use them to
prove Lemma Subsection [5.1] estimates the damping anti-commutator
(AW + W A), subsection [5.2] estimates the Laplacian commutator [h202, A]
and subsection [5.3| synthesizes these to complete the proof of Lemma

Remark In this section I write

aO(€h™) = W0 (alx, ¢h7 1) = WU Dax(@)d(EhT ) (eh™ ).

Note that at) € S9__(T*S!), see Appendix for the definition of S;*(T*S").
The utility of this notation is that h7 82 a = W79, which simplifies compo-
sition expansions. This agrees with the standard usage of the notation: if
k) (€h771) is the kth derivative of ¢ evaluated at £h'~" then

W0 (p(gh™ 1) = v (gn™ ).

Also in this section, recall that there is a fixed €2 > 0 and it is assumed
that h?e9 < h%2B < h?~27. This assumption is needed in order to apply the
elliptic estimate (Lemma [3.2)) in order to control the size of error terms.

5.1. Damping anti-commutator estimate

In order to estimate h3~7"T(AW + W A) I will write it as h3~7"7v; Av; plus
error terms. The h3777v; Av; term can be controlled using the damping
estimate and is of size K37 || f|| 2 ||ul|;>- The error terms are either of size
o(h3), which is small enough to be negligible or are supported on the el-
liptic set of P and can be further controlled by the elliptic estimate and
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Lemma The terms controlled with the elliptic estimate will produce
the h2~7+67 || £]|3,. In particular in this subsection I will show

(17)  RPTT((AW + W A)u, ) |
< CRT |12 llull e + CREFT= | f122 + o(h®) [[ul |2 -

To begin recall that W =" vjz- SO

WU (AW + WA) =BT "0l A+ Av?
j
= Z hgi’yiT’UjAvj + Z h277[[h17TA, ’Uj] , ’Uj].

J J

To control the first term use Lemma [A.2] to see A is bounded on L2

WS (g Avgu,u) | < CR S fogul s
i J

: 2 2 _
Then since v < >, v: = W use ©

2
CH 3 ol f = O [ W24 | < W |
J

Combining these inequalities gives

(18) W31 | (AW + W A)u, u) |

< O ||l e Mlull = + ) W27 (IR Ay g, oglu, u) |
i

The sum of double commutators will be error terms. Its size can be controlled
using the elliptic estimate, to do so the double commutator must first be
computed.

Lemma 5.1. Ifv; € Wk and T € [Tmin, 1], then

th_TAv vj]vvj] =
ko—6 ko—6 .+l
DY gt T (F)M( - (-1 0p(9v 00 ™)
=1 k=1 o
+ o(h?)
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Before proving this in the finite regularity case it is useful outline the
proof when v; is smooth, as the argument is simpler but has the same struc-
ture. Fix M > [% + 1] and apply Lemma to compute the commutator

M-1 ,.
ih)k
(WA o] = BT Y (zk/.?ﬂ (1= (=1)")Op(F5v;0fa) + Oz (RMTHT).

k=0

Then apply Lemma [A-T] again, to compute the double commutator

[T A v5),05) =
M—-1M-1 (Zh)k—H
3N S (U (CDR)( = (<1))0p(@kvsdkv0k )
=0 k=0 o
+ Opz 2 (BMTHIT),

Since M > [2 +1], M7 + 1 — 7 > 3. Therefore

[h' 7T A, v5],05] =
M—1M-— 1 k+l
p=r Y 3 U - (1R - (-1))Op (ke dhusof Ha)
=0 k=0
o(h?).

The terms with [ = 0 or k = 0 drop out because of the factors 1 — (—1)* or
1 — (—1)L. The final step is to substitute th@gHa = BTk gD which
gives an expansion of the desired form.

When W is not smooth there are two changes: the remainder term is
larger and additional care must be taken to track the exact number of deriva-
tives used. The computation of the size of the remainders in this proof are
the reason 7y, > k is required. Other remainder size calculations in this
section involving 7 make use of this relationship between 7, and kg but
are not sharp on it.

Proof of Lemmal[5.1. Since v; € W use part 2 of Lemma (with N =
ko) to compute the commutator

ko—6 (h)
W77 A ) = Y S bt (= (< 1))Op(95v;0¢ a)

+ Oy g2 (R0 =37 =50 =T)H1=Ty
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There are two key differences between this and the smooth case. The ex-
pansion can only be taken to the term kg — 6 and the remainder term has
an additional A~>(1=7) These two changes are connected; in order to show
that the remainder term is a bounded operator on L? the symbol must be
in W%, Those derivatives of the symbol appear in the L? operator norm
of the remainder and each ¢ derivative of a produces a factor h!~7. See
Appendix A for a more detailed proof and discussion.

The relationship between the regularity of the damping, kg, and 7 guar-
antees that the remainder term is o(h®). In particular since 7 > Ty > Wzl

(19) (ko—=5)T—=5(1—7)+1—7=(ko—5)T —4(1 —7)
=(ko—1)71—4
>(k¢0—1)k07_1—4:3.

Now replacing hkﬁga = h*a®) gives

ko—6 k7 kr
—T ¢ h —T
[n! A, vj] = Z W<1 - (—1)k)h1 Op(a];”ja(k)) +o(h?).
k=0 ’

To finish computing [[4,v;],v;] Lemma will be applied again, paying
special attention to the terms in the sum that are not o(h?®). In particular
these terms will be supported on the elliptic set of P and so can be further
estimated. However, these terms have derivatives of v; in them and so their
regularity must be carefully tracked.

Since v; € Wko: and 8’g§vja(k) € Wk"*kSp, I can apply Lemmapart
1 with N = k¢ (as kg — k > 6 > 5) and obtain

hliTh]“’[Op((?!;'Uja(k)), ’Uj]
= ﬁhl,rhr(mz)(l — (=1)HOp(8F ;8. vjak D)
=0 “"
+ Op2y g2 (ARo=D)T=B(=T) =747y,

Where I have replaced h™*h!dta®) = p7(k+0q(k+D) The remainder term is of
size (ko — 5+ k)T —5(1 —7) + 1 — 7. Since k > 0, by the same argument as
above, the remainder term is o(h?).



Decay rates for the damped wave equation 1117

So combining

k0—6 k:
—T ? —T T
WA ] v = > orp (=D)")R TR [Op(Dhvja™)), vj] + o(h?)
k=0 '
ko 6](}0
= Z g (L~ (CDO A = (D)) TREDOp (50,0, 0;a* D)
k=0 [=0
+ o(h3).

The terms with k& = 0 or I = 0 again vanish because of the factors 1 — (—1)*

and 1 — (—1)!. This gives the formula in the statement of the lemma. [

Now the size of [[A,vj],v;] can be further controlled since
Op(9¥v;0Lv;a**+D) has support contained in {2h'~" < |¢| < 3h!1~7}, which
is contained in the elliptic set of P. Because of this these terms can be
further estimated using the elliptic estimate.

Lemma 5.2. Ifv; € Wko© and T € [Tomin, 1] then
(20) | {[[R' 7 A, v],vi]u, u) | < CRST || £1[72 + o(h®) [[ul|7 -

Proof. For this proof I will use the notation by ; = Oﬁvjaivja(k“‘l). In this
notation Lemma [5.1] is

ko—6 ko—6

[T A v),05) = )0 D Crgh™ ORI Op(bey) + o(R?).
k=1 [=1

The elliptic estimate as written can’t be applied to Op(by ;) directly because
the symbol is not smooth. Instead, I reintroduce the operator Z defined in
Lemma

The key property here is that Z = 1 on {1.501 77 < |£] < 2} D supp (bk.y).
This along with b ; € Who—max(k.) g, __(T*S'), means Lemma can be
applied with N = ko — max(k, ()

Op(bey) = ZOp(bpy)Z + Oy (BT Ko max(eD) =5y,
That is conjugating Op(by,;) by Z is Op(by,;) modulo an error term. Note

that there is less regularity for larger [,k and so the error term is larger.
However after reintroducing the A~ 7h(*+)7 from the sum the error terms
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can be uniformly controlled

hlf‘rh(kJrl)‘rOp(bk’l) — hlfrh(k+l)7ZOp(bk7l)Z
+Op21e (h(ko7max(k,l))775h7(k+l)hl—T).

In particular since 7 > T > Wzl and k,1 > 1

(ko — max(k, )T —5+7(k+1)+1—71
:(k0+min(k,l)—1)T—4>ZT—4+T:3+T,
T

and the error term is o(h?).
Therefore

(21)  ATREITOP(be) = WA ZOp (b 1) Z + o212 (RP).
Now, apply term by term to Lemma
[T A v, vl w) | < [(ZRT([A vg], 051 Zu, w) | + o(h®) [lullZ. -

Then use the self-adjointness of Z and the Holder inequality to write

| (Zh' (1A, v5], 05 Zu,u) | < ||RVTIIA v5), 03] Zul | o | Zul | e -
Now note that for k,1 > 1,
h177h(k+l)rop(bk7l) — Opespz (17,

and h'"7[[A, vj],v5] = Y4 51 BTTREFDTOD(bky) + o(h?) = Oy 2 (R).
Therefore B

[P 1A, vl 03] Zu] | 120l 2 < OB (| Zl 3
Now apply the elliptic estimate Lemma to Zu to see
ChMT || Zul[7. < CBOT (| f|[72 + CRM T2 [l |2, .

Combining this chain of inequalities gives . ([
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So now use to estimate the sum of double commutators in

3T (AW + W A)u,u) |
< OB (| fll 2 ull g2 + CR*OT | fIIL2 + o(®) [Jul 2,

which is exactly the desired inequality .
5.2. Commutator estimate of A and h23:

The Laplacian commutator estimate follows from writing [h202, A] as a sum
of a cutoff version of P, J = Op(x*/?(z)y'/?(¢h™1)) and error terms. The
error terms are supported in the elliptic or damped set and can be further
estimated.

In particular in this subsection I will show

(22) 2038 Jull7. < [([R202, Alu,u)| + CR* = (| f]] 2 |ull 12
+ CRESTY | FI12, 4+ (CR*F27 B + o(B?)) ||u] |7 -

To begin note by Lemma [A]]

2
(W07, W' 7T A] = Z kk, (=1)*)Op (05 (wx ())& (¢h™ 1) OEE)

hO p((zx + X)W (ER'T)),

where there are no terms for k > 3 since 8"“52 =0for k > 3, and the £ = 0,2

terms cancel because 1 — (—1)* = 0 then.
Now recall that p = €2 4+ ih> YW — h%f so

(23) 2ih(zx +X)EWV(ERT)
= 2ihax €% + 2ihxp(ERTY) (p — ih* YW + h2B).

Each of the terms on the right hand side will be estimated in turn. The h33
term will produce the h3J, the remaining terms produce errors.

5.2.1. Estimate of Op(£2yxx’). To estimate Op(&2hz)’) it is enough
to use that ' is supported only inside the damped set and apply @ In
order to do so the £ dependency of the operator must be eliminated, to do
so the approach of Lemma is adapted. Lemma is still used, but the
localizing function now depends on x, and 21y’ is smooth in x so the error
term is O(h>).
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In particular, define s € C*°(—m, ) with

0 |z|<o
S =
1 o+o01/2 <]zl

and let S be the operator of multiplication by s. Note supp (x') C {0 +
01/2 < |z|} so s = 1 on supp (£2¢pxx’). Then by Lemma (since x' € C*)

[{Op(E2p(ER™ N X (z))u, )|
= [(SOp(E*W (™ )ax' (x))Su, u)| + O(h*°) ||u]|7. .

Use that S is self adjoint and the Holder inequality to write

|(SOp(*(¢n™)ax'(2)) Su, )| = [(Op(*$(6h™ )X (x)) Su, Su)|
< [|Op(E(h™ )X (x)) Sul| . [1Sul| 2

By Lemma h*™=20p(£2¢(¢h"Hax/(z)) is bounded on L2, so
[|0p(E20(Eh™ N’ (@))Su] |, IS ull 12 < CH*=27||Sul 72
Then since s < CWY2 and applying @D

2
W22 |Sullfs < Ch22 [[WH2| | < OR300 s e

Combining this chain of inequalities and multiplying both sides by h gives
(24) 20 [(Op(E2P(ER™ M X/ (x))u, u)|
< O fll e [l = + O(h™) |[ull7-

5.2.2. Estimate of Op(h28x). To estimate Op(xy) write it as J? plus
an error term. By Lemma [A]]

Op(J)0p(J) = Op(x/?¢'/%)Op(x/*9/?) = Op(x¥) — h*7Op(r1),
where 71 € SY__. Using that J is self adjoint and Op(r;) is bounded on L2
by Lemma

a2 = [{Op(20!2)0p( 26! ), u )|

(Op(x¥)u, u)| + A% (Op(r1)u, u)
(Op(xt)u, u)| + Ch*™ [Jul|3- .

INIA
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Therefore, multiplying through by h33

(25) 2B (Op(x)u, u) | > h*B || Jul|32 — CBRT2T ||u]|3. .

5.2.3. Estimate of h Op(xy¥p). To estimate Op(x¥p), write it as
Op(x®)P plus error terms. The error terms are supported on the elliptic
set of P or the damped region and are further estimated using Lemma [3.2
or @ respectively. In particular the following inequality will be shown.

(26) Rl (Op(xvp)u,u) | < OB (| ]|z |lull
+ ORI + o(h®) [lullZ-

Note this term appears in as hOp(x¥)p, but to simplify notation this
extra factor of h is not carried through the intermediate calculations. Be-
cause of this remainders of size o(h?) are acceptably small, instead of the
o(h3) of other calculations.

To begin, Op(x)P is computed, where special care must be taken with
the regularity of the W terms. Since W € W0 by part 2 of Lemmas |A.6
andm (Lemma is used to compose Op(x%) and —h292, as Lemma[A.6
requires symbols to be bounded).

Op(x) P = Op(xy)(—h*02 + ih* "W — h*B)
= Op(x¥p)

k0—6 (lh)k X _ ) o
+ Z ok | Op | (0y0¢ — 0:0,)"x(x)(ER""T)(n* +ih "W (y))
k=1

y=z,n=¢ )

+Op2ype (h(k0_5)7—_5(1_7)).

As in Lemma since T € [Tiin, 1] with 7, > le

(ko —5)T —=5(1 —7) =koT — 5> ko —5 > 2,

ko —1

which guarantees that the remainder term is of size o(h?).
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The sum splits into two separate sums, where the first is only taken to
k = 2 because 8?52 =0 for £ > 3.

(27) +ih?71 Y = hPOp(x W OEW) + o2, 2 (R?).

The two operators and the sum will each be estimated individually. The
Op(x®)P term is straightforward to control. The second term is supported
inside the damped set and is controlled as in subsection The sum will
be controlled by the elliptic estimate using the same argument as Lemma 5.2
To begin, using the boundedness of Op(x%) on L? and that Pu = h%f

(28) [ (Op(x¥) Pu,u) | < Ch* || ]2 [l -

For the second term, set g(z, &) = ihx' V& + h{x”d). Note that x' and x”
are supported inside the damping set and so an argument as in subsection
will give an improvement. Recall s € C*°(—m, 1)

@) = {0 2| <o

1 o+o01/2 <]z,

and S is the operator of multiplication by s. Since g € C*° and s =1 on
supp g, by Lemma [A.7]

(Op(g)u, u)| = |(SOp(g)Su, u)| + O(h™) [[ul|7.
Using that S is self adjoint, along with the Holder inequality
[(SOp(g)Su, u)| < [|Op(g)Sullz: [[Sull -
Now by Lemma h™20p(g) is bounded on L2, so

10p(9)Sull e [[Sullp> < h*7 [ SullZ.
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Then since s < CW1/2 and applying @[}

2
W2 ||Sullfe < O || W2l || < R 1] ]

Combining this chain of inequalities gives

h2
@) | (ovtimve+ )| < 01 il
+O(h) Jull.

Now to estimate the sum, note that yy*)9FW is supported in {2n'7 <
€] < 3h'~T} which is contained in the elliptic set. The proof of Lemma
will be imitated. Conjugate the qu(k)a’;w terms in the sum in by Z
to take advantage of the location of their support. Once again care is taken
with the regularity of 9y when applying Lemma [A.7]

Set by (x, &) = x(x)®) (€A1 7)OEW (z). Recall Z from Lemma Since
z =1 on supp (bg) and OFW € Wko=k: Lemma can be applied with
N=ky—k

Op(bk) = Zop(bk)Z 4+ Oz (h(ko_k)T_S).

So conjugating Op(bx) by Z is Op(br) modulo an error term. Once again
terms with larger k have less regularity and have larger error terms. However,
as before, reintroducing the A™® from the sum improves the error terms

KR Op(by) = h™ ZO0p(b) Z + KFO sy g2 (hFo=R)T=5),

In particular, and as in Lemma the error term is o(h?) because 7 >
Timin > k(}%l and

Tk+(k0—k)T—5=k0T—5>< >k0—5>2.

ko—1

So

)<mkop<bk)u,u> < h™ [(ZOp(by) Zu, uw)| + o(h?) ||ul[7. .

Continuing to follow the proof of Lemma [5.2] use the self adjointness of Z
and the Holder inequality to write

W™ [(ZOp(bk) Zu, u)| < B (|Op(by) Zul| 2 || Zul] 1z -
Now by Lemma Op(by,) is bounded on L?

W 10D (bk) Zul| 2 1| Zul | 2 < W7 [ Zul 2 -
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Then apply the elliptic estimate, Lemma to Zu
W Zul[7. < CRTHTH| fITa + o(h®) [|ul |7 -

Combining this chain of inequalities and multiplying both sides by h2~7
gives

(30) ¥ (W Op(Br)u, u)| < CRITTHETIT £, 4 o(h2) lul
< CRTOTIf7e + o(h®) [lul 7.

Where the second inequality follows since k& > 1.

Therefore using , and to estimate terms in (27))

| (Op(x¥p)u, u) | < Ch2 (| f| 2 ||ull 2 + CREY | £ 2 ||l e
+ CR YT £1172 + o(h?) [[ul7 -

Multiplying both sides by h and using that v — 7 > 0 (since 7 € (1/2,1] and
v € {1,2}) gives the desired inequality

h{Op(xwp)u, u) | < CR* || f]| e |lull g2 + CH** T || fl[72 + o(h®) [[ul 72 -

5.2.4. Estimate of Op(x®¥W). To estimate Op(xy¥W) I write it as
v;Op(x®)v; plus error terms. The v;Op(x¥)v; terms are controlled by the
damped region estimate @ The error terms are either small or are sup-
ported on the elliptic set of P and can be further estimated using Lemma
In particular the following inequality will be shown

(31) APV OpOyW)u, u)| < CRP | fl| 2 [l -
+ ORI + o(h®) [lullZ-

Note this term appears in as h2~7hOp(xyW), but to simplify notation
these extra factors of h are not carried through the intermediate calculations.
Because of this remainders of size o(h?) are acceptably small, instead of the
o(h3) of other calculations.

To begin recall that W =" 0]2- and so

Op(xyW) = Op (xw > v?) = Op(xyv}).

This is exactly the principal symbol of ) - v;Op(x%)v;, an expansion of which
will now be computed.
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First, since v; € Wk apply part 2 of Lemmawith N = ko — 5, to
obtain

Z Qkk»l Xaﬂﬁ(f” o)) + Oy (RtRo=5)7=5(1=7))
k=0

As in subsection since T > Timin > ﬁ the remainder term is o(h?).
In particular

7
ko —1

(k0—5)7'—5(1—7'):k‘07'—5>< >k0—5>2.

Replacing h*9fp(¢h™1) = hFmp®)(¢h7=1) gives

khrk )
Z Qkkj‘ X¢ 8 7}]) —I-OLzﬁLz(h )

Now compute the following composition of v; and Op(xw(k)algvj), adjusting
the number of terms taken in the expansion based on how many derivatives
fallen on 9%v;.

ko—6 .
(32) v;0p(x¥)vj = vj Z 2]%'thOp XV Fv;) + or2 12 (h?).
In particular, since v; € Wko: and X@ivjw(k) € Whko=kg,__ apply part

1ofLemmaWithN:k:0—5—kand ko —k > 5.

ik
2k !

ko—k—6 .
T Zh l T
——vjh kOp(akv i) (k) X) = Z (211)' QTk;lh k( )lOp(Xaiijfvjﬁéw(k))
1=0
+h

TkOL2%L2 (h(kofk75)Tf5(1fT)).

Although there are fewer terms taken in the expansion for larger values of
k, the additional h™" ensures that the remainder term is o(h?). In particular

7
Tk:—l—(ko—k—5)7'—5(1—7):k07—5>k:0(k 1)—5>2.
0 —
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Therefore

ik
2kk|v]thOp(6kvwk) X)
08 prh) Frl 1\l Lo ok (kD) 2

= > gt (00D ke ) 4 opeya ().

Now plug this into to obtain

ko—6 [ko—k—6 .
0 ( 0 (k+0)
l

v;Op(xVY)v; = Z SR
k=0

+ o2 s12(h2).

hT“*“(—1>l0p<aivj6§vjw<k+”x>)

Note that the k =0,l =1 term and £k =1,/ = 0 term are identical except
for a minus sign and cancel. There are more cancellations which occur in

the sum, but only this first one is necessary for the proof. Note also that
k+1<k+ky—k—6=Fk)—6,

(33) v;0p(x¥)v; = Op(vixy)
k+1<ko—6 Z.(k_H)
_l’_

s (10D 0wt x)
k=1 o

+ 012 512 (h2)

In order to further control the size of the terms in this sum the technique
from Lemma M is used. Let bkl = 9Fv;0Lv R0y, For k,1 > 1,by,; has
support contained in the elliptic set which can be made use of byy conjugat-
ing by Z as in Lemmal5.2]and then applying the elliptic estimate to Zu. The
proof is almost identical to Lemma[5.2] but is written here for exactness.

As in Lemma recall Z from Lemma 3.2 Note z =1 on supp by
and l;;:l € Who—max(kl) g, (T*S!), so Lemma with N = kg — max(k, 1)
gives

Op(br) = ZOp(byy)Z + Oy gz (b7 Rommax(k)=5),

Note that there is less regularity for larger [, k and so the error term is larger.
However after reintroducing the h**tO7 from the sum the error terms are
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improved
h(k-{—l)TOp(bk l) _ h(k+l)TZOp(bk Z)Z + Opaspe (h(ko—max(k,l))7—5hT(k—i—l))'
In particular since 7 > 7y > Wzl and k,1 > 1

(ko — max(k,l))T — 5+ 7(k +1) = (ko + min(k,l))7 — 5

7
k —95> 2.
> 0<k0—1> >

Therefore
(34) h*HT0p(bgy) = D7 Z0p (b)) Z + o212 (h?).

Now, apply term by term to b= llﬁgko% Ck,lhT(Hk)b,;:l, the sum in
(33)

[ {Op(B)u,u) | < | (Z0p(E)Zu,u) | + o(h?) [Jullf.

Then use the self-adjointness of Z and the Hélder inequality to write

| (Op(B)us u)| < | {Z0p(() Zu,u) | < ||Op(() Zu]| , 1Zull -
Now note, since l;;:l is bounded on L? by Lemma and k,[ > 1,

h(k-ﬁ-l)TOp(g];_:l) = Opesyp2(h?7),
s0 Op(b) = Or>_,12(h*7) and
[(Op@u,u) | < ||op((®)Zul| |, 1Zull,. < O || Zul 3.

Now apply the elliptic estimate Lemma to Zu to see

(35) [ (Op(®)uu)| < Ch || Zullfe < ORI f][F2 + CH*" |lul 3.

Now these pieces will be combined to give the final estimate of Op(xyW).
Recall that W =3, vjz- SO

| (Op(x W )u, u) | < Z | {(Op(x¥v)u, u) .

J
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The composition computation gives
> 1{Op(xtpod)u, u) | <[ (v;0p(xe)vju,u) |
J J

+1{Op®)u, u) |+ o(h?)[[ull:
Then gives
(36) X {OPOeuu w)| < D |{v;0p(x)vsu, w) |
] O 12+ o)

It remains to control the v;Op(x¥)v; terms with the damping region esti-
mate. Using that v; is a multiplier and thus is self-adjoint, as well as the
Hoélder inequality

| (;Op(x¥)vju, u) | < [|Op(x¥)vjull 1. [Jvjullp- -
Now note Op(x%) is bounded on L? by Lemma, SO
10p(x)vjul| s |lvjull 2 < C [[vjull7.

Again using that W = ZUJQ SO vjz <W < CW/2 and @

2 1/2 2 ¥
logully, < € ||w2a]| <m0l full o
Combining this chain of inequalities and gives
{OPOWW)) | < CRY[If 1] llull e + K77V £1172 + o(h®) |[ul[7: -
Finally multiply both sides by h®~7 to obtain the desired inequality

R {OpOy W), u)| < OB || £ 2 [[ull
+ CR T |IFIIZ: + o(h®) [lullZ-

5.2.5. Combining estimates. Now use , , and to esti-
mate terms in

20°B || Jul[72 < BT (0207, Alu,u)| + C(B* + B*275) || f]| o lull 2
+ CR*OT V[ fl[ L + (CR*278 + o(h%)) [[ul [ -
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Use that v —7 > 0 to group the ||f]|;.||u||;. terms to obtain the desired

estimate
218 || Jul|2. < WA [([R202, Alu,ud| + CR* || f]| 2 ||ull 2
+ CREFST | f112, + (CR*H27 B + o(h?)) |Jul |7 -

5.3. End of proof of Lemma (3.4

Recall is
2R3 TIm (f, Au) = h'=7 ([h?02, Alu,u) + h*~ 777 (AW + W A)u, u) .

Now apply , , to estimate the terms on the right hand side, and
Lemma [A.2] (to see that |[Aul|;, < C'||ul|;.)

2138 || Jul[7. < CR* || f]| o [Jull 2 + CR*F77 || £]17.
+C (o(h®) + BR*T27) ||u|[7. .

Divide through by 2h33 to obtain the desired estimate, which can be done
since 3 is bounded away from O. U

Appendix A. Pseudodifferential operators

This appendix contains the necessary background information on pseudod-
ifferential operators, as well as a lemma calculating the size of errors from
introducing cutoff operators and a careful calculation of the regularity re-
quired to have remainder terms in composition expansions bounded on L2.

This paper uses the semiclassical Weyl quantization, which takes in a
function on T*R and produces an operator Op(a) defined by

) opau =5 [ f (w;yg) u(y)dydé.

On the torus this formula still makes sense. A function a € C°°(T*S!) is
equivalent to a € C*(R, x R¢) periodic in the z variable. It is straight-
forward to see that for such a,Op(a) preserves the space of 277 periodic
distributions on R and thus preserves D’'(S').

Definition 1. a(x,&h) € SJH(T*S') if a € C°°(T*S') and satisfies

(A-2) sup [020fa(x, & h)| < Cagh=P1¥1 ()19
v
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Note that this definition is not the typical one for h dependent symbols.
In particular only derivatives in £ produce unfavorable powers of h, deriva-
tives in = do not produce any. This structure would allow p > 1/2 (see [15]
section 3) corresponding to 7 < 1/2 which would give an improved decay
rate, however requirements of the elliptic estimate (Proposition prevent
p from being taken this large.

The following lemma gives the standard composition and adjoint formula
for S;,"(T*Sl) symbols. It follows from Theorems 4.17 and 4.18 of [27].

Lemma A.1. Leta € S)(T*S'),be Sg“/ (T*SY) then
1) Op(a)Op(b) = Op(a#b) where a#b € Sg”m/ (T*SY) and for each N

N— 1

(A-3) a#tb(x,y;h) Z 2,%, © (940 — 9,,)" (ala, & Wby, )
=0
+0

(N(1-p)
(h )-

y=z,n=§
Srn«H'n (T* Sl )

2) Op(a)* = Op(a), in particular real symbols have self-adjoint Weyl quan-
tization.

The following two definitions are finite regularity analogs of Definition [I}
In particular they define two different symbol classes with a finite number
of derivatives in z and an infinite number of derivatives in £. The first
only produces unfavorable powers of A when differentiated in & while the
second produces unfavorable powers of h when differentiated in ¢ and =z.
The notation is again somewhat unusual but is made this way to mirror
Definition [l

Definition 2. A distribution a € WkS,(T*S!) if for « < k,0 € N

sup [050fa| < Ch= (€)7° .

Z,

A distribution a € W*S, ,(T*S!) if for o < k,0 € N

sup|0afal < Chrlet) ()~
13

Z,

The following theorem gives a sufficient condition for a pseudodifferential
operator to be bounded on L2. It follows immediately from Theorem 1.2 of

[5].
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Lemma A.2. There exists C > 0 such that for all b(z,¢) € S'(T*S')

108 gy <C . |
a,0€{0,1}

aaaabH .
x Y€ 00

In particular if b € W1S,(T*S) then Op(b) is bounded on L?.

Proof. So

Op(b) = (20h)"! /

i(z—y) xr +
o %( y,5> o(y)dyde
RxR

2

— i(z— T+
= (27) 1/ e y”")( : y,nh> v(y)dydn = Op(b(-, h))
RxR
which by [5] Theorem 1.2 has

10PO) |z <€ Y- |05 0000w, )|
«,0€{0,1}

<c Y h("

a,0€{0,1}

Loo

aaa"bH .
x Y€ oo

g

In order to prove composition results for finite regularity symbols I will
make use of the notation and results of [25]

Definition 3. Let ej,..., e, be a basis in R” and I' = @7 Ze;. Then let
Xo € S(R™) be such that 1 =, x;(z) where x;(z) = xo(z — j) for j € I.
Define S, as the space of u € §’'(R™) such that

U(€) = sup |Fxju(é)| € L' (R"),
jer

Then S,, is a Banach space with the norm

[ullrxo = [[sup |Fx;ul
jer

It

The following L? boundedness result is from page 8 of [25] .

Lemma A.3. Ifa € S, then Op(a) is bounded on L? and

10p(a)l| 22 < llalls, -
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If k is taken large enough then W*S™(R") is contained in S,,(R"). Note
that this result is stated on a more general space than 7*S'. This is because
in the computation of an expansion of the composition of symbols a, b there
is an intermediate step where c(z,&,y,n) = a(x,£)b(y,n) is considered as a
symbol on T*S! x T*S!, which can be thought of as R%.

Lemma A.4. Ifac€ WkS;”(R”) for k>n+1 then a € Sy, (R™) and

lallg, <C sup [|07allx -
[v|<n+1

Proof. Starting with the definition of ||-[|

lalls, = / sup | F(xju)(€) ¢

nje
- / () (€)7) sup | F () (€) e
n jer

<C §% sup | F (x u)(§)]

jer

(€)™ sup | F(xu)(9)]
jer

< sup
|a|<n+1

Lee Lee

Where the integrability of (£ >_("+1) on R™ gives the first inequality. Then

sup  ||£¥sup | F(x;u)(§)] < sup ||sup |ECF (xju)(§)|
|| <n+1 jer o la|<n+1 || g€l o
= sup |[sup|F(0*(x;ju))(§)|
la|<n+1 ||j€l 00
and
FO" (i |—\ [ o xuyin

< / 107 (gyu)ldz < C]0%ul] / i
J

The following lemma gives an exact calculation of the regularity required
to show the remainder term in a composition is bounded on L?. The S,
symbol class is used here as it allows a more straightforward proof than
proceeding directly with WkSp symbols.
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Lemma A.5. Ifa,be S'(R*) with (0,0¢ — 9,0,)N a(z,&)b(y,n) € Syp(RI™)
for some N € N and Q is a symmetric nonsingular matriz define

Ry(a,b)(z,§) =
1
/0 (1 — t)N=1etM@DD) (9, 0c — 9,0,)™ (a(x, & h)b(y, n; h))dt

y=z,n=¢

then for h chosen small enough

A4 [[Bx(@b)lls, <C||0,0 - 0:0,)" (al. by, m)]|

w

Therefore Op(Ry) is bounded as an operator on L*(R™) with

00BNz < || @40 = 020" (a0)|
s [ @0 -0 )]

ly|<dn+1

Proof. By [25] Theorem 1.4 and equation (1.21) (pg. 7), for any € > 0 there
exists hg > 0 such that for h < hg

Then (|A.4)) follows by choosing & < H(ayag - 890817)]\] (a,b) ‘ ‘S and using the
fact that restriction to a linear subspace (i.e. setting y = x,n = €) is bounded
on Sy, (bottom of page 2 in [25]). The L? bound then follows by Lemmas
and , where || < 4n + 1 because a(x, £)b(y,n) is a function on R4". [

1
/ eth@DD) (9. 0 — 8,8, (a,b)dt — C (8,9 — 0,0,)™ (a,b)|| <e.

0

S

The following lemma is a composition expansion result for low regularity
symbols. The expansion is of the same form as Lemma but the remain-
der term is larger by a factor of A7,

Lemma A.6. Suppose N > 6 € N is some fixed constant and a,b are dis-
tributions
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1) Ifb e WN-(SY), let N < N — 5 and assume for some p € [0,1/2) that
a € W5S,(T*S'). Then

Nt iy _
Op(a)Op(b) =, s Op(9Fa(x, €)95b(x)) + Opay 2 (RN I=P)75),
k=0 ’
Nt iy _
Op(b) Op(a) = D iy (~1)* Op(BE a(w, )95b(x) + Opasra (WY E7P175),
k=0 )

2) If for some p € [0,1/2),b € WNS,(T*S') and a € S,(T*S') let N <

N — 5 then
N1 (in)k
Op(a) Op(b) = —=—0p | (0,0 — 90" a(x,€)b(y, n)
2k k|
k=0 ’ y=z,n=¢
+ Or2_p2 (hN(l—p)—E)p)_
N—l Y
(ih) k
Op(b)Op(a) = p , 5 Op | (9,06 — 0:0y)"b(x, E)aly, )
k=0 ) y=z,n=¢

4+ Or2_p2 (hﬁ(l—p)—Bp)'

3) If for some p €10,1/2),b € WNSy(T*SY) and a € WNS, ,(T*S') let
N < N —5 then
y=zm=£>

Cases 1 and 2 are stated separately to emphasize that when one symbol
depends only on z, less regularity is required of the other symbol. Also note
that in Case 3 one of the symbols does not produce unfavorable powers of
h under differentiation.

Proof. The proof relies on [25], although special attention is paid to the
minimal regularity necessary. Only the proof of the first part of 1) will be
show, the other parts follow by analogous arguments.

Set c(x,&,y,m) = a(x,&)b(y,n) and let @ be the symmetric nonsingular
matrix given by (QD, D)g: = (D¢, Dy)g> — (Dy, Dg)g. Where D = (Dg, De,
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Dy, D). I will first show that

(A.5) Op(a)Op(b) = Op((ez @PPle) (€, 2,¢)),

and then provide an expansion of the right hand side of the desired form.
To begin since a,b € WkSp(T*Sl) for k>=2+1=23, then a,be
Sw(T*S') by Lemma Therefore by [25] [Theorem 2.2, and the discussion
on pages 7-8] holds, where ¢3(@D.D) ig defined as the unique extension
from S.
So it remains to provide an expanswn of (e > (QD,D) )(:L’ & x,&). Well
using a standard Taylor expansion of ez 2 (QDD) 45 in [25] equation (1.20)

o7 (@D, D)* e(x,€,y.m)

1 N 1
(1) /0<1_t> QD) (QD, D) c(a, 6,y )i

ih)k
2k k!

(8y0¢ — 020y)"a(z, )b(y)

h ‘]\7 1 N ih N
+ ih)” /O (1 - )N 1> @PDNH,0: — 9,0,)N alz, €)b(y)dt
k

2N NI
N-1
ih
= 3 U dtae £)9%b()
k=0
Nt N-1,2(QD.D) 5N N
g oF a(z, )07 b(y)dt

Therefore

f@DD<maxf>

zh

\_/

O a(x, €)050(x)

I
MI s
vl =
?’r

+ (Zh)N 1(1 _ t)ﬁ—16%<QD,D>aN ( g)aﬁb( )dt|
e~ . 3 a\x, Y ) y=z,n=¢"
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First consider the terms in the sum. Since a is smooth in §, b € W and
k<N-1<N-6,fora<landfeN

105 a(z, £)05Tb(x)| < oo

In particular each term in the sum is in W1S,(T*S!) and so quantizing it
produces an operator bounded on L? by Lemma

Now consider the integral term. By Lemma [A F]it is in Sy, and its quan-
tization is bounded on L? by

eV sup |07(9,00)" (alw, )b())|
z,y,€m,|v|<5

<o sup 3 [ reyaral rale, )
TYEm Y1t+y2+73<5
< th]\Nfh—p(ﬁ-ﬁ-S)7

where the final inequality holds because a € W?S,(T*S') and b € Wheo(st)
with N +5 < N. U

The following lemma calculates the size of errors from introducing cutoff
operators. It is a key tool used to take advantage of symbols with support
contained in regions of phase space where good estimates hold, namely the
elliptic set of P and the support of W.

Lemma A.7. Fiz N € N,N > 6 andp € [0,1/2). Suppose b € WV S,(T*St)
and t € SS(T*SI), such that t =1 on supp b, then

1)

Op(t) Op(b) = Op(b) + Opa_y 2 (K¥N=P)75)
Op(b) Op(t) = Op(b) + Opa_y (KN 7)),

Op(t) Op(b) Op(t) = Op(b) + Orz— p2(hWN7)77).
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Proof. Well by part 2 of Lemma setting N=N-5

N— 6
Op(t)Op(b) = > k;, Op ((3 D — 0:0y)"t(w, €)b(y, ) 5)
k=0 y=Tn=

+ OLZ_)LQ(h(N 5)(1—p)— 5/))
= Op(tb) + OL2—>L2 (hN(l_p)_B)
= Op(b) + OL2—>L2 (h(N(l_p)_B),
where the terms with 1 < k < N — 6 all vanish, since 8§t(x,§) = OFt(x, &) =
0 on supp b, and Op(tb) = Op(b) as t =1 on supp b. The second equation

of part 1 follows by an analogous proof.
To see part 2 use the first half of part 1 of this Lemma

OP(H)OB(4)OB(t) = (Op(1)Op(B)) Op()
( (b) + Opayp2 (RN p)_5)> Op(t)
Op()Op(t )+OL2_>L2(hN(1 p)— 5)

(A.6)

where Op(t) is bounded on L? by Lemma Now apply the second half of
part 1 of this Lemma to Op(b)Op(t) to obtain the desired conclusion. [
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