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Flat conical Laplacian in the square of

the canonical bundle and

its regularized determinants

Alexey Kokotov

Let X be a compact Riemann surface of genus g ≥ 2 equipped
with flat conical metric |Ω|, where Ω is a holomorphic quadratic
differential on X with 4g − 4 simple zeroes. Let K be the canonical
line bundle on X. Introduce the Cauchy-Riemann operators ∂̄ and
∂ acting on sections of holomorphic line bundles over X (K2 in

the definition of ∆
(2)
|Ω| below) and, respectively, anti-holomorphic

line bundles (K̄−1 below). Consider the Laplace operator ∆
(2)
|Ω| :=

|Ω|∂|Ω|−2∂̄ acting in the Hilbert space of square integrable sections
of the bundle K2 equipped with inner product < Q1, Q2 >K2=∫
X

Q1Q̄2

|Ω| .
We discuss two natural definitions of the determinant of the

operator ∆
(2)
|Ω|. The first one uses the zeta-function of some special

self-adjoint extension of the operator (initially defined on smooth
sections of K2 vanishing near the zeroes of Ω), the second one is
an analog of Eskin-Kontsevich-Zorich (EKZ) regularization of the
determinant of the conical Laplacian acting in the trivial bundle.
Considering the regularized determinant of ∆

(2)
|Ω| as a functional

on the moduli space Qg(1, . . . , 1) of quadratic differentials with
simple zeroes on compact Riemann surfaces of genus g, we derive
explicit expressions for this functional for the both regularizations.
The expression for the EKZ regularization is closely related to the
well-known explicit expressions for the Mumford measure on the
moduli space of compact Riemann surfaces of genus g.

1. Introduction

Let X be a compact Riemann surface of genus g ≥ 2 and let Ω be a holomor-
phic quadratic differential with simple zeroes P1, . . . , P4g−4. Then its modu-
lus, |Ω|, gives a flat conformal metric on X with conical singularities at the
points Pk with conical angles 3π. The spectral theory of scalar (i. e. acting
in the trivial bundle over X) Laplacians in flat conical metrics on Riemann
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surfaces is fairly well understood. In particular, an important spectral invari-
ant, the ζ-regularized determinant of the Laplacian, is explicitly computed
in [20] for metrics given by the modulus square of a holomorphic one-form
and in [21] for metrics given by the modulus of an arbitrary holomorphic
quadratic differential; in [22] these results are generalized for arbitrary flat
conical metrics. In the present work we are dealing with Laplacian in metric
|Ω| acting in the square K2 of the canonical line bundle. Keeping in mind
classical results on the explicit formulas for the determinant of the hyper-
bolic Laplacian in integer and half-integer powers of the canonical bundle
([6], [31]) we are going to define and then compute the regularized determi-
nant of this operator. Our main motivation came from paper [4], where a
similar object was introduced and freely used by means of wonderful heuris-
tics (see also [26], where a closely related problem for general flat conical
metrics on Riemann surfaces of genera zero and one is considered).

The following immediate observation (essentially coinciding with the one
from [4], p. 106) is the starting point of the present work. Let

L2(K
2; |Ω|) = {u ∈ Γ(K2) :

∫

X
|u|2|Ω|−1 < ∞}

be the space of square integrable sections of the bundle K2 and let
L2(X; |Ω|) = {v ∈ Γ(E) :

∫
X |v|2|Ω| < ∞} be the space of square integrable

functions on X (i. e. sections of the trivial bundle E = X × C). Then un-
bounded operators

∆
(2)
|Ω| := |Ω|∂|Ω|−2∂̄ : L2(K

2; |Ω|) → L2(K
2; |Ω|)

and

∆
(0)
|Ω| := |Ω|−1∂∂̄ : L2(X; |Ω|) → L2(X; |Ω|)

with domains consisting of smooth sections (functions) with supports on
compact subsets of X \ {P1, . . . , P4g−4} are unitary equivalent. The corre-
sponding unitary equivalence is given by the operator U : L2(K

2; |Ω|) →
L2(X, |Ω|) defined via

u 7→ U(u) = uΩ−1 .

This could be the end of the story: the two operators are unitary equiv-
alent, so their regularized determinants (as well as all other spectral in-
variants) are the same. Thus, everything is reduced to the known case of
scalar conical Laplacians. Unfortunately, the situation is not that simple.

It is reasonable to include into the domain of the operator ∆
(2)
Ω its zero
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modes, holomorphic quadratic differentials on X. But if q is a holomor-
phic quadratic differential on X not proportional to Ω then the function
U(Ω) = qΩ−1 ∈ L2(X, |Ω|) is necessarily unbounded at some conical point
Pk and, therefore, does not belong to the domain of the Friedrichs exten-

sion of the operator ∆
(0)
|Ω|. Therefore, the results of [21] (where the explicit

expression for the Friedrichs scalar Laplacian in the metric |Ω| was found)
are not directly applicable. To include the holomorphic differentials into the

domain of ∆
(2)
|Ω| one has to consider some non standard self-adjoint extension

of the scalar Laplacian. Self-adjoint extensions of the conical scalar Lapla-
cian are described via asymptotics of the functions from their domains at
the conical points. The extension of interest, the so called holomorphic ex-

tension ∆
(0)
|Ω|, hol can be non-formally (the precise statement will be given

later) described as follows. The functions v from D(∆
(0)
|Ω|, hol) are subject to

asymptotics

v =
Hk

ζk
+ ck + hkζk +O(|ζk|3/2)

as ζk → 0, k = 1, . . . , 4g − 4, where

(1.1) ζk(P ) =

{∫ P

Pk

√
Ω

}2/3

is the so called distinguished local parameter near the conical point Pk.
Using the results of L. Hillairet and the author ([14], [15], see also [18]),

we will establish a comparison formula (2.7) for the determinants of the

Friedrichs and the holomorphic extensions of the operator ∆
(0)
|Ω|. This com-

parison formula slightly resembles heuristic formula (4.7) from [4] but is
way more complicated. Formula (2.7) together with results from [21] imply

an explicit expression for det∆
(0)
|Ω|, hol. Since the operator ∆

(0)
Ω, hol is unitary

equivalent to the self-adjoint extension of the operator ∆
(2)
|Ω| whose domain

contains all the holomorphic sections of the bundle K2, we conclude that

the usual ζ-regularization of the determinant of the operator ∆
(2)
|Ω| leads to

the relation

(1.2) det∗∆(2)
|Ω| = det∗∆(0)

|Ω|, hol

and get an explicit expression for the (modified, i. e. with zero modes ex-
cluded) determinant of the conical Laplacian in K2. All this constitutes the
first part of the present paper.
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It is well-known that for smooth conformal metrics ρ on X the quantity

(1.3)
det∆

(2)
ρ

det|| < qi, qj >ρ ||

(
det∆

(0)
ρ

Area (X, ρ)detℑB

)−13

,

where B is the matrix of b-periods of X and || < qi, qj >ρ || is the Gram
matrix for a basis {qi} of holomorphic quadratic differentials on X, is inde-
pendent of the choice of the metric ρ in the conformal class of X. Moreover,
the explicit expressions for this quantity (the modulus square of the so called
Mumford measure on the moduli space) were found in [25], [8], [11]. Naive
expectations that the same ρ-independence of (3.2) will hold if one extends
the class of smooth conformal metrics to the class of conformal metrics with
conical singularities find no confirmation: substituting the explicit expres-

sions for det∆
(2)
|Ω| and det∆

(0)
|Ω| into (1.3) gives a quantity at least seemingly

unrelated to any of the known explicit expressions for the Mumford mea-
sure; moreover the latter quantity (again, at least seemingly) does not have
any holomorphic factorization at all.

In [9] Eskin, Kontsevich and Zorich used an ingenious trick to define

the determinant of the scalar Laplacian ∆
(0)
|ω|2 in the conical metric given by

the modulus square of a holomorphic one form ω on X without any refer-

ence to the spectrum of the operator ∆
(0)
|ω|2 . Simple calculation based on the

Burghelea-Friedlander-Kappeler gluing formula shows that their definition
essentially (up to a constant) coincides with the usual ζ-regularization of the
(Friedrichs) scalar conical Laplacian. It turns out that Eskin-Kontsevich-
Zorich (EKZ in what follows) regularization is also possible for the determi-

nant of the operator ∆
(2)
|Ω| although no relations between this regularization

and the spectrum of the latter operator can be traced (to the best of our
knowledge). In the second part of the present paper we find an explicit ex-

pression for the EKZ regularization of det∆
(2)
|Ω|; substituting this expression

in (1.3) gives the Mumford measure. Relations between the two natural reg-

ularizations of det∆
(2)
|Ω| introduced in the paper deserve further study, at the

moment we see no evidence that they coincide.
It should be noticed that various regularizations for determinants of

Laplacians in conical metrics on Riemann surfaces were initially introduced
in eighties: by Sonoda in [32] for scalar Laplacians and by D’Hoker and
Phong in [7] for Laplacians acting in half-integer powers of the canonical
bundle. We refer the reader to [19] for the detailed comparison of the meth-
ods and the results of Sonoda for the scalar case with those from [20]. The
methods from [7] and [32] do not use the spectral theory and are based on
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regularization of the Liouville integrals appearing in the conformal anomaly
formula applied to the pair (conformal conical metric, Arakelov metric); the
possibility of such an application is not subject to any justification being a
part of the definition. These methods slightly resemble those of the second
part of the present paper where the regularized determinant is defined with-
out any reference to the spectrum of the operator. The paper [7] contains
an important remark (at the very end of section 1) stating the problem of
spectral theoretic interpretation of its results (in case of spin 1/2 bundles).
In the forthcoming paper we will partially address this problem and study
the spectral determinants of the spin 1/2 Laplacians and establish a version
of bosonization formula for flat conical metrics.

2. Holomorphic extension of scalar Laplacian in metric |Ω|

In this section we derive an explicit expression for the determinant of the
holomorphic extension of the scalar Laplacian in metric |Ω| from the results
of [14], [15] and [21].

2.1. Friedrichs and holomorphic extensions

We start with description of the self-adjoint extensions of the symmet-

ric operator ∆
(0)
|Ω| initially defined on the set C∞

0 (X \ {P1, . . . , P4g−4}) ⊂
L2(X; |Ω|). Let Dmin and Dmax be the domains of the closure of ∆

(0)
|Ω| and

the adjoint operator (∆
(0)
|Ω|)

∗ respectively. The following proposition gives an

explicit description of the factor space Dmax/Dmin. It can be considered as
a detailed specification of the general result from [27] on Laplacians acting
on p-forms on higher dimensional conical manifolds for a two-dimensional
scalar case, its closed independent proof can be found in the Appendix to
[18].

Proposition 1. In a vicinity of the point zero Pk of the quadratic differ-
ential Ω functions u from Dmax are subject to the asymptotics

u(ζk, ζ̄k) =
i√
2π

Lk(u) log |ζk|+
1

4π
Hk(u)

1

ζk
+

1

4π
Ak(u)

1

ζ̄k
(2.1)

+
i√
2π

ck(u) +
1√
4π

hk(u)ζk +
1√
4π

ak(u)ζ̄k

+ χ(ζk, ζ̄k)v(ζk, ζ̄k) ,
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where ζk is the distinguished local parameter (1.1) near Pk, χ is a cut-off
function with support in a vicinity of Pk and v ∈ Dmin. Any function v from
Dmin is O(|ζk|3/2) near Pk.

The next proposition (which is again a specification of the general re-
sults from [27]) can be used to describe all the self-adjoint extensions of the

operator ∆
(0)
|Ω|.

Proposition 2. (see, e. g., [15], [18]) Let u ∈ Dmax and let the row

X(u) = (Lk(u), Hk(u), Ak(u), ck(u), hk(u), ak(u))

consist of the coefficients in the asymptotics (2.1). Choose representatives
u, v ∈ Dmax of the classes [u], [v] ∈ Dmax/Dmin. Then

Ω([u], [v]) :=

∫

X

([
(∆

(0)
|Ω|)

∗u
]
v − u

[
(∆

(0)
|Ω|)

∗v
])

|Ω|(2.2)

=

4g−4∑

k=1

Xk(u)

(
0 − I3
I3 0

)
Xk(v)

t .

The self-adjoint extensions of the operator ∆
0)
|Ω| are in one to one corre-

spondence with Lagrangian subspaces of Dmax/Dmin with respect to sym-
plectic form (u, v) 7→ Ω([u], [v]) (mind the conjugation!). It is known that

the Friedrichs extension ∆
(0)
|Ω|,F corresponds to the Lagrangian subspace

(2.3) Lk(u) = Hk(u) = Ak(u) = 0 .

Following L. Hillairet ([13]), we define the holomorphic extension ∆
(0)
|Ω|,hol as

the one corresponding to the lagrangian subspace

Lk(u) = Ak(u) = ak(u) = 0 .

Thus, the function u ∈ Dmax belongs to the domain of ∆
(0)
|Ω|,hol if and only if

the coefficients near the logarithm and the antiholomorphic terms ζ̄−1
k and

ζ̄k in (2.1) vanish for all k = 1, . . . , 4g − 4.

Proposition 3. The kernel of the Friedrichs extension ∆
(0)
|Ω|,F is one-

dimensional and consists of constants. The kernel of the holomorphic exten-

sion ∆
(0)
|Ω|,hol has dimension 3g − 3 and consists of meromorphic functions

with at most simple poles at the zeroes of the quadratic differential Ω.
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Proof. To prove the first statement one should observe that the functions
from the domain of the Friedrichs extension are bounded at the conical
points (see (2.3)), then any solution u of ∆

(0)
|Ω|,Fu = 0 is a harmonic function

in X \ {P1, . . . , P4g−4} with removable singularities at the conical points
and, therefore, a constant. Let us prove the second statement. Let u ∈
Ker∆

(0)
|Ω|,hol. Then

0 =< ∆
(0)
|Ω|,holu, u >= lim

ϵ→0

[∫∫

Xϵ

ū∂∂̄u

]
= −

∫∫

X
|∂̄u|2 + lim

ϵ→0

∫

∂Xϵ

ū∂̄u,

where Xϵ is obtained from X cutting out disks of radius ϵ (in the dis-
tinguished local parameters) around all the points Pk. Using asymptotics
u ∼ Hk/ζk + ck + hkζk +O(|ζk|3/2) at Pk, one easily shows that the limit
of the last contour integral is equal to zero and, therefore, u is holomor-
phic in X \ {P1, . . . , P4g−4}. It is clear from the same asymptotics that the
poles of u at Pk are at most simple. Therefore, the quadratic differential
uΩ is holomorphic. On the other hand any function of the form q/Ω, where

q is a holomorphic quadratic differential, belongs to u ∈ Ker∆
(0)
|Ω|,hol. Thus,

the dimension of the kernel coincides with the dimension of the space of
holomorphic quadratic differentials and is equal to 3g − 3. □

2.2. S-matrix of the conical surface X

Here we introduce the so-called S-matrix of a conical surface X which en-
ters as the main ingredient into the formula relating the zeta-regularized
determinants of two different self-adjoint extensions of the scalar Laplacian
on X ([14]). Let λ be the spectral parameter; assuming that λ do not be-

long the (discrete, nonnegative) spectrum of the Friedrichs extension ∆
(0)
|Ω|,F ,

define the special growing solutions G1/ζk( · ;λ), G1/ζ̄k( · ;λ), Glog |ζk|( · ;λ) of
the equation

(∆
(0)
|Ω|)

∗G− λG = 0

specifying their asymptotics near the the conical points Pk of the surface X:

G1/ζk(P ;λ) =
1

ζk(P )
+O(1) as P → Pk,

G1/ζk(P ;λ) = O(1) as P → Pl; l ̸= k;

G1/ζ̄k(P ;λ) =
1

ζk(P )
+O(1) as P → Pk,

1/ζ̄k(P ;λ) = O(1) as P → Pl; l ̸= k;
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Glog |ζk|(P ;λ) = log |ζk(P )|+O(1) as P → Pk,

Glog |ζk|(P ;λ) = O(1) as P → Pl; l ̸= k.

The entries Sαβ(λ)

α = log |ζk|, 1/ζk, 1/ζ̄k, k = 1, . . . , 4g − 4;

β = 1l, ζl, ζ̄l, l = 1, . . . , 4g − 4

of the S-matrix of the conical surface (X, |Ω|) are defined via the asymtotics

G1/ζk(P ;λ) = δkl
1

ζl(P )
+ S1/ζk,1l(λ) + S1/ζk,ζl(λ)ζl(P )

+ S1/ζk,ζ̄l(λ)ζ̄l(P ) +O(|ζl(P )|3/2),

G1/ζ̄k(P ;λ) = δkl
1

ζl(P )
+ S1/ζ̄k,1l(λ) + S1/ζ̄k,ζl(λ)ζl(P )

+ S1/ζ̄k,ζ̄l(λ)ζ̄l(P ) +O(|ζl(P )|3/2),
Glog |ζk|(P ;λ) = δkl log |ζl(P )|+ Slog |ζk|,1l(λ) + Slog |ζk|,ζl(λ)ζl(P )

+ Slog |ζk|,ζ̄l(λ)ζ̄l(P ) +O(|ζl(P )|3/2),

as P → Pl. We refer to [14], [15], [16] for the study of analytic properties
properties of the entries of S(λ) (see also [18] for an improved exposition).
In what follows we will only deal with the (4g − 4)× (4g − 4) block T (λ) of
the matrix S(λ):

(2.4) T (λ) = ||S1/ζk,ζ̄l(λ)||k,l=1,...,4g−4 .

The matrix T (λ) is known to be analytic in a vicinity of λ = 0, moreover,
one has the relation

(2.5) T (0) = −π||B(Pk, Pl)||k,l=1,...,4g−4,

where

B(R,Q) =

g∑

i,j=1

(ℑB)−1
ij vi(R)vl(Q)

is the Bergman kernel of the Riemann surface X. Here B is the matrix of b-
periods of X, {vi}i=1,...,g is the basis of normalized holomorphic differentials
on X and vj(Pl) means the value of vj at Pl computed in the distinguished
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local parameter ζl:

vj = f(ζl)dζl near Pl; vj(Pl) := f(0) .

The following proposition almost immediately follows from Proposition 2
from [15].

Proposition 4. The matrix T (0) has rank g.

Proof. The matrix T (0) is the Gram matrix of the 4g − 4 vectors

Vl = (v1(Pl), . . . , vg(Pl)) ; l = 1, . . . , 4g − 4

from Cg with respect to the Hermitian product

< V,W >=

g∑

i,j

(ℑB)−1
ij ViW̄j

and, therefore, rankT (0) ≤ g. Assume that rankT (0) < g. Then Proposi-
tion 2 from [15] implies that for any subset {Pi1 , . . . , Pi2g−2

} of the set of ze-
roes P1, . . . , P4g−4 of the quadratic differential Ω the divisor Pi1 + · · ·Pi2g−2

belongs to the canonical class. Considering two subsets {P1, P2, . . . , P2g−3,
P2g−2} and {P1, P2, . . . , P2g−3, P2g−1}, one gets existence of a meromorphic
function with divisor P2g−2 − P2g−1 which is impossible. □

2.3. Comparison formula for determinants of Friedrichs and
holomorphic extensions

The following Proposition is a version of Theorem 2 from [14] and Proposi-
tion 3 from [15], its proof coincides with the one from [15] almost verbatim.
The absolute constant Cg below admits explicit calculation (cf. Proposi-
tions 7 and 8 from [18]) but this is of no interest for the purpose of the
present paper.

Proposition 5. Let the spectral parameter λ do not belong to the union of

spectra of the Friedrichs, ∆
(0)
|Ω|,F , and the holomorphic, ∆

(0)
|Ω|,hol, extensions

of the scalar laplacian. Then the ζ-regularized determinants of the operators
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∆
(0)
|Ω|,F − λ and ∆

(0)
|Ω|,hol − λ are related as follows:

(2.6) det (∆
(0)
|Ω|,hol − λ) = CgdetT (λ)det (∆

(0)
|Ω|,F − λ)

where T (λ) is from (2.4) and the constant Cg depends only on the genus
of X.

Since dimKer∆
(0)
|Ω|,F = 1 and dimKer∆

(0)
|Ω|,hol = 3g − 3, one gets the fol-

lowing relation between the modified (i. e. with zero modes excluded) de-

terminants of the two extensions dimKer∆
(0)
|Ω|,F and dimKer∆

(0)
|Ω|,hol.

Theorem 1. One has the relation

(2.7) det∗∆(0)
|Ω|,hol =

Cg

(3g − 4)!

(
d

dλ

)3g−4

detT (λ)
∣∣∣
λ=0

det∗∆(0)
|Ω|,F .

Denoting by N3g−4 the set of (4g − 4)-tuples n = (n1, . . . , n4g−4) of non-
negative integers such that n1 + · · ·+ n4g−4 = 3g − 4, one has

(2.8)

(
d

dλ

)3g−4

detT (λ)
∣∣∣
λ=0

=

∑

n∈N3g−4

(3g − 4)!

n1!n2! . . . n4g−4!

∣∣∣∣∣∣

(
d
dλ

)n1
S1/ζ1,ζ̄1(0) . . .

(
d
dλ

)n4g−4
S1/ζ1,ζ̄4g−4(0)

. . .(
d
dλ

)n1
S1/ζ4g−4,ζ̄1(0) . . .

(
d
dλ

)n4g−4
S1/ζ4g−4,ζ̄4g−4(0)

∣∣∣∣∣∣

All the entries of the determinants from the right hand side of (2.8) can
be explicitly computed (see [14], formulae (4.12), (4.9) and (2.8); and [18],
formula (2.20)). Namely, introduce the meromorphic differential on X of the
third kind

Ωp−q(z) =

∫ q

p
W (z, · )− 2π

√
−1

g∑

i,j=1

(ℑB)−1
ij vα(z)

∫ q

p
vβ

with simple poles at p and q with residues 1 and −1 and purely imaginary
periods; here W ( · , · ) is the canonical meromorphic bidifferntial on X. Then
(see [18], Proposition 3) the special growing solution G1/ζk(P, λ) admits
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holomorphic continuation to λ = 0 and one has

(2.9) G1/ζk(y; 0) = − 1∫
X |Ω|

∫

X
Ωy−·(Pk)|Ω(·)|,

where the value of the 1-differential at Pk is computed in the distinguished
local parameter; moreover, the function G1/ζk(y; 0) is orthogonal to 1 in
L2(X, |Ω|). Thus, formulae (4.11) and (4.12) from [15] imply the relation
(2.10)(

d

dλ

)n

S1/ζl,ζ̄k(0) =

∫

X

[(
∆

(0)
|Ω|,F

∣∣∣
1⊥

)1−n
G1/ζl( · , 0)

]
G1/ζk( · , 0)|Ω( · )|

where the inverse operator
(
∆

(0)
|Ω|,F

∣∣∣
1⊥

)−1
: 1⊥ → 1⊥ acts as u 7→ v, where

v(x) =

∫

X
G(x, · )u( · )|Ω( · )|

and

G(x, y) =
1

2π
(∫

X |Ω|
)2
∫

q∈X
|Ω(q)|

∫

p∈X
|Ω(p)|ℜ

∫ x

p
Ωy−q( · )

is the Green function of the Friedrichs Laplacian (see [18], formula (2.5)).

Remark 1. Following the discussion from the Introduction, one can con-
sider Theorem 1 together with formulae (2.8) and (2.10) as a rigorous coun-
terpart of the heuristic formula (4.7) from [4].

2.4. Explicit formula for the determinant of the Friedrichs
extention

Here we recall an explicit formula for det∗∆(0)
|Ω|,F obtained in [21]; the latter

formula together with Theorem 1 and (1.2) implies an explicit expression
for the ζ-regularized determinant of the Laplacian in K2 corresponding to
the flat conical metric |Ω|.

Let Qg(1, . . . , 1) (4g − 4 units) be the the moduli space of pairs (X,Ω),
where X is a compact Riemann surface of genus g and Ω is a quadratic
holomorphic differential on X with (4g − 4) simple zeroes. Following the
improved presentation from more recent paper [23], define the Bergman
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tau-function τ(X,Ω) on Qg(1, . . . , 1) via the relation

(2.11) τ24(X,Ω) =

([∑g
i=1 vj(P ) ∂

∂wj

]g
Θ(w;B)

∣∣∣
w=KP

)16∏
k<l E(Pk, Pl)

e4π
√
−1<BZ+4KP ,Z>W16(P )

∏
k E(P, Pk)4(g−1)

where

• B is the matrix of b-periods of X; Θ( · ,B) is the Riemann theta-
function (see [29], [10]),

• Pk, k = 1, . . . , 4g − 4 are the zeroes of the quadratic differential Ω.

• P is an arbitrary base point on X (in fact, expression (2.11) is P -
independent),

• W is the Wronskian of basic holomorphic differentials v1, . . . , vg (see,
e. g., [12], (5.8.3))

• E(·, ·) is the prime form (see [29], [10]),

• KP is the vector of Riemann constants (see [29], [10]),

• the vector Z from
(
1
2Z
)g

is defined via

1

2
AP ((Ω)) + 2KP = BZ + Z ′

where AP is the Abel map with base P and (Ω) = P1 + · · ·+ P4g−4 is
the divisor of q; Z ′ ∈

(
1
2Z
)g
,

• all the values of tensor (the basic holomorphic differentials) and tensor-
like (the prime-form) objects at Pk are computed in the distinguished
local parameter

ζk(Q) =

{∫ Q

Pk

√
Ω

}2/3

near Pk,

• all the values of tensor (the Wronskian) and tensor-like (the prime-
form) objects at P are computed in the same holomorphic local pa-
rameter at P ; since expression (2.11) is a scalar with respect to P , the
result does not depend on the choice of this local parameter.

Theorem 2. Let (X,Ω) be an element of the space Qg(1, . . . , 1). The ζ-
regularized (modified) determinant of the Friedrichs extension of the scalar
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Laplacian in the metric |Ω| on X can be expressed through the Bergman
tau-function τ on Qg(1, . . . , 1) from (2.11) as follows:

(2.12) det∗∆(0)
|Ω|,F = C(g)

(∫

X
|Ω|
)

detℑB |τ |2 ,

where the constant C(g) depends only on the genus g.

2.5. EKZ-regularization of the scalar Laplacian and BFK gluing
formulae

Here we show that the regularization of the determinant of the Friedrichs

scalar Laplacian ∆
(0)
|Ω|,F on X proposed by Eskin, Kontsevich and Zorich

in [9] essentially coincides with usual ζ-regularization. This fact is derived
using the Bourghlea-Fiedlander-Kappeler (BFK in what follows) gluing for-
malae. First, we recall the EKZ construction. It should be noted that in
the original paper [9] this construction was introduced to regularize the

determinant of the Laplacian ∆
(0)
|v|2,F considered as a function on the mod-

uli space Hg(k1, . . . , km) of pairs (X, v), where X is a compact Riemann
surface and v is a holomorphic one form with M zeroes of multiplicities
k1, . . . , kM ; here we apply this construction without any changes to the pairs
(X,Ω) ∈ Qg(1, . . . , 1).

Choose a pair (X0,Ω0) from the space Qg(1, . . . , 1) a let (X,Ω) be any
other element of Qg(1, . . . , 1). In a vicinity of any zero Pk of the quadratic
differential Ω the metric |Ω| coincides with the metric of the standard round
cone of the angle 3π,

|Ω| = 9

4
|ζk||dζk|2

(one can certainly get rid of the factor 9/4 just including the correspond-
ing factor in the definition of the distinguished local parameter ζk (1.1)).
Smoothing all these standard round cones in ϵ-vicinities of their tips P1, . . . ,
P4g−4 one gets a smooth conformal metric |Ω|(ϵ) on X. One can perform the
smoothing in such a way that the total area of X does not change, i . e.∫
X |Ω| =

∫
X |Ω|(ϵ). The following key observation belongs to Eskin, Kontse-

vich and Zorich.

Lemma 1. The quantity

(2.13) R(0)
ϵ (X,Ω) :=

det∗∆(0)
|Ω|(ϵ)

det∗∆(0)
|Ω0|(ϵ)
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is independent of ϵ for sufficiently small positive ϵ. Here both the determi-
nants of the Laplacians in smooth metrics |Ω0|(ϵ) (on X0) and |Ω|(ϵ) (on X)
are defined via usual ζ-regularization.

This lemma easily follows from the Polyakov formula ([30]; [28], f-la
(1.17)) relating the determinants of the Laplacians in two smooth confor-
mally equivalent metrics on a given Riemann surface. In the next section we
will prove its complete analog for the Laplacians acting in K2 giving all the
needed details.

Definition 1. Let (Ω, X) ∈ Qg(1, . . . , 1). Define the EKZ-regularization of

the determinant of the operator ∆
(0)
|Ω| as

(2.14) detEKZ∆
(0)
|Ω| := lim

ϵ→0
R(0)

ϵ (X,Ω) .

Remark 2. We remind the reader that the Laplacians in smooth metrics
are essentially self-adjoint, so no choice of the self-adjoint extension is re-

quired in the definition of R
(0)
ϵ (X,Ω) as well as in that of detEKZ∆

(0)
|Ω|; in

a sense the latter quantity is defined without any use of the spectrum of the

operator ∆
(0)
|Ω|.

The following Proposition shows that for the scalar conical Laplacians
the EKZ regularization of the determinant essentially coincides with the
usual ζ-regularization.

Proposition 6. One has the relation

(2.15) detEKZ∆
(0)
|Ω| = Cdet∗∆(0)

|Ω|,F

where the constant C is independent of the point (X,Ω) ∈ Qg(1, . . . , 1).

Proof. The following argument is very similar to the proof of Proposition
1 from [22] (and we refer to this reference for all the details omitted): one
uses the fact that in vicinities (Dk(ϵ)) of conical points all the Riemannian
manifolds (X, |Ω|) are isometric to the vicinity |x| < ϵ of the tip of the stan-
dard round cone (C, |x||dx|2); after smoothing all these vicinities turn into
the standard smooth ”cap” ({|x| ≤ ϵ}, ρ(x, x̄)|dx|2) with smooth positive
ρ. One can assume that the metric ρ(x, x̄)|dx|2 coincides with |x||dx|2 for
0 < ϵ1 < |zx| ≤ ϵ and, therefore the lengths of the boundary circles |x| = ϵ
do not change after smoothing. We also remind the reader that the metrics
|Ω| and |Ω|(ϵ) have the same volume.
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Let Σ = X \ ∪4g−4
k=1 Dk(ϵ), Γ = ∂Σ. Denote by l(Γ) the length of ∂Γ (in

the metric |Ω|). Let also N be the Neumann jump operator on the contour

Γ for ∆
(0)
|Ω|(ϵ) . Let Σ0, Γ0, N0 be the same objects defined for the reference

surface (X0, |Ω0|(ϵ)). In the sequel we denote by (∆|U) the operator of the
Dirichlet boundary value problem for an operator ∆ in a domain U.

Applying the BFK gluing formulae ([3], p. 54, Theorem B∗; see also [5]
for important improvements)
(2.16)

det∗∆(0)
|Ω|ϵ =

{
4g−4∏

k=1

det (∆
(0)
|Ω|(ϵ) ;Dk(ϵ))

}
det(∆

(0)
|Ω||Σ)det

∗NArea(X, |Ω|)l(Γ)−1

to the numerator and denominator of (2.13), one gets

(2.17) R(0)
ϵ (X,Ω) =

det(∆
(0)
|Ω||Σ)det

∗NArea(X, |Ω|)l(Γ)−1

det(∆
(0)
|Ω0||Σ0)det

∗N0Area(X0, |Ω0|)l(Γ0)−1
.

Multiplying the right hand side of (2.17) by

1 =

{∏4g−4
k=1 det (∆

(0)
|Ω||Dk(ϵ))

}

{∏4g−4
k=1 det (∆

(0)
|Ω0||Dk(ϵ))

}

observing that the determinant of the Neumann jump operator does not
change if one passes from the metric |Ω|(ϵ) to the metric |Ω| and then making

use of the following BFK formula for the operator ∆
(0)
|Ω|,F

(2.18)

det∗∆(0)
|Ω|,F =

{
4g−4∏

k=1

det (∆
(0)
|Ω|;Dk(ϵ))

}
det(∆

(0)
|Ω||Σ)det

∗N(Area(X, |Ω|)l(Γ)−1 ,

(see [21] for the discussion of the minor point where the proof of the BFK
formula for the Friedrichs Laplacian on compact two-dimensional manifolds
with conical metrics that are flat in vicinities of the conical singularities
differs from the one for the smooth case; a much more general statement
than (2.18) was proved in [24]; the detailed proof of (2.18) for conical metrics
belonging to a broad class which contains flat conical metrics can be found
in the recent preprint [17], Section 2.2) one gets the relation

R(0)
ϵ (X,Ω) =

det∗∆(0)
|Ω|,F

det∗∆(0)
|Ω0|,F
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and, therefore, the statement of the proposition. □

3. EKZ-regularization of the determinant of ∆(2)

3.1. Canonical covering and Korotkin-Zograf basis

To a pair (X,Ω) fromQg(1, . . . , 1) one associates a ramified two-fold covering
π : X̂ → X, where X̂ (the so-called canonical cover) is a compact Riemann
surface of genus 4g − 3. The quadratic differential Q being lifted to X̂ be-
comes the square of a holomorphic differential v on X̂. The branch points
of the covering coincide with 4g − 4 zeroes of the quadratic differential Q;
the differential v has double zeroes at preimages of the branch points. Let
µ : X̂ → X̂ be the holomorphic involution interchanging the sheets of the
covering. Following [10] introduce a canonicle basis of a and b-cycles on X̂:

{Al}4g−3
l=1 = {aα}gα=1 ∪ {µ(aα)}gα=1 ∪ {ãk}2g−3

k=1

{Bl}4g−3
l=1 = {bα}gα=1 ∪ {µ(bα)}gα=1 ∪ {b̃k}2g−3

k=1

where the cycles (aα, µ(aα), bα, µ(bα)) are obtained via lifting of a canonical
basis of a and b-cycles on the base X of the covering and the cycles ãk, b̃k
satisfy the relations

µ(ãk) + ãk = µ(b̃k) + b̃k = 0

in H1(X̂,Z). Let

{Vl}4g−3
l=1 = {vα}gα=1 ∪ {v(µ)α }gα=1 ∪ {wk}2g−3

k=1

be the corresponding basis of normalized (i. e.
∫
Am

Vn = δmn) holomorphic

differentials on X̂: Following Korotkin and Zograf ([23], p. 244, f-la (2.3),
see also [1]), introduce 3g − 3 holomorphic differentials W1, . . . ,W3g−3 on X̂
via

Wα = vα − v(µ)α ;α = 1, . . . , g

Wg+k = wk; k = 1, . . . , 2g − 3 .

Clearly, one has

µ∗Wk = −Wk; k = 1, . . . , 3g − 3 .

On the other hand the differential v =
√
π∗Ω satisfies

µ∗v = −v
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and, therefore, the quadratic differentials vWk; k = 1, . . . , 3g − 3 are invari-
ant with respect to the holomorphic involution µ on X̂, and, therefore, give
rise to quadratic differentials q1, . . . , q3g−3 on X.

Definition 2. The basis q1, . . . , q3g−3 in H0(X,K2) is called Korotkin-
Zograf basis of holomorphic quadratic differentials on X.

3.2. EKZ regularization

Let (X,Ω) be a point of the stratum Qg(1, . . . , 1) and let ϵ > 0 be suf-
ficiently small. As in Section 2 introduce the smooth conformal metric
|Ω|(ϵ) on X which coincides with |Ω| outside the disks |xm| ≤ ϵ, where

xm(P ) =
(∫ P

Pm

√
Ω
)2/3

is the distinguished local parameter in a vicinity of

Pm. One can assume that
∫
X |Ω|(ϵ) =

∫
X |Ω|.

Denote by G(qα; |Ω|(ϵ);X,Q) the Gram determinant of the scalar prod-
ucts with respect to the metric |Ω|(ϵ):

G(qα; |Ω|(ϵ);X,Q) = det
∣∣∣
∣∣∣
∫

X

qαqβ

|Ω|(ϵ)
∣∣∣
∣∣∣

(here |Ω|(ϵ) is considered as a (1, 1)-form).
Choose a reference point (X0,Ω0) of the stratum Qg(1, . . . , 1).
Let

R(2)
ϵ (X,Ω) =

det∆
(2)
|Ω|(ϵ)(X,Ω)

(
G(qα; |Ω|(ϵ);X,Q)

)−1

det∆
(2)
|Ω0|(ϵ)(X0,Ω0)

(
G(qα; |Ω0|(ϵ);X0,Ω0)

)−1
.

The following statement is an analog of Lemma 1.

Lemma 2. For sufficiently small ϵ the quantity R
(2)
ϵ (X,Ω) is ϵ-independent.

Proof. The statement of the Lemma almost immediately follows from Propo-
sition 3.8 from [11] (which, in its turn, is a specification of a much more
general Theorem 1.23 from [2])

Let ρϵk =
{
|Ω|(ϵk)

}−1/2
; hϵk =

{
|Ω|(ϵk)

}−2
and ρ0ϵk =

{
|Ω0|(ϵk)

}−1/2
;

h0ϵk =
{
|Ω0|(ϵk)

}−2
; k = 1, 2.
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According to Proposition 3. 8 from [11] one has

logR(2)
ϵ2 − logR(2)

ϵ1 = log
det∆

(2)
|Ω|(ϵ2)(X,Ω)

(
G(qα; |Ω|(ϵ2);X,Q)

)−1

det∆
(2)
|Ω|(ϵ1)(X,Ω)

(
G(qα; |Ω|(ϵ1);X,Q)

)−1

− log
det∆

(2)
|Ω0|(ϵ2)(X0,Ω0)

(
G(qα; |Ω0|(ϵ2);X0,Ω0)

)−1

det∆
(2)
|Ω0|(ϵ1)(X0,Ω0)

(
G(qα; |Ω0|(ϵ1);X0,Ω0)

)−1

=
1

π

∫

X

{
(
1

3
log

ρϵ2
ρϵ1

− 1

2
log

hϵ2
hϵ1

)∂2
zz̄ log ρϵ1ρϵ2

+ (−1

2
log

ρϵ2
ρϵ1

+
1

2
log

hϵ2
hϵ1

)∂2
zz̄ log

hϵ2
hϵ1

}
d̂z

− 1

π

∫

X

{
(
1

3
log

ρ0ϵ2
ρ0ϵ1

− 1

2
log

h0ϵ2
h0ϵ1

)∂2
zz̄ log ρ

0
ϵ1ρ

0
ϵ2

+ (−1

2
log

ρ0ϵ2
ρ0ϵ1

+
1

2
log

h0ϵ2
h0ϵ1

)∂2
zz̄ log

h0ϵ2
h0ϵ1

}
d̂z .

Assuming ϵ2 > ϵ1, one has |Ω|(ϵ1) = |Ω|(ϵ2) and |Ω0|(ϵ1) = |Ω0|(ϵ2) outside the
ϵ2-disks around the conical points. So the integration in the right hand
side of the above formula goes only these ϵ2-disks. Inside these disks the
expressions under the two integrals in the right hand side are the same (the
parts of the flat surfaces (X,Ω) and (X0,Ω0) inside these disks are isometric)

and, therefore, logR
(2)
ϵ2 − logR

(2)
ϵ1 = 0. □

Definition 3. Define the EKZ-regularization of the determinant of the
Laplacian acting on quadratic differentials in the singular metric |Ω| as

(3.1) detEKZ∆
(2)(X,Ω) :=

(
lim
ϵ→0

R(2)
ϵ (X,Ω)

)
det
∣∣∣
∣∣∣
∫

X

qαq̄β
|Ω|

∣∣∣
∣∣∣ .

Remark 3. It can be shown that the determinant of the matrix

∣∣∣
∣∣∣
∫

X

qαq̄β
|Ω|

∣∣∣
∣∣∣ =

∣∣∣
∣∣∣1
2

∫

X̂
WkW l

∣∣∣
∣∣∣

coincides (up to insignificant constant factor) with detℑΠ, where Π is the
Prym matrix (see [1], p. 774) corresponding to the element (X,Ω) of
Qg(1, . . . , 1).
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3.3. Explicit calculation of detEKZ∆
(2)(X,Ω)

We will make use of

• The explicit expression for the spectral determinant of the Friedrichs

extension of ∆
(0)
|Ω|,F on the stratum Qg(1, . . . , 1) given in Theorem 2

• Fay’s version of the Belavin-Knizhnik-Manin explicit formula for the
Mumford measure (more specifically, Theorem 5.8 from [11]).

Assume that g ≥ 3 (that is needed to apply Theorem 5.8 from [11]; the
case g = 2 can be also included but is omitted for the sake of brevity).

According to Lemmas 1 and 2, the following expression

T =
R

(2)
ϵ (X,Ω)

(
(detℑB)Area(X, |Ω|(ϵ)

)−13
R

(0)
ϵ (X,Ω)13

is ϵ-independent. (We remind the reader that Area(X, |Ω|(ϵ)) = Area(X, |Ω|).)
Moreover, applying Theorem 5.8 from [11] with n = 4 and χ = I, one

gets the relation

(3.2) T = C

∣∣∣∣∣∣

θ
(
3KP +

∑3g−3
i=1 AP (x1 + · · ·+ x3g−3)

)∏
i<j E(xi, xj)

det||qi(xj)||
∏3g−3

k=1 C(xi)
3

g−1

∣∣∣∣∣∣

2

where the multiplicative (g(1-g)/2)-differential C is defined in (1.17) on page
9 of [11]; x1, . . . , x3g−3 are arbitrary points of X; AP is the Abel map with
base point P ; KP is the vector of the Riemann constants and C is a constant
independent of ϵ and (X,Ω) ∈ Qg(1, . . . , 1).

Now using explicit expression for det∗∆(0)
|Ω|,F and Proposition 6, one gets

the following explicit expression for detEKZ∆
(2):

(3.3) detEKZ∆
(2)(X,Ω) =

Cdet||
∫

X

qiq̄j
|Ω| ||

∣∣∣∣∣∣
θ(3KP+

∑3g−3
i=1 AP (x1+···+x3g−3))

∏
i<j

E(xi,xj)

det

∣∣∣
∣∣∣qi(xj)

∣∣∣
∣∣∣∏3g−3

k=1 C(xi)
3

g−1

(τ(X,Ω))13

∣∣∣∣∣∣

2

,

where {qi} is the Korotkin-Zograf basis of quadratic differentials on X corre-
sponding to the pair (X,Ω) ∈ Qg(1, . . . , 1) and C is a constant independent
of (X,Ω) ∈ Qg(1, . . . , 1).
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Remark 4. If the det∆
(2)
|Ω| is understood in the sense of EKZ regularization

and det∆
(0)
|Ω| is understood as the ζ-regularized determinant of the Friedrichs

extension of the scalar conical Laplacian then the expression (1.3) with con-
ical metric ρ given by ρ = |Ω|, coincides with the one with any smooth con-
formal metric ρ up to a moduli independent constant.
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