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flat Kähler manifolds
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Let X be a compact Kähler manifold with vanishing Riemann
curvature. We prove that there exists a manifold X ′ deformation
equivalent to X which is not an analytification of any projective
variety, if and only if H0(X,Ω2

X
) ̸= 0. Using this, we recover a re-

cent theorem of Catanese and Demleitner, which states that a rigid
smooth quotient of a complex torus is always projective.

We also produce many examples of non-algebraic flat Kähler
manifolds with vanishing first Betti number.

1. Introduction and preliminaries

Any smooth projective variety over C can be viewed as a compact Kähler
manifold.

However, the world of Kähler geometry is noticeably larger than the
world of complex projective geometry. There exist holomorphic deformations
of projective varieties which cannot be holomorphically embedded into any
complex projective space. Moreover, Claire Voisin has constructed examples
of compact Kähler manifolds, which are not homeomorphic to any projective
variety ([Vois04]).

Let us say that a complex structure is algebraic, or, more generally,
that a complex manifold is algebraic, if it can be obtained as analytifica-
tion of a smooth projective variety. The list of manifolds that admit both
algebraic and non-algebraic complex structures includes K3-surfaces, Hy-
perkähler manifolds, complex tori and others. For complex tori, it is well-
known that in every dimension n > 1 a very general n-dimensional com-
plex torus is non-algebraic ([BL99], Ch. 1, Corollary 6.3. See also [Sh], Ch.
VII, Subsection 1.4.). As it follows from Barlet’s theorems about the semi-
continuity property for the algebraic dimension ([Bar]), if there exists at
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least one non-algebraic complex structure in a given deformation class, then
a very general member of this family is non-algebraic.

The aim of this article is to study the existence of non-algebraic defor-
mations of complex manifolds admitting flat Kähler metric. Such manifolds
are natural generalisations of complex tori, and, as follows from Bieberbach’s
theory of crystallographic groups (see subsection 1.1), every flat Kähler man-
ifold X is isomorphic to a quotient T/G for a complex torus T and a finite
group G acting on T holomorphically and freely.

Observe that in this case H
q
(X,Q) = H

q
(T,Q)G (see e.g. [Hat], Prop.

3G.1 on p. 321) and the isomorphism is compatible with Hodge decomposi-
tion ([Vois02], Section 7.3.2).

In general, there might be no non-trivial holomorphic 2-forms on X. This
gives an obvious obstruction for X to admit a non-algebraic deformation.
If H0(X,Ω2

X) = H2,0(X) = 0, the same holds for any deformation X ′ of X,
since Hodge numbers are constant in flat smooth families. The cone of Kähler
classes is open inside

H2(X ′,R) = H2(X ′,R) ∩H1,1(X ′)

and we are able to find a rational Kähler class. By Kodaira’s embedding
theorem this realises X ′ as a subvariety in CPN .

In Theorem 2.1 we show that this is indeed the only obstruction for a flat
Kähler manifold to admit a non-algebraic deformation: if H0(X,Ω2) ̸= 0,
there exists a family of flat Kähler manifolds over a disc (in fact, over a
projective line) with special fibre being isomorphic to X and very general
fibre being non-algebraic (see Section 2 for the precise statement).

We would also like to mention another motivation for our work, which
comes from the Amerik-Rovinsky-Van de Ven conjecture. In their article
([ARVdV], Section 3) these authors conjectured that the second Betti num-
ber of any compact flat Kähler manifold is at least two. Observe that any
compact Kähler manifold has b2 > 0 and if b2 = 1, this manifold automati-
cally admits a Kähler form with integral cohomology class and therefore is
algebraic. There is a recent preprint of R. Lutowski [L], claiming to prove a
statement equivalent to ARVdV Conjecture. The work of Lutowski is suffi-
ciently based on an earlier paper [HS], which uses the classification of simple
finite groups. In spite of this, we are still hoping for some advances in un-
derstanding this problem from a more geometric point of view.

The paper is organised in the following way: first, we explain the main
properties of compact flat Kähler manifolds and give some examples of those.
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In Section 2 we give the precise formulation for our main theorem (Theo-
rem 2.1). Then we recall some heuristics coming from Hyperkähler geometry,
prove a pair of lemmas from linear algebra, and deduce the main theorem.
As a corollary, we obtain a new proof of the Catanese-Demleitner theorem
([CD+C], Theorem 1).

Finally, in Section 3 we describe examples of non-algebraic flat Kähler
manifolds and provide a construction for flat Kähler manifolds which admit
holomorphic symplectic form and have vanishing first Betti number. To-
gether with the main theorem, this gives many examples of non-algebraic
flat Kähler manifolds with b1 = 0. This is of independent interest since ex-
plicit examples of such manifolds do not seem to be present in the literature.
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1.1. Flat Kähler manifolds

Recall that a crystallographic group is a discrete subgroup Γ ⊂ Iso(Rn) of
isometries of Euclidean space, such that Rn/Γ is compact. The study of
such groups was initiated by Evgraf Fedorov [Fed]. The modern theory
of crystallographic groups is based on the following theorem of Ludwig
Bieberbach([Bieb]):

Theorem 1.1 (Bieberbach). A finitely generated group Γ can be realised
as a crystallographic group in Iso(Rn) if and only if Γ contains a normal
free abelian subgroup of finite index. This subgroup is of rank n and acts on
Rn by translations. For a given n there exists only a finite number of such
groups Γ ⊂ Iso(Rn) up to conjugation.

Remark. The finiteness result in fact gives a partial solution for Hilbert’s
18th problem, which originally motivated Bieberbach in his studies. The
finite group G = Γ/Zn is often called the rotation group of Γ.

Lemma 1.2. Let M be a compact manifold of dimension n. The following
conditions are equivalent:



✐

✐

“12-Rogov” — 2023/2/17 — 1:02 — page 1232 — #4
✐

✐

✐

✐

✐

✐

1232 Vasily Rogov

(1) M admits a Riemannian metric g, such that the Riemann curvature
tensor Rg vanishes everywhere;

(2) M = Rn/Γ for some torsion-free crystallographic group Γ ⊂ Iso(Rn);

(3) M = T/G, where T = (S1)×n is a torus and G is a finite group which
acts on T freely.

The proof can be founded e.g. in [W] (Theorem 3.3.1).
In this article, we are using the complex version of the same theory. Let

IsoC(Cn) be the group of biholomorphisms of Cn preserving the standard
Hermitian metric. A complex crystallographic group is a discrete subgroup
Γ ⊂ IsoC(Cn), such that Cn/Γ is compact. From the Lemma 1.2 we easily
deduce the following generalisation:

Lemma 1.3. Let X be a compact complex manifold. The following condi-
tions are equivalent:

(1) X admits a Kähler metric with everywhere vanishing curvature tensor;

(2) X = Cn/Γ for some torsion-free complex crystallographic group Γ ⊂
IsoC(Cn);

(3) X = T/G, where T is a (compact) complex torus and G is a finite
group which acts on T freely and holomorphically.

Remark. The torsion-free condition can be omitted if we consider (Kähler)
orbifolds instead of manifolds.

Proof. (1) =⇒ (2). Let X̃ → X be the universal covering. Lift a flat Kähler
metric to X̃, choose local coordinates on a small ball B ⊂ X̃ and extend them
globally, using the Levi-Civita connection. Since this connection is flat, it
is well-defined and establishes a biholomorphism X̃ → Cn. Moreover, since
the connection is orthogonal, this is an isometry. Since π1(X) acts on X̃ by
holomorphic isometries, it is complex crystallographic.

(2) =⇒ (3) It follows from Bieberbach’s theorem that X admits a finite
Galois covering by a smooth compact manifold T . Moreover, T is isomorphic
to Cn/Λ where Λ is a free abelian group acting on Cn by holomorphic
isometries. It follows that T is a complex torus.

(3) =⇒ (1) Take any flat Kähler metric on T and average its Kähler
form by the action of G. This will descend to a Kähler form on X and the
associated metric will be flat. □
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Remark. A manifold which satisfies one of the properties of Lemma 1.3
is sometimes called Kähler-Bieberbach manifold. Another frequent term for
compact Kähler manifolds admitting flat Kähler metric, but not isomorphic
to a complex torus, is hyperelliptic manifolds. In the context of algebraic
geometry, one can also use the term hyperelliptic varieties.
Remark. If X = Cn/Γ = T/G is a flat Kähler manifold, then the mon-
odromy of its flat Levi-Civita connection is isomorphic to G. Moreover, if
p : T → X is the natural projection and x = p(0), the monodromy repre-
sentation of G on TxX ≃ T0T is isomorphic to the representation of G on
H1(T,R) via the exponential isomorphism T0T ≃ H1(X,R).

Let X be a flat Kähler manifold isomorphic to T/G for a complex torus T
and a finite group G, which acts on T freely. Modulo torsion the cohomology
ring of X is determined by the representation G → GL(H1(T,Q)). Indeed,

H
q
(X,Q) = (H

q
(T,Q))G = (Λ

q
H1(T,Q))G.

1.2. Examples

We finish this section by giving a number of examples of flat Kähler mani-
folds:

(1) The obvious ones are just complex tori. The first non-trivial exam-
ples arise in complex dimension 2. These are the so-called bielliptic
surfaces. Here is an explicit example of a bi-elliptic surface. Take two
elliptic curves E1 and E2. The group of automorphisms of E1 pre-
serving the origin is isomorphic to Z/dZ, where d ∈ {2, 4, 6}. Pick a
d-torsion element τ ∈ E2. The group Z/dZ acts on E1 × E2 by the
formula

[m] · (x, y) = ([m] · x, y + mτ)

(here m is an integer and [m] denotes its residue class in Z/dZ). This
action is free and the quotient surface S = (E1 × E2) /(Z/dZ) admits
a flat Kähler metric. See ([BHPV]. Ch. V. 5, Example BII) for further
discussion.

(2) Observe that one can apply an analogue of the construction from the
previous example for any pair of complex tori T1 and T2, and get a flat
Kähler manifold

X := (T1 × T2)/(Z/2Z),
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where the group acts as multiplication by (−1) on T1 and as a trans-
lation by a 2-torsion element on T2.

Sometimes T1 admits a (group) automorphism of order d > 2, and
then one can use the same construction to obtain a free action of Z/dZ
on T1 × T2. Such manifolds are particular cases of higher-dimensional
analogues of bi-elliptic surfaces, known as Bagnera- de Franchis man-
ifolds1 see e.g. [Cat15], Subsection 4.1.

Of course, if T1 and T2 are non-algebraic, then X = (T1×T2)/(Z/dZ)
is also non-algebraic. However, all constructions of this kind can lead
us only to flat Kähler manifolds with b1 ̸= 0. Thus, for our purposes
flat Kähler manifolds with trivial first cohomology are of the main
interest.

(3) In [DHS] many examples of flat Kähler manifolds are given. There one
can also find a complete list of deformation types of 3-dimensional flat
Kähler manifolds with their Hodge and Betti numbers. For example,
there exists a 3-dimensional flat Kähler manifold with trivial first co-
homology and rotation group isomorphic to the dihedral group D4 (i.e.
the one of order 8; see [CD18] for the explicit construction). There is
also a family of n-dimensional flat Kähler manifolds with vanishing
first Betti number and rotation group isomorphic to (Z/2Z)n−1 the
so-called complex Hantzsche - Wendt manifolds2 ([H]; [DHS], Section
4). Both Hantzsche-Wendt manifolds and flat Kähler D4-threefolds
possess no non-zero holomorphic 2 - forms. Therefore, as we explained
in Introduction, they are always algebraic.

A priori it is unclear if non-algebraic flat Kähler manifolds with
vanishing first Betti number exist. At the end of this paper (Section
3) we produce several examples of such manifolds. We also give a
general construction which starts with a flat Kähler manifold with
b1 = 0 and produces a new flat Kähler manifold, which also has b1 = 0
and admits a (non-degenerate) holomorphic 2-form. As it follows from
Theorem 2.1, such manifolds can be deformed to non-algebraic ones.

Finally, we would like to emphasise, that Bieberbach’s theorem (Theo-
rem 1.1) together with Lemma 1.3 implies that there exist only finitely many
topological types of flat Kähler manifolds in every dimension.

1The bi-elliptic surfaces were initially studied by Bagnera and de Franchis in
1908, [BdF]. See also an early work of Enriques and Severi [ES].

2By definition, the monodromy of the Levi-Civita connection on Hantzsche-
Wendt manifold should also be contained in SU(n)
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2. Non-algebraic deformations of flat Kähler manifolds with

h
2,0 ̸= 0

In this section we prove the following theorem:

Theorem 2.1. Let X be a compact complex manifold admitting a flat
Kähler metric. Assume that H0(X,Ω2) ̸= 0. Then there exists a flat smooth
holomorphic family π : X → CP1, such that

• All the fibres Xt := π−1(t) also admit flat Kähler metric.

• π−1(0) ≃ X

• The set R := {t ∈ CP1| Xt is algebraic} is at most countable.

2.1. Twistor spaces: classical theory

Let us, first of all, explain the heuristics that stay behind our theorem. It
comes from the theory of Hyperkähler manifolds. Recall that a Hyperkähler
manifold is a quadruple (M, g, I, J), where (M, g) is a Riemannian manifold
and I and J are integrable complex structures, which anti-commute and
both are Kähler with respect to g. Together I and J generate an action of
the algebra of (Hamiltonian) quaternions on the tangent bundle of M .

If ωI and ωJ are the g-Hermitian forms of I and J , the form σI := ωI +√
−1ωJ is a holomorphic symplectic form on (M, I). Vice versa, if (M, I)

is a complex manifold of Kähler type which admits a holomorphic non-
degenerate 2-form, there exist such g and J , that (M, g, I, J) is a Hy-
perkähler manifold (see e.g. [Beau], Prop. 4).3

A holomorphically symplectic manifold is said to be irreducible holomor-
phic symplectic if the space of holomorphic 2-forms on it is generated by a
symplectic form. The Beauville-Bogomolov decomposition theorem ([Beau],
Th. 2) implies that any Hyperkähler manifold, up to a finite covering, is
isomorphic to a product of irreducible ones and a complex torus.

Consider the set of purely imaginary quaternions of unit norm. Every
such quaternion q satisfies q2 = −1. This naturally forms a 2-dimensional
sphere S2 inside H which we immediately identify with CP1. For each

3In the literature (M, I) is often assumed to be irreducible holomorphic symplec-
tic and simply connected. A more general version of this statement follows from
Beaville-Bogomolov decomposition theorem and some equivariant techniques which
we describe below.
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q ∈ CP1 one has the corresponding almost complex structure Iq on the
smooth manifold M .

It is straightforward to see that all Iq are integrable and Kähler with
respect to g.

Consider the product M × CP1 with the almost complex structure Itw
defined by the following rule: in a point (m, q) ∈ M × CP1 the operator Itw
is equal to Iq ⊕ J0, where J0 is the standard complex structure on CP1.
The complex manifold Tw(M) := (M × CP1, Itw) is called the twistor space
of M .

Theorem 2.2. Let M = (M, g, I, J) be a Hyperkähler manifold and Itw the
almost complex structure operator on Tw(M) = M × CP1 as above.

(1) The complex structure Itw is integrable and the natural projection
Tw(M)

π−→ CP1 is holomorphic. Each fibre π−1(q) is a complex man-
ifold Mq := (M, Iq) with the complex structure Iq as defined above.

(2) Assume that M is compact and irreducible holomorphic symplectic.
The set

R := {q ∈ CP1|Mq is algebraic}

is at most countable.

Proof. See [K] for the first statement and [Ver], Theorem 2.2. for the second.
Originally the second statement appeared in [Fuj] (Theorem 4.8(2)). □

One would like to say that Theorem 2.2 immediately implies Theorem 2.1
in case when X admits a holomorphic symplectic form. Unfortunately, even
if a flat Kähler manifold is holomorphically symplectic, it is usually not
irreducible holomorphic symplectic. This can be overruled by introducing
equivariant versions of some classical linear algebraic arguments, which we
do in the next subsection.

What seems to be a more serious problem is that X might carry only de-
generate holomorphic 2-forms. Our plan is to take any non-zero holomorphic
2-form on X and, using the flatness assumption, imitate the twistor family
in the direction, in which this form is non-degenerate, without changing the
holomorphic structure on the kernel of this form.
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2.2. Equivariant C-symplectic linear algebra

Now we are going to describe some linear algebraic constructions relating
complex symplectic structures to Hermitian quaternionic structures. This is
rather classical, but we will also need an equivariant version of it.

Fix the following notation. Let V be a real vector space with a complex
structure operator

I : V → V, I2 = −1.

Then the exterior powers of V ∗
C

:= V ∗ ⊗ C carry the decomposition

ΛkV ∗
C =

⊕

p+q=k

Λp,qV ∗
C .

Let σ ∈ Λ2,0V ∗
C

be a complex non-degenerate form of type (2, 0). A com-
patible hyper-Hermitian structure on V is a pair (g, J), where J is an auto-
morphism of V satisfying J2 = −1 and JI = −IJ , and g is a positive scalar
product on V , Hermitian with respect to both I and J . Observe that in
this case the algebra generated by I and J is isomorphic to the algebra of
Hamiltonian quaternions.

Lemma 2.3. Assume that a finite group G acts on V linearly, commuting
with I and preserving σ. Then there exists a G-equivariant compatible hyper-
Hermitian structure (that is, both g and J can be chosen to be G-invariant).

Proof. Step 1. Denote by σ1 the real part of σ and let h1 be any G-invariant
I-Hermitian metric on V . Consider the operator A = h−1

1 ◦ σ1 : V → V ∗ → V .
In other words, A is defined by the property

h1(Ax,−) = σ1(x,−).

Of course, A is invertible and commutes with every element in G. Observe
also, that A anti-commutes with I. Indeed,

h1(IAx, y) = −h1(Ax, Iy) = −
√
−1σ1(x, y),

while

h1(AIx, y) = σ1(Ix, y) =
√
−1σ1(x, y).

Step 2. Since σ1 is skew-symmetric, we see that A is also skew-
symmetric (with respect to h1), thus A2 is symmetric. Moreover, h1(A

2x, x) =
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−h1(Ax,Ax), so A2 is negative definite. Therefore A2 can be diagonalized
in an h1-orthonormal basis:

A2 =




α1 0 0 . . . 0
0 α2 0 . . . 0
0 0 α3 . . . 0
0 . . . . . . . . . 0
0 . . . . . . . . . αn




with αi ∈ R<0. Consider a polynomial P ∈ R[t] which satisfies P (αi) = 1√
−αi

for 1 ≤ i ≤ n and denote S := P (A2). By construction, this is a symmetric
positive operator, which commutes both with A and with elements from G.
We also have (AS)2 = − IdV .

Since A anti-commutes with I, and S is a polynomial of even degree in
A, the operator S commutes with I.

Step 3. Define g(x, y) := h1(Sx, y) and J := AS. It is clear that both
g and J are G-invariant and that J is an operator of an almost complex
structure.

Since S commutes with I, the metric g is I-Hermitian. What is left to
check is that J is g-orthogonal and anti-commutes with I.

The first property follows from an explicit computation, which uses the
fact that A is skew-symmetric and S is symmetric. The second follows from

g(IJx, y) = g(Jx,−Iy) = h1(AS
2x,−Iy)

= σ1(S
2x,−Iy) = −

√
−1σ1(S

2x, y),

while

g(JIx, y) = g(Ix,−Jy) = h1(AS
2y,−Ix)

= σ1(S
2y,−Ix) = −σ1(−Ix, S2y) =

√
−1σ1(S

2x, y)

Here we used the fact that σ1(S
2x, y) = h1(AS

2x, y) = h1(Ax, S
2y) =

σ1(x, S
2y), and, what is more important, the fact that σ1 is a real part

of (2, 0)-symplectic form with respect to I. □

Let us also prove the following linear algebraic proposition, which will
play an important role in the proof of the main theorem:

Proposition 2.4. Let U and W be finite-dimensional real vector spaces.
Assume that I is a complex structure operator on U and W is endowed with
a faithful action of the quaternionic algebra H×W → W . Therefore, for
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every purely imaginary q ∈ H with q2 = −1, we obtain a complex structure
operator Iq : W → W . Let H ⊂ U ⊕W be a vector subspace of real codimen-
sion 2, which is a complex hyperplane in (U ⊕W,Jq := I ⊕ Iq) for every
q ∈ CP1 ⊂ H. Then H = W (and consequently dimC U = 1).

Proof. Consider H ′ := H ∩W . By the assumptions, this is an H-submodule
in W . Therefore, its real dimension is divisible by 4. But codimW H ′ ≤
codimU⊕W H = 2. Hence codimW H ′ = 0 and H ′ = W .Thus, H contains W .
This is possible only if H = W and dimC U = 1. □

2.3. Construction of the twistor family

Starting from now, let X be a compact flat Kähler manifold and p : T → X
be a Galois covering by a complex torus T , so that X = T/G for some finite
group G. Assume that η ∈ H0(X,Ω2) is a non-zero holomorphic 2-form. It
defines a morphism of holomorphic vector bundles η : TX → T ∗

X . Consider
its kernel E := Ker η ⊂ TX. A priori this is only a holomorphic subsheaf,
but since p∗η is a holomorphic 2-form on T and all holomorphic forms on a
complex torus are invariant under parallel transport, it is of constant rank,
hence a E ⊂ TX is a subbundle.

Moreover, since η is closed, E is involutive and defines a holomorphic
foliation on X.

Proposition 2.5. There exists a Riemannian metric g on X, a family
of complex structures Jq on X, parametrised by CP1, and an integrable
subbundle F ⊂ TX, such that:

(1) The metric g is flat;

(2) all the complex structures Jq are integrable and Kähler with respect to
g;

(3) the subbundles E and F are holomorphic with respect to Jq for any q;

(4) TX = E ⊕ F as a holomorphic vector bundle and F ⊥g E.

Proof. Denote by V the (real) tangent space to the origin in T . The complex
structure on T induces a complex structure operator I on V . As usual, we can
identify V with H1(T,R). Therefore, V is naturally endowed with a complex-
linear action of G. Every G-invariant tensor on V defines a homogeneous
G-invariant tensor on T , which descends to X = T/G.

Let η0 := (p∗η)(0) ∈ Λ2,0V ∗
C

and E = (p∗E)0 = Ker η0. Since η0 is a G-
invariant complex bilinear form, E is a G-invariant subspace of V ,and is



✐

✐

“12-Rogov” — 2023/2/17 — 1:02 — page 1240 — #12
✐

✐

✐

✐

✐

✐

1240 Vasily Rogov

preserved by I. Since G is finite, we can find a G-invariant I-complex com-
plement F ⊂ V , so that V = E ⊕ F as a complex representation of G. The
form η0 restricts to a non-degenerate form on F . By Lemma 2.3 there exists
a G-invariant compatible hyper-Hermitian structure on F . Let gF be the cor-
responding (hyper-)Hermitian metric on F and (Iq)q∈CP1 be the associated
family of complex structure operators.

Take a G-invariant I-Hermitian metric gE on E and put g0 := gE ⊕ gF
and

Jq,0 := I|E ⊕ Iq.

As we have explained above, the metric g0 induces a T -invariant metric g̃
on T , which descends to a metric g on X. Similarly, the family of operators
Jq,0 induce a family of g-orthogonal almost complex structures Jq on X,
which are obtained by descending the G-invariant family of homogeneous
complex structures J̃q on T . Finally, F induces a homogeneous G-invariant

subbundle F̃ in the holomorphic tangent bundle of T , which descends to a
subbundle F on X. This foliation is clearly preserved by every Jq and its
fibres are g-orthogonal complements to the fibres of E in each point.

Now we need to check the properties listed above. Since all of them are
local, it is sufficient to check them for the pre-images of these objects in T ,
that is for g̃, J̃q.F̃ and Ẽ = p∗E . There exists a flat torsion-free connection ∇
on T , which preserves all T -invariant tensors. Therefore ∇g̃ = 0 and ∇ is the
Levi-Civita connection of g̃. In particular, g̃ is flat. Because ∇ is torsion-free
and preserves F̃ , this subbundle is integrable. From ∇J̃q = 0 for every q, we
deduce (2). The properties (3) and (4) follow from the construction. □

Now we are able to define X as the “twistor space” of (X, g, Jq), that is,
an almost complex manifold isomorphic to CP1 ×X as a smooth manifold,
and endowed with the almost complex structure

(Itw)(q,x) = I0 ⊕ Jq,

where I0 is the standard complex structure on CP1.

Proposition 2.6. The almost complex structure Itw is integrable.

Proof. Since integrability of the complex structure is a local property, we
can prove it for a universal cover X̃ → X . It is isomorphic to E × Tw(F ),
where E and F are complex vector spaces as above and F is endowed with
the Hyper-Hermitian structure (g, Jq). The classical twistor space Tw(F ) is
a complex manifold by Theorem 2.2, [K]. □
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Remark. In [CC] Catanese and Corvaja gave a description of the Te-
ichmüller space T(X) of a flat Kähler manifold X. Every family of the form
X = (X, g, Jq) defines a holomorphic map CP1 → T(X). Studying the im-
ages of these curves might be useful for better understanding of the geometry
of T(X).

2.4. SU(2)-action

The group generated by unitary imaginary quaternions inside H× is iso-
morphic to SU(2). If X is a flat Kähler manifold endowed with a non-zero
holomorphic 2-form, from Proposition 2.5 we obtain a faithful action of the
quaternionic algebra H on the tangent bundle of X, which induces an action
of SU(2) on smooth sections of the tangent bundle. In the notations of the
previous subsection, it is generated by the operators (IdE ⊕Iq)q∈CP1 .

This action can be extended to a linear action of SU(2) on the space of
differential forms on X.

Proposition 2.7. The defined above SU(2)-action descends to action by al-
gebra automorphisms on cohomology. This action preserves the intersection
form.

Proof. Each cohomology class on X can be uniquely represented by a har-
monic form. The map p : (T, g̃) → (X, g) is a local isometry, thus harmonic
forms on X are the same as G-invariant harmonic forms on T . These are the
same as G-invariant forms preserved by the action of T on itself by trans-
lations. Here we use the fact that harmonic forms for a Kähler metric on
a torus are the same as left-invariant forms, see [BL92], Prop. 1.4.7. Such
forms clearly form a SU(2)-invariant subalgebra inside the de Rham algebra
of T , hence this action descends to cohomology.

By construction, this action preserves the metric g, so it also preserves
the associated volume form and the Poincaré pairing. □

Proposition 2.8. Let α ∈ H2p(X,C). Let π : X → CP1 be the ’twistor’
family as defined above and let Xq := (X, Jq) = π−1(q).

Then α ∈ Hp,p(Xq) for every q ∈ CP1 if and only if it is SU(2)-invariant.

Proof. Each complex structure Jq generates an U(1)-action on the tangent
bundle of X which descends to the cohomology (and in fact defines the Hodge
decomposition on H•(X,C)). The condition α ∈ Hp,p(Xq) means that α is
invariant under this U(1)-action and by assumption this holds for every
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q ∈ CP1. But a vector is invariant under a representation of a compact Lie
group if and only if it is invariant under every its 1-parameter subgroup. □

2.5. Non-algebraic points in the twistor family

Let us now prove the following proposition:

Proposition 2.9. Let D ⊂ X be an immersed submanifold of (real) codi-
mension 2. Assume that D is holomorphic for every complex structure Jq.
Then the divisor [D] is not ample in Xq for any q.

Proof. Take any smooth point x ∈ D and apply the Proposition 2.4 for
W := F|x and U := E|x and H := TxD ⊂ U ⊕W = TxX. We see that TxD =
F|x, hence it D coincides with a leaf of the foliation, defined by F .

Assume that [D] ∈ Pic(Xq) is ample for some q. Let gE be the restriction
of the metric g on E and ωE be its Hermitian form on Xq. This is a non-
negative closed (1, 1)-form, which is positive on E and its kernel coincides
with F . In particular, ωE restricts on D by 0 and

∫

Xq

ωE · [D]n−1 = 0

But the class of ωE is nef and D cannot be ample. □

Now we are ready to prove the main theorem:

Proof of the Theorem 2.1. Let X be a “twistor space” as above. By the con-
struction, this is a complex manifold which admits a holomorphic topologi-
cally trivial fibration π : X → CP1. For every q ∈ CP1 the fibre Xq = (X, Jq)
admits a flat Kähler metric g. Moreover, X0 ≃ (X, I).

Now we want to prove, that for a very general q ∈ CP1 the fibre Xq is
not algebraic.

For every α ∈ H2(X,Q) define the set

Rα := {q ∈ CP1|α ∈ H1,1(Xq)}.

The subsets Rα ⊆ CP1 are algebraic subvarieties since they are the Noether-
Lefschetz loci for the (non-polarizable) variation of Hodge structures
R2π∗ZX . This means, that for each α either Rα = CP1, or Rα is finite.
In the former case, as follows from Proposition 2.8, α is SU(2)-invariant.

We claim that if Rα = CP1, then for every q ∈ CP1 the class α is not a
class of a very ample divisor on Xq.
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Assume the opposite. Without loss of generality, we may assume that α
is a class of a very ample divisor D ⊂ X0. We may also assume that D is
smooth and irreducible (by Bertini theorem).

Recall the Wirtinger-Federer theorem (see e.g. [St], Ch. I): If Z is a
smooth compact submanifold of dimension 2k inside a compact Kähler man-
ifold (X, g, ω), then ∫

Z

ωk ≤ Volg(Z),

and the equality holds if and only if Z ⊂ X is complex analytic.
Let ωq := g(Jq·, ·) be the Kähler form on Xq. Let n = dimXq. For every

q ∈ CP1 there exists an element B(q) ∈ SU(2), such that [ωq] = B(q) · [ω0]
in H2(X,C). Hence

∫

D

ωn−1
q = ⟨(ωq)

n−1, [D]⟩ = ⟨Bn−1(q) · ωn−1
0 , α⟩

= ⟨Bn−1(q) · ωn−1
0 , Bn−1(q) · α⟩ =

∫

D

ωn−1
0 = Volg(D)

We deduce that D is holomorphic with respect to every complex struc-
ture Jq in our family. But this leads to a contradiction by Proposition 2.9.

Let Amp(X) be the set of α ∈ H2(X,Z) such that α is a class of a very
ample divisor on Xq for some q ∈ CP1. As we have shown, for each such α
the set Rα is a proper algebraic subset of CP1, hence finite. The set

R :=
⋃

α∈Amp(X)

Rα

is a countable union of finite sets, hence at most countable.
Take any point q ∈ CP1 \ R. The complex manifold Xq has no ample

divisors and thus is non-algebraic. This finishes the proof. □

Corollary 2.10. Let X be a compact flat Kähler manifold. The following
conditions are equivalent:

• There exists a smooth holomorphic family of complex manifolds over
a marked complex analytic variety π : X → (B, 0) with π−1(0) ≃ X,
such that every neighbourhood of 0 contains t with π−1(t) = Xt non-
algebraic;

• H0(X,Ω2
X) ̸= 0.

Proof. Assume that H0(X,Ω2
X) ̸= 0. One can take the family π : X → CP1

which is constructed in Theorem 2.1. By the result of the Theorem 2.1, the



✐

✐

“12-Rogov” — 2023/2/17 — 1:02 — page 1244 — #16
✐

✐

✐

✐

✐

✐

1244 Vasily Rogov

set of points t ∈ CP1 for which π−1(t) is algebraic is at most countable,
therefore every neighbourhood of 0 contains a point from its complement.

Vice versa, assume that H0(X,Ω2
X) = 0, but such family π : X → (B, 0)

exists. Choose a neighbourhood B′ ⊂ B of 0 such that all the fibres π−1(t),
t ∈ B′ are Kähler (this can be done because π−1(0) is Kähler and being
Kähler is an open property). Now, the argument, which we already men-
tioned in the Introduction, can be applied: take arbitrary t ∈ B′. The Kähler
manifold Xt := π−1(t) has the same Hodge numbers as X, in particular,
H0(Xt,Ω

2
Xt

) = 0. Therefore every real cohomology class of degree 2 is of
Hodge type (1, 1) and H2(Xt,Q) is dense inside H2(Xt,R) = H1,1(Xt) ∩
H2(Xt,R). But the set of classes of Kähler forms form an open cone K ⊂
H1,1(Xt) ∩H2(Xt,R). Therefore we can find a Kähler form with a rational
cohomology class. By Kodaira embedding theorem this means that Xt is
algebraic. □

As a corollary we immediately obtain the following (global version of)
theorem from [CD+C]:

Theorem 2.11 (Catanese, Demleitner). Let X be a flat Kähler mani-
fold. Assume that X is rigid (i.e. every holomorphic family of complex man-
ifolds with special fibre isomorphic to X is constant). Then X is algebraic.

Proof. Assume that X is non-algebraic. Then, of course, h2,0(X) ̸= 0. Con-
sider the family X → CP1 from the Theorem 2.1. It is non-constant because
J0 and J1 anticommute and therefore are not conjugated by a diffeomor-
phism of X. Hence, X is not rigid. □

Observe that in the paper [CD+C] only infinitesimal deformations were
considered, so our result is slightly stronger.

3. Examples of non-algebraic flat Kähler manifolds with

b1 = 0

As we mentioned in the Introduction, many examples of non-algebraic flat
Kähler manifolds are given by complex tori of (complex) dimension greater
than one. Somehow opposite to complex tori are the flat Kähler manifolds
with vanishing first Betti number: these are the manifolds of the form T/G,
where T is a complex torus and the finite group G acts on T sufficiently non-
trivially from the topological point of view (i.e. H1(T,Q)G = 0). As it was
pointed out to us by the reviewer, one can construct non-algebraic flat Kähler
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manifolds with b1 = 0 by mimicing the construction of 3-dimensional flat
Kähler manifolds with monodromy group D4, as it is presented in [CD18].

We will explain this construction and then present yet another one, which
allows finding many examples of holomorphically symplectic flat Kähler
manifolds with b1 = 0 and which we consider to be of independent inter-
est.

First of all, let E be an elliptic curve and S a non-algebraic complex
torus. Let τ1, τ2 be two different non-trivial 2-torsion elements of E and
σ ∈ S be an element of order 4. Let T ′ := E × E × S.

Proposition 3.1. There exists a torus T isogenous to T ′ and a free holo-
morphic action of the dihedral group G ≃ D4 on T such that b1(T/G) = 0.
The flat Kähler manifold X = T/G is non-algebraic.

Proof. Let G′ be the subgroup of holomorphic automorphisms of T ′ gener-
ated by

s : (x1, x2, y) 7→ (x2 + τ1, x1 + τ2,−y)

and

r : (x1, x2, y) 7→ (x2,−x1, y + σ).

Here xi are coordinates on the two copies of E and y is the coordinate on
S. One sees that s2 = r4 = Id, while

(sr)2(x1, x2, y) = (x1 + τ1 + τ2, x2 + τ1 + τ2, y).

Therefore the action of this group descends to T = T ′/⟨τ1 + τ2⟩ and the
resulting group G acting on T is isomorphic to the dihedral group D4. The
quotient X = T/G is a flat Kähler manifold. If we decompose H1(T,Q) as
H1(E,Q) ⊕H1(E,Q) ⊕H1(S,Q), we see that s acts on this space through

H1(s) =




0 1 0
1 0 0
0 0 − Id


 ,

while r acts through

H1(r) =




0 −1 0
1 0 0
0 0 Id


 .

One easily sees that H1(T,Q)G = 0.
If X were algebraic, then T ′ would be, as it is a finite cover of X.

Although, T ′ contains a non-algebraic subtorus S. □
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Now let us present more examples of non-algebraic flat Kähler manifolds
with vanishing b1.

We start with the following definition:

Definition 1. Let (X, IX) be a smooth complex manifold. Assume that X
admits a flat connection ∇ on TX, such that ∇IX = 0 and the monodromy
action of ∇ preserves a lattice Λx ⊂ TxX. Consider the union of all possible
parallel transports of vectors in Λx as a subset Λ ⊂ TX inside the total space
of the tangent bundle. The intersection of Λ with each fibre of the tangent
bundle is a lattice inside a real vector space, thus we can take a fibrewise
quotient TX/Λ =: X+. The resulting manifold is called the quaternionic
double of X.

This definition appears, for example, in the work of Soldatenkov and
Verbitsky ([SV], Section 3.2). The name is motivated by the following prop-
erty: the flat connection ∇ splits the tangent bundle TX+ into a direct sum
of two copies of TX. One can consider the three complex structures on X+

written with respect to this splitting as

I :=

(
IX 0
0 −IX

)
; J :=

(
0 −1
1 0

)
; K :=

(
0 −IX

−IX 0

)
.

In the same paper([SV]) Soldatenkov and Verbitsky proved (Section 3.2.)
that these complex structures are integrable and satisfy quaternionic rela-
tions

I2 = J2 = K2 = IJK = −1.

Moreover, as they showed, this establishes a Hyperkähler structure on X+

if and only if the initial flat connection ∇ on X was orthogonal with respect
to some Hermitian metric (equivalently, X is flat Kähler and ∇ is its Levi-
Civita connection).

Corollary 3.2. Let X be a flat Kähler manifold. Then there exists a flat
Kähler manifold X+ endowed with a holomorphic projection X+ → X such
that

• X+ admits a holomorphic symplectic form and the fibres of the projec-
tion are Lagrangian tori;

• b1(X+) = 2b1(X).

In particular, if X is a flat Kähler manifold with b1 = 0, then X+ is a flat
Kähler manifold with b1 = 0, which admits a non-algebraic deformation.
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Proof. Let T be a torus, which covers X, so that X = T/G. The group G
acts on H1(T,R) preserving the lattice H1(T,Z), and this induces a G-action
by automorphisms on the torus

Alb(T ) = H1(T,R)/H1(T,Z).

Of course, H1(T,R)/H1(T,Z) is isomorphic to T , however this new action
of G is different from the initial one since it preserves the origin. Now the
identification of H1(T,R) with a tangent space to T in the origin gives rise
to an identification of H1(T,R) with the tangent space to a point on X as a
G-module. One sees from the construction that the quaternionic double X+

can be also described as

X+ =
T × (H1(T,R)/H1(T,Z))

G
.

(where the action of G on T × (H1(T,R)/H1(T,Z)) is diagonal). Therefore,

b1(X+) = dim(H1(T,R) ⊕H1(T,R))G = 2b1(X).

The existence of non-algebraic deformations follows from Theorem 2.1. □

Remark. Instead of taking the tangent bundle in the definition of quater-
nionic double one might take the cotangent bundle and obtain another flat
Kähler manifold X+ (the co-quaternionic double). It also naturally carries
a holomorphic symplectic form, which descends from the total space of the
cotangent bundle, and also has b1(X

+) = 2b1(X). Moreover, manifolds X+

and X+ admit holomorphic Lagrangian fibrations over the same base X
with fibres being dual complex tori.

The quaternionic and co-quaternionic doubles might serve as a ”toy ver-
sion” for several important examples where a similar configuration occurs,
for example, a pair of Hitchin fibrations on the moduli space of G-Higgs
bundles and the moduli space of the Langlands - dual LG-Higgs bundles
(see e.g. [Hit]).
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