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On links with Khovanov homology of
small ranks

Y1 XIE AND BOYU ZHANG

We classify all links whose Khovanov homology have ranks no
greater than 8, and all three-component links whose Khovanov
homology have ranks no greater than 12, where the coefficient
ring is Z/2. The classification is based on the previous results of
Kronheimer-Mrowka [§], Batson-Seed [3], Baldwin-Sivek [1], and
the authors [19].

1. Introduction

Khovanov homology [7] is a combinatorially defined invariant for oriented
links in S3. For a commutative ring R and an oriented link L, the Khovanov
homology assigns a bi-graded R—module Kh(L; R).

The detection properties of Khovanov homology have been studied in-
tensively in the past decade. In 2011, Kronheimer and Mrowka [§] proved
that Khovanov homology detects the unknot. Since then, many other de-
tection results of Khovanov homology have been obtained. It is now known
that Khovanov homology detects the unlink [3], [6], the trefoil [I], the Hopf
link [2], the forest of unknots [19], the splitting of links [9], and the torus
link 7'(2,6) [I0].

In this paper, we classify all the links L such that ranky, Kh(L;Z/2) <
8, and all the 3-component links L such that ranky,, Kh(L;Z/2) < 12. Since
the rank of the Khovanov homology does not depend on the orientation, it
makes sense to refer to ranky, Kh(L;Z/2) without orienting L.

Let Khr(L; R) be the reduced Khovanov homology of L with coefficient
ring R. If R is a PID, then the graded Euler characteristics of Khr(L; R)
recover the Jones polynomial Jp(¢t) of L. Therefore, the parity of
ranky,» Khr(L;Z/2) is the same as the parity of Jz(1), which is odd if L is a
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knot and is even if L has at least two components. By [16, Corollary 3.2.C],
we have

ranky /o Kh(L; Z/2) = 2ranky o Khr(L; Z/2).
Therefore, ranky/, Kh(L;Z/2) has the form 4k + 2 (k € Z) if L is a knot,
and is a multiple of 4 if L has at least two components.
On the other hand, it is well-known that if L is a link with n components,

then ranky/, Kh(L;Z/2) > 2" (see, for example, [19, Equation (1)]). As a
consequence, if L is a knot such that ranky/, Kh(L;Z/2) < 8, then

ranky o Kh(L;Z/2) = 2 or 6,

and hence L is an unknot or a trefoil by [II, §]. If L is a 2-component link
such that ranky o Kh(L;Z/2) <8, then

ranky, o Kh(L; Z/2) = 4 or 8.
If L is a 3-component link such that ranky/, Kh(L;Z/2) < 12, then
ranky o Kh(L;Z/2) = 8 or 12.
If L has at least 4 components, then ranky /o Kh(L;Z/2) > 16. In [19], the au-
thors have classified all the n—component links L with ranky, Kh(L;Z/2) =

2", Therefore, the essential content of this paper is given by the following
two results:

Theorem 1.1. Suppose L is a 2-component link in S*, then
ranky o Kh(L;Z/2) = 8

if and only if L is isotopic to the link L4al in the Thistlethwaite link table,
which is the link given by Figure|ll, or its mirror image.

Remark 1.2. In [I9, Corollary 1.4], the authors proved that Khovanov
homology (together with the bi-grading) distinguishes an oriented link whose
underlying un-oriented link is isotopic to L4al. Theorem is a stronger
version of that result.
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Figure 1. The link L4al. Figure 2. The link L6nl.

Theorem 1.3. Suppose L is a three-component link in S®, then
ranky,, Kh(L; Z/2) = 12

if and only if L is isotopic to the link L6nl in the Thistlethwaite link table,
which is the link given by Figure[d, or its mirror image.

Combining Theorem [1.1, Theorem and the results in [I], 8 [19], we
have the following two corollaries.

Corollary 1.4. Suppose L C S3 is a link such that ranky o Kh(L;Z/2) < 8,
then L 1is isotopic to one of the following:

e the unlink with at most 8 components;

e the left-handed or right-handed trefoil;

e the Hopf link;

e the connected sum of two Hopf links;

e the disjoint union of a Hopf link and an unknot;

o the link L4al or its mirror image. ([
Corollary 1.5. Suppose L C S is a link with three components such that
ranky,, Kh(L; Z/2) < 12,

then L is isotopic to one of the following:

e the unlink with 8 components;

e the connected sum of two Hopf links;
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o the disjoint union of a Hopf link and an unknot;

e the link L6nl or its mirror image. O
2. Preliminaries

Let L be a link in the (framed) solid torus S! x D2, its annular instanton
Floer homology AHI(L) is defined in [I8], and the theory is further developed
by [19, 20]. This section reviews several results from [I8-20] that will be used
later.

The annular instanton Floer homology is a Z-graded complex vector
space, and the grading is called the f-grading. We use AHI(L, ) to denote
the component of AHI(L) with f-degree i. For each i € Z, we have

(2.1) AHI(L,7) = AHI(L, —i).
We recall the following definition from [20, Definition 1.5].

Definition 2.1. A properly embedded, connected surface S C S' x D? is
called a meridional surface if 9S is a meridian of S* x D?.

We recall the following two results from [20].

Theorem 2.2 ([20, Theorem 8.2]). Given a link L in S x D%, let S
be a meridional surface that intersects L transversely. Let g be the genus of
S, and let n = |S N L|. Suppose S minimizes the value of (29 4+ n) among
mertdional surfaces that intersect L transversely, then we have

AHI(L,+(2g 4+ n)) # 0,
and
AHI(L,i) =0
for all |i| > 2g + n.
Proposition 2.3 ([20, Corollary 8.4]). Let L be a link in S* x D?, let

n be a positive integer. Then L is isotopic to the closure of a braid with n
strands if and only if the top f-grading of AHI(L) is n and AHI(L,n) = C.

If KCS?is a knot, we will use N(K) to denote the open tubular
neighborhood of K. Suppose K is an unknot, then S% — N(K) is a solid
torus. Choose the framing of S® — N(K) such that the preferred longitude
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of 83 — N(K) is a meridian of K. Then for every link L that is disjoint
from N(K), we can take the annular instanton Floer homology AHI(L) by
viewing L as a link in S® — N(K). Notice that in this case, a meridional
surface of S® — N(K) induces a Seifert surface of K and vice versa.

The following proposition establishes a relation between the annular in-
stanton Floer homology and the reduced Khovanov homology.

Proposition 2.4. Suppose L C S? is a link, U C L is a component of L
that is an unknot, and let p € U be a base point on U. Let Lo = L — U, then
Lo is a link in the solid torus S® — N(U). We have

ranky, Khr(L;Z/2) > dimc AHI(Lo).

Proof. By Kronheimer-Mrowka’s spectral sequence [8, Theorem 8.2], we
have

dime Khr(L, p; C) > dime I%(L, p; C),

where (L, p) is the mirror image of (L,p), and I' is the reduced singular
instanton Floer homology introduced in [8]. By [7, Corollary 11], we have

dimc Khr(L, p; C) = dimc Khr(L, p; C).
By the universal coefficient theorem,
dim¢ Khr(Z; C) < rankg, Khr(L;Z/2).

By [19, Proposition 2.6], Ih(L,p; C) =2 AHI(Lg). Therefore the proposition is
proved. O

Let Uy, C S* x D? be the unlink with & components, and let K; C ST x
D? be the link given by S* x {p1,---,p}. Let Uy LI K; be the disjoint union
of Uy, and K such that Uy, is included in a 3-ball disjoint from K;. By [I8|
Example 4.2, Proposition 4.3],

AHI(Uy, U K;p) = Clyy @ (Cpy @ C_y))®,
where the subscripts represent the f-gradings.

Proposition 2.5 ([19, Proposition 4.3]). Let L C S' x D? be an ori-
ented link such that every component of L has winding number 0 or +1.
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Suppose L has k components with winding number 0, and | components with
winding number +£1, then

dim¢ AHI(L, Z) > dim¢ AHI(Uk L i, Z)
for alli e Z.

Proposition 2.6 ([18, Section 4.4]). Suppose L1, Lo are two links in
Sl x D?. If Ly and Lo are homotopic to each other in S* x D?, then

dimc AHI(L1,4) = dimc AHI(L9,7) mod 2
for alli € Z.

3. The Multi-variable ALexander polynomial

In this section, we prove several results on the multi-variable Alexander
polynomial, which will be used later in the proof of Theorem

Let [ > 2 be an integer, recall that the [—strand braid group B; has the
following presentation:

By = (o1, -+ ,01-1|040i410; = 0i110:0i11, 0;0j = 0j0; (j —1>2))
The reduced Burau representation (see [4]) is a group homomorphism
p: B — GL(l—1,Z[t,t71))

which maps o; to

I; o
1 O
ot 1 :
0 0 1

I o

where the matrix is truncated appropriately when ¢ = 1 or [ — 1. Notice that
det(p(o;)) = —t  for all 4,
and hence det(p(8)) = +t* for all g € B,.

]?eﬁnition 3.1. Suppose B € By is a braid and U C S is an unknot, let
B C St x D? = 513 — N(U) be the braid closure of 5. Define U U 3 to be the
union of U and [ under the standard framing of S® — N(U).
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Remark 3.2. The link L4al is isotopic to U U 61, where o7 is a generator
of BQ.

Theorem 3.3 ([11, Theorem 3]). Let 3 € By, and let L=UU B. Sup-
pose (3 is connected, then the multi-variable Alexander polynomial Ay (z,t)
of L is given by

(3.1) Az, t) = det (zI — p(B)(t)),

where x and t are the variables corresponding to U and B respectively, and

the sign “=” means that the two sides are equal up to a multiplication by

+040.

w_-"”

Remark 3.4. The ambiguity in the notation “=” is necessary because
the multi-variable Alexander polynomial (before normalization) is only well-
defined up to a multiplication by +x%¢°.

We also need the following result:

Theorem 3.5 ([17]). Suppose L = K1 U Ky is a 2-component link, and let
Ap(z,y) be the multi-variable Alexander polynomial of L where x and y are
the variables corresponding to Ky and Ko respectively. Then we have

1—a
A 1)=—-A
L(xﬂ ) 1— 2 Kl(x)7
where Ak, (x) is the Alexander polynomial of K1, and | = |1k(K7, K2)| is
the absolute value of the linking number of K1 and K.

The next lemma is an immediate corollary of the results in [5, [13], and
is essentially contained in the proof of [19, Lemma 6.1]. We state it here as
a separate lemma for future reference.

Lemma 3.6. Suppose L is a link with n components, let Ap(x1,--- ,x,) be
the (multi-variable) Alexander polynomial of L. Let p € L be a base point.

1) If n =1, then the sum of the absolute values of the coefficients of
Apr(z1) is less than or equal to rankg Khr(L, p; Q).

2) If n > 2, then the sum of the absolute values of the coefficients of
(w1 = 1) (v — DAL(21," -, T0)

is less than or equal to 2" ' rankg Khr(L, p; Q).
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Proof. We use HFK and AFL to denote the Heegaard knot Floer homol-
ogy [12, [14] and the link Floer homology [13] respectively. The link Floer
homology was originally defined for Z/2-coefficients, and was generalized to
Z-coefficients in [I5]. It is known that

(3.2) rankq }ﬁ?’T{(L; Q) = rankg ILTF\L(L; Q),

but ﬁF\L(L; Q) carries more refined gradings than rankg ITIE‘T((L; Q).
By [5, Corollary 1.7], we have

(3.3) rankq ITET((L; Q) < 2" ' rankg Khr(L; Q).

By [13, Equation (1)], the multi-graded Euler characteristics of ﬁF\L(L; Q)
satisfy

(3.4) (AFL(L;Q)) = | 24 =1
(k1= 1) (zp — DAL(x1,- - ,2p) ifn>2
therefore the result is proved. O

Now let [ > 2 be an integer, let 3 € B;, L =U U 3, and let Ar(z,y) be
the multi-variable Alexander polynomial of L such that z and y are the
variables corresponding to U and f respectively. By ({3.1]), we have

Ar(x,y) = (_1)1—1 det(p(B2)(y)) + fily)z + -+ + fl—z(y)xlﬂ NS
(3.5) =4y + i)z 4+ fio(y)at 2+ 2t

for a € Z, f; € Zly,y~']. By Theorem [3.5
Ap(z, 1) =(Q+z+2®+- +2 HAp@) =1+ +2? +-- + 2l

Therefore in Equation , we must have f;(1) =1 for all 4, and the sign
in front of the term y® is positive.

A 2-component link K; U Ko is called exchangeably braided, if both
K1, K5 are unknots and for each (7,7) € {(1,2),(2,1)} the knot K; is a
braid closure with axis K;. The concept of exchangeably braided links was
introduced and studied by Morton in [II]. If we further assume that L is
exchangeably braided, then by symmetry and , we have

(3.6) Ap(z,y) =2+ q(@)y+ -+ go(x)y 2+t

for b € Z, and g;(v) € Z[z, 1] with g;(1) = 1.
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Lemma 3.7. Let L be a mutually braided link with linking numberl > 3, let
Ar(x,y) be the multi-variable Alexander polynomial of L. Then the sum of
the absolute values of the coefficients of (x — 1)(y — 1)Ar(z,y) is at least 12.

Proof. Let fi(y) be as in (3.5 for i =1,--- ,1 — 2, and set

foy) =y, fia(y) =1,

Then we have
(z -1y —1AL(z,y)
=(y — 1)< — v+ (v = AW)z+ -+ (fims(y) — fia(y))a' 2
+ (fia(y) — )2t + 35[)

-1
B7) =—@-Dy"+y—Da' +> (y—1)(fia(y) — fi(y))a".
=1

We discuss three cases depending on how many values of ¢ have f; # f;_1.
If fiog = fiforallie{l,---,l—1}, then a =0, and ({3.5) gives

Ap(z,y) =1+z+---+a' ",

which contradicts (3.6)) and the assumption that [ > 3.
If there is exactly one element i € {1,---,1 — 1} such that fi_1(y) #

fi(y), then by (3.5)), we have
Ap(z,y) =y* 49tz 4+ +ya 4ot 4. 42l

which also contradicts (3.6)) and the assumption that [ > 3.
If there exist at least two elements i € {1,---,] — 1} such that f;_1(y) #

fi(y), then
fic1(1) = fi(l) =1-1=0

implies that y — 1 is a factor of f;_1(y) — fi(y). Therefore for every ¢ such
that fi—1(y) # fi(y), the sum of the absolute values of the coefficients of

(v —D(ficr(y) = fi(y))

is even and strictly greater than 2, therefore it is at least 4. The desired
result then follows from ({3.7]). O
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The following lemma refines the proof of Lemma [3.7] and obtains a nec-
essary condition for attaining the lower bound. This result will not be used
in the proof of Theorem

Lemma 3.8. Suppose L is an exchangeably braided link with linking number
[ >3, let Ar(x,y) be the multi-variable Alexander polynomial of L. If the
sum of the absolute values of the coefficients of (x —1)(y — 1)Ar(x,y) is
equal to 12, then | = 3.

Proof. We use the same notation as in the proof of Lemma If the sum of
the absolute values of the coefficients of (x — 1)(y — 1)A(x,y) is equal to
12, then the proof of Lemma[3.7]indicates that there are exactly two elements

ie{l,---,1—1} such that f;_1(y) # fi(y). Therefore by (3.5)), there exists
f(y) € Zly,y~and 0 < ky < kg <1 — 2, such that f(y) # 1, f(y) # y*, and

Ap(z,y) =y (14 +a") + fy) T+ ahe) gakett 4 gt
therefore

(3.8) Ar(Ly) = Q+k)y" + (k2 — k1) f(y) + (1 — 1 — k2).

On the other hand, by Theorem we have

(3.9) Ap(Ly) =1+y+--+y"

Since [ > 3, Equation implies that the coefficients of A (1,y) are
non-zero for at least 3 different powers of y. Therefore the polynomial f(y)
in must contain a non-zero term of the form c - y®, where b # 0 or a.
As a result, Az (1,y) has a term whose coefficient is a non-zero multiple of
ko — k1. Since shows that the coefficients of all the non-zero terms of
Ar(l,y) are 1, we must have ky — k; = 1. Hence

Ap(z,y) = y*(1+ - +a™) + fly)aP T+ 2P+ 4 4t h

Since A (z,y) = Ap(x~1, y~1), and recall that f(y) # 1, f(y) # y*, we have
l=2m+ 1 for m € Z, and

(3.10)  Ap(z,y) =y (L+--+ 2™ + fy)a™ + 2™ 4o 2™,

View Ap(x,y) as a Laurent polynomial of x with coefficients in Z[y,y~],
the equation above shows that there is only one power of x (namely z™)
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that may have a coefficient which is not a monomial of y. Switching the
roles of x and y and repeating the same argument, we conclude that there
is at most one power of y in A (z,y) whose coefficient is not a monomial of
T.

Now we assume [ > 3 and deduce a contradiction. Since [ > 3, we must
have a = 0, because otherwise neither the coefficient of y* nor the coefficient
of ¢y of Ap(z,y) are monomials in Z[x, '], contradicting the previous
argument. Therefore by , we have

Ap(z,y) =14+ 2™+ fly)a™ + 2™ 4. 4 2%
Flipping the roles of  and y, we have
Ar(z,y) = 1_|_...+ym—1 —I—g(ac)ym—i—ymﬂ _i__“_'_me

for some g € Z[z,z71]. By (3.9), we have f(1) = g(1) = 1. Therefore

m m

Ap(zy) =—Cm+ 1D+ > o'+ > ¢,
and hence

(1-2)(1-y)AL(z,y)
=—@m+DI-2)1—y)+ @ " -2 -y)+ A —2)(y™ —y™).

Since [ > 3, we have m > 2, therefore the sum of the absolute values of
the coefficients of (1 — x)(1 — y)Ar(z,y) is strictly greater than 12, which
contradicts the assumption.

In conclusion, we have [ = 3, and the lemma is proved. O

Combining (3.2, (3.4), Lemma and Lemma we obtain the fol-

lowing corollary, which may be of independent interest.

Corollary 3.9. Suppose/L\is an exchangeably braided link/wﬂh linking
number | > 3, then rankg HFK(L; Q) > 12. Moreover, if rankg HFK(L; Q) =
12, then | = 3. [l
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4. Proof of Theorem [1.1] and Theorem [1.3

Proof of Theorem[I.1. The “if” part of the theorem follows from a straight-
forward computation. Now suppose L is a 2-component link such that

(4.1) ranky, Kh(L; Z/2) = 8,

we prove that L is isotopic to L4al or its mirror image.
Denote the two components of L by K and K». Batson-Seed’s inequality
[3, Corollary 1.6] gives

ranky, o Kh(L; Z/2) > ranky,, Kh(K1;7Z/2) - ranky, o Kh(K2;Z/2).
Since ranky /o Kh(K;;Z/2) > 2, we have
ranky o Kh(K;;Z/2) < 4.

By [16, Corollary 3.2.C],
1
ranky /o Khr(K;;Z/2) = B ranky o Kh(K;;Z/2) < 2.

The parity of ranky o Khr(K;;Z/2) is always odd, thus it has to be 1.
Kronheimer-Mrowka’s unknot detection theorem [§] then implies that both
K7 and Ky are unknots.

Pick a base point p € K5. We have

1
ranky /o Khr(L, p; Z/2) = 5 ranky o Kh(L; Z/2) = 4.
By Proposition [2:4]
(4.2) dimc AHI(K1) < rankg, Khr(L,p; Z/2) = 4,

where K7 is viewed as a knot in the solid torus S% — N(K3).
If Ik(K7, K9) = 0, then K is homotopic to the unknot in the solid torus.
By Proposition and Proposition [2.6] we have

dim(c AHI(Kl, 0) > dimc AHI(Z/[l, O) = 2,
and
dimc AHI(K1;¢) = dime AHI(U,;7) = 0 (mod 2), for all i.

Therefore, by (2.1 and (4.2), AHI(K;) must be supported at f-degree 0. By
Theorem this implies K5 bounds a disk that is disjoint from K7, and
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hence L is the disjoint union of Kj and Ks, which implies L is the unlink.
However, the unlink does not satisfy , which is a contradiction.

Therefore, we have [ = |lk(K7, K3)| > 0, and hence K is homotopic to
the closure 3 of an I-braid § in the solid torus S — N(K5). By Proposi-
tion [2.6] we have

dime AHI(K,;4) = dime AHI(5;4) (mod 2).
and by (the easy direction of) Proposition we have

dime AHI(3; +1) = 1,

dime AHI(3; +4) = 0 for all i > 1.
Therefore (2.1) and (4.2)) yield that
dim AHI(K;£1) =1

and
dim AHI(K7;+4) = 0 for all ¢ > [.

By Proposition this implies K is the closure of an [-braid in S3 —
N(K3). A similar argument shows that Ky is the closure of an l-braid in
S3 — N(K3). Therefore L is exchangeably braided.

By the universal coefficient theorem,

1
rankg Khr(L, p; Q) < ranky, Khr(L,p;Z/2) = 3 ranky, o Kh(L; Z/2) = 4.

Therefore by Lemma [3.6] and Lemma we have [ < 2.

If [ =1, then L is the Hopf link, which does not satisfy .

If I =2, then L =U Uo7", where 01 € By is a generator of the braid
group with 2 strands and m € Z. Since both components of L are unknots,
we have m = +1, therefore L is isotopic to L4al or its mirror image. O

Proof of Theorem|[1.3. The “if” part of the theorem follows from a
straightforward calculation. Now suppose L is a 3-component link with
ranky, o Kh(L;Z/2) = 12, we prove that L isotopic to L6nl or its mirror
image.
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Denote the three components of L by Kj, Ko, K3. By Batson-Seed’s
inequality [3, Corollary 1.6], we have

ranky /o Kh(K; U Kj;Z/2) - ranky /o Kh(K}; Z/2) < rankg, Kh(L;Z/2) = 12

for all triples (i, j, k) with {7, j, k} = {1,2,3}. Since ranky, Kh(K};Z/2) >
2, we have

ranky,, Kh(K; U Kj;Z/2) < 6.

We apply a similar parity argument as before. By [16], Corollary 3.2.C],
we have

rankZ/2 Khr(K; U K;;7Z/2) = %rankz/g Kh(K; UKj;Z/2) < 3.
Since ranky /, Khr(K; U Kj;Z/2) is always even, we have
ranky,, Khr(K; U Kj;7/2) < 2,
and hence
ranky, o Kh(K; U Kj;Z/2) = 2 ranky, Khr(K; U K;;Z/2) < 4.

By [19, Theorem 1.2], K; U K is either a Hopf link or an unlink. In partic-
ular, |Ik(K;, Kj)| = 0 or 1. Hence after permuting the labels of the compo-
nents, we may assume that |1k(K3, K;)| = | 1k(K3, K2)|.

Pick a base point p € K3. By [16, Corollary 3.2.C], we have

1
ranky /o Khr(L,p; Z/2) = B ranky, , Kh(L; Z/2) = 6.
View K1 U K> as a link in the solid torus S® — N(K3), Proposition gives
(4.3) dime AHI(K7 U Ka) < ranky o Khr(L,p;Z/2) = 6.

We discuss two cases.

Case 1. |lk(K3, K1) = | 1k(K3, K2)| = 0. Then K; U Ky is homotopic
to the unlink in the solid torus S — N(K3). Hence by Proposition and
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Proposition [2.6, we have
dimc AHI(K U K3,0) > dimc AHI(Us, 0) = 4,
and
dime AHI(K; U K3,1) = dime AHI(Us, i) = 0 (mod 2), for all i.

By and , AHI(K; U K3) must be supported at f-degree 0. By The-
orem [2.2] this implies K; U K3 is split from K3, so L is either the unlink
or the disjoint union of a Hopf link and an unknot. In both cases we have
ranky /o Kh(L;Z/2) = 8, which contradicts the assumption.

Case 2. |1k(K3, K1)| = | 1k(K3, K2)| = 1. Recall that the link Ky C S* x
D? is defined by Kz = S* x {p1,p2}, and it can be viewed as a link in S —
N(K3). The assumption above implies that Ky U K3 is homotopic to Ko. By
Proposition and Proposition we have

(4.4) dim AHI(K; U Ko:4) > dim AHI(Ko; 4)
and
(4.5) dim AHI(K; U K»;i) = dim AHI(KCo;4) (mod 2)

for all 7. Recall that
(4.6) AHI(K) = Cy) @ C(_y) ® Cy,

where the subscripts represent the f-gradings. It then follows from ([2.1)),

[@3), (T3), [E5), (E0) that
AHI(K; U K) & C(Q) @ C(_g) @ (C?O) or C(Q) @ C(_Q) @ C%O)'

By Proposition in both cases K71 U K5 is the closure of a 2-braid 8 € B>
in the solid torus S* — N(K3). Since K7 U K» is either the unlink or the Hopf
link, 3 is either trivial or aliQ, where o1 is a generator of Bs. If £ is trivial,
then L is the connected sum of two Hopf links, and ranky,/, Kh(L; Z/2) = 8,
which contradicts the assumption. Therefore 5 = 0?2, thus L is isotopic to

L6n1 or its mirror image, and hence the result is proved. g
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