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On links with Khovanov homology of

small ranks

Yi Xie and Boyu Zhang

We classify all links whose Khovanov homology have ranks no
greater than 8, and all three-component links whose Khovanov
homology have ranks no greater than 12, where the coefficient
ring is Z/2. The classification is based on the previous results of
Kronheimer-Mrowka [8], Batson-Seed [3], Baldwin-Sivek [1], and
the authors [19].

1. Introduction

Khovanov homology [7] is a combinatorially defined invariant for oriented
links in S3. For a commutative ring R and an oriented link L, the Khovanov
homology assigns a bi-graded R–module Kh(L;R).

The detection properties of Khovanov homology have been studied in-
tensively in the past decade. In 2011, Kronheimer and Mrowka [8] proved
that Khovanov homology detects the unknot. Since then, many other de-
tection results of Khovanov homology have been obtained. It is now known
that Khovanov homology detects the unlink [3, 6], the trefoil [1], the Hopf
link [2], the forest of unknots [19], the splitting of links [9], and the torus
link T (2, 6) [10].

In this paper, we classify all the links L such that rankZ/2Kh(L;Z/2) ≤
8, and all the 3-component links L such that rankZ/2Kh(L;Z/2) ≤ 12. Since
the rank of the Khovanov homology does not depend on the orientation, it
makes sense to refer to rankZ/2Kh(L;Z/2) without orienting L.

Let Khr(L;R) be the reduced Khovanov homology of L with coefficient
ring R. If R is a PID, then the graded Euler characteristics of Khr(L;R)
recover the Jones polynomial JL(t) of L. Therefore, the parity of
rankZ/2Khr(L;Z/2) is the same as the parity of JL(1), which is odd if L is a
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knot and is even if L has at least two components. By [16, Corollary 3.2.C],
we have

rankZ/2Kh(L;Z/2) = 2 rankZ/2Khr(L;Z/2).

Therefore, rankZ/2Kh(L;Z/2) has the form 4k + 2 (k ∈ Z) if L is a knot,
and is a multiple of 4 if L has at least two components.

On the other hand, it is well-known that if L is a link with n components,
then rankZ/2Kh(L;Z/2) ≥ 2n (see, for example, [19, Equation (1)]). As a
consequence, if L is a knot such that rankZ/2Kh(L;Z/2) ≤ 8, then

rankZ/2Kh(L;Z/2) = 2 or 6,

and hence L is an unknot or a trefoil by [1, 8]. If L is a 2-component link
such that rankZ/2Kh(L;Z/2) ≤ 8, then

rankZ/2Kh(L;Z/2) = 4 or 8.

If L is a 3-component link such that rankZ/2Kh(L;Z/2) ≤ 12, then

rankZ/2Kh(L;Z/2) = 8 or 12.

If L has at least 4 components, then rankZ/2Kh(L;Z/2) ≥ 16. In [19], the au-
thors have classified all the n–component links L with rankZ/2Kh(L;Z/2) =
2n. Therefore, the essential content of this paper is given by the following
two results:

Theorem 1.1. Suppose L is a 2-component link in S3, then

rankZ/2Kh(L;Z/2) = 8

if and only if L is isotopic to the link L4a1 in the Thistlethwaite link table,
which is the link given by Figure 1, or its mirror image.

Remark 1.2. In [19, Corollary 1.4], the authors proved that Khovanov
homology (together with the bi-grading) distinguishes an oriented link whose
underlying un-oriented link is isotopic to L4a1. Theorem 1.1 is a stronger
version of that result.
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Figure 1. The link L4a1. Figure 2. The link L6n1.

Theorem 1.3. Suppose L is a three-component link in S3, then

rankZ/2Kh(L;Z/2) = 12

if and only if L is isotopic to the link L6n1 in the Thistlethwaite link table,
which is the link given by Figure 2, or its mirror image.

Combining Theorem 1.1, Theorem 1.3, and the results in [1, 8, 19], we
have the following two corollaries.

Corollary 1.4. Suppose L ⊂ S3 is a link such that rankZ/2Kh(L;Z/2) ≤ 8,
then L is isotopic to one of the following:

• the unlink with at most 3 components;

• the left-handed or right-handed trefoil;

• the Hopf link;

• the connected sum of two Hopf links;

• the disjoint union of a Hopf link and an unknot;

• the link L4a1 or its mirror image. □

Corollary 1.5. Suppose L ⊂ S3 is a link with three components such that

rankZ/2Kh(L;Z/2) ≤ 12,

then L is isotopic to one of the following:

• the unlink with 3 components;

• the connected sum of two Hopf links;



✐

✐

“14-Zhang” — 2023/2/13 — 1:27 — page 1264 — #4
✐

✐

✐

✐

✐

✐

1264 Y. Xie and B. Zhang

• the disjoint union of a Hopf link and an unknot;

• the link L6n1 or its mirror image. □

2. Preliminaries

Let L be a link in the (framed) solid torus S1 ×D2, its annular instanton
Floer homology AHI(L) is defined in [18], and the theory is further developed
by [19, 20]. This section reviews several results from [18–20] that will be used
later.

The annular instanton Floer homology is a Z-graded complex vector
space, and the grading is called the f-grading. We use AHI(L, i) to denote
the component of AHI(L) with f-degree i. For each i ∈ Z, we have

(2.1) AHI(L, i) ∼= AHI(L,−i).

We recall the following definition from [20, Definition 1.5].

Definition 2.1. A properly embedded, connected surface S ⊂ S1 ×D2 is
called a meridional surface if ∂S is a meridian of S1 ×D2.

We recall the following two results from [20].

Theorem 2.2 ([20, Theorem 8.2]). Given a link L in S1 ×D2, let S
be a meridional surface that intersects L transversely. Let g be the genus of
S, and let n = |S ∩ L|. Suppose S minimizes the value of (2g + n) among
meridional surfaces that intersect L transversely, then we have

AHI(L,±(2g + n)) ̸= 0,

and

AHI(L, i) = 0

for all |i| > 2g + n.

Proposition 2.3 ([20, Corollary 8.4]). Let L be a link in S1 ×D2, let
n be a positive integer. Then L is isotopic to the closure of a braid with n
strands if and only if the top f-grading of AHI(L) is n and AHI(L, n) ∼= C.

If K ⊂ S3 is a knot, we will use N(K) to denote the open tubular
neighborhood of K. Suppose K is an unknot, then S3 −N(K) is a solid
torus. Choose the framing of S3 −N(K) such that the preferred longitude
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of S3 −N(K) is a meridian of K. Then for every link L that is disjoint
from N(K), we can take the annular instanton Floer homology AHI(L) by
viewing L as a link in S3 −N(K). Notice that in this case, a meridional
surface of S3 −N(K) induces a Seifert surface of K and vice versa.

The following proposition establishes a relation between the annular in-
stanton Floer homology and the reduced Khovanov homology.

Proposition 2.4. Suppose L ⊂ S3 is a link, U ⊂ L is a component of L
that is an unknot, and let p ∈ U be a base point on U . Let L0 = L− U , then
L0 is a link in the solid torus S3 −N(U). We have

rankZ/2Khr(L;Z/2) ≥ dimCAHI(L0).

Proof. By Kronheimer-Mrowka’s spectral sequence [8, Theorem 8.2], we
have

dimCKhr(L̄, p̄;C) ≥ dimC I♮(L, p;C),

where (L̄, p̄) is the mirror image of (L, p), and I♮ is the reduced singular
instanton Floer homology introduced in [8]. By [7, Corollary 11], we have

dimCKhr(L̄, p̄;C) = dimCKhr(L, p;C).

By the universal coefficient theorem,

dimCKhr(L;C) ≤ rankZ/2Khr(L;Z/2).

By [19, Proposition 2.6], I♮(L, p;C) ∼= AHI(L0). Therefore the proposition is
proved. □

Let Uk ⊂ S1 ×D2 be the unlink with k components, and let Kl ⊂ S1 ×
D2 be the link given by S1 × {p1, · · · , pl}. Let Uk ⊔ Kl be the disjoint union
of Uk and Kl such that Uk is included in a 3-ball disjoint from Kl. By [18,
Example 4.2, Proposition 4.3],

AHI(Uk ⊔ Kl) ∼= C2k

(0) ⊗ (C(1) ⊕ C(−1))
⊗l,

where the subscripts represent the f-gradings.

Proposition 2.5 ([19, Proposition 4.3]). Let L ⊂ S1 ×D2 be an ori-
ented link such that every component of L has winding number 0 or ±1.
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Suppose L has k components with winding number 0, and l components with
winding number ±1, then

dimCAHI(L, i) ≥ dimCAHI(Uk ⊔ Kl, i)

for all i ∈ Z.

Proposition 2.6 ([18, Section 4.4]). Suppose L1, L2 are two links in
S1 ×D2. If L1 and L2 are homotopic to each other in S1 ×D2, then

dimCAHI(L1, i) ≡ dimCAHI(L2, i) mod 2

for all i ∈ Z.

3. The Multi-variable ALexander polynomial

In this section, we prove several results on the multi-variable Alexander
polynomial, which will be used later in the proof of Theorem 1.1.

Let l ≥ 2 be an integer, recall that the l–strand braid group Bl has the
following presentation:

Bl = ⟨σ1, · · · , σl−1|σiσi+1σi = σi+1σiσi+1, σiσj = σjσi (j − i ≥ 2) ⟩

The reduced Burau representation (see [4]) is a group homomorphism

ρ : Bl → GL(l − 1,Z[t, t−1])

which maps σi to 


Ii−2

1 0 0
t −t 1
0 0 1

Il−i−2




,

where the matrix is truncated appropriately when i = 1 or l − 1. Notice that

det(ρ(σi)) = −t for all i,

and hence det(ρ(β)) = ±ta for all β ∈ Bl.

Definition 3.1. Suppose β ∈ Bl is a braid and U ⊂ S3 is an unknot, let
β̂ ⊂ S1 ×D2 ∼= S3 −N(U) be the braid closure of β. Define U ∪ β̂ to be the
union of U and β̂ under the standard framing of S3 −N(U).
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Remark 3.2. The link L4a1 is isotopic to U ∪ σ̂1, where σ1 is a generator
of B2.

Theorem 3.3 ([11, Theorem 3]). Let β ∈ Bl, and let L = U ∪ β̂. Sup-
pose β̂ is connected, then the multi-variable Alexander polynomial ∆L(x, t)
of L is given by

(3.1) ∆(x, t)
.
= det

(
xI − ρ(β)(t)

)
,

where x and t are the variables corresponding to U and β̂ respectively, and
the sign “

.
=” means that the two sides are equal up to a multiplication by

±xatb.

Remark 3.4. The ambiguity in the notation “
.
=” is necessary because

the multi-variable Alexander polynomial (before normalization) is only well-
defined up to a multiplication by ±xatb.

We also need the following result:

Theorem 3.5 ([17]). Suppose L = K1 ∪K2 is a 2-component link, and let
∆L(x, y) be the multi-variable Alexander polynomial of L where x and y are
the variables corresponding to K1 and K2 respectively. Then we have

∆L(x, 1)
.
=

1− xl

1− x
∆K1

(x),

where ∆K1
(x) is the Alexander polynomial of K1, and l = | lk(K1,K2)| is

the absolute value of the linking number of K1 and K2.

The next lemma is an immediate corollary of the results in [5, 13], and
is essentially contained in the proof of [19, Lemma 6.1]. We state it here as
a separate lemma for future reference.

Lemma 3.6. Suppose L is a link with n components, let ∆L(x1, · · · , xn) be
the (multi-variable) Alexander polynomial of L. Let p ∈ L be a base point.

1) If n = 1, then the sum of the absolute values of the coefficients of
∆L(x1) is less than or equal to rankQKhr(L, p;Q).

2) If n ≥ 2, then the sum of the absolute values of the coefficients of

(x1 − 1) · · · (xn − 1)∆L(x1, · · · , xn)

is less than or equal to 2n−1 rankQ Khr(L, p;Q).
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Proof. We use ĤFK and ĤFL to denote the Heegaard knot Floer homol-
ogy [12, 14] and the link Floer homology [13] respectively. The link Floer
homology was originally defined for Z/2-coefficients, and was generalized to
Z-coefficients in [15]. It is known that

(3.2) rankQ ĤFK(L;Q) = rankQ ĤFL(L;Q),

but ĤFL(L;Q) carries more refined gradings than rankQ ĤFK(L;Q).
By [5, Corollary 1.7], we have

(3.3) rankQ ĤFK(L;Q) ≤ 2n−1 rankQ Khr(L;Q).

By [13, Equation (1)], the multi-graded Euler characteristics of ĤFL(L;Q)
satisfy

(3.4) χ
(
ĤFL(L;Q)

) .
=

{
∆L(x1) if n = 1,

(x1 − 1) · · · (xn − 1)∆L(x1, · · · , xn) if n ≥ 2,

therefore the result is proved. □

Now let l ≥ 2 be an integer, let β ∈ Bl, L = U ∪ β̂, and let ∆L(x, y) be
the multi-variable Alexander polynomial of L such that x and y are the
variables corresponding to U and β̂ respectively. By (3.1), we have

∆L(x, y)
.
= (−1)l−1 det(ρ(β2)(y)) + f1(y)x+ · · ·+ fl−2(y)x

l−2 + xl−1

= ±ya + f1(y)x+ · · ·+ fl−2(y)x
l−2 + xl−1(3.5)

for a ∈ Z, fi ∈ Z[y, y−1]. By Theorem 3.5,

∆L(x, 1)
.
= (1 + x+ x2 + · · ·+ xl−1)∆U (x) = 1 + x+ x2 + · · ·+ xl−1.

Therefore in Equation (3.5), we must have fi(1) = 1 for all i, and the sign
in front of the term ya is positive.

A 2-component link K1 ∪K2 is called exchangeably braided, if both
K1,K2 are unknots and for each (i, j) ∈ {(1, 2), (2, 1)} the knot Ki is a
braid closure with axis Kj . The concept of exchangeably braided links was
introduced and studied by Morton in [11]. If we further assume that L is
exchangeably braided, then by symmetry and (3.5), we have

(3.6) ∆L(x, y)
.
= xb + g1(x)y + · · ·+ gl−2(x)y

l−2 + yl−1

for b ∈ Z, and gi(x) ∈ Z[x, x−1] with gi(1) = 1.
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Lemma 3.7. Let L be a mutually braided link with linking number l ≥ 3, let
∆L(x, y) be the multi-variable Alexander polynomial of L. Then the sum of
the absolute values of the coefficients of (x− 1)(y − 1)∆L(x, y) is at least 12.

Proof. Let fi(y) be as in (3.5) for i = 1, · · · , l − 2, and set

f0(y) = ya, fl−1(y) = 1.

Then we have

(x− 1)(y − 1)∆L(x, y)
.
=(y − 1)

(
− ya +

(
ya − f1(y)

)
x+ · · ·+

(
fl−3(y)− fl−2(y)

)
xl−2

+
(
fl−2(y)− 1

)
xl−1 + xl

)

=− (y − 1)ya + (y − 1)xl +

l−1∑

i=1

(y − 1)
(
fi−1(y)− fi(y)

)
xi.(3.7)

We discuss three cases depending on how many values of i have fi ̸= fi−1.
If fi−1 = fi for all i ∈ {1, · · · , l − 1}, then a = 0, and (3.5) gives

∆L(x, y)
.
= 1 + x+ · · ·+ xl−1,

which contradicts (3.6) and the assumption that l ≥ 3.
If there is exactly one element i ∈ {1, · · · , l − 1} such that fi−1(y) ̸=

fi(y), then by (3.5), we have

∆L(x, y)
.
= ya + yax+ · · ·+ yaxi−1 + xi + · · ·+ xl−1,

which also contradicts (3.6) and the assumption that l ≥ 3.
If there exist at least two elements i ∈ {1, · · · , l − 1} such that fi−1(y) ̸=

fi(y), then

fi−1(1)− fi(1) = 1− 1 = 0

implies that y − 1 is a factor of fi−1(y)− fi(y). Therefore for every i such
that fi−1(y) ̸= fi(y), the sum of the absolute values of the coefficients of

(y − 1)(fi−1(y)− fi(y))

is even and strictly greater than 2, therefore it is at least 4. The desired
result then follows from (3.7). □
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The following lemma refines the proof of Lemma 3.7 and obtains a nec-
essary condition for attaining the lower bound. This result will not be used
in the proof of Theorem 1.1.

Lemma 3.8. Suppose L is an exchangeably braided link with linking number
l ≥ 3, let ∆L(x, y) be the multi-variable Alexander polynomial of L. If the
sum of the absolute values of the coefficients of (x− 1)(y − 1)∆L(x, y) is
equal to 12, then l = 3.

Proof. We use the same notation as in the proof of Lemma 3.7. If the sum of
the absolute values of the coefficients of (x− 1)(y − 1)∆L(x, y) is equal to
12, then the proof of Lemma 3.7 indicates that there are exactly two elements
i ∈ {1, · · · , l − 1} such that fi−1(y) ̸= fi(y). Therefore by (3.5), there exists
f(y) ∈ Z[y, y−1] and 0 ≤ k1 < k2 ≤ l − 2, such that f(y) ̸= 1, f(y) ̸= ya, and

∆L(x, y)
.
= ya(1 + · · ·+ xk1) + f(y)(xk1+1 + · · ·+ xk2) + xk2+1 + · · ·+ xl−1,

therefore

(3.8) ∆L(1, y)
.
= (1 + k1)y

a + (k2 − k1)f(y) + (l − 1− k2).

On the other hand, by Theorem 3.5, we have

(3.9) ∆L(1, y)
.
= 1 + y + · · ·+ yl−1.

Since l ≥ 3, Equation (3.9) implies that the coefficients of ∆L(1, y) are
non-zero for at least 3 different powers of y. Therefore the polynomial f(y)
in (3.8) must contain a non-zero term of the form c · yb, where b ̸= 0 or a.
As a result, ∆L(1, y) has a term whose coefficient is a non-zero multiple of
k2 − k1. Since (3.9) shows that the coefficients of all the non-zero terms of
∆L(1, y) are 1, we must have k2 − k1 = 1. Hence

∆L(x, y)
.
= ya(1 + · · ·+ xk1) + f(y)xk1+1 + xk1+2 + · · ·+ xl−1.

Since ∆L(x, y)
.
= ∆L(x

−1, y−1), and recall that f(y) ̸= 1, f(y) ̸= ya, we have
l = 2m+ 1 for m ∈ Z, and

(3.10) ∆L(x, y)
.
= ya(1 + · · ·+ xm−1) + f(y)xm + xm+1 + · · ·+ x2m.

View ∆L(x, y) as a Laurent polynomial of x with coefficients in Z[y, y−1],
the equation above shows that there is only one power of x (namely xm)
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that may have a coefficient which is not a monomial of y. Switching the
roles of x and y and repeating the same argument, we conclude that there
is at most one power of y in ∆L(x, y) whose coefficient is not a monomial of
x.

Now we assume l > 3 and deduce a contradiction. Since l > 3, we must
have a = 0, because otherwise neither the coefficient of ya nor the coefficient
of y0 of ∆L(x, y) are monomials in Z[x, x−1], contradicting the previous
argument. Therefore by (3.10), we have

∆L(x, y)
.
= 1 + · · ·+ xm−1 + f(y)xm + xm+1 + · · ·+ x2m.

Flipping the roles of x and y, we have

∆L(x, y)
.
= 1 + · · ·+ ym−1 + g(x)ym + ym+1 + · · ·+ y2m

for some g ∈ Z[x, x−1]. By (3.9), we have f(1) = g(1) = 1. Therefore

∆L(x, y)
.
= −(2m+ 1) +

m∑

i=−m

xi +

m∑

i=−m

yi,

and hence

(1− x)(1− y)∆L(x, y)
.
=− (2m+ 1)(1− x)(1− y) + (x−m − xm+1)(1− y) + (1− x)(y−m − ym+1).

Since l > 3, we have m ≥ 2, therefore the sum of the absolute values of
the coefficients of (1− x)(1− y)∆L(x, y) is strictly greater than 12, which
contradicts the assumption.

In conclusion, we have l = 3, and the lemma is proved. □

Combining (3.2), (3.4), Lemma 3.7, and Lemma 3.8, we obtain the fol-
lowing corollary, which may be of independent interest.

Corollary 3.9. Suppose L is an exchangeably braided link with linking
number l ≥ 3, then rankQ ĤFK(L;Q) ≥ 12. Moreover, if rankQ ĤFK(L;Q) =
12, then l = 3. □
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4. Proof of Theorem 1.1 and Theorem 1.3

Proof of Theorem 1.1. The “if” part of the theorem follows from a straight-
forward computation. Now suppose L is a 2-component link such that

(4.1) rankZ/2Kh(L;Z/2) = 8,

we prove that L is isotopic to L4a1 or its mirror image.
Denote the two components of L byK1 andK2. Batson-Seed’s inequality

[3, Corollary 1.6] gives

rankZ/2Kh(L;Z/2) ≥ rankZ/2Kh(K1;Z/2) · rankZ/2Kh(K2;Z/2).

Since rankZ/2Kh(Ki;Z/2) ≥ 2, we have

rankZ/2Kh(Ki;Z/2) ≤ 4.

By [16, Corollary 3.2.C],

rankZ/2Khr(Ki;Z/2) =
1

2
rankZ/2Kh(Ki;Z/2) ≤ 2.

The parity of rankZ/2Khr(Ki;Z/2) is always odd, thus it has to be 1.
Kronheimer-Mrowka’s unknot detection theorem [8] then implies that both
K1 and K2 are unknots.

Pick a base point p ∈ K2. We have

rankZ/2Khr(L, p;Z/2) =
1

2
rankZ/2Kh(L;Z/2) = 4.

By Proposition 2.4,

(4.2) dimCAHI(K1) ≤ rankZ/2Khr(L, p;Z/2) = 4,

where K1 is viewed as a knot in the solid torus S3 −N(K2).
If lk(K1,K2) = 0, then K1 is homotopic to the unknot in the solid torus.

By Proposition 2.5 and Proposition 2.6, we have

dimCAHI(K1; 0) ≥ dimCAHI(U1; 0) = 2,

and

dimCAHI(K1; i) ≡ dimCAHI(U1; i) ≡ 0 (mod 2), for all i.

Therefore, by (2.1) and (4.2), AHI(K1) must be supported at f-degree 0. By
Theorem 2.2, this implies K2 bounds a disk that is disjoint from K1, and
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hence L is the disjoint union of K1 and K2, which implies L is the unlink.
However, the unlink does not satisfy (4.1), which is a contradiction.

Therefore, we have l = | lk(K1,K2)| > 0, and hence K1 is homotopic to
the closure β̂ of an l-braid β in the solid torus S3 −N(K2). By Proposi-
tion 2.6, we have

dimCAHI(K1; i) ≡ dimCAHI(β̂; i) (mod 2).

and by (the easy direction of) Proposition 2.3, we have

dimCAHI(β̂;±l) = 1,

dimCAHI(β̂;±i) = 0 for all i > l.

Therefore (2.1) and (4.2) yield that

dimAHI(K1;±l) = 1

and

dimAHI(K1;±i) = 0 for all i > l.

By Proposition 2.3, this implies K1 is the closure of an l-braid in S3 −
N(K2). A similar argument shows that K2 is the closure of an l-braid in
S3 −N(K1). Therefore L is exchangeably braided.

By the universal coefficient theorem,

rankQ Khr(L, p;Q) ≤ rankZ/2Khr(L, p;Z/2) =
1

2
rankZ/2Kh(L;Z/2) = 4.

Therefore by Lemma 3.6 and Lemma 3.7, we have l ≤ 2.
If l = 1, then L is the Hopf link, which does not satisfy (4.1).
If l = 2, then L = U ∪ σ̂m

1 , where σ1 ∈ B2 is a generator of the braid
group with 2 strands and m ∈ Z. Since both components of L are unknots,
we have m = ±1, therefore L is isotopic to L4a1 or its mirror image. □

Proof of Theorem 1.3. The “if” part of the theorem follows from a
straightforward calculation. Now suppose L is a 3-component link with
rankZ/2Kh(L;Z/2) = 12, we prove that L isotopic to L6n1 or its mirror
image.
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Denote the three components of L by K1, K2, K3. By Batson-Seed’s
inequality [3, Corollary 1.6], we have

rankZ/2Kh(Ki ∪Kj ;Z/2) · rankZ/2Kh(Kk;Z/2) ≤ rankZ/2Kh(L;Z/2) = 12

for all triples (i, j, k) with {i, j, k} = {1, 2, 3}. Since rankZ/2Kh(Kk;Z/2) ≥
2, we have

rankZ/2Kh(Ki ∪Kj ;Z/2) ≤ 6.

We apply a similar parity argument as before. By [16, Corollary 3.2.C],
we have

rankZ/2Khr(Ki ∪Kj ;Z/2) =
1

2
rankZ/2Kh(Ki ∪Kj ;Z/2) ≤ 3.

Since rankZ/2Khr(Ki ∪Kj ;Z/2) is always even, we have

rankZ/2Khr(Ki ∪Kj ;Z/2) ≤ 2,

and hence

rankZ/2Kh(Ki ∪Kj ;Z/2) = 2 rankZ/2Khr(Ki ∪Kj ;Z/2) ≤ 4.

By [19, Theorem 1.2], Ki ∪Kj is either a Hopf link or an unlink. In partic-
ular, | lk(Ki,Kj)| = 0 or 1. Hence after permuting the labels of the compo-
nents, we may assume that | lk(K3,K1)| = | lk(K3,K2)|.

Pick a base point p ∈ K3. By [16, Corollary 3.2.C], we have

rankZ/2Khr(L, p;Z/2) =
1

2
rankZ/2Kh(L;Z/2) = 6.

View K1 ∪K2 as a link in the solid torus S3 −N(K3), Proposition 2.4 gives

(4.3) dimCAHI(K1 ∪K2) ≤ rankZ/2Khr(L, p;Z/2) = 6.

We discuss two cases.

Case 1. | lk(K3,K1)| = | lk(K3,K2)| = 0. Then K1 ∪K2 is homotopic
to the unlink in the solid torus S3 −N(K3). Hence by Proposition 2.5 and
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Proposition 2.6, we have

dimCAHI(K1 ∪K2, 0) ≥ dimCAHI(U2, 0) = 4,

and

dimCAHI(K1 ∪K2, i) ≡ dimCAHI(U2, i) ≡ 0 (mod 2), for all i.

By (2.1) and (4.3), AHI(K1 ∪K2) must be supported at f-degree 0. By The-
orem 2.2, this implies K1 ∪K2 is split from K3, so L is either the unlink
or the disjoint union of a Hopf link and an unknot. In both cases we have
rankZ/2Kh(L;Z/2) = 8, which contradicts the assumption.

Case 2. | lk(K3,K1)| = | lk(K3,K2)| = 1. Recall that the link K2 ⊂ S1 ×
D2 is defined by K2 = S1 × {p1, p2}, and it can be viewed as a link in S3 −
N(K3). The assumption above implies that K1 ∪K2 is homotopic to K2. By
Proposition 2.5 and Proposition 2.6, we have

(4.4) dimAHI(K1 ∪K2; i) ≥ dimAHI(K2; i)

and

(4.5) dimAHI(K1 ∪K2; i) ≡ dimAHI(K2; i) (mod 2)

for all i. Recall that

(4.6) AHI(K2) ∼= C(2) ⊕ C(−2) ⊕ C2
(0),

where the subscripts represent the f-gradings. It then follows from (2.1),
(4.3), (4.4), (4.5), (4.6) that

AHI(K1 ∪K2) ∼= C(2) ⊕ C(−2) ⊕ C4
(0) or C(2) ⊕ C(−2) ⊕ C2

(0).

By Proposition 2.3, in both cases K1 ∪K2 is the closure of a 2-braid β ∈ B2

in the solid torus S3 −N(K3). SinceK1 ∪K2 is either the unlink or the Hopf
link, β is either trivial or σ±2

1 , where σ1 is a generator of B2. If β is trivial,
then L is the connected sum of two Hopf links, and rankZ/2Kh(L;Z/2) = 8,

which contradicts the assumption. Therefore β = σ±2
1 , thus L is isotopic to

L6n1 or its mirror image, and hence the result is proved. □
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[12] P. Ozsváth and Z. Szabó, Holomorphic disks and knot invariants, Adv.
Math. 186 (2004), no. 1, 58–116.

[13] ———, Holomorphic disks, link invariants and the multi-variable
Alexander polynomial, Algebr. Geom. Topol. 8 (2008), no. 2, 615–692.

[14] J. A. Rasmussen, Floer homology and knot complements, ProQuest
LLC, Ann Arbor, MI (2003), ISBN 978-0496-39374-9. Thesis (Ph.D.)–
Harvard University.



✐

✐

“14-Zhang” — 2023/2/13 — 1:27 — page 1277 — #17
✐

✐

✐

✐

✐

✐

On links with Khovanov homology of small ranks 1277

[15] S. Sarkar, A note on sign conventions in link Floer homology, Quantum
Topol. 2 (2011), no. 3, 217–239.

[16] A. N. Shumakovitch, Torsion of Khovanov homology, Fund. Math. 225
(2014), no. 1, 343–364.

[17] G. Torres, On the Alexander polynomial, Ann. of Math. (2) 57 (1953)
57–89.

[18] Y. Xie, Instantons and Annular Khovanov Homology, Adv. Math. 388
(2021), Paper No. 107864, 51 pp.

[19] Y. Xie and B. Zhang, Classification of links with Khovanov homology
of minimal rank, to appear in J. Eur. Math. Soc.

[20] ———, Instanton Floer homology for sutured manifolds with tangles,
arXiv preprint, arXiv:1907.00547, (2019).

Beijing International Center for Mathematical Research

Peking University, Beijing 100871, China

E-mail address: yixie@pku.edu.cn

Department of Mathematics, Princeton University

New Jersey 08544, USA

E-mail address: bz@math.princeton.edu

Received July 23, 2020

Accepted September 5, 2020



✐

✐

“14-Zhang” — 2023/2/13 — 1:27 — page 1278 — #18
✐

✐

✐

✐

✐

✐


	Introduction
	Preliminaries
	The Multi-variable ALexander polynomial
	Proof of Theorem 1.1 and Theorem 1.3
	References

