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We generalize a formula due to Macdonald that relates the singular
Betti numbers of Xn/G to those of X, where X is a compact man-
ifold and G is any subgroup of the symmetric group Sn acting on
Xn by permuting coordinates. Our result is completely axiomatic:
in a general setting, given an endomorphism on the cohomology
H•(X), it explains how we can explicitly relate the Lefschetz se-
ries of the induced endomorphism on H•(Xn)G to that of the given
endomorphism on H•(X) in the presence of the Künneth formula
with respect to a cup product. For example, when X is a com-
pact manifold, we take the Lefschetz series given by the singular
cohomology with rational coefficients. On the other hand, when
X is a projective variety over a finite field Fq, we use the l-adic
étale cohomology with a suitable choice of prime number l. We
also explain how our formula generalizes the Pólya enumeration
theorem, a classical theorem in combinatorics that counts color-
ings of a graph up to given symmetries, where X is taken to be
a finite set of colors. When X is a smooth projective variety over
C, our formula also generalizes a result of Cheah that relates the
Hodge numbers of Xn/G to those of X. We also discuss how the
generating function for the Lefschetz series of the endomorphisms
on H•(Xn)Sn is rational, and this generalizes the following facts:
1. the generating function of the Poincaré polynomials of symmet-
ric powers of a compact manifold X is rational; 2. the generating
function of the Hodge-Deligne polynomials of symmetric powers of
a smooth projective variety X over C is rational; 3. the zeta series
of a projective variety X over Fq is rational. We also prove anal-
ogous rationality results when we replace Sn by the alternating
groups An.
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1. Introduction

1.1. Motivation

Let X be a compact complex manifold of (complex) dimension d and
consider the n-th symmetric power Symn(X) = Xn/Sn for each n ∈ Z≥0.
One may ask how to compute the singular Betti numbers h0(Symn(X)),
h1(Symn(X)), . . . for various n with respect to those of X. In his influential
paper [Mac1962A], Macdonald settled this question: he proved

∞
∑

n=0

χu(Sym
n(X))tn =

(1− ut)h
1(X) · · · (1− u2d−1t)h

2d−1(X)

(1− t)h0(X) · · · (1− u2dt)h2d(X)
,

where

χu(Y ) :=

∞
∑

i=0

(−u)ihi(Y ),

a power series1 in u with integer coefficients, defined for any topological
space Y with finite singular Betti numbers. Note that the right-hand side of
the above identity is rational in t.

1In this paper, we call χu(Y ) the Poincaré series of Y although it is more
common to use the terminology for χ(−u)(Y ), the generating function for hi(Y ). If
hi(Y ) = 0 for large enough i, we have χ1(Y ) = χ(Y ), the Euler characteristic of Y .
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There is an analogous result when X is a projective variety of dimension
d over a finite field Fq due to Grothendieck:

ZX(t) =
det(idH1(X) − Fr∗q,1t) · · · det(idH2d−1(X) − Fr∗q,2d−1t)

det(idH0(X) − Fr∗q,0t) · · · det(idH2d(X) − Fr∗q,2dt)
,

where

ZX(t) := exp

(

∞
∑

r=1

|X(Fqr)|t
r

r

)

,

is the zeta series ofX. In the above result, the notationH i(X) now denotes
the i-th l-adic étale cohomology2

H i
ét(X,Ql) := H i

ét(X/Fq
,Zl)⊗Zl

Ql

of X/Fq
:= X ×Spec(Fq) Spec(Fq), which is a finite-dimensional vector space

over the field Ql of l-adic rational numbers for any fixed prime number l not
dividing q. We write Frq, which we call the Frobenius endomorphism on
X, to mean the map from X to itself given by the identity on the underlying
topological space and the q-th power map on the structure sheaf OX , giving
an endomorphism on X/Fq

, inducing the Ql-linear endomorphism Fr∗q,i on

H i(X). In particular, this shows that ZX(t) is rational in t, which was first
shown by Dwork [Dwo1960]. It is well-known that

ZX(t) =

∞
∑

n=0

|Symn(X)(Fq)|t
n,

so writing

∞
∑

n=0

|Symn(X)(Fq)|t
n =

det(idH1(X) − Fr∗q,1t) · · · det(idH2d−1(X) − Fr∗q,2d−1t)

det(idH0(X) − Fr∗q,0t) · · · det(idH2d(X) − Fr∗q,2dt)
,

one may visibly find a similarity between Grothendieck’s formula and Mac-
donald’s formula. When we take u = 1 in Macdonald’s formula, we have

∞
∑

n=0

χ(Symn(X))tn =

(

1

1− t

)χ(X)

.

By making analogies between taking the Euler characteristic and count-
ing Fq-points, Vakil [Vak2015] explained how to interpret Grothendieck’s

2In this paper, we say the “étale cohomology with Ql-coefficients” to mean this
tensor product.
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formula as the specialization u = 1 of Macdonald’s formula in the l-adic set-
ting. In this paper, we take this analogy one step further by generalizing
both Macdonald’s formula and Grothendieck’s formula.

Our main theorem (i.e., Theorem 1.4) is too formal to state without
providing a concrete consequence:

Theorem 1.1. Let X be either a compact complex manifold of dimen-
sion d or a projective variety of dimension d over a finite field Fq. For any
endomorphism F on X, we have

∞
∑

n=0

Lu(Sym
n(F )∗)tn

=
det(idH1(X) − F ∗

1 ut) · · · det(idH2d−1(X) − F ∗
2d−1u

2d−1t)

det(idH0(X) − F ∗
0 t) · · · det(idH2d(X) − F ∗

2du
2dt)

,

where

• H i(X) is the singular cohomology of X with Q-coefficients when X is
a compact complex manifold,

• H i(X) is the étale cohomology of X/Fq
with Ql-coefficients when X is

a projective variety over Fq for some prime number l,

• Symn(F ) is the endomorphism on Symn(X) induced by F ,

• F ∗
i is the endomorphism on H i(X) induced by F , and

• Lu(F
∗) :=

∑

i≥0(−u)
iTr(F ∗

i ).

Indeed, taking F = idX in the singular setting of Theorem 1.1, we ob-
tain Macdonald’s formula. Taking F = Frq in the l-adic setting for choosing
primes l ∤ q with u = 1, we obtain Grothendieck’s formula thanks to the
Grothendieck-Lefschetz trace formula (e.g., [Mil1980], VI, Theorem 13.4),
which implies that

|Symn(X)(Fq)| = L1(Sym
n(Frq)

∗),

noting that Symn(Frq) is equal to the Frobenius endomorphism on Symn(X).
Note that Theorem 1.1 is more general than the two formulas in either
setting, and we still get the rational generating function in t. Our main
theorem, which we introduce in the next subsection, is much more general
than Theorem 1.1, and yet it is a simple representation-theoretic observation.
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We hope that experts in various cohomology theories may find our general
formulation clear and useful.

Remark 1.2. Theorem 1.1 holds more generally, although we do not seek
its maximum generality in this paper. For the singular setting, one may take
X to be any compact smooth manifold of (real) dimension 2d or any finite
CW complex such that hi(X) = 0 for all i > 2d. In the l-adic setting, we must
require l > n whenever we deal with H i(Symn(X)) = H i

ét(Sym
n(X),Ql) be-

cause the result depends on the isomorphism H i(Symn(X)) ≃ H i(Xn)Sn

([HN1975], Proposition 3.2.1) that uses the fact that l does not divide
|Sn| = n!. Moreover, sinceH i(X) = H i

ét(X,Ql) = 0 for i > 2d ([Mil1980], VI,
Theorem 1.1), we have

H i(Symn(X)) ≃ H i(Xn)Sn ≃

(

⊕

i1+···+in=i

H i1(X)⊗ · · · ⊗H in(X)

)Sn

= 0

if i > 2dn with any choice of l > n, so each Lu(Sym
n(F )∗) is a polynomial

in u for any such l. In the l-adic setting, one can instead use the compactly
supported l-adic étale cohomology H•

ét,c(X,Ql), which allows us to consider
X to be any quasi-projective variety over Fq. This is particularly useful for
revisiting a previously known point-counting result over Fq, discussed in
Section 5.

Later in this paper, we run the same story, replacing the full symmetric
groups Sn with their alternating subgroups An. In particular, we obtain the
following analogue of Theorem 1.1. This is restated as Theorem 4.4, and
more concrete consequences of this can be found in Section 4:

Theorem 1.3. Let X be either a compact complex manifold of dimen-
sion d or a projective variety of dimension d over a finite field Fq. For any
endomorphism F on X, we have

∞
∑

n=0

Lu(Alt
n(F )∗)tn =

2d
∏

i=0

(

1

det(idHi(X) − F ∗
i u

it)

)(−1)i

+

2d
∏

i=0

(

1

det(idHi(X) + F ∗
i u

it)

)(−1)i+1

− 1− Lu(F
∗)t,

where we use the same notation as in Theorem 1.1 except Altn(F ), the en-
domorphism on the n-th alternating power Altn(X) = Xn/An of X induced
by F .
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1.2. Main result and its applications

In this subsection, we formulate our main result. Let C be a category where
any finite products exist. Fix a field k, and suppose that we have a functor

H• : Cop → GrVeck

from the opposite category Cop of C to the category GrVeck of Z≥0-graded
vector spaces over k whose morphisms are k-linear graded maps (of degree
0). Given any object X in C, we may write

H•(X) =

∞
⊕

i=0

H i(X),

where each H i(X) is a vector space over k. Given any morphism f : X → Y
in C, the induced k-linear map f∗ : H•(Y ) → H•(X) can be decomposed
into f∗i : H i(Y ) → H i(X) for each i ∈ Z≥0 by definition. In addition, we
assume the following axioms:

Axiom 1. Given any object X in C, we assume that there is a cup prod-
uct, namely a k-bilinear map ∪ : H i(X)×Hj(X) → H i+j(X) defined for
each i, j ∈ Z≥0 such that

a ∪ b = (−1)ijb ∪ a

for all a ∈ H i(X) and b ∈ Hj(X).

Axiom 2. Assuming Axiom 1, given any objects X and Y in C, we assume
the Künneth formula:

H•(X)⊗k H
•(Y ) ≃ H•(X × Y )

given by a⊗ b 7→ p∗X(a) ∪ p∗Y (b) for any homogeneous elements a ∈ H•(X)
and b ∈ H•(Y ), meaning a ∈ H i(X) and b ∈ Hj(Y ) for some i, j ∈ Z≥0. (In
such a case, we write i = deg(a) and j = deg(b) and call them the degree
of a and that of b, respectively, for the rest of this paper.)

Axiom 3. Given any object X in C and i ∈ Z≥0, the k-vector space H
i(X)

is finite-dimensional.
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The reader may immediately note that Axiom 1 is only meaningful due
to Axiom 2 since otherwise one can always give trivial bilinear maps for a
cup product of H•(X). Note that these two axioms give

H•(X)⊗n ≃ H•(Xn)

defined by

v1 ⊗ · · · ⊗ vn 7→ p∗1(v1) ∪ · · · ∪ p∗n(vn),

for any homogeneous v1, . . . , vn ∈ H•(X), where p1, . . . , pn are the projection
maps Xn → X. If G is any subgroup of Sn, then G acts on Xn by permuting
coordinates. The induced action of G on H•(Xn) is precisely given by

g · (p∗1(v1) ∪ · · · ∪ p∗n(an)) = p∗g(1)(v1) ∪ · · · ∪ p∗g(n)(vn).

for g ∈ G. If ϕ =
⊕∞

i=0 ϕi : H
•(X) → H•(X) is any k-linear graded endo-

morphism, then it induces a k-linear graded map ϕXn : H•(Xn) → H•(Xn)
given by

p∗1(v1) ∪ · · · ∪ p∗n(vn) 7→ p∗1(ϕ(v1)) ∪ · · · ∪ p∗n(ϕ(vn)).

This map is compatible with the G-action we discussed above, so ϕ
induces a k-linear graded map ϕXn |H•(Xn)G : H•(Xn)G → H•(Xn)G on the
G-invariant subspaces. Note that if F : X → X is an endomorphism in C,
then

F ∗
Xn(p∗1(v1) ∪ · · · ∪ p∗n(vn)) = p∗1(F

∗(v1)) ∪ · · · ∪ p∗n(F
∗(vn))

= (F ◦ p1)
∗(v1) ∪ · · · ∪ (F ◦ pn)

∗(vn)

= (p1 ◦ F
n)∗(v1) ∪ · · · ∪ (pn ◦ Fn)∗(vn)

= (Fn)∗(p∗1(v1) ∪ · · · ∪ p∗n(vn)),

so F ∗
Xn = (Fn)∗, where Fn : Xn → Xn is induced by F : X → X. Using Ax-

iom 3, we can define the Lefschetz series of ϕ as

Lu(ϕ) :=

∞
∑

i=0

(−u)iTr(ϕi) ∈ kJuK.

We are now ready to state our main theorem:
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Theorem 1.4. Keeping all the notation above, suppose that H• : Cop →
GrVeck satisfies Axiom 1, Axiom 2, and Axiom 3. If the characteristic of k
does not divide |G|, then for any object X of C, we have

Lu(ϕXn |H•(Xn)G) = ZG(Lu(ϕ), Lu2(ϕ2), . . . , Lun(ϕn)),

where

ZG(x1, . . . , xn) :=
1

|G|

∑

g∈G

x
m1(g)
1 · · ·xmn(g)

n ∈ k[x1, . . . , xn]

denoting by mi(g) the number of i-cycles in the cycle decomposition of g in
Sn.

In combinatorics, the polynomial ZG(x1, . . . , xn), often defined over Q,
is called the cycle index of G in Sn. Much is known about cycle indices.
For instance (e.g., [Sta1999], p.20), we have

∞
∑

n=0

ZSn
(x1, . . . , xn)t

n = exp

(

∞
∑

r=1

xrt
r

r

)

.

This immediately provides the following:

Corollary 1.5. Assume the same hypotheses as in Theorem 1.4. If
dimk(H

•(X)) is finite so that H i(X) = 0 for all i > 2d for some d, then

∞
∑

n=0

Lu(ϕXn |H•(Xn)Sn )tn

=
det(idH1(X) − ϕ1ut) · · · det(idH2d−1(X) − ϕ2d−1u

2d−1t)

det(idH0(X) − ϕ0t) · · · det(idH2d(X) − ϕ2du2dt)
.

Proof. Both sides are invariant under taking any field extension of k, so
we may assume that k is algebraically closed. In particular, the field k we
work with is now infinite, so we may assume that u is an element of k. By
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Theorem 1.4, we have

∞
∑

n=0

Lu(ϕXn |H•(Xn)Sn )tn =

∞
∑

n=0

ZSn
(Lu(ϕ), Lu2(ϕ2), . . . , Lun(ϕn))tn

= exp

(

∞
∑

r=1

Lur(ϕr)tr

r

)

= exp

(

∞
∑

r=1

2d
∑

i=0

(−ur)iTr(ϕri )t
r

r

)

=

2d
∏

i=0

exp

(

∞
∑

r=1

(−1)iTr((ϕiu
i)r)tr

r

)

=

2d
∏

i=0

exp

(

∞
∑

r=1

Tr((ϕiu
i)r)tr

r

)(−1)i

.

Hence, the result follows from the fact that

1

det(id− tA)
= exp

(

∞
∑

r=1

Tr(Ar)tr

r

)

for any linear map A on a finite-dimensional vector space (e.g., [Mus],
Lemma 4.12). □

Theorem 1.1 is an immediate corollary of Corollary 1.5. This is be-
cause, in either the singular or the l-adic setting, we have the quotient map
Xn → Xn/Sn = Symn(X) either in the category of topological spaces or the
category of varieties over Fq, and the map induces an isomorphism

H•(Symn(X)) ≃ H•(Xn)Sn

in either setting, whose proofs can be found in [Mac1962J] and [HN1975]
(Proposition 3.2.1) as long as we choose l > n in the l-adic setting.

Over the course of proving Theorem 1.4, we will show that

Lu(gϕXn) = Lu(ϕ)
m1(g)Lu2(ϕ2)m2(g) · · ·Lun(ϕn)mn(g) ∈ kJuK

without any assumption on the characteristic of the base field k for the
cohomology. When dimk(H

•(X)) is finite (i.e., H i(X) = 0 for i≫ 0), taking
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u = 1 and ϕ = idH•(X) in the above identity gives us

∞
∑

i=0

(−1)iTr(g ü H i(Xn)) = χ(X)m1(g)+2m2(g)+···+nmn(g) = χ(X)n

for any g ∈ G, where χ(X) =
∑

i≥0(−1)i dimk(H
i(X)). In the l-adic setting,

the expression on the left-hand side is generally known to be an integer inde-
pendent to the choice of l, due to Deligne and Lusztig ([DL1976], Proposition
3.3) for l ∤ q. If X is a smooth projective variety over Fq, this follows from the
fact that χ(X) =

∑

i≥0(−1)i dimk(H
i(X,Ql)) is independent to the choice

of l as a consequence of a theorem of Deligne, which states that the size of
the eigenvalues of the Frobenius action on the i-th l-adic étale cohomology
of X is qi/2 (e.g., [Mil1980], VI, Remark 12.5.(b)). It is worth noting that in
our case, the number on the left-hand side is also independent of the choice
of g ∈ G, which must be due to the simplicity of the group action we are
dealing with. Answering this question for our specific case does not require
anything more than merely applying the proof of Macdonald’s formula in
the l-adic setting on top of Deligne’s result.

If X is a smooth projective variety over C with dimension d, then i-th
singular cohomology H i(X) of (the analytification of) X with C-coefficients
has the Hodge decomposition:

H i(X) =
⊕

p+q=i

Hp,q(X).

In general, the variety Symn(X) is not smooth, but its singular coho-
mology still admits the Hodge decomposition as H i(Symn(X)) →֒ H i(Xn)
so that we can use the Hodge decomposition of H i(Xn). In fact, it turns
out that this structure on H i(Symn(X)) is identical to its pure Hodge
structure, in the sense of Deligne’s mixed Hodge structure introduced in
[Del1971], although we do not need this language for the sake of this paper.
In this setting, if we take

ϕ =
⊕

i≥0

⊕

p+q=i

xpyqidHp,q(X)

for fixed x, y ∈ C in Corollary 1.5, using H•(Symn(X)) ≃ H•(Xn)Sn (over
C), we have
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∞
∑

n=0

2d
∑

i=0

∑

p+q=i

hp,q(Symn(X))xpyq(−u)itn

=

2d
∏

i=0

∏

p+q=i

(

1

1− xpyquit

)(−1)ihp,q(X)

,

where

hp,q(Symn(X)) := dimC(H
i(Symn(X)) ∩Hp,q(Xn)),

whenever p+ q = i. Since x, y are arbitrary, we may treat them as formal
variables, and this identity is a result of Cheah ([Che1994], p.119). When we
take u = 1, this shows that the generating function for the Hodge-Deligne
polynomials of Symn(X) is rational in t. This generating function is hence
analogous to the zeta series of a projective variety over a finite field. More-
over, the two settings for the specialization u = 1 can be studied at once
using the motivic zeta series of a variety defined over the Grothendieck ring
of varieties as explained in [Vak2015] and [VW2015]. However, it is unclear
whether the Grothendieck ring is the right general setting to study these
phenomena when we do not specialize the variable u.

1.3. Pólya enumeration theorems

Let G be a subgroup of Sn. Keeping in mind that H•(Xn/G) ≃ H•(Xn)G, if
we directly apply Theorem 1.4 to a situation where X is a smooth projective
variety over C without specifying G to be the full symmetric group Sn, we
have

χu(X
n/G) = ZG(χu(X), χu2(X), . . . , χun(X))

and

χu(X
n/G, x, y) = ZG(χu(X,x, y), χu2(X,x2, y2), . . . , χun(X,xn, yn))

where

χu(Z, x, y) :=

∞
∑

i=0

∑

p+q=i

hp,q(Z)xpyq(−u)i,

and these are also results of Macdonald [Mac1962A] and Cheah [Che1994].
Taking u = 1 in the l-adic setting, Theorem 1.4 also implies the following
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result regarding the Fq-point counting:

|(Xn/G)(Fq)| = ZG(|X(Fq)|, |X(Fq2)|, . . . , |X(Fqn)|).

One can even take X to be a finite set. Then giving X the discrete
topology, we have χ(X) = |X|, and thus

|Xn/G| = ZG(|X|, |X|, . . . , |X|) =
1

|G|

∑

g∈G

|X|m(g),

where m(g) is the number of cycles in the cycle decomposition of g in Sn.
Since |(Xn)g| = |X|m(g), where (Xn)g is the set of elements in Xn fixed by
g, the last statement also follows from Burnside’s lemma. This statement
is a special case of the Pólya enumeration theorem in combinatorics,
which we discuss in Section 2, so it makes sense to use the same name for
the preceding results including Theorem 1.4, even though they seem to be
in the realm of algebraic geometry. This is the rationale behind the title of
this paper.

1.4. Structure of the rest of the paper

In Section 2, we explain a more general version of the Pólya enumeration
theorem in combinatorics and show how Theorem 1.4 generalizes this as
well. In Section 3, we give a proof of Theorem 1.4, the main theorem of this
paper. In Section 4, we show how to compute various cohomological informa-
tion about the alternating powers Altn(X) = Xn/An of given X analogous
to computations for the symmetric powers Symn(X) = Xn/Sn in the intro-
duction. In Section 5, we point out that our formula for |(Xn/G)(Fq)| holds
even when X is a quasi-projective variety over Fq. We give an example to
explain why this generalization is interesting.
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2. The Pólya enumeration theorem in combinatorics

Let X = {x1, . . . , xr} be a finite set of colors. A common problem in
combinatorics is to count the number of ways to color n vertices (which
we write as 1, 2, . . . , n) of a graph with colors in X. The graph may have
symmetries, so we want to count the colorings of n vertices modulo the
action of the group G of symmetries of the graph. This group G is a
subgroup of Sn, and each coloring corresponds to an element x ∈ Xn/G,
and we denote by ei = ei(x) the number of xi appearing in x. For ex-
ample, we have e2([x1, x2, x2]) = 2. Note that e1 + · · ·+ er = n. Given any
(k1, . . . , kr) ∈ (Z≥0)

r such that
∑r

i=1 ki = n, we write N(k1,...,kr) to mean the
number of x ∈ Xn/G such that ei(x) = ki for all 1 ≤ i ≤ r. We note that
our counting problem is equivalent to computing the following degree n ho-
mogeneous polynomial:

PXn/G(t) = PXn/G(t1, . . . , tr)

:=
∑

(k1,...,kr)∈(Z≥0)r,
k1+···+kr=n

N(k1,...,kr)t
k1

1 · · · tkr

r ∈ Z[t1, . . . , tn].

A classical theorem of Redfield [Red1927], which was also independently
discovered by Pólya [Pol1937], computes the polynomial PXn/G(x) in terms
of the subgroup G ⩽ Sn. This theorem is often called the Pólya enumer-
ation theorem:

Proposition 2.1 (Pólya enumeration). Given the notation above, we
have

PXn/G(t) = ZG(t, t
2, . . . , tn),

where t
j := tj1 + · · ·+ tjr.

Our main theorem, Theorem 1.4, generalizes this classical result. Namely,
we may consider X = {x1, . . . , xr} as a topological space with the discrete
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topology and ϕ the diagonal matrix on the singular cohomology

H•(X) = H0(X) = Qx1 ⊕ · · · ⊕ Qxr = QX

whose entries are given by t1, . . . , tr. We have (QXn)G ≃ QXn/G given by
(xi1 , . . . , xin) 7→ [xi1 , . . . , xin ], whose inverse is given by

[xi1 , . . . , xin ] 7→
1

|G|

∑

g∈G

(xig(1) , . . . , xig(n)
).

Thus, we have

H•(Xn/G) = H0(Xn/G) = QXn/G ≃ (QXn)G = H0(Xn)G = H•(Xn)G,

and the induced endomorphism ϕXn satisfies

ϕXn : (xi1 , . . . , xin) 7→ ti1 · · · tin(xi1 , . . . , xin),

so on QXn/G, it satisfies

x 7→ t
e1(x)
1 · · · ter(x)r x.

Therefore, Theorem 1.4 with u = 1 implies Proposition 2.1. That is, the
classical Pólya enumeration theorem is a special case of Theorem 1.4, which
deals with more than degree 0 piece of the cohomology with more diverse
choices for X.

3. Proof of main theorem

3.1. Motivation for general set-up

In this section, we prove our main theorem, Theorem 1.4. In fact, we prove
Theorem 3.2, a more general statement about a particular permutation rep-
resentation on the n-fold tensor product of a graded vector space, which
immediately implies Theorem 1.4. The representation we work with is not
the usual permutation representation on the pure tensors, and it involves
a sign depending on the grading. The reason is that for any G ⩽ Sn, we
are interested in the G-action on H•(Xn), induced by the G-action on Xn,
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which can be seen as

g · (p∗1(v1) ∪ · · · ∪ p∗n(vn)) = p∗g(1)(v1) ∪ · · · ∪ p∗g(n)(vn)

where v1, . . . , vn ∈ H•(X) are homogeneous elements and g ∈ G, denoting
by p1, . . . , pn : Xn → X the projection maps. Following the Künneth formula

H•(X)⊗n ≃ H•(Xn),

given by v1 ⊗ · · · ⊗ vn 7→ p∗1(v1) ∪ · · · ∪ p∗n(vn), if g = (1 2), the transposition
switching 1 and 2, then the corresponding action of g on H•(X)⊗n is given
by

g · (v1 ⊗ · · · ⊗ vn) = (−1)deg(v1) deg(v2)v2 ⊗ v1 ⊗ v3 ⊗ · · · ⊗ vn,

which is not equal to v2 ⊗ v1 ⊗ v3 ⊗ · · · ⊗ vn unless one of v1 or v2 has even
degree. (This is often called the Koszul sign rule.) In general, one may
check that the formula

g · (v1 ⊗ · · · ⊗ vn) = (−1)Qg(deg(v1),...,deg(vn))vg−1(1) ⊗ · · · ⊗ vg−1(n),

where Qg(x1, . . . , xn) =
∑

1≤i<j≤n ϵij(g)xixj ∈ Z[x1, . . . , xn] is defined by

ϵij(g) :=

{

1 if g(i) > g(j) and
0 if g(i) < g(j),

defines the G-action on H•(X)⊗n that is compatible with the G-action on
H•(Xn). The above formula for the G-action onH•(X)⊗n is the most crucial
observation in Macdonald’s work [Mac1962A], which we fully use for the
proof of Theorem 1.4. In what follows, we use this formula as a definition,
not a result so that we can merely work on graded vector spaces instead of
cohomology groups.

3.2. General set-up

Throughout this section, we fix a ground field k. Let V =
⊕

i≥0 Vi be a
graded vector space over k. Given n ∈ Z≥0, consider the n-fold tensor prod-
uct V ⊗n of V over k, where V ⊗0 = k. We have

V ⊗n =
⊕

r≥0

(V ⊗n)r,
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where

(V ⊗n)r =
⊕

i1+···+in=r

Vi1 ⊗ · · · ⊗ Vin .

This makes V ⊗n a graded vector space over k. Given any subgroup
G ⩽ Sn, we consider the action of G on V ⊗n according to the Koszul rule.
That is, we define

g · (v1 ⊗ · · · ⊗ vn) := (−1)Qg(deg(v1),...,deg(vn))vg−1(1) ⊗ · · · ⊗ vg−1(n),

for homogeneous v1, . . . , vn ∈ V (i.e., vi ∈ Vdeg(vi)) and g ∈ G, where
Qg(x1, . . . , xn) is defined right before this subsection. It is important to
note that this action respects the grading of V ⊗n. In particular, it can be
thought of as a family of k-linear maps {G→ GLk((V

⊗n)r)}r∈Z≥0
.

3.3. Trace formulas on tensor products

To discuss traces of linear endomorphisms, assume that each homogeneous
piece Vi of V is finite-dimensional. Let ϕ ∈ Endk(V ) be graded (with degree
0) meaning that ϕ =

⊕

i≥0 ϕi, where ϕi ∈ Endk(Vi). This means that if v ∈ V
is a homogeneous element, then ϕ(v) ∈ V is a homogeneous element of degree
deg(v) so that ϕ(v) = ϕdeg(v)(v). Consider the Lefschetz series

Lu(ϕ) =
∑

i≥0

(−u)iTr(ϕi) ∈ kJuK

of ϕ in u. It is important to note that when we have another graded endo-
morphism ψ =

⊕

i≥0 ψi on V and a constant c ∈ k, we have

Lu(ϕ+ cψ) = Lu(ϕ) + cLu(ψ).

We also get the induced endomorphism ϕ⊗n ∈ Endk(V
⊗n) given by

ϕ⊗n(v1 ⊗ · · · ⊗ vn) := ϕ(v1)⊗ · · · ⊗ ϕ(vn)

for homogeneous v1, . . . , vn ∈ V , which hence respects the grading of V ⊗n

so that we can write

ϕ⊗n =
⊕

r≥0

(ϕ⊗n)r,
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Pólya enumeration theorems in algebraic geometry 1363

where

(ϕ⊗n)r :=
⊕

i1+···+in=r

ϕi1 ⊗ · · · ⊗ ϕin

∈ Endk((V
⊗n)r) = Endk

(

⊕

i1+···+in=r

Vi1 ⊗ · · · ⊗ Vin

)

.

Given any g ∈ G ⩽ Sn and homogeneous v1, . . . , vn ∈ V , we define

(g · ϕ⊗n)(v1 ⊗ · · · ⊗ vn)

:= g(ϕ(v1)⊗ · · · ⊗ ϕ(vn))

= (−1)Qg(deg(v1),...,deg(vn))ϕ(vg−1(1))⊗ · · · ⊗ ϕ(vg−1(n))

= (−1)Qg(deg(v1),...,deg(vn))ϕdeg(vg−1(1))
(vg−1(1))⊗ · · · ⊗ ϕdeg(vg−1(n))

(vg−1(n)).

This extends to a k-linear endomorphism gϕ⊗n on V ⊗n. It is impor-
tant to note that we have the following commutativity even though it is
immediate from definitions:

Lemma 3.1. Keeping the notation above, we have

(gϕ⊗n)(v1 ⊗ · · · ⊗ vn) = ϕ⊗n(g(v1 ⊗ · · · ⊗ vn)).

The following is the core of the proof of Theorem 1.4:

Theorem 3.2 (Trace formula on V ⊗n). Let ϕ =
⊕

i≥0 ϕi be a graded
endomorphism on a graded vector space V =

⊕

i≥0 Vi over k, where each Vi
is finite-dimensional. For any g ∈ Sn, we have

Lu(gϕ
⊗n) = Lu(ϕ)

m1(g)Lu2(ϕ2)m2(g) · · ·Lun(ϕn)mn(g) ∈ kJuK.

Remark 3.3. In the setting of Section 1.2 (assuming Axioms 1, 2, an 3),
Theorem 3.2 gives

Lu(gϕXn) = Lu(ϕ)
m1(g)Lu2(ϕ2)m2(g) · · ·Lun(ϕn)mn(g) ∈ kJuK,

for any g ∈ G ⩽ Sn as mentioned in the introduction. We note that until
now there is no extra condition on the field k.

In our proof of Theorem 3.2, we will make use of the following properties
about the quadratic formsQg(x1, . . . , xn) defined above that we learned from
[Mac1962A]. Both properties are immediate from definition:
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Lemma 3.4. For any disjoint σ, τ ∈ Sn, we have

Qστ (x) = Qσ(x) +Qτ (x).

If σ is a cycle of the form σ = (λ+ 1 λ+ 2 · · · λ+ r) with 1 ≤ r ≤ n
(and 0 ≤ λ ≤ n− r), then

Qσ(x) = (xλ+1 + xλ+2 + · · ·+ xλ+r−1)xλ+r.

Proof of Theorem 3.2. Since the identity is only regarding traces of (homo-
geneous parts of) endomorphisms gϕ⊗n and ϕ, ϕ2, . . . , ϕn, we may assume
that k is algebraically closed. Both sides of the identity are power series in
kJuK, so it is enough to show that for any r ∈ Z≥0, their coefficients of ur

match. This lets us reduce the problem to the case V = V0 ⊕ · · · ⊕ Vr and
ϕ = ϕ1 ⊕ · · · ⊕ ϕr essentially because

(V ⊗n)r =
⊕

i1+···+in=r

Vi1 ⊗ · · · ⊗ Vir ,

where the right-hand side only consists of tensor products of V0, . . . , Vr.
In particular, we are now dealing with the case where d = dimk(V ) =
dimk(V0) + · · ·+ dimk(Vr) is finite.

Considering ϕ ∈ Matd(k) = Ad2

(k), where d = dimk(V ), we note that the
desired equality for the coefficients of ur cuts out a closed subset in Ad2

(k),
with respect to the Zariski topology (on the set of closed points in Ad2

over k)
as we can use the Kronecker product for the matrix form of ϕ⊗n. The matri-
ces with distinct eigenvalues form a Zariski open subset in Matd(k) = Ad2

(k)
because we can understand them as points of the locus whose discriminant
of the characteristic polynomial is nonzero. This open locus is nonempty
because k has at least d elements as it is infinite now that we are in the
setting where k is algebraically closed. Thus, such matrices are dense in
Matd(k) = Ad2

(k), as the affine space is irreducible. This means that it is
enough to show the desired statement for ϕ with distinct eigenvalues, and
this means that each ϕi is diagonalizable.

Thus, we may find ηi ∈ GLdi
(k) = GL(Vi) such that ηiϕiη

−1
i is a diago-

nal matrix whose diagonal entries are eigenvalues of ϕi, where di = dimk(Vi).
Then ηiϕ

m
i η

−1
i for any m ≥ 1 is a diagonal matrix whose diagonal entries

consists of m-th powers of the full list eigenvalues of ϕi counting with multi-
plicity. Writing η = η1 ⊕ · · · ⊕ ηr ∈ GLd(k), we see ηϕη

−1 = η1ϕ1η
−1
1 ⊕ · · · ⊕



✐

✐

“2-Cheong” — 2023/3/18 — 0:10 — page 1365 — #19
✐

✐

✐

✐

✐

✐
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ηrϕrη
−1
r is a diagonal matrix, and so is

(ηϕη−1)m = ηϕmη−1 = η1ϕ
m
1 η

−1
1 ⊕ · · · ⊕ ηrϕ

m
r η

−1
r .

Note that η respects the grading of V and η⊗n commutes with the action
of g by Lemma 3.1. Since (ηϕη−1)⊗n = η⊗nϕ⊗n(η−1)⊗n, by Lemma 3.1, we
have

(g(ηϕη−1)⊗n)r = (η⊗ngϕ⊗n(η−1)⊗n)r = (η⊗n)r(gϕ
⊗n)r((η

−1)⊗n)r.

Since

η⊗n(η−1)⊗n(v1 ⊗ · · · ⊗ vn) = ηη−1v1 ⊗ · · · ⊗ ηη−1vn = v1 ⊗ · · · ⊗ vn

for any homogeneous v1, . . . , vn ∈ V , we see that (η⊗n)r and ((η−1)⊗n)r are
k-linear endomorphisms on (V ⊗n)r that are inverses to each other. Thus,
replacing ϕ with ηϕη−1, or equivalently ϕi with ηiϕiη

−1
i for each i, does not

affect the desired identity, so our problem is reduced to the case where each
ϕi is diagonal.

Let vi,1, . . . , vi,di
∈ Vi be homogeneous elements of V forming an eigenba-

sis of Vi for ϕi as we vary i ≥ 0. We shall denote the corresponding eigenval-
ues as αi,j ∈ k so that ϕ(vi,j) = ϕi(vi,j) = αi,jvi,j . To compute the coefficient
of ur on the left-hand side of the desired statement, fix pure tensor

w1 ⊗ · · · ⊗ wn ∈ (V ⊗n)r =
⊕

i1+···+in=r

Vi1 ⊗ · · · ⊗ Vin ,

where wj = vij ,hj
for some hj so that deg(wj) = ij and ϕ(wj) = ϕij (wj) =

αij ,hj
wj . We have

(gϕ⊗n)(w1 ⊗ · · · ⊗ wn)

= ϕ⊗n(g(w1 ⊗ · · · ⊗ wn))

= (−1)Qg(i1,...,in)ϕ(wg−1(1))⊗ · · · ⊗ ϕ(wg−1(n))

= (−1)Qg(i1,...,in)αig−1(1),hg−1(1)
wg−1(1) ⊗ · · · ⊗ αig−1(n),hg−1(n)

wg−1(n)

= αi1,h1
· · ·αin,hn

(−1)Qg(i1,...,in)wg−1(1) ⊗ · · · ⊗ wg−1(n),

so the vector w1 ⊗ · · · ⊗ wn can possibly contribute a nonzero amount to
Tr(gϕ⊗n)r only when wj = wg−1(j) for all 1 ≤ j ≤ n. Now, the key is to
note that the statement only depends on the cycle type of g in Sn because
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any other h ∈ Sn with the same cycle type is conjugate to g in Sn so that
h = ωgω−1 for some ω ∈ Sn, which gives us

Tr(hϕ⊗n)r = Tr(ωgω−1ϕ⊗n)r = Tr(ωgϕ⊗nω−1)r

= Tr(ωr(gϕ
⊗n)r(ω

−1)r) = Tr(gϕ⊗n)r.

Thus, we have reduced the problem to the case where we have the fol-
lowing cycle decomposition for g:

g = (1 · · · λ1)(λ1 + 1 · · ·λ1 + λ2) · · · (λ1 + · · ·+ λl−1 + 1 · · · λ1 + · · ·+ λl),

where λ1 + · · ·+ λl = n. In this situation, saying that wj = wg−1(j) for all
1 ≤ j ≤ n is equivalent to saying

• y1 := w1 = · · · = wλ1
,

• y2 := wλ1+1 = · · · = wλ1+λ2
,

...

• yl := wλ1+···+λl−1+1 = · · · = wλ1+···+λl
,

while y1, . . . , yl may or may not be distinct. This also guarantees that

• e1 := deg(y1) = i1 = · · · = iλ1
,

• e2 := deg(y2) = iλ1+1 = · · · = iλ1+λ2
,

...

• el := deg(yl) = i1+···+λl−1+1 = · · · = iλ1+···+λl
.

Thus, we also have

• α1 := αi1,h1
= · · · = αiλ1

,hλ1
,

• α2 := αiλ1+1,hλ1+1
= · · · = αiλ1+λ2 ,hλ1+λ2

,
...

• αl := αiλ1+···+λl−1+1,hλ1+···+λl−1+1
= · · · = αin,hn

.

Note that yj ∈ Vej and ϕ(yj) = ϕej (yj) = αjyj . We also note that
λ1e1 + · · ·+ λlel = r because (Ve1)

⊗λ1 ⊗ · · · ⊗ (Vel)
⊗λl is a direct summand

of (V ⊗n)r in the decomposition of V ⊗n that gives the grading for the tensor
product.
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Thus, for this particular g ∈ Sn, applying Lemma 3.4, we have

Qg(i1, . . . , in)

= Q(1 ··· λ1)(i1, . . . , in) + · · ·+Q(λ1+···+λl−1+1 ··· λ1+···+λl)(i1, . . . , in)

= (i1 + · · ·+ iλ1−1)iλ1
+ · · ·+ (iλ1+···+λl−1+1 + · · ·+ iλ1+···+λl−1)iλ1+···+λl

= (λ1 − 1)e1 · e1 + · · ·+ (λl − 1)el · el

= (λ1 − 1)e21 + · · ·+ (λl − 1)e2l .

This implies that

Qg(i1, . . . , in) ≡ (λ1 + 1)e1 + · · ·+ (λl + 1)el

= r + e1 + · · ·+ el,

where the congruence is taken modulo 2. Hence, we have computed the sign:

(−1)Qg(i1,...,in) = (−1)r+e1+···+el .

This implies that the vector w1 ⊗ · · · ⊗ wn = y⊗λ1

1 ⊗ · · · ⊗ y⊗λl

l
contributes

(−1)r+e1+···+elαi1,h1
· · ·αin,hn

= (−1)r+e1+···+elαλ1

1 · · ·αλl

l

to Tr(gϕ⊗n)r. We keep fixing the partition [λ1, . . . , λl] ⊢ n, which is the
equivalent datum to the cycle decomposition of g in Sn. Write Bi :=
{vi,1, . . . , vi,di

}, the chosen eigenbasis for Vi. So far, we have seen that

Tr(gϕ⊗n)r =
∑

λ1e1+···+λlel=r

∑

(y1,...,yl)∈Be1×···×Bel

(−1)r+e1+···+elαλ1

1 · · ·αλl

l .

We note that αi appearing in the computation above is the eigenvalue
for yi ∈ Bei . (Ideally, it is better use αyi

instead of αi, but we just keep our
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notation for the sake of simplicity.) This implies that

Lu(gϕ
⊗n) =

∑

r≥0

(−u)rTr(gϕ⊗n)r

=
∑

r≥0

∑

λ1e1+···+λlel=r

∑

(y1,...,yl)∈Be1×···×Bel

(−1)e1+···+elαλ1

1 · · ·αλl

l u
r

=
∑

r≥0

∑

λ1e1+...+λlel=r

∑

(y1,...,yl)∈Be1×···×Bel

(−1)e1+...+elαλ1

1 · · ·αλl

l u
λ1e1+···+λlel

=
∑

r≥0

∑

λ1e1+···+λlel=r

∑

(y1,...,yl)∈Be1×···×Bel

αλ1

1 · · ·αλl

l (−uλ1)e1 · · · (−uλl)el

=
∑

r≥0

∑

λ1e1+···+λlel=r





∑

y1∈Be1

αλ1

1 (−uλ1)e1



 · · ·





∑

yl∈Bel

αλl

l (−uλl)el





=
∑

r≥0

∑

λ1e1+···+λlel=r

Tr(ϕλ1
e1 )(−u

λ1)e1 · · ·Tr(ϕλl

el )(−u
λl)el

=
∑

e1,...,el≥0

Tr(ϕλ1
e1 )(−u

λ1)e1 · · ·Tr(ϕλl

el )(−u
λl)el

=





∑

e1≥0

Tr(ϕλ1
e1 )(−u

λ1)e1



 · · ·





∑

el≥0

Tr(ϕλl

el )(−u
λl)el





=





∑

i≥0

Tr(ϕλ1

i )(−uλ1)i



 · · ·





∑

i≥0

Tr(ϕλl

i )(−uλl)i





=





∑

i≥0

Tr(ϕi)(−u)
i





m1(g)



∑

i≥0

Tr(ϕ2i )(−u
2)i





m2(g)

· · ·





∑

i≥0

Tr(ϕni )(−u
n)i





mn(g)

= Lu(ϕ)
m1(g)Lu2(ϕ2)m2(g) · · ·Lun(ϕn)mn(g),

as desired. □
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3.4. Proof of Theorem 1.4

Keeping all the notation in the previous subsection, the following immedi-
ately proves Theorem 1.4:

Theorem 3.5 (Trace formula on (V ⊗n)G). Assume the notation in The-
orem 3.2. Let G ⩽ Sn such that |G| ≠ 0 in k. Then

Lu(ϕ
⊗n|(V ⊗n)G) =

1

|G|

∑

g∈G

Lu(ϕ)
m1(g)Lu2(ϕ2)m2(g) · · ·Lun(ϕn)mn(g).

Proof. Since |G| ̸=0 in k, we can consider the averaging operator eG : V ⊗n →
V ⊗n given by

eG(α) :=
1

|G|

∑

g∈G

gα,

where again, we use the representation of G on V ⊗n introduced in the be-
ginning of this section according to the Koszul sign rule. Note that we have
(V ⊗n)G = eG(V

⊗n), so any element of (V ⊗n)G can be written as eG(α) with
α ∈ V ⊗n. Using Lemma 3.1, we have

ϕ⊗n(eG(α)) = ϕ⊗n





1

|G|

∑

g∈G

gα



 =
1

|G|

∑

g∈G

gϕ⊗n(α).

Thus, we have shown that

ϕ⊗n ◦ eG =
1

|G|

∑

g∈G

gϕ⊗n ∈ Endk(V
⊗n).

Note that both sides restrict to (V ⊗n)G, and since eG is the identity on
(V ⊗n)G, we get

ϕ⊗n|(V ⊗n)G =
1

|G|

∑

g∈G

gϕ⊗n ∈ Endk((V
⊗n)G).

Applying Lu both sides, we get

Lu(ϕ
⊗n|(V ⊗n)G) =

1

|G|

∑

g∈G

Lu(gϕ
⊗n),

so applying Theorem 3.2, we are done. □
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4. Alternating powers

In the introduction, say for Corollary 1.5, we only cared about the full
symmetric groups (Sn)n∈Z≥0

. It is natural to consider other sequences of
subgroups of Sn for n ∈ Z≥0. In this section, we consider the alternating
subgroups An ⩽ Sn, using a well-known lemma in combinatorics:

Lemma 4.1 ([HP1973], p.36, (2.2.6)). For any n ∈ Z≥2, we have the
following identity relating cycle indices of An and Sn:

ZAn
(x1, x2, . . . , xn) = ZSn

(x1, x2 . . . , xn) + ZSn
(x1,−x2, . . . , (−1)n+1xn).

Given a sequence Gn ⩽ Sn of subgroups for n ∈ Z≥0, we write

ZG•
(x, t) :=

∞
∑

n=0

ZGn
(x)tn ∈ Q[x]JtK.

Corollary 4.2. We have

ZA•
(x, t) = ZS•

(x, t) +
1

ZS•
(x,−t)

− 1− x1t.

Proof. Recall from the introduction that

∞
∑

n=0

ZSn
(x1, . . . , xn)t

n = exp

(

∞
∑

r=1

xr
r
tr

)

,

which implies that

∞
∑

n=0

ZSn
(x1,−x2 . . . , (−1)n+1xn)t

n = exp

(

∞
∑

r=1

(−1)r+1xr
r

tr

)

= exp

(

−

∞
∑

r=1

xr
r
(−t)r

)

= exp

(

∞
∑

r=1

xr
r
(−t)r

)−1

= ZS•
(x,−t)−1.

Therefore, applying Lemma 4.1, we are done. □
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Applying Corollary 4.2, our main theorem (Theorem 1.4) and its corol-
lary immediately gives the following:

Corollary 4.3. Assume the same hypotheses as in Theorem 1.4. Then we
have

∞
∑

n=0

Lu(ϕXn |H•(Xn)An )tn

=

∞
∑

n=0

Lu(ϕXn |H•(Xn)Sn )tn +
1

∑∞
n=0 Lu(ϕXn |H•(Xn)Sn )(−t)n

− 1− Lu(ϕ)t

=

2d
∏

i=0

(

1

det(idHi(X) − ϕiuit)

)(−1)i

+

2d
∏

i=0

(

1

det(idHi(X) + ϕiuit)

)(−1)i+1

− 1− Lu(ϕ)t.

Just as Corollary 1.5 implies Theorem 1.1, Corollary 4.3 implies the
following concrete theorem:

Theorem 4.4. Let X be either a compact complex manifold of dimen-
sion d or a projective variety of dimension d over a finite field Fq. For any
endomorphism F on X, we have

∞
∑

n=0

Lu(Alt
n(F )∗)tn =

2d
∏

i=0

(

1

det(idHi(X) − F ∗
i u

it)

)(−1)i

+

2d
∏

i=0

(

1

det(idHi(X) + F ∗
i u

it)

)(−1)i+1

− 1− Lu(F
∗)t,

where we use the same notation as in Theorem 1.1 except Altn(F ), the en-
domorphism on the n-th alternating power Altn(X) = Xn/An of X induced
by F .

Theorem 4.4 is interesting in its own right. For instance, in the singular
setting, if we take F = idX , we have the following identity that computes
the singular Betti numbers of Altn(X) in terms of those of X:

∞
∑

n=0

χu(Alt
n(X))tn

=

2d
∏

i=0

(

1

1− uit

)(−1)ihi(X)

+

2d
∏

i=0

(

1

1 + uit

)(−1)i+1hi(X)

− 1− χu(X)t.
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In particular, taking u = 1, we have the following formula for the Euler
characteristics:

∞
∑

n=0

χ(Altn(X))tn =

(

1

1− t

)χ(X)

+

(

1

1 + t

)−χ(X)

− 1− χ(X)t.

If X is a smooth projective variety over C, then we also get the alter-
nating power analogue of Cheah’s result:

∞
∑

n=0

∑

i≥0

∑

p+q=i

hp,q(Altn(X))xpyq(−u)itn

=

2d
∏

i=0

∏

p+q=i

(

1

1− xpyquit

)(−1)ihp,q(X)

+

2d
∏

i=0

∏

p+q=i

(

1

1 + xpyquit

)(−1)i+1hp,q(X)

− 1−

2d
∑

i=0

∑

p+q=i

hp,q(X)xpyq(−u)it.

In particular, the right-hand side is rational in t. We can also obtain an
alternating analogue of the formula

ZX(t) =

∞
∑

n=0

|Symn(X)(Fq)|t
n,

where ZX(t) is the zeta series of a projective variety X over Fq. That is,
taking u = 1 in the l-adic setting of Theorem 4.4, we can deduce

ZX(t) +
1

ZX(−t)
− 1− |X(Fq)|t =

∞
∑

n=0

|Altn(X)(Fq)|t
n.

Remark 4.5. In a collaboration with Yinan Nancy Wang, we started to
question if the above identity holds in the Grothendieck ring of varieties over
a field, where taking the Fq-point counting is replaced by taking the class in
the Grothendieck ring. The problem seems nontrivial even when X is A1 or
P1 over any field.

Remark 4.6. The upshot of this section is that because Theorem 1.4 is
formulated in terms of cycle indices, we can use combinatorial knowledge
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about the cycle indices ZAn
(x) of alternating subgroups An to understand

cohomological information about alternating powers Altn(X) = Xn/An. We
consider another example here. The cycle index for the cyclic subgroup Cn

generated by (1 2 · · · n) in Sn is given by

ZCn
(x1, . . . , xn) =

1

n

∑

d|n

φ(d)x
n/d
d ,

where φ is the Euler’s totient function. Applying Theorem 1.4, we get

|(Xn/Cn)(Fq)| =
1

n

∑

d|n

φ(d)|X(Fqd)|
n/d

for a projective variety X over Fq and

χu(X
n/Cn) =

1

n

∑

d|n

φ(d)χud(X)n/d,

for any finite CW-complex X, the second of which appears in Macdonald’s
paper ([Mac1962A], p.568, (8.4)). We believe that there are more sequences
of subgroups Gn of Sn such that the generating function for certain cohomo-
logical information (e.g., singular Betti numbers, Fq-point counts, or Hodge
numbers) of Xn/Gn is rational. Namely, whenever the generating function
for ZGn

(x1, . . . , xn) has a formula that involves exponentiation, we should
be able to get such a rationality for cohomological information of Xn/Gn

by applying Theorem 1.4. Classifying the list of such sequences (Gn)n∈Z≥0

may be an interesting combinatorial problem.

5. More on point counting over finite fields

LetX be a projective variety over a finite field Fq, and consider any subgroup
G ⩽ Sn acting on Xn by permuting coordinates. An immediate consequence
of Theorem 1.4 in the l-adic setting, for a prime l not dividing q nor |G|, by
taking u = 1 and applying the Grothendieck-Lefschetz trace formula is that

|(Xn/G)(Fq)| = ZG(|X(Fq)|, |X(Fq2)|, . . . , |X(Fqn)|)

=
1

|G|

∑

g∈G

|X(Fq)|
m1(g)|X(Fq2)|

m2(g) · · · |X(Fqn)|
mn(g).

It turns out that the formula even holds when X is a quasi-projective va-
riety over Fq by using Theorem 1.4 with the compactly supported l-adic étale
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cohomology, noting that all the results we use for the l-adic étale cohomology
when X is projective over Fq generalize to the compactly supported l-adic
étale cohomology when X is quasi-projective over Fq as long as l ∤ q, |G|. In
particular, taking X = A1 over Fq, we have

|(An/G)(Fq)| = qn.

When G = An and q is odd, we have

An/An ≃ Spec

(

Fq[t1, . . . , tn, y]

(y2 −∆n(t1, . . . , tn))

)

,

where ∆n(t1, . . . , tn) is the discriminant of the monic polynomial

xn + t1x
n−1 + · · ·+ tn−1x+ tn.

Thus, we see that for n ≥ 2, the polynomial function ∆n : Fn
q → Fq given

by the discriminant satisfies

|∆−1
n ({quadratic residues in F×

q })|

= |∆−1
n ({quadratic non-residues in F×

q })|,

because |∆−1
n (0)| = qn−1, as there are precisely qn − qn−1 degree n monic

square-free polynomials in Fq[x]. The above equality was also observed by
Chan, Kwon, and Seaman using more direct computations ([CKS2018],
Corollary 3.3).

6. Further directions

The conjecture with Yinan Nancy Wang mentioned in Remark 4.5 is ex-
tremely challenging. For the case X = A1 over C, it says [An/An] = [An] in
the Grothendieck ring K0(VarC) of complex varieties. In particular, it im-
plies that Altn(A1) = An/An is stably rational ([CNS2018], Theorem 6.1.5),
which seems to be an open problem for any n ≥ 6. Thus, any significant
progress of this conjecture would require innovative approaches to deal with
the relations defining K0(VarC), which is likely to go beyond the approaches
introduced in this paper. Nevertheless, we are still hopeful that extending
approaches in this paper will be able to reach more results on various spe-
cializations of this conjecture in the near future.
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[Mus2] M. Mustaţă, Singular cohomology as sheaf cohomology with

constant coefficients, lecture notes, available at http://

www-personal.umich.edu/~mmustata/SingSheafcoho.pdf

[Mil1980] J. S. Milne, Étale Cohomology, Princeton Mathematical Series
33 (1980).
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