
✐

✐

“4-Gao” — 2023/4/18 — 23:10 — page 1387 — #1
✐

✐

✐

✐

✐

✐

Math. Res. Lett.
Volume 29, Number 5, 1387–1427, 2022

Orderability of homology spheres

obtained by Dehn filling

Xinghua Gao

In this paper, we develop a method for constructing left-orders on
the fundamental groups of rational homology 3-spheres. We be-
gin by constructing the holonomy extension locus of a rational
homology solid torus M , which encodes the information about pe-

ripherally hyperbolic P̃SL2R representations of π1(M). Plots of the
holonomy extension loci of many rational homology solid tori are
shown, and the relation to left-orderability is hinted. Using holon-
omy extension loci, we study rational homology 3-spheres coming
from Dehn filling on rational homology solid tori and construct
intervals of Dehn fillings with left-orderable fundamental group.
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1. Introduction

A nontrivial group is called left-orderable if there exists a strict total order
on the set of group elements which is invariant under left multiplication. We

1387



✐

✐

“4-Gao” — 2023/4/18 — 23:10 — page 1388 — #2
✐

✐

✐

✐

✐

✐

1388 Xinghua Gao

will say that a closed 3-manifold is orderable when its fundamental group
is left-orderable. In particular, for a countable group, being left-orderable is
the same as being isomorphic to a subgroup of Homeo+(R), the group of
orientation preserving homeomorphisms of R (see e.g. [6, Theorem 2.6]).

The reason why we care about left-orderability is that this property is
conjectured to detect L-spaces completely. Recall an irreducible Q-homology
3-sphere (abbr. QHS) Y is called an L-space if dim ĤF (Y ) = |H1(Y ;Z)|,
i.e. it obtains minimal Heegaard Floer homology [29]. Boyer, Gordon, and
Watson conjectured in [4] that aQHS is a non L-space if and only if its funda-
mental group is left-orderable. This conjecture has been studied extensively
in recent years and evidence has accumulated in favor of the conjecture
[3, 17].

One of the main difficulties of proving the conjecture is to determine
the left-orderability of a fundamental group. Various tools have been de-
veloped to study left-orderability. Boyer, Rolfsen, and Wiest proved that a
necessary and sufficient condition that the fundamental group of a compact,
connected, orientable 3-manifold be left-orderable is that there exists a ho-
momorphism into Homeo+(R) [6, Theorem 3.2]. In particular, representation

(i.e. homeomorphism) of the fundamental group into P̃SL2R, a subgroup of
Homeo+(R), has been proven very useful in studying the left-orderability of
3-manifold groups [10, 14, 23, 34, 35]. Being the universal cover of the lin-

ear Lie groups PSL2R and SL2R, P̃SL2R is more computable as compared
to Homeo+(R), while still containing a fair amount of information about
left-orders inherited from Homeo+(R).

To study P̃SL2R representations, Culler and Dunfield introduced the
idea of the translation extension locus of a compact 3-manifold M with
torus boundary [10]. They gave several criteria implying whole intervals of
Dehn fillings of M have left-orderable fundamental groups.

1.1. The translation extension locus

We follow the notation in [10]. Denote PSL2R by G, and P̃SL2R by G̃. Let
RG̃(M) = Hom(π1(M), G̃) be the variety of G̃ representations of π1(M). For
a precise definition of the representation variety, see Section 2.2.

The name translation extension locus comes from the fact that we need
to use translation number in the definition. For an elements g̃ in G̃, define
the translation number to be

trans(g̃) = lim
n→∞

g̃n(x)− x

n
for some x ∈ R.
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Then trans: RG̃(∂M) → H1(∂M ;R) can be defined by taking ρ̃ to trans◦ρ̃.
The translation number of g̃ measure the distance g̃ moves a point on the
real line. It will be discussed in more details in the next section.

Let M be a knot complement in a QHS or equivalently a Q-homology
solid torus. To study G̃ representations of M whose restrictions to π1(∂M)
are elliptic, Culler and Dunfield gave the following definition of translation
extension locus.

Definition 1.1. (See [10] Section 4) Let PEG̃(M) be the subset of represen-
tations in RG̃(M) whose restriction to π1(∂M) are either elliptic, parabolic,
or central. Consider the composition

PEG̃(M) ⊂ RG̃(M)
ι∗
−→ RG̃(∂M)

trans
−→ H1(∂M ;R)

The closure in H1(∂M ;R) of the image of PEG̃(M) under trans ◦ ι∗ is called
translation extension locus and denoted ELG̃(M).

They showed that translations extension locus of a Q-homology solid
torus satisfies the following properties. (In the statement of the theorem,
D∞(M) is the infinite dihedral group Z ⋊ Z/2Z. It acts on R2 by translating
along the x-axis by integers and reflecting about the origin.)

Theorem 1.1. [10, Theorem 4.3] The extension locus ELG̃(M) is a lo-
cally finite union of analytic arcs and isolated points. It is invariant under
D∞(M) with quotient homeomorphic to a finite graph. The quotient con-
tains finitely many points which are ideal or parabolic. The locus ELG̃(M)

contains the horizontal axis L0, which comes from representations to G̃ with
abelian image.

The translations extension locus depicts the set of peripherally elliptic
and parabolic G̃ representations of a Q-homology solid torus. The following
results regarding orderability of Dehn filling were obtained using translation
extension locus.

Theorem 1.2. [10, Theorem 7.1] Suppose that M is a longitudinally rigid
(defined in Section 5) irreducible Q-homology solid torus and that the Alexan-
der polynomial of M has a simple root ξ on the unit circle. When M is not a
Z-homology solid torus, further suppose that ξk ̸= 1 where k > 0 is the order
of the homological longitude λ in H1(M ;Z). Then there exists a > 0 such
that for every rational r ∈ (−a, 0) ∪ (0, a) the Dehn filling M(r) is orderable.
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Theorem 1.3. [10, Theorem 1.4] Let K be a hyperbolic knot in a Z-
homology 3-sphere Y . If the trace field of the knot exterior M has a real
embedding then:

(a) For all sufficiently large n, the n-fold cyclic cover of Y branched over
K is orderable.

(b) There is an interval I of the form (−∞, a) or (a,∞) so that the Dehn
filling M(r) is orderable for all rational r ∈ I .

(c) There exists b > 0 so that for every rational r ∈ (−b, 0) ∪ (0, b) the
Dehn filling M(r) is orderable.

Recently, Herald and Zhang [21] improved Theorem 1.2 in the case of M
being a Z-homology solid torus by removing the longitudinally rigid condi-
tion (meaning that M(0) has 0-dimensional PSL2C character variety apart
from the component of reducible representations) ofM . Their result is stated
as follows.

Theorem 1.4. Let M be the exterior of a knot in an integral homology
3-sphere such that M is irreducible. If the Alexander polynomial ∆(t) of M
has a simple root on the unit circle, then there exists a real number a > 0
such that, for every rational slope r ∈ (−a, 0) ∪ (0, a), the Dehn filling M(r)
has left-orderable fundamental group.

1.2. Holonomy extension locus

In Section 3 of this paper, I will construct holonomy extension locus which
depicts the set of peripherally hyperbolic and parabolic G̃ representations
of a Q-homology solid torus, in contrast to translation extension locus.

Let M be the complement of a knot in a QHS or equivalently a Q-
homology solid torus. We define the holonomy extension locus of M as fol-
lows.

Definition 3.3. Let PHG̃(M) be the subset of representations whose re-
striction to π1(∂M) are either hyperbolic, parabolic, or central. Consider the
composition

PHG̃(M) ⊂ Raug

G̃
(M)

ι∗
−→ Raug

G̃
(∂M)

EV
−→ H1(∂M ;R)×H1(∂M ;Z)

The closure of EV ◦ ι∗(PHG̃(M)) in H1(∂M ;R) is called the holonomy ex-
tension locus and denoted HLG̃(M).
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Despite the similarity between the definition of translation extension lo-
cus and the holonomy extension locus, there are more technical difficulties
to deal with in the peripherally hyperbolic case than the peripherally el-
liptic case. For instance, the translation extension locus of a Q-homology
solid torus is a planer graph in R2, while the holonomy extension locus has
infinitely many sheets each of which is a planer graph. This major differ-
ence comes from the fact that, for peripherally elliptic G̃ representations,
the translation number captures sufficient information we need, while in the
hyperbolic case, translation number is far less than enough and other invari-
ants need to be taken into consideration. The following theorem describes
the structure of a holonomy extension locus.

Suppose λ is the homological longitude of M , with its order in H1(M ;Z)
being n. Define kM =min{−χ(S)|S⊂M a connected incompressible surface
bounding nλ}. Let i, j be integers.

Theorem 3.1. The holonomy extension locus HLG̃(M) =
⊔

i,j∈ZHi,j(M),

−kM

n ≤ j ≤ kM

n is a locally finite union of analytic arcs and isolated points. It
is invariant under the affine group D∞(M) with quotient homeomorphic to
a finite graph with finitely many points removed. Each component Hi,j(M)
contains at most one parabolic point and has finitely many ideal points lo-
cally.

The locus H0,0(M) contains the horizontal axis L0, which comes from

representations to G̃ with abelian image.

In Section 4, plots of the holonomy extension loci of several Q-homology
solid tori will be shown. The relation between left-orderability of Dehn filling
and holonomy extension locus will be demonstrated. From these examples,
we will see that the holonomy extension locus provides different information
about left-orderability from translation extension locus. This motivates us
to obtain two theorems in Section 5.

1.3. Main result of this paper

Using holonomy extension loci, I study QHSs coming from Dehn filling on Q-
homology solid torus and construct intervals of left-orderable Dehn fillings.
The following are the two main applications of the results of this paper.

Theorem 5.1. Suppose M is the exterior of a knot in a Q-homology 3-
sphere that is longitudinal rigid. If the Alexander polynomial ∆M of M has
a simple positive real root ξ ̸= 1, then there exists a nonempty interval (−a, 0]
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or [0, a) such that for every rational r in the interval, the Dehn filling M(r)
is orderable.

Theorem 6.1. Suppose M is a hyperbolic Z-homology solid torus. Assume
the longitudinal filling M(0) is a hyperbolic mapping torus of a homeomor-
phism of a genus 2 orientable surface and its holonomy representation has a
trace field with a real embedding at which the associated quaternion algebra
splits. Then every Dehn filling M(r) with rational r in an interval (−a, 0]
or [0, a) is orderable.
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2. Background

In the L-space conjecture [4], we study Q-homology (and also Z-homology)
3-spheres, abbreviated asQHS (ZHS). They are Dehn fillings onQ-homology
(Z-homology) solid tori, where a Q-homology (Z-homology) solid torus is a
compact 3-manifold with a torus boundary whose rational (integral) homol-
ogy groups are the same as those of a solid torus.

2.1. Preliminaries in graph theory

To study holonomy extension locus, we need some basic definitions from
graph theory. We call a graph finite if both of its edge set and vertex set
are finite. In fact, a holonomy extension locus could be viewed as the union
of infinite sheets, each of which is a planer graph but still slightly different
from a finite graph. It contains both a finite graph part and finitely many
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branches going to infinity. So we need some proper notion to describe it, and
we can use the notion finite graph with finitely many points removed.

2.2. Representation variety and character variety

To study representations of the fundamental group, we need some tools from
algebraic geometry.

An affine algebraic set is defined to be the zeros of a set of polynomials.
In this paper, we also need real semialgebraic sets [1, Chapter 3], which are
defined by polynomial inequalities. The dimension of a real semialgebraic
set is equal to its topological dimension. An affine algebraic variety is an
irreducible affine algebraic set.

With these notions, we can define the representation variety and charac-
ter variety of a 3-manifold M . We are interested in representations into Lie
groups PSL2C ≃ PGL2C and PSL2R. The set of PSL2C representations,
Hom(π1(M),PSL2C) is an affine algebraic set in some Cn equipped with
Zariski topology. We call it the PSL2C representation variety of M and de-
note it by R(M). Similarly we can define R(∂M) = Hom(π1(∂M),PSL2C).
The group PSL2C acts on R(M) by conjugation, so we can consider the
geometric invariant theory (GIT) quotient R(M)//PSL2C, which we denote
by X(M). It is called the PSL2C character variety of M .

Recall G = PSL2R, G̃ = P̃SL2R. Similarly we can consider the G rep-
resentation variety RG(M) (and RG(∂M)) and G̃ representation variety
RG̃(M) (and RG̃(∂M)). Also we define the G character variety XG(M) to
be the geometric invariant theory quotient RG(M)//PGL2R. Both RG(M)
and XG(M) are real algebraic varieties.

A rational map f : X → Y between two irreducible varieties is called
dominant if f(X) contains a non-empty open subset in Y . It is called bi-
rational if it is dominant, and if there is another dominant rational map
g : Y → X such that g ◦ f = idX and f ◦ g = idY as rational maps. The
readers could refer to standard textbooks on algebraic geometry like [19,
Chapter I, Section 4], for definitions of other related terminologies. Let
f : X̂(M) → X(M) be a birational map with X̂(M) a smooth projective
curve. Then X̂(M) is called the smooth projectivization of X(M). Points
in X̂(M)− f−1(X(M)) are called ideal points. To each ideal point, we can
associate incompressible surfaces to it. See [8] for more details.



✐

✐

“4-Gao” — 2023/4/18 — 23:10 — page 1394 — #8
✐

✐

✐

✐

✐

✐

1394 Xinghua Gao

2.3. P̃SL2R

Consider the Lie group SU(1, 1) =

{(
α β

β α

)
| |α|2 − |β|2 = 1

}
, which man-

ifests as the isometry group of the hyperbolic plane in the disc model. So
there is an isomorphism between SU(1, 1) and SL2R, which is the isome-
try group in the upper half-plane model. We can parameterize SU(1, 1) by
(γ, ω), with γ = −β/α ∈ C and ω = argα defined modulo 2π. Consequen-
tially SL2R can be described as {(γ, ω) | |γ| < 1,−π ≤ ω < π}. As the uni-

versal cover of SL2R and G = PSL2R, G̃ = P̃SL2R is also a Lie group and
can be described as {(γ, ω) ∈ C× R | |γ| < 1,−∞ < ω < ∞} with group
operation given by:

(γ, ω)(γ′, ω′) =

(
(γ + γ′e−2iω)(1 + γ̄γ′e−2iω)−1,(1)

ω + ω′ +
1

2i
log (1 + γ̄γ′e−2iω)(1 + γγ̄′e2iω)−1

)
.

This multiplication formula could be checked using the correspondence be-

tween (γ, ω) and

(
α β

β α

)
. So we have a copy of R sitting inside G̃ as an

abelian subgroup.
The following properties of G̃ can be found in [24, Section 2]. The univer-

sal cover of S1 is R, where S1 can be viewed as lifted to unit length intervals.
Being the universal cover of G which acts on S1 = P 1(R) by Möbius trans-
formation, G̃ acts on R faithfully so it is left-orderable. For elements in G̃,
define the translation number to be

trans(g̃) = lim
n→∞

g̃n(x)− x

n
for some x ∈ R.

It’s independent of the choice of x. The proof of the existence of the limit
and more properties of the translation number could be found in [15, Sec-
tion 5]. The translation number is also called rotation number in some other
occasions.

Let A ∈ SL2R, A ̸= ±Id. Then A is called elliptic if |trace(A)| < 2 and
in this case A is conjugate to a matrix of the form

[
cos(α) sin(α)
− sin(α) cos(α)

]
, 0 ≤ α < 2π.
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The matrix A is called parabolic if |trace(A)| = 2 and it is conjugate to a
matrix of the form

±

[
1 2u
0 1

]
,−∞ < u < ∞.

The matrix A is called hyperbolic if |trace(A)| > 2 and in this case it is
conjugate to a matrix of the form

[
a 0
0 a−1

]
, a ̸= 0.

Elements of SU(1, 1) are classified in the same way via the identifica-
tion SU(1, 1) ≃ SL2R. We then call an element of G̃ elliptic, parabolic or
hyperbolic if it covers an element of the corresponding type in SU(1, 1). By
Lemma 2.1 in [24], conjugacy classes in G̃ can be presented as

• elliptic: (0, α), with −∞ < α/2π < ∞ the translation number of ele-
ments in the conjugacy class.

• parabolic: (
iu

1 + iu
, tan−1(u) + 2kπ) or (

iu

1 + iu
, tan−1(u) + π + 2kπ) ,

with u ∈ R and k ∈ Z the translation number of elements in the con-
jugacy class.

• hyperbolic: (
a− a−1

a+ a−1
, 2kπ) with a > 0 or (

a− a−1

a+ a−1
, π + 2kπ) with a <

0. And k ∈ Z is the translation number in both cases.

In particular, if g̃ is conjugate to (0, 2kπ) or (0, (2k + 1)π), then g̃ is called
central, with k ∈ Z the translation number.

2.4. Augmented representation variety and character variety

As a subgroup of PSL2C, G acts on P 1(C) by the Möbius transformation
as well as on S1 = P 1(R) ⊂ P 1(C). An element in PSL2C has at least one
fixed point when acting on P 1(C). When there is more than one fixed point,
we sometimes need to specify which one we are using. So we consider the
augmented representation variety and augmented character variety. More
details could be found in [2, Section 10].

A subgroup of G may not have a common fixed point on P 1(C), but an
abelian subgroup does. In fact, a nontrivial abelian subgroup of G contains
only one type of elliptic, hyperbolic or parabolic elements, and consequently
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has either one (if the subgroup contains parabolic elements) or two com-
mon fixed points(if the subgroup contains hyperbolic or elliptic elements)
on P 1(C).

Let Raug
G (M) be the subvariety of RG(M)× P 1(C) consisting of pairs

(ρ, z), where z is a fixed point of ρ(π1(∂M)). Let Xaug
G (M) be the GIT

quotient of Raug
G (M) under the diagonal action of G by conjugation and

Möbius transformations. There is a natural regular map π : Xaug
G (M) →

XG(M) which forgets the second factor.
Notice that a fixed point of a matrix in G can also be viewed as its eigen-

vector. Eigenvalues of images of peripherally hyperbolic and parabolic rep-
resentations play an important part in the definition of the holonomy exten-
sion locus in Section 3. We need the augmented character variety Xaug

G (M)
so that given γ ∈ π1(∂M), we can define a regular function eγ which sends
[(ρ, z)] to the square of the eigenvalue of ρ(γ) corresponding to z. In contrast,
on XG(M) such functions could not be defined because the two eigenvalues
of ρ(γ) cannot be distinguished.

The fiber of π : Xaug
G (M) → XG(M) contains two points except at [ρ]

where ρ|π1(∂M) is parabolic (fiber has one point), or ρ|π1(∂M) is trivial (fiber
is isomorphic to P 1(C)).

2.5. Augmented P̃SL2R representations

Similarly, we construct augmented P̃SL2R representations.
As a subgroup of PSL2C, G acts on P 1(C). There is a natural action

of G̃ on P 1(C) by projecting to G. So hyperbolic and elliptic elements of
G̃ have two fixed points while parabolic elements have one fixed point on
P 1(C). An abelian subgroup of G̃ has at least one fixed point on P 1(C). So
ρ(π1(∂M)) has at least one fixed point.

Consider the following subset of G̃× P 1(C),

Aug(G̃) = {(Ã, v)|Ã ∈ G̃, v ∈ P 1(C) is a fixed point of Ã}.

Denote by A ∈ G the projection of Ã ∈ G̃. Notice that v is in fact a fixed
point of A on P 1(C). Then for any element (Ã, v) in Aug(G̃) with Ã hyper-
bolic, we can use (a−a−1

a+a−1 , kπ) as the representative of the conjugacy class of

Ã in G̃, where a is the eigenvalue of A corresponding to v. The sign of a
doesn’t matter since a−a−1

a+a−1 is an even function.

We can now construct the augmented G̃ representation variety of M . Let
Raug

G̃
(M) be the subvariety of RG̃(M)× P 1(C) consisting of pairs (ρ̃, z) with
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z a fixed point of ρ̃(π1(∂M)). Similarly, define the augmented G̃ represen-
tation variety of ∂M . Let Raug

G̃
(∂M) be the subvariety of RG̃(∂M)× P 1(C)

consisting of pairs (ρ̃, z) with z a fixed point of ρ̃(π1(∂M)).
There is a natural projection from Raug

G̃
(−) to RG̃(−) forgetting the

second factor. We call a representation in RG̃(∂M) elliptic, hyperbolic or

parabolic if its image in G̃ contains an element of the corresponding type,
and call it central if its image contains only central elements. We call a
representation in Raug

G̃
(∂M) elliptic, hyperbolic, parabolic or central if its

projection to RG̃(∂M) is of the corresponding type.

3. Holonomy extension locus

In this section, we define the holonomy extension locus, show its structure
and explain how it works.

3.1. Definition and main property

Definition 3.1. For hyperbolic element g̃ ∈ G̃, take v ∈ P 1(C) to be a fixed
point of g̃. Define ev : Aug(G̃) −→ R× Z, (g̃, v) 7→ (ln(|a|), trans(g̃)), where
a is the eigenvalue of g (the projection of g̃ in G) corresponding to the
eigenvector v.

For parabolic elements, define ev : Aug(G̃) −→ R× Z, taking g̃ to
(0, trans(g̃)).

Lemma 3.1. The map ev(−, v) is a group homomorphism when restricted
to hyperbolic or parabolic abelian subgroup of G̃, with v ∈ P 1(C) any fixed
point of the subgroup. As a consequence, ev((ρ̃(−), v)) : π1(∂M) → R× Z is
a group homomorphism for ρ̃ hyperbolic or parabolic, where v is a fixed point
of ρ̃(π1(∂M)).

Proof. Any nontrivial hyperbolic or parabolic abelian subgroup of G̃ has
at least one fixed point in P 1(C) and let v be any one of them. Consider
the stabilizer group Stab(v) ⊂ SL2R of v. We can define a homomorphism
eig: Stab(v) −→ R× which takes g ∈ Stab(v) to |a| where gv = av. Since ±I
is the kernel, this homomorphism descends to a homomorphism from the
stabilizer group of v in G to R× which we will still call eig. As trans is also
a homomorphism and ev(g̃, v) = (ln(eig(g)), trans(g̃)) for any g̃ ∈ G̃ where
g ∈ G is the projection, it follows that ev(−, v) preserves the group structure
of hyperbolic or parabolic abelian subgroup of G̃.
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When ρ̃ is hyperbolic (or parabolic), ρ̃(π1(∂M)) becomes an abelian hy-
perbolic (or parabolic resp.) subgroup of G̃, with v a fixed point. So being the
composite of two homomorphisms ρ̃ and ev(−, v), ev((ρ̃(−), v)) : π1(∂M) →
R× Z is also a group homomorphism. □

Identifying Hom(π1(∂M),R× Z) withH1(∂M ;R)×H1(∂M ;Z), we can
view ev((ρ̃(−), v)) as living in H1(∂M ;R)×H1(∂M ;Z). Let M be an irre-
ducible Q-homology solid torus, and let ι : ∂M → M be the inclusion map.
With the above lemma, we can now define:

Definition 3.2. Let PHG̃(M) be the subset of representations whose
restriction to π1(∂M) are either hyperbolic, parabolic, or central. Define
EV : Raug

G̃
(∂M) −→ H1(∂M ;R)×H1(∂M ;Z) by (ρ̃, v) 7→ ev((ρ̃(−), v)) on

ι∗(PHG̃(M)), where ι∗ is the restriction Raug

G̃
(M) −→ Raug

G̃
(∂M) of repre-

sentations of π1(M) to π1(∂M).

Lemma 3.2. Fix v ∈ P 1(C). Let Hv be the set of hyperbolic elements of G̃
that fix v. Then any two elements of Hv with the same image under ev(−, v)
are conjugate in G̃.

Proof. We will use the homomorphism eig as in the proof of Lemma 3.1 and
the property that ev(g̃, v) = (ln(eig(g)), trans(g̃)) for any g̃ ∈ G̃ where g ∈ G
is the projection.

Suppose g̃ and g̃′ are two elements inHv, and g and g′ are their projection
in G. Then g and g′ are conjugate if and only if they share the same set
of eigenvalues. So g̃ and g̃′ are conjugate if and only if eig(g) = eig(g′) and
trans(g̃) = trans(g̃′), that is ev(g̃, v) = ev(g̃′, v). □

Definition 3.3. Consider the composition

PHG̃(M) ⊂ Raug

G̃
(M)

ι∗
−→ Raug

G̃
(∂M)

EV
−→ H1(∂M ;R)×H1(∂M ;Z).

The closure of EV ◦ ι∗(PHG̃(M)) in H1(∂M ;R)×H1(∂M ;Z) is called the
holonomy extension locus of M and denoted HLG̃(M).

We will call a point in HLG̃(M) a hyperbolic or parabolic point if it
comes from a representation ρ̃ ∈ PHG̃(M) such that ρ̃|π1(∂M) is hyperbolic
or parabolic. In a sense, the holonomy extension locus provides some kind
of visualization of peripherally hyperbolic and parabolic G̃ representations
of M .
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Definition 3.4. We call a point in HLG̃(M) an ideal point if it only lies

in the closure EV ◦ ι∗(PHG̃(M)) but not in EV ◦ ι∗(PHG̃(M)), where the
closure is taken in R2 × Z2.

Lemma 3.3. Suppose (ρ̃, v) ∈ Raug

G̃
(∂M) is hyperbolic or central. If

EV (ρ̃, v)(γ) = (0, 0) for some γ ∈ π1(∂M), then ρ̃(γ) = 1.

Proof. It follows from Lemma 3.2 that ev(ρ̃(γ), v) = EV (ρ̃, v)(γ) = (0, 0) im-
plies ρ̃(γ) is conjugate to the identity element of G̃. So ρ̃(γ) = 1. □

Suppose λ is the homological longitude of M , with its order in H1(M ;Z)
being n. Define

kM = min{−χ(S)|S is a connected incompressible

surface of M that bounds nλ}.

We will use Milnor-Wood inequality in the form of Proposition 6.5 from
[10].

Proposition 3.1. Suppose S is a compact orientable surface with one
boundary component. For all ρ̃ : π1(S) → G̃ one has

|trans(ρ̃(δ))| ≤ max(−χ(S), 0) where δ is a generator of π1(∂S).

Applying this proposition, we see immediately that |trans(ρ̃(λ))| ≤
kM
n

.

In the next theorem, we will show that

HLG̃(M) =
⊔

i,j∈Z

Hi,j(M), −
kM
n

≤ j ≤
kM
n

.

Each Hi,j(M) := HLG̃(M) ∩ (R2 × {i} × {j}) ⊂ R2 is a finite union of ana-
lytic arcs and isolated points. Denote the infinite dihedral group Z ⋊ Z/2Z
by D∞(M). Then D∞(M) acts on R2 × Z2 by translating (x, y, i, j) to
(x, y, i+ nk, j) for i, j, k ∈ Z, and taking (x, y, i, j) to (−x,−y,−i,−j) by re-
flecting about (0, 0, 0, 0). We will show that as a subset of R2 × Z2, HLG̃(M)
is invariant under the action of D∞(M).

Define Lr to be line of slope −r going through the origin in R2. Then
L0 is the x-axis. Now we can state the theorem.

Theorem 3.1. The holonomy extension locus HLG̃(M) =
⊔

i,j∈ZHi,j(M),

−
kM
n

≤ j ≤
kM
n

is a locally finite union of analytic arcs and isolated points.
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It is invariant under the affine group D∞(M) with quotient homeomorphic
to a finite graph with finitely many points removed. Each component Hi,j(M)
contains at most one parabolic point and has finitely many ideal points lo-
cally.

The locus H0,0(M) contains the horizontal axis L0, which comes from

representations to G̃ with abelian image.

Remark. If we assume the manifold M is small, i.e. it has no closed es-
sential surface, then there is no ideal point in HLG̃(M). The proof is similar
to [10, Lemma 6.8]. See Lemma 3.7.

Lemma 3.4. The holonomy extension locus HLG̃(M) is invariant under
D∞(M).

Proof. We will show the image I of PHG̃(M) under EV◦ι∗ is invariant under
D∞(M). Take (ρ̃, v) ∈ PHG̃(M) and let t = EV ◦ ι∗(ρ̃, v) be the correspond-

ing point in I. Let s be the generator of the center of G̃ which is isomorphic
to Z and take any φ ∈ H1(M ;Z). Then PHG̃(M) ∋ φ · ρ̃ : γ 7→ ρ̃(γ)sϕ(γ) is

another lift of π ◦ ρ̃, where π : G̃ → G is the projection. It’s easy to see that
ρ̃(π1(∂M)) and φ · ρ̃(π1(∂M)) share the same fixed point v. We can check
that for any γ ∈ π1(M), we have

ev(φ · ρ̃(γ), v) = ev(ρ̃(γ)sϕ(γ), v) = ev(ρ̃(γ), v) + (0, φ(γ)).

So EV◦ι∗(φ · ρ̃, v) = EV◦ι∗(ρ̃sϕ, v) = EV◦ι∗(ρ̃, v) + (0, φ). It follows that I
is invariant under translation by elements of ι∗(H1(M ;Z)) ⊂ H1(∂M ;R).

Next, we will show HLG̃(M) is invariant under reflection about the
origin in R2 × Z2. Define f to be the element in Homeo(R) taking x ∈ R to
−x, and consider the conjugate action of f on G̃. The group G̃ is preserved
under this conjugation because π(fg̃f−1) has the same action as π(g̃−1) on
S1 for any g̃ ∈ G̃. Suppose a is a square root of the derivative of π(g) at v,
then a−1 is a square root of the derivative of π(g̃−1) at v and a−1 is a square
root of the derivative of π(fg̃f−1) at −v. Moreover we can check that

trans(fg̃f−1) = lim
n→∞

(fg̃f−1)n(0)− 0

n
= lim

n→∞

fg̃n(−0)− 0

n
= −trans(g̃).

This shows that ev(ρ̃(γ), v) = −ev(fρ̃f−1(γ),−v) and it follows that
EV◦ι∗(ρ̃, v) = −EV(fρ̃f−1,−v). Given such an f , the image of (fρ̃f−1,−v)
in I is −t, proving the invariance. □
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As a consequence of Lemma 3.4, we can now look at the quotient
PLG̃(M) = HLG̃(M)/D∞(M). In fact

PLG̃(M) = ⊔−n<i<n,−kM≤j≤kM
Hi,j(M)/(Z/2Z),

where Z/2Z acts on the disjoint union by taking (x, y) ∈ Hi,j(M) to
(−x,−y) ∈ H−i,−j(M). In particular, Z/2Z acts on H0,0(M) via reflection
about the origin.

Lemma 3.5. PLG̃(M) has finitely many connected components. In partic-
ular, each Hi,j(M) has finitely many connected components.

Proof. The proof works similarly as Lemma 6.2 of [10].
Let Π : RG̃(M) → RG(M) be the map between representation varieties

induced by π : G̃ → G. Let PHG(M) be the subset of RG(M) consisting
of representations whose restriction to π1(∂M) consist only of hyperbolic,
parabolic and trivial elements. The set PHG(M) is a subset of the real alge-
braic set RG(M) cut out by polynomial inequalities. It follows that PHG(M)
is a real semialgebraic set.

Let PH lift
G (M) ⊂ PHG(M) be the image of PHG̃(M) under Π. By con-

tinuity of the translation number, PH lift
G (M) is a union of connected com-

ponents of PHG(M). Moreover PH lift
G (M) ⊂ PHG(M) is the quotient of

PHG̃(M) under the action of H1(M,Z) and Π is the covering map. So it is
also a real semialgebraic set and thus has finitely many connected compo-
nents.

The action of H1(M,Z) on PHG̃(M) then induces an action of Z ≤
D∞(M) on HLG̃(M). Let Π−1(PH lift

G (M)) be any sheet in the covering

of PH lift
G (M). So PLG̃(M) = EV ◦ ι∗(Π−1(PH lift

G (M)))/(Z/2Z), and thus

has finitely many components. Let PHj
G(M) be the subset of PH lift

G (M)
consisting of representations with translation number of the homological
longitude being j. Then PH j

G(M) is a finite union of connected components

of PHG(M). It follows that Hi,j(M) = EV ◦ ι∗(Π−1(PH j
G(M))) has finitely

many components, where Π−1(PH j
G(M)) is any sheet in the covering of

PH j
G(M). □

Proof of Theorem 3.1. First notice that the index j is bounded, which fol-
lows from Proposition 3.1.

Define c : H1(∂M ;R)×H1(∂M ;Z) → XG(∂M), (f1, f2) 7→ character of

ρ, where ρ is given by ρ(µ) =

[
ef1(µ) 0

0 e−f1(µ)

]
, ρ(λ) =

[
ef1(λ) 0

0 e−f1(λ)

]
.



✐

✐

“4-Gao” — 2023/4/18 — 23:10 — page 1402 — #16
✐

✐

✐

✐

✐

✐

1402 Xinghua Gao

Consider the dual basis {µ∗, λ∗,m∗, l∗} for H1(∂M ;R)×H1(∂M ;Z),
where

µ∗(pµ+ qλ) = p, λ∗(pµ+ qλ) = q,(2)

m∗(pµ+ qλ) = p and l∗(pµ+ qλ) = q

for any pµ+ qλ ∈ H1(∂M). Take (x, y, i, j) ∈ HLG̃(M) ⊂ H1(∂M ;R)×
H1(∂M ;Z). If we use trace-squared coordinates on XG(∂M), we get

c(x, y, i, j) = (tr(ρ(µ)), tr(ρ(λ)), tr(ρ(µ)ρ(λ)))

= (e2x + e−2x + 2, e2y + e−2y + 2, e2x+2y + e−2x−2y + 2).

It is easy to check that c(−x,−y,−i,−j) = c(x, y, i, j) and c(x, y, i+ n1, j +
n2) = c(x, y, i, j), where n1 and n2 are integers.

Consider the diagram

PHG̃(M)
EV◦ι∗

//

��

H1(∂M ;R)×H1(∂M ;Z)

c

��

XG(M)
ι∗

// XG(∂M)

The vertical map c maps HLG̃(M) into ι∗(XG(M)). Being the image of
a real algebraic set under a polynomial map, XG(M) is a real semialge-
braic subset of XR(M). Since ι∗(X(M)) ⊂ X(∂M) has complex dimension
at most 1 [10, Lemma 2.4], then the real semialgebraic set ι∗(XG(M)) has
real dimension at most 1. Moreover ι∗(XG(M)) is a locally finite graph as
XG(M) is. Thus, its preimage under c is a locally finite graph invariant under
D∞(M) with analytic edges. So each Hi,j(M) and thus PLG̃(M) is a locally
finite graph and by Lemma 3.5 it has finitely many connected components.
Therefore, PLG̃(M) is homeomorphic to a finite graph with finitely many
points removed.

Suppose D is a closed disc in H1(∂M ;R), then D ∩Hi,j(M) lives in a
finite graph. Since by Lemma 3.5 Hi,j(M) has finitely many components,
then D ∩Hi,j(M) also has finitely many components and thus is a finite
graph. So D ∩Hi,j(M) is the closure of a set of finitely many components
in a finite graph and thus contains finitely many ideal points.

Parabolic points can only occur at the origin of each Hi,j(M), so there
can be at most one parabolic point in each component Hi,j(M).

Recall from Section 2.3 that there is an abelian subgroup of G̃ that is
isomorphic to R. Consider the diagonal representations in G. They lift to
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a one parameter family of abelian representations π1(M) → G̃ by sending
the generator of H1(M ;Z)free ∼= H1(M ;Z)/(torsion) ∼= Z to a given element
in R. Since the longitude λ of ∂M is 0 in H1(M ;Z)free, this one parameter
family of abelian representations give rise to the line L0 in H0,0(M). □

3.2. Other properties

Recall from Section 2.2 that X̂(M) is the smooth projectivization of X(M).
The following lemma describes some other properties of HLG̃(M).

Lemma 3.6 (structure of Hi,j(M)). Suppose for some i, j, Hi,j(M) con-
tains an arc that continues on to infinity. Then this arc approaches an
asymptotes y = −rx in R2 as it goes to infinity, where r is the boundary
slope of the associated incompressible surface to some ideal point of X̂(M).

Proof. The vertical map c in the diagram from the proof of Theorem 3.1
maps HLG̃(M) into ι∗(XG(M)). Suppose Hi,j(M) contains an arc A that

continues to infinity, then there is a an ideal point x of X̂(M) that is the limit
of a sequence of characters {[ρk]} in X(M) of hyperbolic representations
{ρk} such that images of lifts {ρ̃k} under EV ◦ ι∗ are contained in A. To
show this, suppose images of {ρ̃k} under EV ◦ ι∗ go to infinity in HLG̃(M).
Then {[ρk]} march off to infinity in X(M) as eigenvalues of either {ρk(µ)}
or {ρk(λ)} go to infinity. Thus by passing to a subsequence, {[ρk]} converge
to an ideal point x of X̂(M). Notice that traces of elliptic and parabolic
elements of G are bounded, by passing to a subsequence, we can assume that
ρ̃k|π1(∂M) are hyperbolic. Moreover, one can choose a sequence of points {vk}
where vk ∈ P 1(C) is a common fixed point of ρk(π1(∂M)) acting on P 1(C).
And by passing to a subsequence, we can assume {vk} limits to v ∈ P 1(C).

By the result in [8, Section 5.7], there exists β ∈ π1(∂M) such that
tr2β(x) = b2 + b−2 + 2 is finite and β = pµ+ qλ, where r = p/q is the bound-
ary slope of the incompressible surface associated to the ideal point x. Then
limk→∞ tr2β([ρk]) = b2 + b−2 + 2 as [ρk] → x, where b2 is a positive real num-
ber as it is the limit of the square of an eigenvalue of a hyperbolic G matrix.
Moreover, b has to be a root of unity by [8, Section 5.7]. It follows that
b2 = 1, which implies limk→∞ ρk(β) = I. It follows that limk→∞ ρ̃k(β) = Ĩ,
where Ĩ is a lift of I with translation number being limk→∞ trans(ρ̃k(β)) =
p limk→∞ trans(ρ̃k(µ))+q limk→∞ trans(ρ̃k(λ)) = pi+qj. Then we can check
the slope of the asymptote of the arc containing the sequence of points
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{EV(ρ̃k, vk)} in HLG̃(M). It follows from direct computation that

p lim
k→∞

EV(ρ̃k, vk)(µ) + q lim
k→∞

EV(ρ̃k, vk)(λ)

= p lim
k→∞

ev(ρ̃k(µ), vk) + q lim
k→∞

ev(ρ̃k(λ), vk)

= lim
k→∞

ev(ρ̃k(pµ+ qλ), vk) = ev(Ĩ , v) = (ln(|b|) = 0, pi+ qj).

So limk→∞ slope[ρk] = −r and thus the curve A is asymptotic to the line of
slope −r going through the origin. □

Holonomy extension locus can be viewed as an analog of the A-
polynomial which was first introduced in [8] by Cooper et al.. To explain this
relation, we will start with the definition of eigenvalue variety [33, Section 7].

Let Raug
U (M) be the subvariety of Raug(M) defined by two equations

that set the lower left entries in ρ(M) and ρ(L) to be zero. Consider the
eigenvalue map,

Raug
U (M) → (C− 0)2

By taking the closure of the image of this map and discarding zero di-
mensional components, we get the eigenvalue variety E(M) of M , which is
defined by a principal ideal. A generator for the radical of this ideal is called
the A-polynomial. We will call points that are only in the closure but not
in the image ideal points.

We are only interested in the intersection of E(M) with R2 as those
points come from peripherally parabolic or hyperbolic G representations.
The composition Raug

G → Raug
U (M) → R2 ∩ E(M) gives a map from a pe-

ripherally hyperbolic or parabolic G representation ρ of M to eigenvalues of
ρ(µ) and ρ(λ), where µ and λ are the meridian and longitude of ∂M . This
map is similar to but not entirely the same as EV◦ι∗ defined in 3.3.

Recall that M is called a small manifold if it contains no closed essential
surface. We will prove the following lemma.

Lemma 3.7. If M is small, then there is no ideal point in HLG̃(M) or
(R2 − 0) ∩ E(M).

Proof. The proof works the same way as in [10, Lemma 6.8]. Suppose t0 is
an ideal point in HLG̃(M) (resp. (R2 − 0) ∩ E(M)) and {ρ̃i} ⊂ PHG̃(M)

is a sequence of G̃ representations whose images in HLG̃(M) (resp. (R2 −
0) ∩ E(M)) converge to t0. Suppose {[ρi]} is the sequence of correspond-
ing characters in XG(M). A similar argument shows that by passing to a
subsequence, {[ρi]} lie in a single irreducible component X ′ of X(M) and
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{[ρi]} either limit to a character χ in XG(M) or march off to infinity in the
noncompact curve X ′. In the latter case, as both |tr(ρi(µ))| and |tr(ρi(λ)|
are bounded above, |tr(ρi(γ))| is bounded above for any γ ∈ π1(∂M). The
argument of [8, Section 2.4] produces a closed essential surface associated to
a certain ideal point of X ′, contradicting our hypothesis that M is small.

In the case when the [ρi] limit to χ in XG(M), a similar argument shows
that t0 is not actually an ideal point, proving the lemma. □

Finally, we use the following lemma to construct order. We focus on the
H0,0(M) sheet of HLG̃(M). Recall that Lr is a line through origin in R2

with slope −r. We will see from the proof of Lemma why we require the
slope to be −r instead of r.

Lemma 3.8. If Lr intersects H0,0(M) at a nonzero point that not ideal,
and assume M(r) is irreducible, then M(r) has left-orderable fundamental
group.

Proof. The idea of proof works in the following way, a point in the intersec-
tion corresponds to a G̃ representation ρ̃ of π1(M) which maps γ ∈ π1(∂M)
to identity, where γ is the homology class of simple closed curves of slope r
on ∂M . Then ρ̃ becomes a representation of π1(M(r)).

Let f = (x1, y1) be a point in Lr ∩H0,0(M) that is different from the
origin and not an ideal point by assumption. Then f is not parabolic as
parabolic points can only occur at the origin. So there exists a preimage
ρ̃ ∈ RG̃(M) of f which is hyperbolic when restricting to π1(∂M). Sup-
pose γ ∈ π1(∂M) realizes slope r = j/k, i.e. γ = λkµj . By definition of Lr :
y = −rx, we have f(γ) = EV(ρ̃)(γ) = ev ◦ ρ̃(γ) = (ky1 + jx1, k · trans(λ) +
j · trans(µ)) = (k(−jx1/k) + jx, k0 + j0) = (0, 0). The minus sign in the
slope of Lr is needed so that the translation number of ρ̃(γ) becomes 0.
It follows from Lemma 3.3 that ρ̃(γ) = 1, so we get an induced representa-
tion ρ : π1(M(r)) → G̃. As f is different from the origin, then we can always
find an element η ∈ π1(∂M) with slope different from r such that ρ(η) ̸= 0,
which implies that ρ is nontrivial. So we have constructed a nontrivial G̃ rep-
resentation of π1(M(r)). Since M(r) is irreducible by assumption, it follows
from [6, Theorem 3.2] that π1(M(r)) is left-orderable. □

4. Examples

In this section, I will show some examples of holonomy extension loci. We
will see that the holonomy extension locus of a Q-homology solid torus M
provides a way of visualizing the set of peripherally hyperbolic and parabolic
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G̃ representations of π1(M). Moreover, we will see that together with Lemma
3.8, the range of slopes of orderable Dehn filling on M could be determined
from looking at the graph of the holonomy extension locus.

Recall from (2) the definition of the dual basis {µ∗, λ∗}. Our first example
is the figure eight knot 41, whose Alexander polynomial is t2 − 3t+ 1.

Figure 1. Holonomy Extension Locus HLG̃(41)

There is nothing interesting going on in the translation extension locus of the figure-eight
knot complement as it contains only the x-axis y = 0 coming from abelian representations.
The above figures shows its holonomy extension locus which has no other sheets except
H0,0(M). The figure-eight knot complement has genus 1, so the 2g − 1 bound for transla-
tion number j of the longitude is not sharp.
There are two asymptotes of the graph with slopes ±4. So fillings on the figure-eight knot
complement with slope lying in the interval (−4, 4) are orderable, by Lemma 3.8. This
observation is confirmed by Proposition 10 of [4].

Our next example is the (7, 3) two-bridge knot 52. The complement of
a two-bridge knot is small [20, Theorem 1(a)]. So the holonomy extension
locus of the two-bridge knot does not have ideal points by Lemma 3.7.
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Figure 2. Holonomy and Translation Extension Locus of (7, 3) 2-bridge Knot

The top left figure is the translation extension locus of the (7, 3) two-bridge knot, where
the six small circles are parabolic points. The translation extension locus tells us (−∞, 1)
fillings are orderable, following from result of Culler-Dunfield [10].
The top right figure is the H0,0(M) component of its holonomy extension locus. There are
two asymptotes with slope −4 and 0. The interval of left-orderable Dehn fillings we can
read off from the holonomy extension locus is [0,4), again by Lemma 3.8. So compared to
translation extension locus, the holonomy extension locus does tell us something more.
The two figures on the bottom are H0,1 and H0,−1. Notice that asymptotes in H0,±1 both
have slope −10. Actually, boundary slopes associated to ideal points of the character vari-
ety of the (7, 3) two-bridge knot complement are 0, 4, 10. This result confirms Lemma 3.6.

The (7, 3) two-bridge knot, whose genus is 1, is a twist knot of three half
twist. So its Alexander polynomial is not monic and it follows that it is not
fibered [31]. Moreover, it cannot be an L-space knot [28, Corollary 1.3]. In
[10, Section 9, Question (4)], it is observed that for fibered knots, the bound
2g − 1 for translation number of the longitude is never sharp. However we



✐

✐

“4-Gao” — 2023/4/18 — 23:10 — page 1408 — #22
✐

✐

✐

✐

✐

✐

1408 Xinghua Gao

can see from this example that for non fibered knots, this bound can be
sharp.

For the above examples, we actually computed the equations defining the
curves in the graphs. For the rest of this section, we will show some more
complicated pictures produced by the program PE [9] written by Culler and
Dunfield under SageMath [12]. In these examples, instead of showing the
entire HLG̃(M), we only show the quotient PLG̃(M) of HLG̃(M) under
the action of D∞(M), where we identify H0,j with H0,−j when j ̸= 0, and
quotient H0,0 down by reflection about the origin.

Our first example is t03632, which has a loop in its holonomy extension
locus.

Figure 3. PLG̃(t03632)

Top left figure is H0,1 of t03632, where we see a small loop based at the origin (parabolic
point). The Alexander polynomial of t03632 has no positive real root. The locus H0,0

contains nothing other than the horizontal line representing abelian representations so we
will not show it here.

Our next example is 73 which has a more interesting H0,0.
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Figure 4. PLG̃(73)

The Alexander polynomial of 73 is 2t4 − 3t3 + 3t2 − 3t+ 2, which has no real root. But we
can see H0,0(73)/(Z/2Z) (figure on top) contains an arc that is different from the x-axis,
even though this arc does not intersect the x-axis. But this arc cannot be predicted by
any theorem in this paper. Notice that this arc has two asymptotes of slope 0 and 6. So
we could predict that Dehn filling of 73 of rational slope in (−6, 0) would be orderable.
The snappy command normal boundary slopes() tells us all the boundary slopes of spun
normal surfaces [13] of 73 are: 0, −6, −8, and −14. Both arcs in H0,1(73) and H0,3(73)
have asymptote of slope 14.

4.1. Simple roots of the Alexander polynomial

When the Alexander polynomial ∆M of M has a positive root ξ, we can
draw a point (ln(ξ)/2, 0) on the x-axis and call it an Alexander point. When
ξ is a simple root, Lemma 5.1 predicts that there is an arc coming out of the
Alexander point (ln(ξ)/2, 0). Moreover, this Alexander point corresponds
to the abelian representation associated to the root ξ of ∆M , e.g. ρα as
constructed in proof of Lemma 5.1. We use large dots to indicate Alexander
points in our figures.

In addition to the example of the figure eight knot shown in Figure 1,
we will show more holonomy extension loci with Alexander points.
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Figure 5. PLG̃(v2362)

This figure is PL
G̃
(v2362), the quotient of the holonomy extension locus of v2362, which

has only one sheet H0,0. The Alexander polynomial of v2362 is 6t2 − 13t+ 6 which has two
simple real roots 2/3 and 3/2. So we can expect to see the Alexander point ( 1

2
ln( 3

2
), 0),

shown as a red dot in the figure. (The other point ( 1
2
ln( 2

3
) = −

1

2
ln( 3

2
), 0) is mapped to

the same point under the quotient action of Z/2Z.) We can see in this figure that the arc
going through the Alexander point is not tangent to the x-axis at the Alexander point.

Figure 6. H0,0(K10a35)

This figure isH0,0(K10a35)/(Z/2Z). The Alexander polynomial ofK10a35 has two pairs of
simple positive real roots. (The two numbers in each pair are reciprocal so they correspond
to the same Alexander point.) So we can expect to see two Alexander points on the x-axis.



✐

✐

“4-Gao” — 2023/4/18 — 23:10 — page 1411 — #25
✐

✐

✐

✐

✐

✐

Orderability of homology spheres obtained by Dehn filling 1411

Figure 7. PLG̃(K12n547)

The figure on the left is H0,0(K12n547)/(Z/2Z). The Alexander polynomial of K12n547
has no real root at all. But we can still see quite a few arcs in H0,0(K12n547), many
of which even intersect the x-axis, which is a very interesting phenomenon worthy of
further exploration. The figure on the right is H0,1(K12n547), where we can see two non
intersecting arcs sharing the same asymptote of slope 2. (The x-axis in the right figure
is not contained in H0,1(K12n547). It is included only to show no arc in H0,1(K12n547)
intersects the x-axis.)

4.2. Multiple roots of the Alexander polynomial

Figure 8. PLG̃(K10n2)

This figure is PL
G̃
(K10n2), the quotient of the holonomy extension locus of K10n2. It

contains only one sheet, the quotient locus H0,0/(Z/2Z). The Alexander polynomial of
K10n2 has a pair of positive real double roots so there is an Alexander point. We can see
that the two arcs are tangent to the x-axis at the Alexander point.



✐

✐

“4-Gao” — 2023/4/18 — 23:10 — page 1412 — #26
✐

✐

✐

✐

✐

✐

1412 Xinghua Gao

Figure 9. PLG̃(K10a2)

The Alexander polynomial of K10a2 has a pair of positive real double roots. We can see
that two arcs in H0,0(K10a2) in the left figure are tangent to the x-axis at the Alexander
point.

The holonomy extension loci of K10n2 (Figure 8) and K10a2 (Figure 9)
show typical patterns of Q-homology solid tori whose Alexander polynomi-
als have double real roots: they all have arcs tangent to the x-axis at the
corresponding Alexander point.

The manifold K9a37 in our next example also has Alexander polynomial
with double roots. However the local picture of its holonomy extension locus
at the Alexander point is quite different from what we see in Figures 8 and 9.
See Figure 10 for explanations.

The holonomy extension locus of K9a37 has some interesting phenom-
ena, which are shown in Figure 10. Part of the red curve (second curve from
the bottom) marked with ‘x’s means that the point on the marked part of
the curve comes from a PSL2C representation ρ that is not PSL2R even
though ρ|∂M is a PSL2R representation. So these points do not belong to
the holonomy extension locus. (The small dots on the curves simply means
this point comes from a PSL2R representation.) From this example, we can
see that an arc in a holonomy extension locus can end at a point that is
not the infinity, Alexander point or parabolic point. We guess such a point
could be a Tillmann point (see [10] end of Section 5 for definition).
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Figure 10. H0,0(K9a37)

The Alexander polynomial of K9a37 has two positive real double roots. Figure 10 is H0,0

of the holonomy extension locus of K9a37. (To be precise, we still need to remove a
small segment of arc on the red curve (second curve from the bottom) to get the actual
H0,0(K9a37). ) We can see that there is an arc coming out of the Alexander point in both
directions but not tangent to the x-axis.
Remark: If you run the graphing program directly, the graph you see is slightly different
from this figure. In fact, there is an extra arc which does not belong to H0,0(K9a37)
but appears tangent to the bottom arc (shown in green) in H0,0(K9a37) and our current
graphing program is unable to separate it out automatically. So we have to remove the
extra arc by hand.
Remark 2: In addition to issues with graphing like unseparated curves and Tillmann
points as mentioned above, we also spotted missing components. In the above example
K9a37, we know an arc in H0,2(K9a37) is missing from our figure. In their graphing
program, Culler and Dunfield use gluing varieties rather than character varieties to simplify
computation. Some of the graphing issues might be caused by this. Check the end of
Section 5 of [10] for more details about computation and graphing issues.

The statement of Lemma 5.1 requires the root of the Alexander poly-
nomial to be simple. When we have a root that is not simple, we expect
to see an example where there is no arc coming out of the corresponding
Alexander point at all, as this is what happened in the translation extension
locus in Figure 10 of Section 5 of [10]. However, we were not able to find
such an example at this moment as the graphing program is still unfinished
and we only have very limited number of samples.

Even though the graph of the holonomy extension locus cannot function
as a precise proof, as it comes from numerical computation. It is still very
enlightening in the sense that, if Lr does not intersect the graph of H0,0(M)
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for any rational r inside some interval, then either the Dehn filling M(r)
is not orderable or its orderability could not be proven using the method
of representation into G̃ and a larger subgroup of Homeo+(R) needs to be
taken into consideration.

5. Alexander polynomials and orderability

In this section, we prove Theorem 5.1. To state the theorem, we will need
some definitions from [10]. We say a compact 3-manifold Y has few charac-
ters if each positive dimensional component of the PSL2C character variety
of Y consists entirely of characters of reducible representations. An irre-
ducible Q-homology solid torus M is called longitudinally rigid when its
Dehn filling M(0) along the homological longitude has few characters.

The author learnt from a private conversation that this theorem was also
proved independently by Steven Boyer.

Theorem 5.1. Suppose M is the exterior of a knot in a Q-homology 3-
sphere that is longitudinal rigid. If the Alexander polynomial ∆M of M has
a simple positive real root ξ ̸= 1, then there exists a nonempty interval (−a, 0]
or [0, a) such that for every rational r in the interval, the Dehn filling M(r)
is orderable.

The following lemma is the key to the proof of Theorem 5.1. In The-
orem 5.1, we need M to be longitudinal rigidity to ensure that the path
constructed in Lemma 5.1 is not contained in the x-axis when mapped to
the holonomy extension locus.

Lemma 5.1. Suppose M is an irreducible Q-homology solid torus. If ξ ̸= 1
is a simple positive real root of the Alexander polynomial, then there exists
an analytic path ρt : [−1, 1] → RG(M) where:

(a) The representations ρt are irreducible over PSL2C for t ̸= 0.

(b) The corresponding path [ρt] of characters in XG(M) is also a noncon-
stant analytic path.

(c) tr2γ(ρt) is nonconstant in t for some γ ∈ π1(∂M).

To study the smoothness of a point on the character variety, we need to
study the Zariski tangent space at that point.

Definition 5.1. [30, 3.1.3] Suppose V is an affine algebraic variety in Cn.
Let I(V ) = {f ∈ C[x1, . . . , xn]|f(x) = 0, ∀x ∈ V } be the ideal of V . Define
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the Zariski tangent space to V at p to be the vector space of derivatives of
polynomials:

TZar
p (V ) = {

dγ

dt
|t=0 ∈ Cn|γ ∈ (C[t])n, γ(0) = p s.t. f ◦ γ ∈ t2C[t] ∀f ∈ I(V )}.

A point p on V is called smooth if the dimension of TZar
p (V ) is equal to

the dimension of the component of V which p lies on.
Let Γ be a group and let ρ : Γ → PSL2C be a representation. Then we

can turn the Lie algebra sl2(C) into a Γ module via the adjoint represen-
tation, which means taking conjugation g · a := ρ(g)aρ(g)−1. Denote this Γ
module by sl2(C)ρ. Then the Zariski tangent space of the character vari-
ety XPSL2C(Γ) at [ρ] is a subspace of the cohomology H1(Γ; sl2(C)ρ). [30,
Proposition 3.5]

Proof of Lemma 5.1. First I prove (a) and (b).
As in Proposition 10.2 of [22], let α : π1(M) → R+ = (R > 0) be a repre-

sentation such that α factors through H1(M ;Z)free ∼= Z and takes a genera-
tor ofH1(M ;Z)free to ξ. Let ρα : π1(M) → PSL2R be the associated diagonal
representation given by

ρα = ±

[
α1/2(γ) 0

0 α−1/2(γ)

]
,

where α1/2(γ) is the positive square root of α(γ).

Then χα = tr2(ρα) is real valued, as α(γ) + 1/α(γ) + 2 ∈ R, ∀γ ∈ π1(M).
Since Im(α) is contained in R+ but not in {±1}, Im(ρα) is contained in
PGL2(R) and in fact in PSL2R. Next, we carry out the computation of
obstruction in the real setting. As sl2(C) is the complexification of sl2(R), the
Lie algebra of SL2R, we have the corresponding isomorphism of cohomology
groups.

H∗(π1(M); sl2(C)ρα
) = H∗(π1(M); sl2(R)ρα

)⊗R C.

So computations with complex variety X(M) in the proof of [22, Theorem
1.3] can be carried out in the real case. It follows that the tangent space to
XG(M) at χα is H∗(π1(M);R+ ⊕ R−)//R∗ ∼= R and thus χα is a smooth
point. Carrying out the computation of obstructions in the real setting, we
are able to show that d+ + d− ∈ H1(π1(M); sl2(R)ρα

) can be integrated to
an analytic path ρt : [−1, 1] → RG(M) with ρ0 = ρα and ρt irreducible over
PSL2C for t ̸= 0. So χα is contained in a curve containing characters of
irreducible PSL2R representations, which gives (a).
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The path [ρt] ⊂ XG(M) is nonconstant because ρt is irreducible when-
ever t ̸= 0 and thus cannot have same character as the reducible represen-
tation ρ0, proving part (b).

Next, we will prove part (c). In fact the existence of γ ∈ π1(∂M) such
that tr2γ(ρt) is nonconstant in t is proved similarly as in [10, Lemma 7.3
(4)]. We first construct a nonabelian representation ρ+ ∈ RG(M) which cor-
responds to [ρα] in XG(M). Then the Zariski tangent space of XG(M) at
[ρα] can be identified with H1(M ; sl2(R)ρ+), while the Zariski tangent space
of XG(∂M) at [ρ+ ◦ ι] can be identified with H1(∂M ; sl2(R)ρ+). So the
proof of (c) boils down to showing the injectivity of ι∗ : H1(M ; sl2(R)ρ+) →
H1(∂M ; sl2(R)ρ+). See [10, Lemma 7.3 (4)] for more details. □

We will also need the following property of closed 3 manifolds with few
characters.

Lemma 5.2. Suppose Y is a closed 3 manifold with H1(Y,Q) = Q. If Y
has few characters, then Y is irreducible.

Proof. Prove by contradiction. If Y is reducible, then we can decompose
it as a connected sum Y1♯Y2, where H1(Y1,Q) = Q and Y2 is a QHS. So
π1(Y ) = π1(Y1) ∗ π1(Y2). We want to use PSL2C representations of Y1 and
Y2 to construct a dimension one component of PSL2C character variety of Y
containing an irreducible representation so that it contradicts the assump-
tion that Y has few characters. As H1(Y1,Z) = Z⊕ (possible torsion), we
can construct a nontrivial abelian PSL2C representation ρ1 of Y1 by compos-
ing π1(Y1) ↠ Z and Z →֒ PSL2C. For Y2, there are two cases. If H1(Y2,Z)
contains a cyclic subgroup H, then similarly we can construct a nontriv-
ial abelian PSL2C representation ρ2 of Y2 by composing π1(Y2) ↠ H and
H →֒ PSL2C. If Y2 is actually a ZHS, then by Theorem 9.4 of [38], there is
an irreducible SL2C representation ρ2 of π1(Y2). Moreover we can make ρ2
an irreducible PSL2C representation by simply projecting to PSL2C. So we
can construct a set of PSL2C representations ρP = ρ1 ∗ Pρ2P

−1 of Y , where
P is any matrix in PSL2C. These representations are not conjugate to each
other as long as they have different P and at least one of them is irreducible
as we can vary P so that ρ1 and Pρ2P

−1 are not upper triangular at the
same time. □

Now we can prove Theorem 5.1.

Proof of Theorem 5.1. The key idea of proof is to show that a nontrivial
G̃ representation of π1(M(r)) exists for rational r in some small interval
containing 0, which mainly uses Lemma 3.8 and Lemma 5.1.
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Let ρt be the associated path in RG(M) given by Lemma 5.1. As ρ0
factors through H1(M ;Z)free ∼= Z, we can lift it to G̃ and its lift ρ̃0 also
factors through H1(M ;Z)free. Hence trans(ρ̃0(λ)) = 0 and we can modify ρ̃0
so that trans(ρ̃0(µ)) = 0. Then ρ̃0 is mapped to a point on the horizontal
axis of H0,0(M) as ρ0(λ) = I. The x coordinate of ρ̃0, ln(|ξ|) is nonzero as
ξ ̸= ±1.

As ρ0 lifts, we can extend this lift to a continuous path ρ̃t in RG̃(M).
Moreover, we can assume ρ̃t is actually in Raug

G̃
(M), as fixed points of

ρ̃t(π1(∂M)) also vary continuously with t.
Let k be the index of ⟨ι∗(µ)⟩ in H1(M,Z)free, where ι : ∂M → M is the

inclusion. By construction tr2µ(ρ̃0) = ξk + 2 + ξ−k > 4, so there exists ε > 0
such that tr2µ(ρ̃t) ≥ 4 for t ∈ [−ε, ε]. As ρt(µ) is hyperbolic, ρt(λ) is also
hyperbolic. Therefore ρt is a path in PHG(M) and ρ̃t is a path in PHG̃(M).

Then we can build a path A by composing ρ̃t with EV◦ι∗ : PHG̃(M) →
HLG̃(M). That the path A is nonconstant follows from Lemma 5.1. More-
over, it is not contained in x-axis L0. If it were contained in the x-axis, then
ρt(λ) = I as ρt(λ) is always hyperbolic or trivial. So each ρt factors through
a representation of the 0 filling M(0). Therefore [ρt] must lie in a component
of X(M(0)) of dimension at least 1, contradicting the assumption that M
is longitudinally rigid.

Since all points in A come from actual G̃ representations, there is no ideal
point in A. As all but at most three Dehn fillings of a knot complement are
reducible [18, Theorem 1.2], we can shrink A if necessary so that none of
the Dehn fillings involved is reducible. The only parabolic point in H0,0(M)
is the origin so A contains no parabolic point. Applying Lemma 3.8, we get
an interval (0, a) or (−a, 0) of orderable Dehn fillings.

Finally, we show M(0) is orderable. The first Betti number of M(0)
is 1 as rational homology groups of M(0) are the same as S2 × S1. The
irreducibility of M(0) follows from Lemma 5.2. So we can apply Theorem
1.1 of [6] and show that π1(M(0)) is left-orderable, completing the proof of
the theorem. □

Remark. In our numerical computation, an interval of the form (−a, b)
with a, b > 0 is expected to hold in Theorem 5.1. This could be observed from
the graphs of holonomy extension loci in the previous section. However the
author was not able to prove it. See Section 7 for details.
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6. Real embeddings of trace fields and orderability

In this section, we use a different assumption for the manifolds we study,
and prove Theorem 6.1.

Let Y be a closed hyperbolic 3-manifold with fundamental group Γ.
Let ρhyp : Γ → PSL2C be the holonomy representation of Y . The trace field
K = Q(trΓ) of ρhyp is the subfield of C generated over Q by the traces of
lifts to SL2C of all elements in ρhyp(Γ). It is a number field by [25, Theorem
3.1.2]. Assume we have a real embedding σ of the trace field K into R.

Define the associated quaternion algebra to be D = {Σaiγi|ai ∈ K, γi ∈
ρhyp(Γ)}. To say D splits at the real embedding σ means D ⊗σ R ∼= M2(R),
which implies that we can conjugate Γ into PSL2R. So we get a Galois
conjugate representation ρ : Γ → PSL2R. See Section 2.1 and 2.7 of [25] for
more details.

The following conjecture is due to Dunfield.

Conjecture 1. Suppose M is a hyperbolic Z homology solid torus. Assume
the longitudinal filling M(0) is hyperbolic and its holonomy representation
has a trace field with a real embedding at which the associated quaternion
algebra splits. Then every Dehn filling M(r) with rational r in an interval
(−a, a) is orderable.

By adding some extra conditions, I am able to prove the following result.

Theorem 6.1. Suppose M is a hyperbolic Z-homology solid torus. Assume
the longitudinal filling M(0) is a hyperbolic mapping torus of a homeomor-
phism of a genus 2 orientable surface and its holonomy representation has a
trace field with a real embedding at which the associated quaternion algebra
splits. Then every Dehn filling M(r) with rational r in an interval (−a, 0]
or [0, a) is orderable.

First let us fix some notations. Denote the holonomy representation
of the hyperbolic manifold M(0) by ρhyp : π1(M(0)) −→ PSL2C and the
projection map p : π1(M) → π1(M(0)). The composition ρM = p ◦ ρhyp has
kernel normally generated by the longitude λ. The Galois conjugate of
ρM is denoted by ρ0. It is also the Galois conjugate of ρhyp composed
with p. Denote ρV : π1(V ) −→ PSL2C the induced representation of ρhyp
on V = S1 ×D2 ⊂ M(0), and ρT 2 : π1(T

2) −→ PSL2C the induced repre-
sentation of ρhyp on ∂M = T 2.

Weil’s infinitesimal rigidity in the compact case [36], which is stated as
follows, is the key to the proof of Theorem 6.1.
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Theorem 6.2. Let M be a compact 3-manifold with torus boundary whose
interior admits a hyperbolic structure with finite volume, then H1(M(0),
sl2(C)ρhyp

) = 0. (See also [30, Section 3.3.3][26])

The reference [30] works with SL2C rather than PSL2C character vari-
eties. So to apply the argument in [30], we will lift PSL2R representations
to SL2R when necessary. That they always lift is guaranteed by [11, Propo-
sition 3.1.1].

The proof of Theorem 6.1 relies on the following lemma whose proof is
based on Weil’s theorem.

Lemma 6.1. Suppose ρ0 is defined as above. Then there exists an arc c in
RG(M) such that

(a) c ∋ ρ0 is a smooth point of RG(M).

(b) tr2γ is a local parameter of the arc c near ρ0 (see e.g. [32, 2.1] for
def.), where γ ∈ π1(∂M) is some primitive element different from the
longitude λ.

Proof. (a) First, let us prove that ρ0 is a smooth point of RG(M). We com-
pute the Mayer-Vietoris sequence for cohomology with local coefficients,
associated to the decomposition M(0) = M ∪∂M V .

· · · → H1(M(0); sl2(C)ρhyp
)

→ H1(V ; sl2(C)ρV
)⊕H1(M ; sl2(C)ρM

) → H1(T 2; sl2(C)ρT2
) →

→ H2(M(0); sl2(C)ρhyp
) → · · ·

The first term H1(M(0); sl2(C)ρhyp
) = 0 follows from Weil’s infinitesimal

rigidity Theorem 6.2. So

H1(V ; sl2(C)ρV
)⊕H1(M ; sl2(C)ρM

) → H1(T 2; sl2(C)ρT2
)

is an injection. To see that it is actually an isomorphism, note that by
Poincaré duality H2(M(0); sl2(C)ρhyp

) ∼= H1(M(0); sl2(C)ρhyp
) = 0.

Let Xc(M) be the component of X(M) containing [ρM ]. As ρV and ρT 2

are nontrivial, then by [5, Theorem 1.1 (i)], we have dimCH1(V ; sl2(C)ρV
) =

1 and dimCH1(T 2; sl2(C)ρT2
) = 2. So dimCH1(M ; sl2(C)ρM

) = 1. By [30,
Proposition 3.5], we have an inclusion of the Zariski tangent space
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TZar
ρM

(Xc(M)) →֒ H1(M ; sl2(C)ρM
). So

dimC TZar
ρM

(Xc(M)) ≤ dimCH1(M ; sl2(C)ρM
) = 1.

Following from Thurston’s result [11, Proposition 3.2.1], dimCXc(M) ≥
1 as ρM (im(π1(∂M)→π1(M)))=Z. Since dimCXc(M)≤dimC TZar

ρM
(Xc(M)),

then dimCXc(M) = dimTZar
ρM

(Xc(M)) = dimCH1(M ; sl2(C)ρM
) = 1. There-

fore [ρM ] is a smooth point of X(M).
To show that the Galois conjugate ρ0 of ρM is also a smooth point,

we use the same argument as in the proof of [10, Lemma 8.3]. Construct
X1 by taking the C-irreducible component X0 of X(M) containing [ρM ],
which must be defined over some number field, and then take the union of
the Gal(Q/Q)-orbit of X0. Then X1 is the unique Q-irreducible component
of X(M) that contains [ρM ]. Since X1 is invariant under the Gal(Q/Q)-
action, it contains [ρ0] as well as [ρM ]. As by definition, TZar

ρM
(X(M)) is

defined by derivatives of a set of polynomials. Then TZar
ρ0

(X(M)) is defined
by derivatives of Galois conjugates of this set of polynomials and thus should
have dimension 1, same as TZar

ρM
(X(M)). On the other hand, any component

of X1 has the same dimension as Xc(M), which is 1. So [ρ0] is a smooth
point of X1 and thus of X(M).

Moreover, By Théorème 3.15 of [30], ρM is γ-regular for some simple
closed curve γ ⊂ ∂M , which means that the inclusion H1(M,µ; sl2(C)ρM

) →
H1(M ; sl2(C)ρM

) is nonzero (see [30, Definition 3.21] for definition). So trγ is
a local parameter of X(M) at [ρM ]. Since [ρM ] is not λ-regular as ρM (λ) =
I, then γ must be a curve different from λ. Locally the sign of trγ does
not change, so we could make tr2γ the local parameter. Whether a regular
function is a local parameter at a smooth point on the curve X1 can be
expressed purely algebraically and hence is Gal(Q/Q)-invariant. It follows
that [ρ0] is also a smooth point of X1 with local parameter tr2γ .

Applying [10, Proposition 2.8], we get a smooth arc c of real points in
XR(M) containing [ρ0], locally defined by tr2γ being real. By restricting ϵ if
necessary, we can assume that every character in c comes from an irreducible
PSL2C representation. Since [ρ0] ∈ XG(M) is irreducible, we can restrict ϵ
so that c is actually contained in XG(M) as both XG(M) and XSU2(C)(M)
are closed in X(M)[10, Lemma 2.12]. Then by [10, Lemma 2.11] we can lift
c to c ∈ RG(M) and c is still parameterized by tr2γ . This completes the proof
of (b). □

Lemma 6.2. trans(ρ̃0(λ)) is an even integer.
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Proof. When mapping down to SL2R, the image of ρ̃0(λ) ∈ P̃SL2R is I. It
follows from [10, Claim 8.5] that trans(ρ̃0(λ)) is an even integer. □

Now we are ready to prove Theorem 6.1.

Proof of Theorem 6.1. The idea of proof is similar to that of Theorem 5.1:
show that a nontrivial G̃ representation of π1(M(r)) exists for rational r in
some small interval containing 0.

First we lift the arc c ⊂ RG(M) as constructed in Lemma 6.1 to c̃ ∈
RG̃(M). In the case of hyperbolic integer solid torus M , H2(π1(M);Z) ∼=
H2(M ;Z) = 0, so we can always lift G representations of M to G̃.

SinceM(0) admits a complete hyperbolic structure, elements in π1(M(0))
are mapped to loxodromic elements in PSL2C by ρhyp. So µ ∈ π1(M(0)) is
mapped to either a hyperbolic or elliptic element under the Galois conjugate
ρ0. Therefore we divide our proof into two cases according to the image of
the meridian µ.

Remark. We do not consider the case that µ is mapped to a parabolic
element, because ρhyp(µ) is loxodromic and Galois conjugate cannot take a
complex number with norm greater than 2 to one with norm 2.

Case 1: µ is mapped to an elliptic element by ρ0.
At ρ̃0, the local parameter s = tr2(ρ̃0(γ)) < 4. As c̃ is parameterized near

ρ̃0 by tr2γ ∈ [s− ϵ, s+ ϵ], we can require s+ ϵ < 4 so that c̃ ⊂ PEG̃(M). Then
we map c̃ down to an arc A ⊂ ELG̃(M) which is locally parameterized by
tr2γ on some small interval [0, δ].

To obtain an interval of orderable Dehn fillings, we want to apply Lemma
8.4 of [10] which works similarly as Lemma 3.8. So we need to show that A is
not contained in the horizontal axis L0 of ELG̃(M) ⊂ R2. If it is contained in
L0, then all ρt factor through π1(M(0)) and it follows that [ρt] lie in an irre-
ducible component of X(M(0)) with complex dimension at least one. But we
have seen in the proof of Lemma 6.1 that H1(M(0); sl2(C)ρhyp

) = 0, so 1 ≤
dimTZar

ρ0
(X(M(0)))=dimTZar

ρhyp
(X(M(0)))≤dimCH1(M(0); sl2(C)ρhyp

)=0,
which is a contradiction.

Now we can draw an arcA inside the translation extension locus ELG̃(M)

near ρ̃0. It contains no ideal point as all points on A come from G̃ represen-
tations. Applying Lemma 8.4 of [10], we get a > 0 so that Lr meets ELG̃(M)
for all r in the interval (−a, a). Invoking [18, Theorem 1.2] (at most three
Dehn fillings of a knot complement are reducible), we can shrink a to make
M(r) irreducible. Then we can apply Lemma 4.4 of [10].

Case 2: µ is mapped to a hyperbolic element by ρ0.
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This case is similar to Case 1 except we start with s=tr2(ρ̃0(γ)) > 4.
As c̃ is parameterized by tr2γ ∈ [s− ϵ, s+ ϵ], we can require s− ϵ > 4 so that
c̃ ⊂ PHG̃(M). Again we map c̃ down to an arc A ⊂ HLG̃(M) which is locally
parameterized by tr2γ on some small interval [−δ, δ].

By Lemma 3.4, we can always choose a lift ρ̃0 such that trans(ρ̃0(µ)) = 0
and therefore by continuity we can make A lie in H0,j(M). To show A ⊂
H0,0(M), we compute j = trans(ρ̃0(λ)) and show it is 0. By assumption,
M(0) is a mapping torus of a homeomorphism of a genus 2 surface S.
Then M(0) = Mφ where ϕ is a Pseudo-Anosov map of S since M(0) is
hyperbolic. Suppose there is a G representation ρ0 of π1(M(0)), then it
restricts to a G representation ρ0|S of π1(S). Let eu(ρ0|S) be the Euler num-
ber of ρ0|S as defined in [16] (or equivalently in [27, 37]). It is equal to
trans(ρ̃0([a1, b1][a2, b2])) with a1, b1, a2, b2 the standard generators of π1(S)
and is thus equal to trans(ρ̃0(λ)). We claim that |eu(ρ0|S)| ≠ 2. Otherwise
ρ0|S would determine a hyperbolic structure on S (Milnor-Wood inequality
[27, 37]) which is invariant under ϕ, implying that ϕ has finite order which
contradicts that ϕ is Pseudo-Anosov. So |trans(ρ̃0(λ))| = |eu(ρ0|S)| ≠ 2. By
Lemma 6.2 and Proposition 3.1, we must have trans(ρ̃0(λ)) = 0.

Claim that A is not contained in the horizontal axis L0 of H0,0 ⊂ R2. If it
is contained in the horizontal axis, then all ρt factor through π1(M(0)) and it
follows that [ρt] lie in an irreducible component ofX(M(0)) with complex di-
mension at least one. But we have seen thatH1(M(0); sl2(C)ρhyp

) = 0, so 1 ≤
dimTZar

ρ0
(X(M(0))) = dimTZar

ρhyp
(X(M(0))) ≤ dimCH1(M(0); sl2(C)ρhyp

) =
0, which is a contradiction.

So we have constructed an arc A ⊂ H0,0(M) that is not contained in
L0 near ρ̃0. Then we can find a > 0 such that Lr meets H0,0(M) at points
that are not parabolic or ideal and M(r) irreducible for all r in an interval
(0, a) or (−a, 0). Applying Lemma 3.8 then tells us M(r) is orderable for r
in (0, a) or (−a, 0).

Finally, we show M(0) is orderable. The first Betti number of M(0) is 1
as the integral homology groups of M(0) are the same as those of S2 × S1.
The irreducibility of M(0) follows from the assumption that it is hyperbolic.
So we can apply Theorem 1.1 of [6] and show that π1(M(0)) is left-orderable,
completing the proof of the theorem. □

Remark. The assumption that M(0) being a mapping torus of genus 2 is
used to show trans(λ) = 0. This is a very strong hypothesis. However, when
µ is mapped to an elliptic element, M(0) being a mapping torus is not needed
at all. When µ is mapped to hyperbolic, the author does not know how to
prove the theorem under a weakened assumption.
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Using the method of Calegari [7, Section 3.5], we are able to prove the
following result.

Proposition 6.1. Suppose Y is a mapping torus of a closed surface S of
genus at least 2. If Y has a faithful G representation ρ, then ρ|S can never
be discrete.

Proof. First notice that π1(Y ) has no torsion. This is because Y is an
Eilenberg-Maclane space and a finite dimensional CW-complex as a map-
ping torus. We claim that ρ has indiscrete image. Otherwise ρ(π1(Y )) ≤ G =
PSL2(R) = Isom+(H2) would be a torsion-free Fuchsian group and thus act
on H2 with quotient isometric to a complete hyperbolic surface, which is
impossible as Y is a closed 3 manifold.

Now suppose ρ|S is discrete, then ρ|S : π1(S) → G determines some com-
plete hyperbolic structure H2/ρ(π1(S)) on S as it is faithful. So ρ(π1(S))
consists of hyperbolic elements only. Let π1(Y ) = ⟨t⟩⋉ π1(S), where the
conjugation action of t on π1(S) is given by the monodromy of the bundle.
Then ρ(t) acts on ρ(π1(S)) by conjugation and normalizes ρ(π1(S)). Since
ρ(t) ∈ G, it gives an isometry of H2 and thus an isometry of S. On the other
hand, any isometry of S is of finite order as it has to preserve the hyperbolic
structure. Then the action of ρ(t) on ρ(π1(S)) by conjugation must be of
finite order. To show that actually ρ(t) is a finite order element in G, notice
that ρ(π1(S)) has at least two hyperbolic elements of different axes. But
this contradicts the fact that ρ is a faithful representation as π1(Y ) has no
torsion. So ρ|S could not be discrete. □

We are also able to prove the following result.

Proposition 6.2. Suppose M is a hyperbolic Z homology solid torus. As-
sume the longitudinal filling M(0) is hyperbolic and the trace field of its
holonomy representation has a real embedding at which the associated quater-
nion algebra splits. Then the ZHS Dehn filling M( 1n) is orderable for all
n ∈ Z large enough (or −n large enough).

Proof. The proof is almost the same as Theorem 6.1 except for the case
when the meridian µ is mapped to a hyperbolic element by ρ0. Similar to
Case 2 of the proof of Theorem 6.1, first we construct A ⊂ Hi,j(M) and show
that it is not contained in the horizontal axis L0. But after that, we do not
need to show i = j = 0 (i.e. A ⊂ H0,0(M)). Since A is not horizontal, there
exists N ∈ Z>0 (or N ∈ Z<0) large enough (or −N large enough resp.) such
that L− 1

N

intersects A at points that are not parabolic or ideal and M( 1n)
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irreducible for all n ≥ N (or −n ≥ −N resp.). Suppose ρn corresponds to
an intersection point of L− 1

n

and A, then ρn(µλ
n) = I. By choosing the lift

ρ̃n of ρn, we can make trans ρ̃n(µ) = −n· trans ρ̃n(λ), which then implies
trans ρ̃n(µλ

n) = 0. So we actually have ρ̃n(µλ
n) = I and therefore ρ̃n is a

nontrivial G̃ representation of π1(M( 1n)). □

7. Unsolved problems

Here are some interesting questions for potential follow-up researches:

1) Can we drop the longitudinal rigid condition in Theorem 5.1? In partic-
ular, is it possible prove H1(π1(M(0)); sl2(R)ρ+)) = 0, which is weaker
than M being longitudinal rigid but enough to prove Theorem 5.1?

2) As mentioned in the remark after the proof of Theorem 5.1, according
to our numerical experiment, a larger range of slopes of orderable Dehn
filling is expected. But unfortunately the author was not able to prove
it. Is it possible to extend the interval (−a, 0] in Theorem 5.1 to (−a, b)
with a, b > 0 using some properties of the character variety?

3) In Theorem 6.1, we assumed that the holonomy representation has a
trace field with a real embedding. When do holonomy representations
have real places? Calegari studied some special cases in [7]. Are there
more general criteria?

4) In Theorem 6.1, we also assumed the 0 filling on M is a mapping
torus of genus 2. This is because we need the translation number of
the homological longitude of M to be 0. It is in general a challenging
question to compute the translation number. Is there an algorithm to
compute the translation number of the longitude ofM? Can we weaken
the restriction on the genus and still have the translation number of
the longitude being 0?
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