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Counting ancient solutions on a strip with

exponential growth

Feng Gui

We study the ancient solutions of parabolic equations on an infinite
strip. We show that any polynomial growth ancient solution for a
class of parabolic equations must be constant. Furthermore, we
show that the vector space of ancient solutions that grow slower
than a fixed exponential order is of finite dimension.

1. Introduction

It has been a common theme that the function theory on a manifold usu-
ally reflects its geometric properties. One of the most well-known examples
is the classical study of meromorphic functions on Riemann Surfaces. In
this paper, we are interested in the ancient caloric functions, that is, solu-
tions of the heat equation that exist for all past time. We show that any
nonzero ancient caloric function on an infinite strip has at least exponential
growth. This is different from what happens on a Euclidean space or on a
complete manifold with nonnegative Ricci curvature where ancient solutions
with polynomial growth exist. Furthermore, we bound the dimension of an-
cient caloric functions with exponential growth on a strip in a similar way
to how the dimension of polynomial growth harmonic functions is bounded
on a Euclidean space.

Let Ω = R× Ω0 be an infinite strip where Ω0 ⊂ R
n is an open bounded

set with volume V0. We will use the standard coordinates x = (x0, ..., xn) on
R
n+1 where x0 axis is the direction that the strip goes to infinity. Consider

a uniformly elliptic operator L in the divergence form, that is,

(1.1) Lu = ∂i(a
ij∂ju) + bi∂iu+ cu,

where aij(x), bi(x) and c(x) are bounded on Ω and there exist 0 < λ < Λ
such that

(1.2) λ|ξ|2 ≤ aij(x)ξiξj and |aij(x)| ≤ Λ
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for all x ∈ Ω and ξ ∈ R
n+1. The Einstein summation convention is applied

here and henceafter. We also need to assume some smallness condition in
the first and zeroth order terms, that is, for some ε > 0,

(1.3) |bi(x)| ≤
√
ε and c(x) ≤ ε.

The small constant ε will be determined depending on n, λ and V0 in Lemma
2.1. The Laplacian of course satisfies this condition and it is the motivating
example for our study.

We consider the solutions u(t, x) to the following problem:

(1.4)

{

(∂t − L)u = 0 for (t, x) ∈ R
− × Ω

u = 0 for (t, x) ∈ R
− × ∂Ω

.

where we denote R
− = (−∞, 0]. Such solution is called an ancient solution

as it is defined for all negative time. For d ≥ 1, we define the solution spaces
of polynomial and exponential growth

Definition 1.1.

(1.5)
Pd := {u(t, x) ∈ W 1,2

loc (R
− × Ω), u solves equation (1.4) and

there exists C = C(u) > 0 s.t. |u(t, x)| ≤ C(|x|+ |t| 12 + 1)d},

(1.6)
Ed := {u(t, x) ∈ W 1,2

loc (R
− × Ω), u solves equation (1.4) and

there exists C = C(u) > 0 s.t. |u(t, x)| ≤ Ced(|x|+|t|
1
2 )}.

Our main results are the following.

Theorem 1.2. If L satisfies conditions (1.2) and (1.3) and d > 0, then
Pd = {0}.

Theorem 1.3. If L satisfies conditions (1.2) and (1.3) and d ≥ 1, then
dimEd ≤ Cdn+2 for some constant C = C(n, λ,Λ, V0).

The study of solutions with certain growth conditions originates from
the classical Liouville theorem, which states that positive or bounded har-
monic functions on R

n are constants. The Liouville theorem was generalized
to manifolds with nonnegative Ricci curvature in [1, 13] through gradient
estimate. Yau then conjectured that on a manifold with nonnegative Ricci
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curvature, the space of harmonic functions with polynomial growth is finite
dimensional. The conjecture was resolved in [2]. In fact, Colding and Mini-
cozzi proved the finite dimensionality for a larger family of metric measure
spaces where volume doubling and Neumann-Poincare inequality hold. [3]
showed that dimension is bounded by Cdn−1 and the exponent n− 1 is op-
timal in the case of Rn. When the domain is an infinite strip instead of the
Euclidean space, Hang and Lin, [6], showed that the harmonic function with
polynomial growth has to be zero. Using Colding-Minicozzi’s construction
[2, 3], they further showed that there are only finitely many linearly inde-
pendent harmonic functions with exponential polynomial growth. Recently,
[8] refined their bound.

On the parabolic side of the story, the key ingredient is Li-Yau’s parabolic
gradient estimate [9], replacing Cheng-Yau’s estimate for the harmonic func-
tions. Souplet and Zhang proved an analog of Liouville theorem for the heat
equation on manifold in [12], stating that any sublinear eternal caloric func-
tion on a noncompact manifold with nonnegative Ricci curvature has to be a
constant. However, when counting the dimension of the solution space with
growth condition, the ancient caloric functions behave more like harmonic
functions compared to the eternal ones. In recent years, [11] bounded the
dimension of ancient caloric functions with polynomial growth of degree less
than or equal to d on a n-dimensional manifold with nonnegative Ricci cur-
vature by Cdn+1. Colding and Minicozzi proved a sharper bound Cdn in [4]
which has optimal dependence of d in the case of Rn. In [7], Hua generalized
their result to graphs. Using the construction in [2, 3] and a new localization
inequality, Colding and Minicozzi bounded the dimension of ancient caloric
functions on mean curvature flow by its entropy in [5]. This gives a bound
to the codimension of mean curvature flow.

Theorem 1.2 and 1.3 are the parabolic analogs of Han and Lin’s results
in [6]. One could further study the solution space of noncompact manifolds
with multiple ends and certain volume growth, gaining more understanding
of how the geometry of the manifold changes the growth rate of harmonic
and caloric functions on it. However, we should note that polynomial growth
harmonic functions do exist on some noncompact manifolds with two ends,
such as catenoids. This hints that some geometric conditions are necessary
to control the growth of the harmonic and ancient caloric functions.

Remark 1.4. The parabolic scaling ratio between |x| and |t| in the growth

condition ed(|x|+|t|
1
2 ) in Definition 1.1 is crucial and cannot be relaxed to

ed(|x|+|t|). Otherwise, one has no hope to prove any finite dimensionality of



✐

✐

“6-Gui” — 2023/3/20 — 0:19 — page 1448 — #4
✐

✐

✐

✐

✐

✐

1448 Feng Gui

the solution space since separation of variables method already gives in-
finitely many linearly independent ancient heat solutions on R× [0, 1].

Remark 1.5. The exponent n+ 2 in Theorem 1.3 might not be optimal.
However, we can solve explicitly the time independent solutions when L is
the Laplacian on Ω as in [8]. It shows the optimal exponent should be at
least n. For this reason, we conjecture that the optimal exponent is n, that
is, dimEd ≤ Cdn.

The paper will be structured as follows. In section 2, we show that
ancient solutions to (1.4) satisfy a reverse Poincaré type inequality and thus
cannot grow slower than any polynomials. In section 3, we recall some basic
properties of exponential growth monotone functions and construct “good”
solutions from the given ones. In section 4, we prove the main Theorem 1.3.

Acknowledgements. I would like to thank my advisor Professor William
Minicozzi for his patient guidance and constant support.

2. Growth of ancient solutions

Let Dr = (−r, r)× Ω0 ⊂ Ω and Qr = (−r2, 0]×Dr be our version of
parabolic “ball” in the infinite strip. The key estimate that controls the
growth of the solution is the following reverse Poincaré type inequality.

Lemma 2.1. There exists constant ε0 = ε0(n, λ, V0) > 0 such that if con-
dition (1.3) holds for ε = ε0, then for any solution u ∈ W 1,2

loc (R
− × Ω) of

equation (1.4) and 0 < r < R, there is a constant C = C(λ,Λ) such that

(2.1)

∫

Qr

|∇u|2 ≤ C

(R− r)2

∫

QR\Qr

u2.

Furthermore, there exists constant C = C(n, λ,Λ, V0) such that

(2.2)

∫

Qr

u2 ≤ C

(R− r)2

∫

QR\Qr

u2.

Proof. Let φ = φ(t, x0) ∈ C∞
c (R− × R) be a compactly supported cutoff

function in both time direction and the direction where the strip goes to
infinity. With a slight abuse of notation, we will write φ(t, x) = φ(t, x0) for
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x ∈ R
n+1. Using integration by parts, we have

(2.3)

1

2
∂t

∫

Ω
u2φ2 =

∫

Ω
φ2uLu+

∫

Ω
u2φ∂tφ

=

∫

Ω
φ2u(∂i(a

ij∂ju) + bi∂iu+ cu) +

∫

Ω
u2φ∂tφ

= −
∫

Ω
(φ2aij∂iu∂ju+ 2φuaij∂iφ∂ju)

+

∫

Ω
φ2u(bi∂iu+ cu) +

∫

Ω
u2φ∂tφ.

From condition (1.2), we bound

(2.4)

∫

Ω
φ2aij∂iu∂ju+

∫

Ω
2φuaij∂iφ∂ju

≥ λ

∫

Ω
φ2|∇u|2 − 2Λ

∫

Ω
|φ||u||∂0φ||∇u|

≥ 3λ

4

∫

Ω
φ2|∇u|2 − C

∫

Ω
u2|∂0φ|2

where C = 4λ−1Λ2 = C(λ,Λ) using inequality ηa2 + η−1b2 ≥ 2ab and ∂0φ =
∂φ
∂x0

. Assume that condition (1.3) holds for some ε, then we can bound the
lower order terms

(2.5)

∫

Ω
φ2u(bi∂iu+ cu) ≤

∫

Ω

√
εφ2|u||∇u|+ ε

∫

Ω
φ2u2

≤ λ

4

∫

Ω
φ2|∇u|2 + Cε

∫

Ω
φ2u2

where C = C(λ). Since φ is constant on each slice of the Ω, applying Poincaré
inequality, we have that

(2.6)

∫

Ω
φ2u2 =

∫

R

φ2

∫

{x0}×Ω0

u2

≤ C

∫

R

φ2

∫

{x0}×Ω0

|∇Ω0u|2 ≤ C

∫

Ω
φ2|∇u|2

where C = C(n, V0). Here, ∇Ω0u is the projection of ∇u to its last n coor-
dinates and thus has smaller norm. From equations (2.5) and (2.6), we can
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take ε0 = ε0(n, λ, V0) small so that

(2.7)

∫

Ω
φ2u(bi∂iu+ cu) ≤ λ

2

∫

Ω
φ2|∇u|2.

Combining (2.3), (2.4) and (2.7),

(2.8) ∂t

∫

Ω
u2φ2 +

λ

2

∫

Ω
φ2|∇u|2 ≤ C

∫

Ω
u2|∂0φ|2 + 2

∫

Ω
u2|φ||∂tφ|.

Since φ is compactly supported,
∫

{t}×Ω u2φ2 → 0 as t → −∞. Integrate (2.8)

over t ∈ R
−, we have

∫

{t=0}×Ω
u2φ2 +

λ

2

∫

R−×Ω
φ2|∇u|2

≤ C

∫

R−×Ω
u2|∂0φ|2 + 2

∫

R−×Ω
u2|φ||∂tφ|.

(2.9)

Now we specify the cutoff function φ. Let φ = 1 on Qr and φ = 0 outside
QR and φ ∈ [0, 1]. We can also let

(2.10) |∂0φ| ≤
2

R− r
and |∂tφ| ≤

2

R2 − r2
≤ 2

(R− r)2
.

Note that the first term on the left hand side in (2.9) is positive. Combining
(2.9) and (2.10), we have

(2.11)

∫

Qr

|∇u|2 ≤ C

(R− r)2

∫

QR\Qr

u2

where C = C(λ,Λ) as desired. The second claim follows by applying Poincaré
inequality to each slice of the strip. □

Remark 2.2. The smallness condition (1.3) on bi(x) and c(x) in Lemma
2.1 can be relaxed to a more general assumption. The proof works if we
have |bi(x)| ≤ ε1 and c(x) ≤ ε2 for some constants ε1, ε2 depending on n, V0

and λ.

Lemma 2.1 effectively lower bounds the growth of the ancient solution to
equation (1.4). In fact, we show that any ancient solution with polynomial
growth has to be zero.
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Proof of Theorem 1.2. Fix r > 1. For any R > r, we have

(2.12)

∫

QR

u2 ≥
(

1 +
(R− r)2

C

)
∫

Qr

u2

for C = C(n, λ,Λ, V0) in Lemma 2.1. Choose r0 =
√

C(e− 1) > 0. Iterations
of inequality (2.12) imply that for any integer k > 0,

(2.13)

∫

Qr+kr0

u2 ≥ ek
∫

Qr

u2.

Taking k to infinity, we have

(2.14) lim inf
R→∞

R−1 log

(
∫

QR

u2
)

≥ 1

r0

If u ∈ Pd is an ancient solution with polynomial growth, then
∫

QR
u2 ≤

CR2d for any R > 1. In particular,

(2.15)

∫

Qr

u2 ≤ C(r + kr0)
2d

ek

which leads to a contradiction for large k unless u ≡ 0. □

3. Construction of good solutions from given ones

Theorem 1.2 motivates us to study the ancient solutions with exponential
growth instead. The proof of Theorem 1.3 follows the idea in [2] and [3],
where they bound the dimension using a set of solutions with good proper-
ties. The exponential growth bound makes it possible to construct solutions
with good properties from any given ones.

We start with some definitions (cf. [2] section 2 and section 4). For each
r > 0, we define a positive semi-definite bilinear form on L2

loc(R
− × Ω)

(3.1) Jr(u, v) =

∫

Qr

uv

for any locally square integrable functions u, v. We should note that Jr is
an inner product on L2(Qr). When the unique continuation property holds
for u ∈ Ed, for example when L has Lipschitz coefficients, then Jr defines
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an inner product on Ed. We also write

(3.2) Iu(r) = Jr(u, u) =

∫

Qr

u2

for locally integrable function u. By definition, Iu(r) is non-decreasing in r.
We say that a set of linearly independent functions v1, ..., vℓ ∈ L2

loc(R
− ×

Ω) has good properties if, for some r, δ and σ, they are orthonormal with
respect to Jr and Ivi

(r + δ) ≤ σ. We will see in Proposition 3.4 that it is
possible to construct functions with good properties from any given set of
linearly independent functions in Ed.

Definition 3.1. Let u1, ..., uk be linearly independent functions in
L2
loc(R

− × Ω). For r > 0, we define

(3.3) w̃1,r = u1|Qr
.

We define w̃i,r ∈ L2(Qr) inductively for i = 2, ..., k as follows. Since Jr de-
fines an inner product on L2(Qr), we can write Pi as the orthogonal projec-
tion map onto the space span{w̃1,r, ..., w̃i−1,r}⊥ ⊂ L2(Qr) under the inner
product Jr. Then,

(3.4) w̃i,r = Pi(ui|Qr
)

is well-defined and we can write

(3.5) ui|Qr
=

i−1
∑

j=1

λij(r)uj |Qr
+ w̃i,r

for some real coefficients λij(r). Moreover, we extend wi,r to a locally square
integrable function on R− × Ω by

(3.6) wi,r = ui −
i−1
∑

j=1

λij(r)uj .

We should remark that the restrictions ui|Qr
are not necessarily linearly

independent and thus λij(r) and wi,r are not uniquely defined. However,
since ui are linearly independent, there exists R > 0 such that ui|Qr

are
linearly independent for all r > R.

We also define

(3.7) fi(r) =

∫

Qr

w2
i,r =

∫

Qr

w̃2
i,r.
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Here are a few immediate properties of fi(r).

Lemma 3.2. Given a set of linearly independent exponential growth an-
cient solutions u1, ..., uk ∈ Ed, define fi as in (3.7). The following holds for
i = 1, ..., k:

1) fi(r) ≤ Ce(4d+1)r where C = C(ui, V0),

2) fi(r) = Iwi,r
(r) and fi(s) ≤ Iwi,r

(s) for any s > 0, and

3) fi is non-decreasing and nonnegative and is not identically zero.

Proof. Since wi,r is the Jr-orthogonal projection of ui,

(3.8) fi(r) ≤
∫

Qr

u2i ≤ C Vol(Qr) e
4dr ≤ C ′e(4d+1)r

and (1) is thus established. For the same reason,

(3.9) fi(r) =

∫

Qr

w2
i,r = min

∫

Qr

∣

∣ui −
i−1
∑

j=1

λjuj
∣

∣

2

where the minimum is taken for all real coefficients λj . In particular, if we
let λj = λij(s), then this implies fi(r) ≤ Iwi,s

(r) for any s > 0, which is the
claim (2).

If s < r, then fi(s) ≤ Iwi,r
(s) ≤ Iwi,r

(r) = fi(r) by (2) and thus fi is
monotone. Since ui|Qr

are linearly independent for some large r, wi,r is not
identically zero on Qr. Claim (3) then follows. □

To construct solutions with good properties, we need the following lemma
for functions with exponential growth bound.

Lemma 3.3. Let f1, ..., fk : [0,∞) → [0,∞) be k non-decreasing functions
that are not identically zero. Assume that for some d, C > 0 and all i =
1, ..., k,

(3.10) fi(r) ≤ Cedr.

For any δ>0, ℓ<k and σ>e
k

k−ℓ+1
δd, there exist ℓ of these functions fα1

, ..., fαℓ

and infinitely many integers m such that, for i = 1, ..., ℓ,

(3.11) fαi
((m+ 1)δ) ≤ σfαi

(mδ).
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Proof. We will show that for infinitely many integersm, (3.11) holds for some
rank ℓ subset of {f1, ..., fk}. Since the number of such subsets of {f1, ..., fk}
is finite, there will be infinitely many integers m such that (3.11) holds for
some fixed rank ℓ subset.

Let

(3.12) f(r) =

k
∏

i=1

fi(r).

By definition, f is a nonnegative non-decreasing function on [0,∞) that is
not identically zero. There exists R > 0 such that f(r) is strictly postive
when r > R. From the bound (3.10), we have

(3.13) f(r) ≤ Ckekdr.

Now, for a contradiction, suppose there are only finitely many integers
m such that (3.11) holds for some rank ℓ subset of {f1, ..., fk} and let m0 be
the largest one. For any integer m > max{m0, Rδ−1}, we have f(mδ) > 0
and

(3.14) fi((m+ 1)δ) > σfi(mδ)

for at least k − ℓ+ 1 integers i ∈ {1, ..., k}. Therefore

(3.15) f((m+ 1)δ) > σk−ℓ+1f(mδ).

Now fix an integer m > max{m0, Rδ−1}. By iterations of (3.15),

(3.16) 0 < f(mδ) <
f((m+ j)δ)

σj(k−ℓ+1)
<

Ckek(m+j)δd

σj(k−ℓ+1)

for any integer j > 0. This leads to a contradiction when j is large since

σ > e
k

k−ℓ+1
δd. □

The following proposition constructs functions with good properties
given any linearly independent set of ancient solutions with polynomial
growth.

Proposition 3.4. Suppose u1, ...u2k ∈ Ed are linearly independent. Given
δ > 0, m0 > 0 and write σ = 1

2e
(8d+2)δ, there exists integers m > m0, ℓ ≥
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σ−1k and functions v1, ..., vℓ in the linear span of ui such that for i, j = 1, ..., ℓ

(3.17) J(m+1)δ(vi, vj) = δij , and

(3.18) σ−1 ≤ Ivi
(mδ).

Proof. We apply Lemma 3.3 with fi as in Definition 3.1 and with 2k, k,
4d+ 1 and 2σ = e(8d+2)δ in place of k, ℓ, d and σ. Then there exist integers
m > m0 and k integers α1, ..., αk ∈ {1, ..., 2k} such that for i = 1, ..., k,

(3.19) fαi
((m+ 1)δ) ≤ 2σfαi

((mδ)).

By Lemma 3.2, we can choose m0 large enough so that when m >
m0, fαi

(mδ) > 0. It then follows that wα1,(m+1)δ, ..., wαk,(m+1)δ are lin-
early independent. Let V be the linear span of these functions. On the
k-dimensional vector space V , J(m+1)δ defines an inner product and Jmδ

is a positive semi-definite bilinear form. Therefore we can diagonalize Jmδ

with respect to J(m+1)δ. In particular, we can find v1, ..., vk ∈ V such that
J(m+1)δ(vi, vj) = δij for i, j = 1, ..., k and Jmδ(vi, vj) = 0 when i ̸= j. Since
the trace of Jmδ is independent of the basis, we compute it with respect to
the bases {wαi,(m+1)δ/fαi

((m+ 1)δ)} and {vi}.
By Lemma 3.2(2) and inequality (3.19), we have,

(3.20)

k
∑

i=1

Ivi
(mδ) =

k
∑

i=1

Iwαi,(m+1)δ
(mδ)

fαi
((m+ 1)δ)

≥ fαi
(mδ)

fαi
((m+ 1)δ)

≥ 2σ−1k.

Note that 0 < Ivi
(mδ) ≤ Ivi

((m+ 1)δ) = 1. Suppose ℓ is the number of
the vi’s such that

(3.21) σ−1 ≤ Ivi
(mδ).

Then by (3.20), (k − ℓ)σ−1 + ℓ ≥ 2σ−1k. Therefore ℓ > σ−1k. □

4. Finite dimensionality

Let Pr(t, x) = (t− r2, t]×Br(x) be the parabolic ball in R× R
n+1. We will

need the following parabolic mean value inequality. (see, e.g. [10] Theo-
rem 6.17). Suppose (∂t − L)u = 0 on Pr(t, x), then

(4.1) |u(t, x)|2 ≤ C

rn+3

∫

Pr(t,x)
u2
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for some constant C = C(n, λ,Λ).

Proposition 4.1. Fix 0 < δ ≤ 1, a > 0 and suppose v1, ...,vℓ ∈ Ed are
Ja+δ-orthonormal. Then

(4.2)

ℓ
∑

i=1

Ivi
(a) ≤ Cδ−(n+2)

for some constant C = C(n, λ,Λ, V0).

Proof. Let V be the linear span of v1, ... vℓ. For each (t, x) ∈ Qa+δ, we define

(4.3) K(t, x) =

ℓ
∑

i=1

|vi|2(t, x).

Since each vi ∈ L2
loc(R

− × Ω), K(t, x) is finite by the mean value inequality.
Moreover, it is the trace of a bilinear form (v, w) → v(t, x)w(t, x) on V .
Therefore, we can diagonalize it by an orthogonal change of basis. Let w1,
..., wℓ are Ja+δ-orthonormal basis that diagonalizes K(t, x), then there exists
at most one wi that is not zero at (t, x). Without the loss of generallity, let
it be w1. Since K(t, x) is the trace, we have

(4.4) K(t, x) = w2
1(t, x).

Now we use mean value inequality to bound K pointwise. Note that if
ρ > r > 0 and (t, x) ∈ Qr, then P(ρ−r)(t, x) ∩ (R− × Ω) ⊂ Qρ. We extend w1

outside R
− × Ω by zero and apply the mean value inequality (4.1) to w1 at

(t, x) ∈ Qr. We get

(4.5)

K(t, x) = w2
1(t, x) ≤

C

(a+ δ − r)n+3

∫

Pa+δ−r(t,x)
w2
1

≤ C

(a+ δ − r)n+3

∫

Qa+δ

w2
1

= C(a+ δ − r)−(n+3).
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On the one hand, integrating K(t, x) over Qa \Q a

2
, we obtain

(4.6)

ℓ
∑

i=1

∫

Qa\Q a
2

v2i =

∫

Qa\Q a
2

K(t, x)

≤ CV0

∫ a

a

2

(a+ δ − r)−(n+3)r2 dr

≤ C ′a2δ−(n+2).

On the other hand, Lemma 3.3 asserts that

(4.7)

∫

Qa

v2i ≤ C

a2

∫

Qa\Qa/2

v2i .

The proposition follows by combining (4.6) and (4.7). □

Theorem 1.3 is then an immediate consequence of Proposition 3.4 and
4.1.

Proof. (of Theorem 1.3) Let u1, ..., u2k ∈ Ed be any set of linearly indepen-
dent ancient solutions with exponential growth. Set δ= 1

d
in Proposition 3.4

and σ = 1
2e

8+ 1

2d ≤ e10 since d ≥ 1. There then exists m > 0, ℓ > σ−1k ≥
e−10k and J(m+1)δ-orthonormal functions v1, ..., vℓ such that for i = 1, ...ℓ

(4.8) e−10 ≤ σ−1 ≤ Ivi
(mδ).

Therefore,

(4.9)

ℓ
∑

i=1

Ivi
(mδ) ≥ e−10ℓ ≥ e−20k.

But Proposition 4.1 implies that

(4.10)

ℓ
∑

i=1

Ivi
(mδ) ≤ Cδ−(n+2) = Cdn+2.

Combining (4.9) and (4.10), we have dimEd ≤ Cdn+2 for some constant
C = C(n, λ,Λ, V0). □
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