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Real-analytic coordinates for smooth

strictly pseudoconvex CR-structures

I. Kossovskiy and D. Zaitsev

For a smooth strictly pseudoconvex hypersurface in a complex
manifold, we give a necessary and sufficient condition for being
CR-diffeomorphic to a real-analytic CR manifold. Our condition
amounts to a holomorphic extension property for the canonically
associated function expressing 2-jets of the formal Segre varieties
in terms of their 1-jets. We also express this condition in equivalent
terms for a Fefferman type determinant [Fe76].

1. Introduction

In this paper, we address the following problem:

Problem 1. Let M be a (C∞) smooth real hypersurface in a complex
manifold X. Find necessary and sufficient conditions on M to be CR-
diffeomorphic to a real-analytic CR manifold.

If M is CR-diffeomorphic to a real-analytic CR manifold, we shall call
it analytically regularizable. Problem 1 is of interest because of the case of
real-analytic CR manifolds being much better studied with more results
and tools available, such as complexification and Segre varieties (see e.g.
[BER99]). On the other hand, the problem seems to be widely open even
for strictly pseudoconvex hypersurfaces, where it is non-trivial, i.e. there
exist smooth non-analytic hypersurfaces that are analytically regularizable
and there exist those that are not, see the end of Section 2 for respective
examples. (The latter phenomenon is in contrast with the case of hyper-
surfaces of mixed Levi form signature, where any CR-diffeomorphism to a
real-analytic hypersurface extends holomorphically to both sides, hence any
analytically regularizable hypersurface must be already real-analytic in its
ambient complex manifold X.)

The goal of this paper is to provide a nontrivial necessary and suffi-
cient condition (Condition E below) giving a solution to Problem 1 in the
case when M is strictly pseudoconvex. Our condition is formulated in terms
of holomorphic extension of certain functions invariantly associated to M
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(these functions can be viewed as Fefferman type determinants [Fe76], as
shown in Section 2). Thus our results provide a two-way bridge for Prob-
lem 1 with the much better studied questions of holomorphic extension of
smooth functions from real submanifolds in complex manifolds.

We proceed by giving a high level non-technical formulation of our re-
sult, while more precise details can be found in Section 2. Given a smooth
real hypersurface M in a complex manifold X of dimension n+ 1, consider
smooth local defining equations of the kind ρ(z, z̄) = 0 for M with dρ ̸= 0.
Then ρ can be formally complexified at each point, i.e. there exist formal
power series ρ(z, w̄) giving for w = z the Taylor series of ρ. This allows to
invariantly define formal Segre varieties

Qp = {z : ρ(z, p̄) = 0}

for p ∈M , as well as their k-jets jkpQp for every k ≥ 1. In particular (see

[We78]), ifM is strictly pseudoconvex, then jkQp, p ∈M , defines a canonical
embedding of M into the space Jk,n(X) of all k-jets of complex-analytic
hypersurfaces for every k ≥ 1, given by

p 7→ jkQp,

and the image of M appears to be totally real.
Furthermore, for any k, l ≥ 1, we obtain canonical smooth maps sk,l

between respective images of those embeddings of M , sending jkQp to jlQp

for every p. To formulate our main result, denote by MJ ⊂ J1,n the image
of the embedding p 7→ j1Qp of M as above, and consider the map

s1,2 : MJ → J2,n

sending j1pQp to j2pQp for every p ∈M . Let M̂ ⊂ J1,n be the (smooth) real
hypersurface consisting of all 1-jets with base points in M .

Theorem 1. Let M be a smooth strictly pseudoconvex hypersurface in
a complex manifold X. Then M is analytically regularizable (i.e. CR-
diffeomorphic to a real-analytic CR manifold) if and only if the map s1,2

admits a J2,n–valued holomorphic extension to a neighborhood of M̂ in the
pseudoconvex side of it in J1,n, that is smooth up to M̂ .

Holomorphic extension property of the kind required in Theorem 1 is
well studied in Complex Analysis: see Remark 2.3 below. Further, note that
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since MJ is generic in J1,n, if the desired holomorphic extension of s1,2 ex-
ists, it is necessarily unique. Also, the CR-diffeomorphism to a real-analytic
CR manifold is unique if exists, up to a real-analytic CR-diffeomorphism, as
follows directly from the reflection principle for real-analytic strictly pseu-
doconvex hypersurfaces.

We shall particularly emphasize that, while the initial Problem 1 asks
on the existence of a CR-diffeomorphism onto an unknown real-analytic tar-
get, Theorem 1 reduces the problem to studying the holomorphic extension
problem for a concrete smooth function invariantly associated with a hyper-
surface and computable in local coordinates by an elementary calculus (see
Section 2).

As an application of our effective procedure, we provide an answer to
a question by Professor Takeo Ohsawa about a parametric version of the
main result. For simplicity, we formulate a local version here. We consider
a smooth family

{
M t

}
of pseudoconvex hypersurfaces M t ⊂ Cn+1 depend-

ing smoothly on a parameter t ∈ D (D is a domain in Rm), i.e.
{
M t

}
⊂

Cn+1 ×D is given near its point (z0, t0) by ρ(z, z̄, t) = 0, z ∈ Cn+1, t ∈ D,
where ρ is a smooth function with ∂ρ(·, t0) ̸= 0. We assume that, for each
t, the pseudoconvex side of M t is given by ρ(z, t) < 0. The intersection of
the one-sided neighborhood {ρ(z, z̄, t) < 0} ⊂ Cn+1 ×D with a fixed open
neighborhood of (z0, t0) is called a uniform pseudoconvex neighborhood of
(z0, t0). Next, a family

{
M t

}
is uniformly analytic at a point (z0, t0), if in

its neighborhood, ρ(z, z̄, t) can be chosen as the restriction of a smooth func-
tion ρ̃(z, w̄, t) in a neighborhood of (z0, z̄0, t) in Cn+1 × Cn+1 × Rm that is
holomorphic in (z, w̄). We say that a family

{
M t

}
is uniformly analytically

regularizable, if there is a uniformly analytic family
{
M̃ t

}
of hypersurfaces

in Cn+1 (as defined above) and a smooth family F (z, z̄, t) = F t(z, z̄) of CR-

diffeomorphisms of M t onto the respective M̃ t in a neighborhood of (z0, t0).
We then have the following parametric version of Theorem 1:

Theorem 2. A smooth family
{
M t

}
of strictly pseudoconvex hypersurfaces

in Cn+1 is uniformly analytically regularizable at a point (z0, t0) if and only
if the respective smooth family of canonical maps st1,2 admits a smooth family

of holomorphic and smooth up to M̂ t ⊂ J1,n extensions St(z) to a uniform
pseudoconvex neighborhood of (π−1(z0), t0) in J1,n × Rm. Here π : J1,n →
Cn+1 is the canonical projection.

We conclude by mentioning that, while analyticity problems have been
studied for other geometric structures, e.g. Riemannian structures (see e.g.
[DK81]), no similar nontrivial necessary and sufficient conditions seem to be
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known. At the same time, we would like to point out results on obstructions
for the algebraizability of real-analytic hypersurfaces (see e.g. the work of
Forstneric [Fo04], Huang, Ji and Yau [HJY01], and the recent survey [HX17]
by Huang and Xiao).
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2. Condition E for smoothly embedded real hypersurfaces

We now describe in details the holomorphic extension condition in Theo-
rem 1 that we shall call Condition E. We shall give below both an invari-
ant and a coordinate-based formulations of it. For the basic concepts in
CR-geometry (such as Segre varieties and formal submanifolds) we refer to
[BER99], and for jet bundles and related concepts to [CS09].

Let

π : J1,n → C
n+1

be the bundle of 1-jets of complex hypersurfaces of Cn+1, which is a pro-
jective holomorphic bundle over Cn+1 with the fiber dimension n, and
M ⊂ Cn+1, n ≥ 1, be a smooth strictly pseudoconvex real hypersurface.
Then the complex tangent bundle TCM induces the natural embedding

φ : M → J1,n, x 7→
(
x, [TC

x M ]
)
.

The image

φ(M) =:MJ ⊂ J1,n

of it is a smooth (2n+ 1)-dimensional real submanifold in the (2n+ 1)-
dimensional complex manifold J1,n. Webster in [We78] observed that MJ ⊂
J1,n is totally real wheneverM is Levi-nondegenerate. Next, associated with
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M is the smooth (weakly) pseudoconvex real hypersurface

M̂ := π−1(M) ⊂ J1,n.

The manifold MJ is a smooth submanifold in M̂ . Note that M̂ itself is
locally CR-equivalent to M × Cn (and thus is holomorphically degenerate,
see [BER99]). In what follows we denote by U+ the pseudoconvex side of M
and by

Û+ := π−1(U+)

that of M̂ (Û+ is locally biholomorphic to U+ × C at a point in M̂).
We next fix a point p ∈M . Since M is smooth, we may consider at each

point q ∈M near p, its formal complexfication at q as a formal complex
hypersurface in Cn+1 × Cn+1 obtained by complexifying the formal Taylor
series of its defining function at q. In this way, the formal Segre variety Qq

of M at q is well defined. Then the 2-jets

(2.1) j2qQq, q ∈M

of such formal Segre varieties induce a smooth embedding of M (and hence
MJ ⊂ J1,n) into the bundle

J2,n = J2,n(Cn+1)

of 2-jets of complex hypersurfaces in Cn+1. The space J2,n is canonically a
fiber bundle

π21 : J
2,n → J1,n.

The above 2-jet embedding defines a canonical section of π21,

s : MJ → J2,n.

Now our analyticity condition for a smooth strictly pseudoconvex sub-
manifold looks as follows.

Definition 2.1. We say that M satisfies Condition E at p, if for some
choice of a neighborhood U of p, the section s extends as a smooth section
of π21 over the pseudoconvex side Û+ ∪ M̂ , which is furthermore holomorphic
in Û+.
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We next give an (equivalent to the above) coodinate formulation of Con-
dition E. If M ⊂ Cn+1 is a smooth hypersurface with the defining equation

(2.2) ρ(Z, Z̄) = 0, Z = (z, w) = (z1, ..., zn, w) ∈ C
n+1,

p ∈M the distinguished point and ρw(p, p̄) ̸= 0, then its formal Segre variety
at a point q = (q̃, qn+1) ∈M nearby p is a graph of a function w(z) (con-
sidered as a formal power series in (z − q̃)). Then the 2-jets (2.1) amount
to either the scalar function Φ defined pointwise as w′′(z) for z = q̃ (case
n = 1), or to the symmetric matrix function Φ = (Φij), i, j = 1, ..., n, de-
fined pointwise as the collection of wzizj for z = q̃ (case n > 1). It is possible
to verify that, in turn, for n = 1 we have

(2.3) Φ =
1

(ρw)3

∣∣∣∣∣∣

ρ ρz ρw
ρz ρzz ρzw
ρw ρzw ρww

∣∣∣∣∣∣
,

and for n > 1 we have

(2.4) Φij =
1

(ρw)3

∣∣∣∣∣∣

ρ ρzj ρw
ρzi ρzizj ρziw
ρw ρzjw ρww,

∣∣∣∣∣∣
i, j = 1, ..., n.

(To obtain (2.3),(2.4), one has to differentiate the identity (2.2) once, as-
suming w to be a function of z, and obtain all the wzj in terms of the 1-jet
of ρ; then, one has to differentiate (2.2) once more to obtain wzizj = Φij in
terms of the 2-jet of ρ). Both the scalar function (2.3) and the matrix valued
function (2.4) can be considered as either smooth functions on the strictly
pseudoconvex hypersurface M or as that on the totally real manifold MJ

introduced above.
We shall remark that the invariant determinants in (2.3),(2.4) were used

also by Ebenfelt and the second author [EZ16] as well as by Ebenfelt, Duong
and the second author [EDZ18] for characterizing the Cartan tensor of a
Levi-degenerate hypersurface in terms of its defining function. They can
be seen as certain generalizations of the determinants used by Fefferman
in [Fe76] for studying asymptotics of the Bergman metric in a smoothly
bounded strictly pseudoconvex domain at a boundary point.

In terms of the Φ-function, Condition E reads as follows.

Definition 2.2. We say that M satisfies Condition E at p, if for some
choice of a neighborhood U of p, the function Φ defined on MJ by either
(2.3) or (2.4) extends to the pseudoconvex side Û+ ∪ M̂ holomorphically
and smoothly up to the boundary.



✐

✐

“7-Zaitsev” — 2023/4/18 — 23:27 — page 1467 — #7
✐

✐

✐

✐

✐

✐

Real-analytic coordinates 1467

It is obvious that Definition 2.2 is equivalent to Definition 2.1.
We give now the more precise local version of our main result, from which

the global result in Theorem 1 follows directly in view of the uniqueness of
the extension and the real-analytic CR-structure.

Theorem 3. A smooth strictly pseudoconvex real hypersurface M ⊂
Cn+1, n ≥ 1, is locally analytically regularizable (i.e. CR-equivalent near a

point p ∈M to a real-analytic hypersurface M̃ ⊂ Cn+1) if and only it satis-
fies Condition E at p.

Remark 2.3. In order to explain how Condition E can be checked in prac-
tice, recall that this condition asks for a holomorphic extension of a smooth
function given on a totally real submanifold of maximal dimension to an open
set in the ambient space. Extension problems of this kind are well studied in
Complex Analysis, e.g. in Carleman’s type formulas (see Aizenberg [Ai93,
Chapter V]).

We finish this section by providing two simple examples of smooth non-
analytic strictly pseudoconvex hypersurfaces in C2, one of which admits and
the other does not a CR-diffeomorphism onto a real-analytic hypersurface,
i.e. one is analytically regularizable while the other isn’t.

Example 2.4. Let f(z, w) be a holomorphic function in the unit ball B2 ⊂
C2 which is smooth up to ∂B2 = S3 but does not extend holomorphically
across S3, e.g. one can take a branch of e(w−1)−1/3

. Then, for ϵ sufficiently
small, the map (small perturbation of identity)

(z, w) 7→ (z + ϵf(z, w), w)

defines a CR-diffeomorphism from S3 onto a smooth but not analytic strictly
pseudoconvex hypersurface M ⊂ C2 that is obviously analytically regulariz-
able.

Example 2.5. The real hypersurface M ⊂ C2 (a flat perturbation at the
origin of the standard hyperquadric) given by

Imw = |z2|+ e−1/|z|2

is smooth and strictly pseudoconvex near the origin, but is not CR-
diffeomorphic to a real-analytic hypersurface M̃ ⊂ C2, not even locally at
0. Indeed, since M is formally spherical at 0 (i.e. spherical up to infinite
order), the existence of a CR-diffeomorphism H onto M̃ with, say, H(0) = 0
would mean that M̃ is also formally and hence biholomorphically spherical
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at 0. (The formal expansion of H at 0 yields a formal transformation of the
hyperquadric Imw = |z|2 onto M̃ which is locally biholomorphic in view
of the Chern-Moser theory [CM74].) Hence M must itself be spherical in a
neighborhood of 0. On the other hand, one can see by computing the Chern-
Moser’s curvature (e.g. following [Lo98] or using the determinant expression
[EZ16]), that M is not spherical in any neighborhood of 0. Thus M is not
analytically regularizable in any neighborhood of 0.

3. Associated differential equations and the necessity of

Condition E

In this section, we show that the necessity of Condition E follows rather
easily from the construction of holomorphic differential equations associated
with a real-analytic hypersurface. On the other hand, the sufficiency of Con-
dition E is already quite nontrivial. It is addressed in Section 4.

3.1. The method of associated differential equations

It was observed by Cartan [Car32] and Segre [Se32] (see also Webster [We77])
that the geometry of a real hypersurface in C2 parallels that of a second order
ODE

(3.1) w′′ = Φ(z, w,w′).

More generally, the geometry of a real hypersurface in Cn+1, n ≥ 1, parallels
that of a complete second order system of PDEs

(3.2) wzkzl = Φkl(z1, ..., zn, w, wz1 , ..., wzn), Φkl = Φlk, k, l = 1, ..., n.

Moreover, in the real-analytic case this parallel becomes algorithmic by us-
ing the Segre family of a real hypersurface. With any real-analytic Levi-
nondegenerate hypersurface M ⊂ Cn+1, n ≥ 1 one can uniquely associate a
holomorphic ODE (3.1) (n = 1) or a holomorphic PDE system (3.2) (n ≥ 2).
The Segre family of M plays a role of a mediator between the hypersurface
and the associated differential equations. A more recent exposition of this
method was given in the work [Su01, Su03] of Sukhov. For recent work on
associated differential equations in the degenerate setting, see e.g. the papers
[KS16, KS17, KL18] of the first author with Lamel and Shafikov.

The associated differential equation procedure is particularly clear in
the case of a Levi-nondegenerate hypersurface in C2. In this case the Segre
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family is a 2-parameter anti-holomorphic family of holomorphic curves. It
then follows from standard ODE theory that there exists an unique ODE
(3.1), for which the Segre varieties are precisely the graphs of solutions. This
ODE is called the associated ODE.

In the general case, both right hand sides in (3.1),(3.2) appear as func-
tions determining the 2-jet of a Segre variety as an analytic function of the
1-jet. More explicitly, we denote the coordinates in Cn+1 by

(z, w) = (z1, . . . , zn, w).

Let then fix M ⊂ Cn+1 to be a smooth real-analytic hypersurface, passing
through the origin, and choose a small neighborhood U of the origin. In this
case we associate a complete second order system of holomorphic PDEs to
M , which is uniquely determined by the condition that the differential equa-
tions are satisfied by all the graphing functions h(z, ζ) = w(z) of the Segre
family {Qζ}ζ∈U of M in a neighbourhood of the origin. To be more explicit
we consider the so-called complex defining equation (see, e.g., [BER99])
w = ρ(z, z̄, w̄) of M near the origin, which one obtains by substituting
u = 1

2(w + w̄), v = 1
2i(w − w̄) into the real defining equation and applying

the holomorphic implicit function theorem. The Segre variety Qp of a point

x = (a, b) ∈ U, a ∈ C
n, b ∈ C

is now given as the graph

(3.3) w(z) = ρ(z, ā, b̄).

Differentiating (3.3) we obtain

(3.4) wzj = ρzj (z, ā, b̄), j = 1, . . . , n.

Considering (3.3) and (3.4) as a holomorphic system of equations with the
unknowns ā, b̄, in view the Levi-nondegeneracy of M , an application of the
implicit function theorem yields holomorphic functions A1, ..., An, B such
that (3.3) and (3.4) are solved by

āj = Aj(z, w,w
′), b̄ = B(z, w,w′),

where we write

w′ = (wz1 , . . . , wzn).

The implicit function theorem applies here because the Jacobian of the sys-
tem coincides with the Levi determinant of M for (z, w) ∈M ([BER99]).
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Differentiating (3.3) twice and substituting the above solution for ā, b̄ fi-
nally yields

wzkzl = ρzkzl(z,A(z, w,w
′), B(z, w,w′))(3.5)

=: Φkl(z, w,w
′), k, l = 1, . . . , n,

or, more invariantly,

(3.6) j2(z,w)Qx = Φ(x, j1(z,w)Qx).

Now (3.5) is the desired complete system of holomorphic second order PDEs
denoted by E = E(M).

Definition 3.1. We call E = E(M) the system of PDEs associated with M .
We also regard the collection {Φij}

n
i,j=1 as the PDE system defining the CR

structure of a Levi-nondegenerate hypersurface M .

3.2. The necessity of Condition E

We now explain the necessity of Condition E for the existence of a smooth
CR-diffeomorphism F of (M, 0) onto a real-analytic germ (M̃, 0). Indeed,
given such a CR-diffeomorphism F of (M, 0) onto (M̃, 0), we may consider
the section Φ̃, as in (3.6), associated with (M̃, 0). Clearly, Condition E is
satisfied by (M̃, 0) since Φ̃, considered as a function on the 1-jet bundle
J1,n, already gives the holomorphic extension required in Condition E. Fur-
ther, we note that the CR-diffeomorphism F extends holomorphically to
the pseudoconvex side U+. The latter extension lifts naturally to a fiber-
preserving map F̂ of the pseudoconvex neighborhood Û+ of M̂ into J1,n

which is smooth up to M̂J (F̂ is the 1-jet prolongation of the extension of F ,
see e.g. [CS09]). Now, since F transforms formal complexifications of M, M̃
respectively onto each other, we conclude that the 2-jet prolongation of the
extension of F−1 transforms Φ̃ into the desired holomorphic extension Φ, as
required. □

4. The sufficiency of Condition E

In this section, we consider a smooth strictly pseudoconvex hypersurface
M ⊂ Cn+1, n ≥ 1, defined near the point 0 ∈M and satisfying condition E.
We shall prove thatM is CR-diffeomorphic (locally near 0) to a real-analytic
hypersurface M̃ ⊂ Cn+1.



✐

✐

“7-Zaitsev” — 2023/4/18 — 23:27 — page 1471 — #11
✐

✐

✐

✐

✐

✐

Real-analytic coordinates 1471

4.1. Segre foliation in the space of 1-jets

We start by recalling that the affine subset

E ≃ C
n+1 × C

n

of the bundle J1,n → Cn+1 of 1-jets of complex hypersurfaces is endowed
with the canonical (up to a scalar function multiple) 1-form

ω0 := dw −

n∑

1

ξjdzj .

Here (z1, ..., zn, w) = (z, w) denote the coordinates in Cn+1 = Cn × C, and
ξ = (ξ1, ..., ξn) are the respective “jet”-variables corresponding to the deriva-
tives wz1 , ..., wzn respectively. The restriction to E of the canonical projection
π : J1,n 7→ Cn+1 then becomes

(4.1) π : (z, w, ξ) 7→ (z, w)

and E consists precisely of the 1-jets of hypersurfaces that project submer-
sively onto Cn × {0} ⊂ Cn+1.

The main use of the canonical form ω0 here is the following. The (com-
plex) tangent bundle TS of a complex hypersurface S ⊂ Cn+1 given as a
graph of a function w = w(z) allows to naturally lift S to a complex n-
dimensional submanifold of E. Then an n-dimensional submanifold S̃ ⊂ E
of the kind

w = w(z), ξ = ξ(z)

is a lifting in the above sense of a complex hypersurface S ⊂ Cn+1 if and
only if ω0|S̃ = 0.

Further, we observe that, in the case of a real-analytic hypersurfaceM ⊂
Cn+1, the associated system (3.2) amounts to an integrable holomorphic n-
distribution in E given by the condition:

(4.2) ω = (ω0, ω1, ..., ωn) = 0,

where

(4.3) ωk := dξk −

n∑

1

Φkldzl, k = 1, ..., n
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(in the sense that the leaves of the foliation F determined by (4.2) are
precisely the lifts to E of graphs of solutions for (3.2)).

In accordance with the latter observation, let us denote the smooth sym-
metric matrix function (2.4) (or respectively (2.3)) associated with a smooth
hypersurface M satisfying Condition E by Φ, and consider the associated
complex valued differential 1-forms ω1, ..., ωn, defined by (4.3). In view of
Condition E, the function Φ and hence all the 1-forms ω0, ω1, ..., ωn extend
holomorphically to the pseudoconvex side Û+ of M̂ , defining there a holo-
morphic n-distribution D. Alternatively, D is spanned by the n holomorphic
vector fields

(4.4) Lj :=
∂

∂zj
+ ξj

∂

∂w
+

n∑

1

Φsj
∂

∂ξs
.

We then have

Proposition 4.1. The distribution D in Û+ is integrable.

Proof. Integrability of the distribution D amounts to the conditions

(4.5) LjΦkl − LkΦjl = 0, j, k, l = 1, ..., n,

where Lj are as in (4.4). (In terms of the system (3.2), conditions (4.5)
mean simply the symmetry of third order derivatives of w in all indices).
In view of the Condition E, the left hand side in (4.5) extends smoothly to

the real hypersurface M̂ ⊂ E. We claim that the latter extension vanishes
on the totally real manifold MJ . Indeed, the fact of vanishing of the left
hand side in (4.5) when restricted on MJ is nothing but the symmetry of
the third order jet of formal Segre varieties of M in all indices, which proves
the claim. Since MJ is totally real of dimension 2n+ 1, this implies that the
left hand side in (4.5) vanishes identically in Û+ ∪ M̂ , as required. □

Proposition 4.1 implies the existence of an n-dimensional holomorphic
foliation F in Û+ generated by D. We specify that by leaves of the foliation
F we mean maximal connected components of integral submanifolds of F .

Definition 4.2. In what follows we call F the Segre type foliation in Û+.

4.2. Changing the complex structure on the pseudoconcave side

of M

In this section, we show that the pseudoconcave side U− of M can be in-
terpreted as the space of leaves for the Segre foliation F constructed above,
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and this endows U− with a different (integrable) complex structure, which
is smooth up to M and which induces on M a CR-structure coincident with
the initially given CR-structure on M induced from Cn+1. We construct the
desired complex structures in multiple steps discussed in detail below.

Step I. We recall that the distribution D above can be, according to Con-
dition E, smoothly extended to Û+ ∪ M̂ as a function valued in the complex
Grassmannian Gr(n,E). (Note though that this extension is not everywhere

tangent to M̂ !). Furthermore, we note that MJ is precisely the locus of

points in M̂ , for which the value of the extension of D is tangent (and

hence complex tangent) to M̂ . This follows directly from the construction

of MJ , M̂ .

Step II. Our next goal is to show that the space of leaves of the Segre
foliation F is a smooth manifold in its natural (quotient) topology, which
can be furthermore extended to a smooth manifold with boundary MJ .

We will make use of the following

Proposition 4.3. Let U ⊂ Rm be a neighborhood of the origin and M ⊂ U
a smooth strictly convex hypersurface through the origin and, furtheremore,
one has T0M = {xm = 0} and the second fundamental form ofM at 0 equals
to

(4.6) dx21 + ...+ dx2k

for some 1 ≤ k < m. Let U+ be the convex side of M , U− the concave side
of M , and D a smooth k-dimensional integrable distribution in U+. Assume
that

(i) D extends to M smoothly (as a function valued in Gr(k,Rm));

(ii) The k-plane D0 at 0 is spanned by ∂
∂x1

, ..., ∂
∂xk

(in particular, D0 ⊂

T0M) and, moreover, the ∂
∂xk+1

, ..., ∂
∂xm

components of some collection of
vector fields spanning D have zero linear parts at the origin.

Then, after possibly changing the neighborhood U , the distribution D ex-
tends to a smooth integrable distribution in U . Furthermore, if D is given
by smooth up to M , (pointwise) linearly independent and commuting vector
fields X1, .., Xk in U+, then these vector fields can be extended smoothly to
U in such a way that the extensions still commute. The foliation F in U+

generated by D extends therefore to a smooth k-dimensional foliation F ′ in
U , in the sense that each leaf of F is an open subset of a unique leaf of F ′

and each intersection of a leaf of F ′ with U+ is connected.
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Proof. We prove the proposition by induction.
For k = 1, we choose a vector field X generating F . We split x = (x1, x̃).

In view of (ii), we may assume

(4.7) X = p
∂

∂x1
+ q

∂

∂x̃
, p(0) = 1, q(0) = 0,

∂q

∂x1
= 0.

Consider a smooth extension X ′ of X to U (possible by (i)). Then (4.7)
immediately implies that the orbit of X ′ at 0 has the form

x1 = t, x̃ = O(t3), t ∈ (−ϵ, ϵ).

Now if, for example, m = 2 (so that x̃ = x2), we consider the defining equa-
tion x2 = ψ(x1) of M as well as the definining equation x2 = ϕ0(x1) of the
orbit. Then (4.6) implies that (ψ − ϕ)′′ > 0 on (−ϵ, ϵ) for small elough ϵ,
that is why the part of the orbit lying inside U+ = {x2 > ψ} is the set of
negative values of a convex function, i.e. the intersection of the orbit with
U+ is connected. By continuity, after shrinking possibly U , the same ar-
gument applies for all points nearby 0, and this proves the proposition for
k = 1 and m = 2. The case k = 1 and m > 2 can be reduced to the previous
one by considering the intersection with U+ of the 2-dimensional surface
S containing the orbit and the xm coordinate axis. Such a surface can be
endowed with the local coordinates (x1, xm). Arguing then by contradiction
and repeating the above argument (restricted to S) we obtain the connect-
ness of the intersection of the orbit with U+. By continuity, after shrinking
possibly U , the same argument applies for all points nearby 0.

We now proceed with the induction step. We choose k linearly inde-
pendent smooth vector fields X1, ..., Xk spanning the distribution D in U+

and extending smoothly to M . Following a proof of the Frobenius theorem
(e.g. [Mo01]), it is not difficult to show that we can choose X1, ..., Xk to be
furthermore commuting. Indeed, we have:

Xi =

m∑

j=1

αij
∂

∂xj

for smooth up to M functions αij in U+ ((x1, ..., xm) are the coordinates
in Rm). Since Xi are linearly independent, we can assume without loss of
generality that the matrix

(αij)
k
i,j=1
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is invertible in U+ ∪M , and consider the inverse smooth matrix (βij). Then
it is straightforward to check that the vector fields

k∑

j=1

βijXj , 1 ≤ i ≤ k,

obviously spanning the same distribution in U+ and smooth up to M , in
fact in addition commute.

The latter allows us to consider the integrable distribution generated
by the commuting vector fields X1, ..., Xk−1. Applying then the induc-
tion assumption, we obtain smooth commuting extensions X ′

1, .., X
′
k−1 of

X1, .., Xk−1 and hence a (k − 1)-dimensional integrable distribution in U .
The foliation X given by this distribution has the property that its leaves
can have only connected intersections with U+. After that, let us perform
(after possibly shrinking U) a smooth in U diffeomorphism, tangent to the
identity at 0 and transforming the vector fields X ′

1, ..., X
′
k−1 to ∂

∂x1
, ..., ∂

∂xk−1

respectively (the latter is possible since the vector fields commute). Now all
the leaves of X become parallel to the (x1, ..., xk−1)-plane. We keep the same
notation for U,U± in the new coordinates. Then the vector field Xk (defined
so far in the closure of U+) have the form

(4.8) Xk = a1(xk, ..., xm)
∂

∂x1
+ · · ·+ am(xk, ..., xm)

∂

∂xm

where we use the commutativity [Xj , Xk] = 0, j = 1, ..., k − 1).
Consider the orthogonal projection Ω of the closure of U+ onto the

(xk, ..., xm)-plane. Then the leaves of X intersecting the closure of U+ project
onto a single point in Ω. As follows from (4.8), the vector field Xk is constant
on each leaf of X , which allows to extend Xk constantly along each leaf
intersecting the closure of U+. In view of the above, this gives a smooth
function on Ω, which we first extend smoothly to a neighborhood of the
origin in the (xk, ..., xm)-plane, and then again constantly along each leaf
of X . Since the intersection of each leaf of X with the closure of U+ is
connected, the extension obtained is well defined. We thus are able to extend
Xk smoothly to a full neighborhood of the origin still being constant on each
leaf of X . In view of the latter property, the extended vector field X ′

k also
satisfies [X ′

j , X
′
k] = 0, 1 ≤ j ≤ k − 1.

In summary, we obtain an integrable distribution in U spanned by
X ′

1, ..., X
′
k. For the respective foliation F ′, each leaf of F is clearly con-

tained in that of F ′. It remains to show that intersections of leaves of F ′
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with U+ are connected. This however can be seen from (ii) by an argument
identical to the one in the 1-dimensional case. The proof is complete. □

We now apply Proposition 4.3 to the situation of the strictly pseudo-
convex hypersurface M̂ ⊂ E, its neighborhood Û and the distribution D
(considered as a real distribution). For that, we perform a biholomorphic
(in fact polynomial) coordinate change mapping the origin and the tangent
plane Imw = 0 onto themselves, and removing holomorphic quadratic terms
from the formal Taylor expansion of M in the origin such that property
(4.6) holds for M̂ . In fact, in such coordinates M becomes approximated by
a quadric to order 2 at the origin:

(4.9) Imw = Q(z, z̄) +O(3),

where Q is a positive definite Hermitian form (we assume it to be simply
sum of squares) and O(3) stand for terms of degree 3 and higher. In case M
is already this quadric itself, D is spanned by the (real parts of) the vector
fields

Lj :=
∂

∂zj
+ ξj

∂

∂w
,

so that (ii) is satisfied. However, terms of order 3 and higher in (4.9) do

not effect (ii), and this finally shows that M̂ satisfies all the conditions of
Proposition 4.3.

We end up with a smooth extension of the distribution D to a full
neighborhood of the origin in E in such a way that it is still integrable and
defines a foliation F ′ extending F , in the sense that each leaf of F is an open
subset of some leaf of F ′ and, furthermore, leaves of F ′ have only connected
intersections with Û+ (so that each leaf of F is contained in exactly one leaf
of F ′).

Step III. Based of the outcome of Step II, we are finally able to endow
the space of leaves of F with the structure of a smooth (2n+ 2)-manifold
with boundary MJ in the natural (quotient) topology. Indeed, first note
that the tangent plane at 0 to the leaf of F ′ through 0 is w = 0, ξj = 0 (as
follows from the definition and the initial normalization of M). Hence, the
(2n+ 2)-plane

(4.10) {z = 0}

has the property that all the leaves of (the ambient foliation) F ′ intersect
it transversally at single points (after possibly shrinking Û). Thus the space
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of leaves of F ′ can be identified with a domain in (4.10) (viewed as R2n+2).
Accordingly, the space of leaves of F is an open connected subset G of the
latter domain (since it is given by the condition of having nonempty inter-
section with the domain Û+). This gives a structure of a smooth manifold
on the space of leaves of F (in its natural quotient topology)!

It remains to show that the space of leaves of F has, furthermore, a
structure of a smooth (2n+ 2)-manifold with a boundary. Indeed, as fol-
lows from the discussion in Steps I and II, any leaf of F ′ intersecting the
closure of Û+ either intersects M̂ transversally and consequently intersects
the open part Û+, or intersects the boundary M̂ only at a point in MJ ,
or is contained in Û+ (the last possibility in fact does not occur, but we
do not need this fact). In this way, MJ can be identified with the subset of

leaves of F ′ intersecting the boundary M̂ but not the open part Û+. Thus,
we are looking for the set of leaves of F ′ which are tangent at some point to
M̂ . The latter set is a smooth (2n+ 1)-submanifold in R2n+2 (which is in
fact the boundary of the above open set G of leaves of F ′ intersecting Û+).
Indeed, perform a local diffeomorphism (near the origin in E ∼ R4n+2) with
the identity linear part in such a way that in the new local coordinates the
leaves become ”horizontal” 2n-planes (that is, they are given by

xj = cj , j = 2n+ 1, ..., 4n+ 2,

where cj are constant), and the hypersurface M̂ becomes

x4n+2 = φ(x1, . . . , x4n+1)

for a smooth function φ. Note that, in particular, φ has nondegenerate at
the origin Hessian in x1, ..., x2n (as follows, for example, from (4.9)). Now

the condition that a leaf is tangent to M̂ at some point is:

c4n+2 = φ(x1, ..., x2n, c2n+1, ..., c4n+1),(4.11)

φxj
(x1, ..., x2n, c2n+1, ..., c4n+1) = 0, j = 1, .., 2n.

Solving the last 2n equations of (4.11) in x1, ..., x2n by the implicit function
theorem (note that, in view of (4.9), φxixj

(0) = 2δij , i, j = 1, ..., 2n, so that
the implicit function theorem is applicable), and substituting the result into
the first equation of (4.11), we obtain a smooth hypersurface

c4n+2 = ψ(c2n+1, . . . , c4n+1)
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in R2n+2 (endowed with the coordinates c2n+1, ..., c4n+1) for an appropriate
smooth function ψ with ψ(0) = dψ(0) = 0, as desired.

We thus have proved the following

Proposition 4.4. The leaf space of the foliation F is a smooth (2n+ 2)-
manifold in its natural (quotient) topology. Furthermore, it can be regarded
as a smooth (2n+ 2)-manifold with boundary MJ . The (germ at the origin
of) the upper half space

H̄ = {(x2n+1, ..., x4n+2) : x4n+2 ≥ 0}

serves as a coordinate chart for it.

Step IV. We denote the leave space from Proposition 4.4 by U , and the
respective manifold with boundary by U . As was mentioned above, U repre-
sents, in a certain sense, the pseudoconcave side U− endowed however with
a different (still integrable) complex structure.

We next note that the leave space U is, on the other hand, the quotient
topological space Û+/F , and this means (if read together with Proposi-
tion 4.4) that U has also a structure of a complex manifold with boundary.
We emphasize at this point that, exclusively for the purpose of obtaining
the right complex structure on Û+/F ,

we shall change the complex structure on U to its conjugate structure.

This is related to the antiholomorphic dependence of Segre varieties on
their parameters, for a real-analytic hypersurface. Thus we obtain a smooth
integrable complex structure on U , which extends further to a smooth CR-
structure on ∂U . The boundary ∂U is naturally diffeomorphic to MJ and
hence to M . We will show later that the two CR-structures on M (the one
coming from the quotient space and the one induced from the embedding into
Cn+1) in fact agree with each other together with all higher order derivatives.

Step V. We now have to take into consideration the “one sided Segre vari-
eties of M”, that is, images of leaves of the foliation F under the projection
map π, as in (4.1). This gives us the family

S+ :=
{
π(T )

}
T∈F

.

Note that, as the extension construction in Step II above shows, all the
leaves in F (after possibly shrinking the basic neighborhood Û) are open
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subsets of graphs of smooth functions of the kind w = w(z), ξ = ξ(z) with
connected intersections with Û+. In this way, all elements of S+ are n-
dimensional complex submanifolds in U+, and we conclude that S+ is an
(n+ 1)-dimensional anti-holomorphic family of pairwise transverse complex
n-dimensional submanifolds in U+ of the form w = w(z). (Transversality
here means that no two elements of S+ are tangent at a point p ∈ U+).
The anti-holomorphic parametrization of S+ here comes from the integrable
complex structure on the space of leaves U .

We note that U itself is endowed with a natural (n+ 1)-dimensional
anti-holomorphic family of n-dimensional complex submanifolds as follows.
We fix a point p ∈ U+ and consider the set Qp of all the manifolds from S+

passing through p as a subset of U . Following the geometric interpretation
in the real-analytic case, we call Qp the Segre variety of p. The structure
of Qp becomes particularly clear when considering the foliation F : then the
set of all elements of S+ passing through p lifts to the set of all fibers in
F intersecting the fiber π−1(p) of the bundle E. In this way, we easily see,
from the construction of the manifold U , that each Qp can be identified via
the 1-jet map with the fiber π−1(p) and thus is a complex n-dimensional
submanifold in U (with respect to the above described complex structure on
U), as required. We denote the resulting family of submanifolds in U by S−

(it becomes an anti-holomorphic family parameterized by U+).
For completeness of the picture, we also call, for each p ∈ U , the respec-

tive leaf T ∈ S+ its Segre variety and denote the latter one by Qp. We then
obtain the following familiar symmetry property:

p ∈ Qq ⇔ q ∈ Qp, p ∈ U+, q ∈ U .

Step VI. We recall that the boundary manifold ∂U is naturally diffeomor-
phic to the initial CR-manfold M , as follows from the construction of U .
We further extend (locally near 0) the latter diffeomorphism smoothly to
a diffeomorphism between the manidold with boundary U and the pseudo-
concave side U− of M (which is possible since both are manifolds of equal
dimension with boundary). We end up with a smooth manifold U decom-
posed as a union of two manifolds with boundary:

U = (U− ∪M) ∪ (U+ ∪M),

where both U− and U+ are endowed with their individual complex struc-
tures (for U− this is the integrable structure induced from U and for U+

this is the standard complex structure induced from Cn+1). Moreover, both
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structures admit a smooth extension to the boundary and induce bound-
ary CR-structures on M . Our goal is now to show that the two structures
(considered for the moment as (2n+ 2)× (2n+ 2) matrices) agree on M
(together with all derivatives). In particular, they define a smooth structure
in a full neighborhood of the origin, and the two induced CR-structures on
M coincide.

For doing so, let us fix p ∈M and the respective point p̃ ∈ ∂U . We
observe the following: all data required for computing the boundary value
at p̃ of the complex structure on U comes from the 2-jet ofM at p (as follows
from our construction). Similarly, for computing the k-jet at p of the limit of
the complex structure we just need to know the (k + 2)-jet of M at p. Since
M can be approximated to any order by a real-analytic hypersurface, we
conclude that it suffies to show that for a real-analytic hypersurface M the
two above structures coincidence and define a real-analytic (in particular
smooth) structure in a neighborhood of p.

If now M is real-analytic, then, as a well know fact (e.g. [BER99]), after
choosing an appropriate neighborhood U of p, we have the property that a
Segre variety of a point q ∈ U intersects the pseudoconvex side U+ iff q lies
in the pseudoconcave side U− ofM . Thus, ifM = {ρ(Z, Z̄) = 0} near p, then
the above manifold U consists of Segre varieties {ρ(Z, q̄) = 0} with q ∈ U−,
and thus can be identified with U− with the standard complex structure
on it, while its boundary can be identified with M = {ρ(q, q̄) = 0} with the
standard CR-structure on it. This immediately yields the desired property.

4.3. End of proof of the main result

In this section, we complete the proof of the main result.

Recall that, as an outcome of Step VI, we obtain a smooth manifold U
endowed with an integrable smooth complex structure J (the integrability
follows from that on both U− and U+ and thus, by continuity, at points in
M as well). By the Newlander-Nirenberg theorem [NN57], there is a smooth
diffeomorphism χ of (U, J) (preserving the origin), mapping U onto a neigh-
borhood of the origin and transforming the above complex structure J on
U into the standard complex structure Jst in Cn+1 (that is, χ is a (J, Jst)-
biholomorphism). The resulting smooth strictly pseudoconvex image of M
we still denote by M , and the pseudoconvex and the pseudoconcave sides of
it respectively we still denote by U±.

We shall consider now the above families S± on U± respectively, after
applying the diffeomorphism χ. We recall that elements of both families
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S± are J-invariant and have the transversality property, hence they become
families of holomorphic curves on U± respectively. This allows us to con-
sider, in the same fashion as in Section 2, their lifting to the space of 1-jets
J1,n, and this results in two foliations defined in some domains Û± ⊂ E with
π(Û±) = U± respectively (here E is again the affine subset of the bundle of
1-jets of complex hypersurfaces). In particular, we may consider the respec-
tive holomorphic direction fields defined in the same domains. As follows
from the above, these two directions fields extend smoothly to MJ .

Importantly, we can not conclude at this step that the domain Û− has
the form U− × Ω, where Ω is an open neighborhood of the origin in Cn. This
is because 1-jets of elements of S− passing through a point p− ∈ U− do not
cover a full neighborhood of the origin of a uniform size. To see the latter,
we note that the ”pencil” of Segre varieties passing through p− ∈ U− is the
union of ”pencils” of Segre varieties from S+ at points belonging to the
Segre variety Qp− ∈ S+. Unlike the situation in the real-analytic case, Qp−

is defined so far only as a variety in U+, which is not a full neighborhood of
0. (In the real-analytic case, such ”one-sided” Segre varieties extend analyt-
ically across M and become varieties in a uniform neighborhood of 0). That
is why possible jets of Segre varieties through p− in our construction form
a ”smaller” set in the space of 1-jets (compared to the real-analytic case)
and thus do not give a uniform neighborhood of the origin. (However, the
domain Û+ does have the desired form U+ × Ω for an open neighborhood
Ω of the origin).

To overcome the latter difficulty, we use Webster’s considerations from
[We78] to conclude that, after possibly shrinking the neighborhood U :

(i) There exists a wedge W+ ⊂ Û+ with the totally real edge MJ ;

(ii) The reflection map τ defined as

(4.12) τ(z, TzQζ) = (ζ, TζQz), z ∈ Û±, ζ ∈ Qz

is anti-holomorphic, well defined in Û±, and smooth up to MJ ;

(iii) The image τ(W+) contains a wedge W− ⊂ Û−, and τ satisfies

τ ◦ τ = Id

(thus τ is an anti-holomorphic involution);

(iv) τ |MJ
= Id.
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To prove (i)-(iii) we note that, even though [We78] deals with the real-
analytic case, the proof of (i)-(iii) in [We78] is based solely on the approx-
imation of M by a quadric to order 3 and the implicit function theorem
subsequently, that is why it can be essentially word-by-word repeated in our
situation. We leave the details here to the reader. Statement (iv) follows
directly from the construction in Section 4.2 (alternatively, in can be viewed
from (i)-(iii) read together).

We now use the edge-of-the-wedge theorem (e.g. [Ro86]) to conclude
that τ extends anti-holomorphically to a full neighborhood of the origin in
E (still being an involution, by uniqueness). For simplicity, we denote the
latter neighborhood by Û .

Let us consider finally (locally near the origin) the fixed point setM ′ ⊂ U
of τ . In view of the fact that τ is an anti-holomorphic involution, M ′ is a
real-analytic totally real submanifold in Û of dimension 2n+ 1. In view of
(iv), we conclude that M ′ =MJ , i.e. both MJ and M are real-analytic. The
proof of Theorem 3 is complete. □

Proof of Theorem 2. The proof of Theorem 2 follows directly from the above
effective procedure for finding real-analytic coordinates for a smooth strictly
pseudoconvex hypersurface satisfying Condition E, and the parametric ver-
sion of the Newlander-Nirenberg Theorem (see [NN57] and also [Go16] and
references therein). □
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