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Deformation of Hermitian metrics
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In this work, we study the deformation of Hermitian metrics and
the respective Chern curvature tensors. By adapting the conformal
perturbation method of Aubin and Ehrlich to Hermitian setting,
we prove that Hermitian metrics with quasi-positive (resp. quasi-
negative) second Chern-Ricci curvature is conformal to a Hermitian
metric with positive (resp. negative) second Chern-Ricci curvature.

1. Introduction

In differential geometry, it is important to determine those differentiable
manifolds which admit metrics of strictly positive or negative curvature. The
existence of metrics with curvature of definite sign will often impose strong
restriction on the underlying manifolds. In complex geometry, the holomor-
phic structures are often characterized by various positivity notions in com-
plex differential geometry and algebraic geometry. For instance, thanks to
the Yau’s solution [44] to the Calabi conjecture, it is now known that the
existence of Kähler metric with positive Ricci curvature on M is equivalent
to M being Fano.

On the other hand, the holomorphic sectional curvature also carry much
information of the holomorphic structure. Indeed, thanks to the recent break-
through by Wu-Yau [34], it is now known that Kähler manifolds with nega-
tive or quasi-negative holomorphic sectional curvature are projective and
have ample canonical line bundle [6, 32, 35]. This settles down a long-
standing conjecture of Yau affirmatively. For more related recent works,
we refer interested readers to [10–12, 15, 42]. On the positive side, it is also
conjectured by Yau [45] that compact Kähler manifolds with positive holo-
morphic sectional curvature must be projective and rationally connected.
This was solved recently by Yang [37] where he introduced the concept
of RC-positivity for abstract vector bundles. Many interesting properties
and applications using the idea of RC-positivity had also been studied and
explored, see [17–19, 37–40]. In the same spirit, Ni-Zheng also introduced
[21, 22] various notions of Ricci curvature and scalar curvature to obtain
rational connectedness of compact Kähler manifolds.
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In Hermitian geometry, it is natural to consider the Chern connection of
Hermitian metrics which is the connection compatible with both the metric
and the complex structure. When the Hermitian metric g is non-Kähler,
there are four notions of Chern-Ricci curvature associated to the Chern
connection due to the presence of torsion. The first and second Chern-Ricci
curvature are particularly important to the geometric structure. More pre-
cisely, the first Ricci curvature Ric(g) represents the first Chern class of
the canonical line bundle while the second Ricci curvature S(g) is elliptic
with respect to the Hermitian metric g and deeply related to its differential
geometric structure.

We are interested to understand the second Chern-Ricci curvature S
of a Hermitian metric. As an analog of the Calabi-Yau theorem, Yang [37]
proved that if a compact Kähler manifold M admits a smooth Hermitian
metric with positive second Chern-Ricci curvature S, then M is projective
and rationally connected. This generalized the earlier works of Campana [4]
and Kollár-Miyaoka-Mori [13] which states that Fano manifolds are ratio-
nally connected. Recently in [41], the result was generalized by weakening
positivity to quasi-positivity. In [39], Yang conjectured that a projective
and rationally connected manifold M must admit a Hermitian metric with
positive second Chern-Ricci curvature.

In this paper, motivated by the above mentioned works and conjecture,
we study the deformation of Hermitian metrics. In Riemannian geometry, the
deformation of metrics with quasi-positive Ricci curvature was studied by
Aubin [1] and Ehrlich [7]. By adapting the conformal perturbation method
in their works to Hermitian setting, we have the the deformation result for
Hermitian metrics with quasi-positive second Chern-Ricci curvature. More
generally, we have the following.

Theorem 1.1. Suppose M is a compact complex manifold and g0, g̃ are two
smooth Hermitian metrics (possibly different) on M such that trg̃ R

(TM,g0) is
quasi-positive (resp. quasi-negative). Then there is another Hermitian metric
g1 conformal to g0 such that trg̃ R

(TM,g1) is positive (resp. negative) on M .

For the definition of trg R
(TM,h) and quasi-positivity, we refer to sec-

tion 2. As a special case, we have the deformation result for the second
Chern-Ricci curvature S. This also provides a supporting evidence to Yang’s
conjecture on the existence of metrics with positive second Chern-Ricci cur-
vature.
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Corollary 1.1. Let (M, g) be a compact Hermitian manifold with quasi-
positive(resp. quasi-negative) S(g). Then there is another Hermitian metric
g̃ such that S(g̃) > 0 (resp. < 0).

Together with [37, Corollary 3.7], this implies the following RC-positivity
of vector bundles under quasi-positive condition.

Corollary 1.2. Let Mn be a compact complex manifold with complex di-
mension n. Suppose there are two Hermitian metric g and g̃ (possibly differ-
ent) such that trg̃ R

(TM,g) is quasi-positive, then there is Hermitian metric
h so that

1) (TM⊗k, h⊗k) is RC-positive for every k ≥ 1;

2) (ΛpTM,Λph) is RC-positive for every 1 ≤ p ≤ n.

As a corollary of RC-positivity, we have the following implication on
complex structure when M is a Kähler using [37, Theorem 1.4], giving an
alternative proof to [41, Theorem 1.1].

Corollary 1.3. Suppose M is a compact Kähler manifold and g, g̃ are two
smooth Hermitian metrics on M such that trg̃ R

(TM,g) is quasi-positive, then
M is projective and rationally connected. In particular, M is simply con-
nected.

The analogous result for the first Chern-Ricci curvature Ric is not true
in general. A counter-example was pointed out by Ehrlich in [8, Theorem 4]
where the Hirzebruch surface Σ2 is non-Fano but supports a Kähler metric
with quasi-positive Ric by the construction of Yau [43]. This demonstrated a
fundamental difference between the first and second Chern-Ricci curvature
in the non-Kähler setting. With a stronger curvature assumption, the defor-
mation of the first Ricci curvature is possible. In [14], the first author showed
that a Hermitian metric g with quasi-negative Ric can be deformed to one
with negative Ric if in addition g has Griffths non-positive Chern curvature
by using a choice of Hermitian geometric flow introduced by Streets-Tian
[28]. Similar result concerning Griffths non-negativity of Chern curvature
was proved by Ustinovskiy [33] which generalized the earlier works by Mok
[20] and Bando [2] in the Kähler case. Indeed, deformation using parabolic
flows was found to be powerful to study the underlying structure of a man-
ifold. For related works in Hermitian geometry, we refer interested readers
to [3, 5, 9, 16, 23–27, 29, 31] and the references therein. The curvature often
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tends to become positive along the geometric flow. In contrast, the elliptic
method employed here seems to be more flexible in the negative case.

The paper is organized as follows: In section 2, we will collect the formu-
las about the Chern connection. In section 3, we will derive the variational
formula for the first, second Chern-Ricci curvature. In section 4, we will
consider the deformation inside the injectivity radius. In section 5, we will
prove the global deformation theorems.
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2. Chern connection

In this section, we collect some formulas for the Chern connection to avoid
notational inconsistency. Let (M, g) be a Hermitian manifold, the Chern
connection ∇ of g is the connection such that ∇g = ∇J = 0 and the tor-
sion has no (1, 1) component. In local holomorphic coordinates {zi}, the
coefficients Γ of ∇ is given by

Γk
ij = gkl̄∂igjl̄.

The torsion of g is given by T k
ij = Γk

ij − Γk
ji. We say that g is Kähler if the

torsion vanishes, T ≡ 0.
The Chern curvature tensor of g is defined by

Rij̄k
l = −∂j̄Γ

l
ik.

We raise and lower indices by using metric g. The first Chern-Ricci curvature
is defined by

Rij̄ = gkl̄Rij̄kl̄ = −∂i∂j̄ log det g

while the second Ricci curvature is defined by

Sij̄ = gkl̄Rkl̄ij̄ .

Note that if g is not Kähler, then Rij̄ is not necessarily equal to Sij̄ . And the

Chern-scalar curvature R is defined to be R = gij̄Rij̄ = gkl̄Skl̄ = gij̄gkl̄Rij̄kl̄.
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In the non-Kähler setting, there are two more notions of Chern-Ricci cur-
vature associated to the Chern connection but they are not elliptic with
respect to g in general. In this note, we will only focus on the first and sec-
ond Chern-Ricci curvature. In general, we can also trace the tangent bundle
component using a different metric. For notational convenience, we denote

trg̃ R
(TM,g) = g̃kl̄Rkl̄ij̄ .

In this note, all Hermitian metrics are smooth and the connection∇ will be
referring to the Chern connections associated to the Hermitian metrics.

Definition 2.1. Let M be a complex manifold and Aij̄ is a tensor on
M . We say that Aij̄ is quasi-positive (resp. quasi-negative) if (Aij̄) is non-
negative (resp. non-positive) everywhere and positive (resp. negative) at some
point on M .

3. Variation formulas for the Chern curvature

In this section, we will collect some variational formulas for the Chern con-
nection along variation of Hermitian metrics.

Lemma 3.1. Suppose g(t) is a family of Hermitian metrics such that
∂tgij̄ = −hij̄, then we have

∂tRkl̄ij̄ =
1

2
(∇k∇l̄ +∇l̄∇k)hij̄ −

1

2

(

Rkl̄i
rhrj̄ +Rkl̄

s̄
j̄his̄

)

where ∇ denotes the connection with respect to g(t).

Proof. The computation is standard, we include here for reader’s conve-
nience.

∂tRkl̄ij̄ = ∂t
(

Rkl̄i
rgrj̄

)

= −hrj̄Rkl̄i
r − grj̄∂l̄∂tΓ

r
ki

= −hrj̄Rkl̄i
r +∇l̄∇khij̄

=
1

2
(∇k∇l̄ +∇l̄∇k)hij̄ −

1

2

(

Rkl̄i
rhrj̄ +Rkl̄

s̄
j̄his̄

)

.

(3.1)

□
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Remark 3.1. By tracing the vector bundle component in Lemma 3.1, we
would have

∂tRij̄ = ∆ghij̄ +
(

T k
pi∇

phkj̄ + T l̄
q̄j̄∇

q̄hil̄ + gpq̄T k
piT

l̄
q̄j̄hkl̄

)

+ hkl̄Rij̄kl̄ −
1

2

(

Sk
i hkj̄ + S l̄

j̄hil̄

)

.
(3.2)

Using the trick by Ustinovskiy [33], the true variational component is at
h ∗ Rm which do not have any sign in general. This also explains why the
deformation on Ric is false unless we have additional information on Rm,
see [14].

4. Local deformation of hermitian metrics

In this section, we discuss the local deformation of Hermitian metrics. To
simplify our argument, we will work inside the ball of injectivity radius so
that the distance function is smooth there although this is not necessary in
the Hermitian content.

Let (Mn, g) be a closed Hermitian manifold with complex dimension n.
For p ∈ M , we will use Bg(p, r) to denote the g-geodesic ball of radius r and
Ag(p, r1, r0) = Bg(p, r1) \Bg(p, r0). Note that Hermitian metric g is at the
same time a Riemannian metric. For each p ∈ M , we can find i0 = injg(p)
such that the exponential map exp |p : BR2n(0, i0) → Bg(p, i0) is a diffeo-
morphism. In particular, the square distance function dg(p, ·)

2 is smooth on
Bg(p, i0). Let r < i0 and denote ρ(·) = r2 − dg(p, ·)

2. We use ρ(·) instead of
dg(p, ·) to avoid the non-smooth issue at x = p.

Proposition 4.1. There is µ(n) ∈ (0, 1/2) such that the following holds:
Suppose g̃ is a Hermitian metric on M with

(4.1) sup
M

|Rm(g̃)|+ |T (g̃)|2 < 2.

And g0 is another Hermitian metric on M such that trg̃ R
(TM,g0) ≥ 0 (resp.

≤ 0) on Bg̃(p, r) where r < min{injg̃(p), 1}. Then for any ε > 0 and k ∈ N,
there is another smooth Hermitian metric g1 conformal to g0 such that

(a) g1 agrees with g0 outside Bg̃(p, r);

(b) ||g1 − g0||Ck(M,g̃) < ε;

(d) trg̃ R
(TM,g1) > 0 (resp. < 0) on Ag̃(p, r, (1− µ)r).
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Proof. We first prove the non-negative case. Let f be the smooth function
on R given by

(4.2) f(s) =

{

e−1/s for s ≥ 0;
0 for s ≤ 0.

Define F (x) = f(ρ) where ρ(x) = r2 − dg̃(x, p)
2. Let us collect some use-

ful inequalities of ρ. Clearly, we have |∂ρ|2g̃ = 4(r2 − ρ). For the second order,
note that Chern connection coincides with the canonical connection in the
almost Hermitian geometry. Since the Chern curvature and the torsion of
g̃ are bounded uniformly by 2, by [30, Theorem 4.2] there is a dimensional
constant Cn such that whenever ρ ≥ 0, we have

∆g̃ρ = −2dg̃ ·∆g̃dg̃ − 2|∂dg̃|
2
g̃

≥ −2dg̃ ·

(

2n

dg̃
+ C0(n)

)

− 2

≥ −Cn.

(4.3)

Define a one parameter family of smooth Hermitian metrics by g =
e−tF g0 so that ∂tg = −Fg = −h. Conclusion (a) is trivial. Conclusion (b)
can be done by choosing g1 = g(tε,k) where tε,k is sufficiently small. It re-
mains to establish conclusion (c). First, we note that Lemma 3.1 implies
that for Bij̄ = eFtg̃kl̄Rkl̄ij̄ , we have

∂tBij̄ = FBij̄ + eFtg̃kl̄∂tRkl̄ij̄

= FBij̄ +
eFt

2
g̃kl̄ (∇k∇l̄ +∇l̄∇k)hij̄

−
eFt

2
g̃kl̄

(

Rkl̄i
rhrj̄ +Rkl̄

s̄
j̄his̄

)

= FBij̄ + eFtg̃kl̄gij̄∂k∂l̄F − FeFtg̃kl̄Rkl̄ij̄

= ∆g̃F · (g0)ij̄ .

(4.4)

We now claim that Bij̄ > 0 on Ag̃(p, r, (1− µ)r) for some 0 < µ(n) < 1/2
and t > 0. We will specify the choice of µ(n) later.
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For any z ∈ Ag̃(p, r, (1− µ)r) and v ∈ T 1,0
z M so that g0(v, v̄) = 1. By

(4.4) and (4.3), if t > 0, then

B(t)vv̄ −B(0)vv̄ = t · ∆̃F

= t ·
(

f ′′|∂ρ|2g̃ + f ′∆g̃ρ
)

≥ tρ−4e−1/ρ
[

4(r2 − ρ)− 8ρ(r2 − ρ)− Cnρ
2
]

> 0

(4.5)

provided that µ(n) is sufficiently small. This completes the proof of the
non-negative case. The non-positive case can be proved analogously by con-
sidering the one parameter family g(t) = etF g0 instead. □

Remark 4.1. In application, we will work on Bg̃(p, r) where trg̃ R
(TM,g) >

0 (resp. < 0) on Bg̃ (p, (1− µ)r) and will choose ε > 0 small enough so that
trg̃ R

(TM,g(t)) > 0 (resp. < 0) on Bg̃(p, r) after deformation. Here we will
require ε to be sufficiently small depending also on the positivity on the
smaller ball.

5. Deformation on compact manifolds

In this section, we will carry out the deformation process on M . We will
follow and modify the argument in [7]. We will denote the original Hermitian
metric as g0. Since M is closed, the injectivity radius of x ∈ M has a uniform
positive lower bound. Denote

injg̃(M) = inf
M

{

injg̃(x)
}

> 0.

Now we are ready to prove the main deformation theorem.

Theorem 5.1. Let M be a compact complex manifold and g0, g̃ are two
smooth Hermitian metrics on M such that trg̃ R

(TM,g0) is quasi-positive
(resp. quasi-negative). Then for all ε > 0, k ∈ N, there is another Hermitian
metric ĝ0 conformal to g0 such that trg̃ R

(TM,ĝ0) is positive (resp. negative)
on M and ||ĝ0 − g0||Ck(M,g̃) < ε.

Proof. We will prove the non-negative case. The non-positive case can be
proved using the same argument. By rescaling, we may assume

sup
M

|Rm(g̃)|+ |T (g̃)|2 ≤ 1.
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Let µ(n) be the constant from Proposition 4.1. Suppose p ∈ M and let 0 <
r0 <

1
4 min

{

injg̃(M), 1
}

be such that trg̃ R
(TM,g0) > 0 on Bg̃(p, r0).

Claim 5.1. Let rm = (1 +mµ(2− µ)−1)r0, then there exists Hermitian
metrics {gm}m∈N conformal to g0 such that

1) trg̃ R
(TM,gm) > 0 on Bg̃(p, rm);

2) trg̃ R
(TM,gm) ≥ 0 on M ;

3) ||gm − g0||Ck(M,g̃) ≤ ε
∑m

i=0 2
−i−1.

Proof of claim. The statement is trivially true when m = 0. Suppose it is
true for some m ∈ N≥0. Let {pl}

Nm

l=1 ⊂ Bg̃(p, rm − r0) so that

(5.1) Ag̃(p, rm+1, rm) ⊂

Nm
⋃

l=1

Bg̃

(

pl,
r0

1− µ

)

.

Now we work on Bg̃(p1,
r0

1−µ). By our choice of r0, we have
r0

1−µ < injg̃(p1)

and trg̃ R
(TM,gm) > 0 on Bg̃(p1, r0). Hence, we may apply Proposition 4.1 and

Remark 4.1 on gm so that there is a Hermitian metric gm,1 conformal to gm
in which

(a) trg̃ R
(TM,gm,1) > 0 on Bg̃

(

p1,
r0

1−µ

)

⋃

Bg̃(p, rm);

(b) trg̃ R
(TM,gm,1) ≥ 0 on M ;

(c) ||gm,1 − g0||Ck(M,g̃) ≤ ε
∑m

i=0 2
−i−1 + ε2−m−2N−1

m .

By repeating the argument on each Bg̃(pl, r0), l ≤ Nm inductively, we
will obtain a sequence of Hermitian metrics {gm,l}

Nm

l=1 conformal to gm so
that for each l ∈ {1, ..., Nm},

(a’) trg̃ R
(TM,gm,l) > 0 on

⋃l
i=1Bg̃(pi,

r0
1−µ)

⋃

Bg̃(p, rm);

(b’) trg̃ R
(TM,gm,l) ≥ 0 on M ;

(c’) ||gm,l − g||Ck(M,g̃) ≤ ε
∑m

i=0 2
−i−1 + lε2−m−2N−1

m .

Using (5.1) and the fact that

Bg̃(p, rm+1) ⊂ Ag̃(p, rm+1, rm) ∪Bg̃(p, rm),

we have the desired Hermitian metric if we choose gm+1 = gm,Nm
. This

proves the claim. □
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Since rm → +∞ andM is compact, the process will be terminated at the
N -th step for some finite N ∈ N. Then ĝ0 = gN will be the desired Hermitian
metric. □

Remark 5.1. It is clear from the proof that an analogous result still hold if
M is complete non-compact with bounded Chern curvature, bounded torsion
and has a uniform injectivity radius lower bound.

Proof of Corollary 1.1. This follows from Theorem 1.1 by taking g̃ = g0 and
the fact that the new metric g1 is conformal to g0. □

Remark 5.2. The same method also holds for the Chern-scalar curvature
R = trg S = trg Ric. This was shown earlier by Yang in [36, Lemma 3.2] by
solving Poisson’s equation.
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