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We study the algebra of Weyl modules in types A and C using the
methods of arcs over toric degenerations and functional realization
of dual space. We compute the generators and relations of this
algebra and construct its basis.
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Introduction

The goal of this paper is to study the homogenous coordinate ring of the
semi-infinite flag variety (see [FiMi]). This ring is graded by the cone of
dominant weights and its homogenous components are the dual global Weyl
modules.

We consider a simply-connected simple algebraic group G over an al-
gebraically closed field k of characteristic zero. We are interested in the
corresponding current group G[[t]] and the corresponding current Lie alge-
bra g[t] := g⊗ k[t]. The group G[[t]] is the group of k[[t]]-points of G, which
as variety is the arc (or in the other terms ∞-jets) scheme of G.
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1500 Ievgen Makedonskyi

The main representation theoretic objects of this paper are Weyl mod-
ules (see [CP, CL1, CL2]). Their role in the representation theory of the cur-
rent algebras is similar to the role of the irreducible representations in the
representation theory of semisimple Lie algebras (see [Kat1, FMO, BF2, I]).
A Weyl module Wλ is a cyclic module with a generating highest weight
vector vλ defined by the set of relations which essentially mean that this
module is integrable and all weights of its vectors are less or equal to λ.

We consider a maximal unipotent subgroup U ⊂ G and a maximal
torus H ⊂ G normalizing U . The semi-infinite flag variety is the variety
G[[t]]/(U [[t]] ·H). The variety G[[t]]/U [[t]] is its affine multicone. We study
the homogenous coordinate ring of G[[t]]/(U [[t]] ·H) which is equal to the
coordinate ring of the affine variety G[[t]]/U [[t]]. This ring is isomorphic to
the ring of dual Weyl modules ([BF1, BF2, BF3]):

W =
⊕

λ∈P+

W
∗
λ.

The algebra W is generated by the sum of dual fundamental Weyl mod-
ules. Our goal is to write down the defining relations of this ring and to
give its basis. We call them the semi-infinite Plücker relations. They were
computed for type A in [FeMa2]. It is relatively easy to write down the set of
quadratic relations satisfied by generators of W. However it’s hard to prove
that these relations generate the whole ideal of relations in W. In [FeMa2]
this claim was proven using the fusion product structure on local Weyl mod-
ules [CL1] and this proof is very technical. Here we propose another method
to prove the nonexistence of additional relations. This method is the current
version of the toric degeneration method due to Gonciulea-Lakshmibai [GL].
We study the algebra W inside the algebra of functions on the current group.
This algebra is usually much easier than the algebra W and has a structure
of g[t]-g[t] bimodule. Then the algebra W is the ring of invariants of k[G[[t]]]
with respect to the right action of n+[t]. We study the current version of
the toric degeneration which is the ring of lower terms of elements W with
respect to some order on elements of k[G[[t]]]. This algebra has obviously the
graded dimension less than or equal to the graded dimension of W. Thus if
we prove some lower bound for the graded dimension of the current version
of toric degeneration then we prove the same lower bound for W. We use
this method to prove that the algebra W surjects to the quotient by the
quadratic semi-infinite Plücker relations.

We apply these methods in types A and C. The first good property of
these types which we use is that the coordinate ring of G[[t]]/U [[t]] is the
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Semi-infinite Plücker relations 1501

quotient of the coordinate ring of the arc scheme over G/U by the ideal
of nilpotents. This is equivalent to the equality Wωi

≃ Vωi
for local Weyl

modules of each fundamental weight ωi. The second good property is that
the coordinate rings of simply-connected groups of these types are easy to
describe. The third good property of these types is that we can construct
the toric degeneration of the flag variety only in these types.

In types A and C we obtain the character formulas for Weyl modules.
In type A this formula was proven in [FeMa2], in type C it is new.

More precisely we prove the following theorem.

Theorem 0.1. The algebra W in type SP2n is generated by allowed minors

m
(k)
I with defining relations (4.1) and its basis is (4.4). In particular the

character or the Weyl module W(
∑
λpωp) is the following:

∑

r

q
∑

I≺J
k(I,J)rIrJ

∏
I(q)rI


∏

I

|I|∏

k=1

eεik




rI

,

where the summation is on r such that
∑

|I|=p rI = λp.

The structure of the paper is the following. In Section 1 we explain the
classical construction of Plücker equations and toric degeneration of flag
variety. In Section 2 we recall the basic facts from the theory of current
algebras and Weyl modules. In Section 3 we recall the construction of semi-
infinite Plücker relations, construct an analogue of the toric degeneration
construction and give a simple proof of the fact that the semi-infinite Plücker
relations generate the ideal of relations in W. In Section 4 we define semi-
infinite Plücker relations for SP2n[[t]] and prove that they generate the ideal
of relations in W using this property for SL2n[[t]].

1. Finite dimensional case

In this paper all groups, varieties and algebras are defined over algebraically
closed field k of characteristic zero.

1.1. Algebra of functions on the affine cone of the flag variety

Let g be a finite dimensional simple Lie algebra, G be the corresponding
connected Lie group. We take a Borel subalgebra b. Let P be the lattice of
weights of the group G, P+ be the cone of dominant weights. For λ ∈ P+
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we denote the corresponding simple (left) module Vλ and let V o
λ be the

corresponding right module. Let W be the Weyl group of the Lie algebra g

and w0 be the longest element of this Weyl group.
Consider the algebra k[G] of algebraic functions on the group G. It has

the natural structure of G-G bimodule. Therefore it has the structure of
g-g bimodule. The structure of this bimodule is described by the classical
Peter-Weyl theorem.

Theorem 1.1.

k[G] ≃
⊕

λ∈P+

V ∗
λ ⊗k V

∗o
λ .

Then the invariant space of this module with respect to the right action
of n+ is as follows.

Corollary 1.2.

k[G]n+ ≃
⊕

λ∈P+

V ∗
λ .

This is the coordinate ring of the affine cone over flag variety. The right
action of the Cartan subalgebra h preserves this invariant subalgebra and
makes it P+ graded algebra, deg V ∗

λ = λ.
In many cases the structure of a group is easier than the structure of the

corresponding flag variety and it is convenient to study the coordinate ring
of the flag variety inside the coordinate ring of the group. The goal of this
section is to explain some classical results on the algebra M =

⊕
λ∈P+

V ∗
λ

of functions on the affine cone of the flag variety.
We consider two dominant weights λ, µ ∈ P+. Then there is an injection:

Vλ+µ →֒ Vλ ⊗k Vµ.

Dualizing this injection we obtain the surjection:

V ∗
λ ⊗k V

∗
µ ↠ V ∗

λ+µ.

This is the multiplication map in M. In particular, surjectivity of this map
means that M is generated by

⊕
V ∗
ωi
, where the weights ωi are fundamental.

Moreover this algebra is quadratic and even Koszul (see for example [BC]).
In the following subsections we give a proof the quadraticity in some concrete
cases and describe the defining relations of this algebra.
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1.2. SLn-case

Consider the special linear group SLn of n× n matrices with determinant 1.
By definition the coordinate ring of this group is the following. We consider
n× n generators zuv. Then:

(1.1) k[SLn] ≃ k[zuv]

/〈
det




z11 · · · z1n
...

. . .
...

zn1 · · · znn


− 1

〉
.

Here the left and the right actions of sln are defined from the obvious
matrix multiplication, i.e. for an unit matrix Eij we have:

Eijzuv =

{
zjv, if i = u;

0, otherwise.

zuvEij =

{
zui, if j = v;

0, otherwise.

We are interested in the precise description of the algebraic functions on
the special linear group invariant under the right action of the subgroup of
unitriangular matrices (or in other words invariant under the action of Lie
algebra n+). Let I ⊂ {1, . . . , n} be a nonzero proper subset, let i1 < i2 <
· · · < ik be the elements of I. We denote:

mI = det




zi11 · · · zi1k
...

. . .
...

zik1 · · · zikk


 .

The following result is classical (see [MS]):

Theorem 1.3.

k[SLn]
n+

= k[mI ]I⊂{1,...,n},|I|̸=0,n.

1.2.1. Construction of monomial order. We construct the order on
monomials in minors which we use throughout the paper.

Definition 1.4. We define the partial monomial order on monomials in
variables mI in the following way. Let I1, . . . , Ia; J1, . . . , Jb ⊂ {1, . . . , n} be
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two tuples of proper nonempty subsets, |I1| ≥ · · · ≥ |Ia|, |J1| ≥ · · · ≥ |Jb|.
If a > b, then we write

mI := mI1 . . .mIa ≻ mJ1 . . .mJb =: mJ .

Assume that a = b and (|I1|, . . . , |Ia|) > (|J1|, . . . , |Ja|) in the lexicographic
order, i.e. there exists c such that |Ic| > |Jc|, |Ic

′

| = |Jc′ | for all c′ < c. Then
we write mI1 . . .mIa ≻ mJ1 . . .mJa .

Assume that for any c : |Ic| = |Jc| (the case of equal Young diagrams).
We consider the n-tuple wt(mI) = (|{c|1 ∈ Ic}|, . . . , |{c|n ∈ Ic}|), we call it
the weight of an element. We denote by wtd(mI) the d-th component of
wt(mI). Then if there exists d such that wtd(mI) > wtd(mJ), for any d

′ > d :
wtd′(mI) = wtd′(mJ), then mI ≻ mJ . In words, if the number n appears in
I more times than in J , then mI ≻ mJ , if they equal then we compare the
number of n− 1’s etc. (This step is necessary for type C purposes, for type
A purposes it is possible to define an easier order).

Consider now the case of equal Young diagrams and equal weights. We
fix a number l, 1 ≤ l ≤ n− 1. Define the truncation map. For L ⊂ {1, . . . , n},
|L| ≥ l, we put

trl−1(L) := {il, . . . , i|L|},

i.e. this operation deletes from L its l − 1 smallest elements and is (l − 1)st
power of the operator tr deleting the smallest element of the set. For I =
(I1, . . . , Ia) define

trI := (trI1, . . . , trIa).

Assume that trlI = trlJ for some l and trl−1I ̸= trl−1J . Then if the
multiplicity of c in trl−1I is greater than the multiplicity of c in trl−1J and
for all c′ < c the multiplicity of c′ in trl−1I equal to the multiplicity of c′ in
trl−1J we put mI ≻ mJ .

Assume that all these multiplicities are equal, i.e. wt(trl−1I) =
wt(trl−1J). We order sets U ⊂ {l + 1, . . . , n} in the lexicographic way, i.e. for
U = {u1, . . . , u|U |}, V = {v1, . . . , v|V |}, up < up+1, vp < vp+1 we write U <
V if u1 = v1, . . . , uc−1 = vc−1, uc < vc or u1 = v1, . . . , u|V | = v|V |, |U | > |V |.

For example, the empty set is the largest. Note that trl−1(L) = trl(L) ∪ {a}
for some number a. We put pa,U (I) = |{Ic|trl−1Ic = U ∪ {a}, trlIc = U}|.
Then we write mI ≻ mJ if ther exists a, U such that pa,U (I) > pa,U (J) and
for any U ′ > U : pa,U ′(I) = pa,U ′(J), for any a′ < a,U ′ : pa′,U ′(I) = pa′,U ′(J).

This is the linear order on monomials mI . It is easy to see that this order
is indeed a monomial order, i.e. if mI ⪯ mJ , then mImK ⪯ mJmK .
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Such complicated construction of the order is needed for the purposes
of current algebra. We use the same order on the tuples of sets (I1, . . . , Ia).
I.e. we define (I1, . . . , Ia) ≻ (J1, . . . , Jb) iff mI1 . . .mIa ≻ mJ1 . . .mJb . On
the came way we order the sets of numbers r := (rI), rI ∈ N ∪ {0}, where
rI := |{p|Ip = I}|.

Remark 1.5. The same construction of the order can be applied for I1, . . . ,
Ia; J1, . . . , Jb be subsets of arbitrary linearly ordered set. We use the ordered
set {1 < 1̄ < · · · < n < n̄} in symplectic case. Any monotonous map on lin-
early ordered sets gives the monotonous map on monomials in minors. Later
we use the monotonous bijection between {1, 1̄, . . . , n, n̄} and {1, 2, . . . , 2n}
to identify the monomials in minors of type Cn with monomials in minors
of type A2n.

Example 1.6.

m123m46m1m1 ≻ m78m67m36m45,

because we have the inequality on lengths of sets of indices, (3, 2, 1, 1) >
(2, 2, 2, 2).

m126m15m1m1 ≻ m123m46m3m1,

because in both monomials 6 appears one time, 5 appears in the first mono-
mial one time and zero time in the second.

m1268m157m1m1 ≻ m2468m467m3m1,

because tr2 of both sides coincides, tr(1268, 157, 1, 1) = (268, 57) > (468, 67)
= tr(2468, 467, 3, 1) because 2 appears in (268, 57) once and doesn’t appear
in (468, 67).

m1268m157m1m1 ≻ m2568m127m3m1,

because tr2(1268, 157, 1, 1) = (68, 7) = tr2(2568, 127, 3, 1), tr(1268, 157, 1, 1)
= (268, 57), tr(2568, 127, 3, 1) = (568, 27), we have {68} < {7}, and in the
first monomial the larger number 5 is attached to the larger set {7}, in
the second monomial this number is added to the smaller set {68}. On the
other terms, in the second case ”snake” on the first two columns is longer
(see Subsection 3.2).

1.2.2. Plücker relations. Now we want to describe the ideal of relations
satisfied by the elements mI and to give a linear basis of the algebra M.
We take two sets of numbers I, J ⊂ {1, . . . , n}, I = {i1 < i2 < · · · < ik}, J =
{j1 < j2 < · · · < jl}. We call I ≤ J if k ≥ l and is ≤ js, 1 ≤ s ≤ l. This gives
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a partial order on the set of nonempty proper subsets of {1, . . . , n}. Assume
that I, J are uncomparable and |I| = k > l = |J | or k = l, ik = jk, ik−1 =
jk−1, . . . , ir+1 = jr+1, ir < jr for some r. Define s = max{s′|is′ > js′}. Then
the set of numbers A = {j1, . . . , js, is, . . . , ik} is strictly increasing. Fix an s-
element subset B ⊂ A. Let B = {b1 < · · · < bs}; A\B = {c1 < · · · < ck−s}.
Then the chain of numbers (b1, . . . , bs, c1, . . . , ck−s) is the permutation of the
chain (j1, . . . , js, is, . . . , ik). We denote by sign(B) the sign of this permuta-
tion (i.e. 1 for even and −1 for odd one).

Proposition 1.7. (See [MS]) For any uncomparable pair I, J there exists
the following quadratic relation satisfied by minors:

∑

B⊂A,|B|=s

sign(B)m(I\A)∪Bm(J\A)∪(A\B) = 0.

The leading monomial of the left hand side of this equality is mImJ .

Proof. The function

∑

B⊂A,|B|=s

sign(B)m(I\A)∪Bm(J\A)∪(A\B)

is multilinear and anti-symmetric in i+ 1 vectors (za,1, . . . , za,i), a ∈ A of
length i. Therefore it is identically equal to zero. By the construction we
know that A ∩ J is the set of smallest elements of J . Therefore mI is the
leading term. □

Corollary 1.8.

k[mI ]I⊂{1,...,n},|I|≠0,n =
∑

I1≤I2≤···≤Ik

kmI1mI2 . . .mIk ,

i.e. the ring k[mI ]I⊂{1,...,n},|I|̸=0,n is linearly generated by the products of
minors with comparable indices.

Next we explain the proof of the linear independence of products of
minors with comparable indices. This proof uses the construction of toric
degeneration and is due to [GL].

Lemma 1.9. The subalgebra k[zij ](i,j) ̸=(n,n) is free.
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Proof. The only defining relation of the coordinate ring of the special linear
group is

r = det




z11 · · · z1n
...

. . .
...

zn1 · · · znn


− 1.

This element is linear in mnn. We need to prove that

k[zij ]r ∩ k[zij ](i,j) ̸=(n,n) = {0}.

We put r = r0 + r1mnn, where ri ∈ k[zij ](i,j) ̸=(n,n). Assume that for some a ∈
k[zij ] a(r0 + r1mnn) ∈ k[zij ], (i, j) ̸= (n, n). We know that a is a polynomial
in znn with coefficients in k[zij ], (i, j) ̸= (n, n). Then a(r0 + r1mnn) is obvi-
ously a nonconstant polynomial in mnn and this completes the proof. □

We denote zij < zi′j′ if j < j′ or j = j′ and i < i′. Then define the order
◁ on monomials in zij , (i, j) ̸= (n, n) lexicographically in the order of vari-
ables. For f ∈ k[zij ](i,j) ̸=(n,n) define by lt(f) the leading term on f in ◁. We
apply the operation lt to the algebra k[mI ]. The algebra lt(k[mI ]) is called
the toric degeneration of the algebra k[mI ]I⊂{1,...,n},|I|̸=0,n.

We denote Ik = {ik1 < . . . ik|Ik|}. The next proposition is obvious.

Proposition 1.10.

lt(mI1 . . .mIs) =
∏

ikj∈Ik

zikjj .

The leading terms of monomials in mI are the monomials

zi111zi211 . . . zil111zi221 . . . zil222 . . .

for l1 ≥ l2 ≥ . . . and ikj < ik,j+1. They are different for different products
of comparable monomials.

Different leading terms are clearly linearly independent. Therefore the
products of comparable monomials are linearly independent and they form
a basis of k[mI ].
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1.3. Symplectic case

Consider now the symplectic group SP2n. It consists of matrices S such that:

S

(
0 E

−E 0

)
St =

(
0 E

−E 0

)
.

Enumerate the rows and the columns of 2n× 2n matrices by elements 1, 2,
. . . , n, 1̄, . . . , n̄. Then we denote the coordinate functions on the space of
2n× 2n matrices by zij , i, j ∈ {1, 2, . . . , n, 1̄, . . . , n̄}.

The symplectic group is an affine variety with the generators zij and the
following defining relations:

n∑

k=1

zkizk̄j − zk̄izkj =





1, if j = ī

−1, if i = j̄

0, otherwise.

We order the elements {1, 2, . . . , n, 1̄, . . . , n̄} in the following way:

1 < 1̄ < 2 < 2̄ · · · < n < n̄.

For a set I = {i1 < i2 < . . . } ⊂ {1, 2, . . . , n, 1̄, . . . , n̄}, |I| ≤ n let mI be the
minor in the columns 1, . . . , |I| and rows i1, i2, . . . . I.e.:

(1.2) mI = det




zi11 · · · zi1k
...

. . .
...

zik1 · · · zikk


 .

The following results are well known (see, for example, [DC]).

Proposition 1.11.

k[SP2n]
n+

= k[mI ]I⊂{1,2,...,n,1̄,...,n̄},|I|≤n.

The minors mI obviously satisfy the relations from Proposition 1.7
for any uncomparable sets I, J . However these minors are linearly depen-
dent. More precisely take I ⊂ {1, 2, . . . , n, 1̄, . . . , n̄}, |I| ≤ n− 2. For any
l ∈ {1, . . . , n} take a multiset I ∪ {l, l̄} and define the minor mI∪{l,l̄}. It is
equal to zero if this multiset has multiple elements, because then this minor
has equal columns.
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Proposition 1.12. For any I ⊂ {1, 2, . . . , n, 1̄, . . . , n̄}, |I| ≤ n− 2 we have:

(1.3) mI∪{1,1̄} +mI∪{2,2̄} + · · ·+mI∪{n,n̄} = 0,

where union means the union of multisets.

Proof. For I ⊂ {1, 2, . . . , n, 1̄, . . . , n̄},K ⊂ {1, 2, . . . , n}, |I| = |K| we define:

mIK = det




zi1k1
· · · zi1k|I|

...
. . .

...
zi|I|k1

· · · zi|I|k|I|


 .

Decomposing minors mI∪{l,l̄} by two columns (indexed by l and l̄) we obtain
that the left hand side of (1.3) is equal to:

∑

K⊂{1,2,...,|I|+2},|I|=|K|,{i,j}={1,2,...,|I|+2}\K

mIK

n∑

l=1

(zlizl̄j − zl̄izlj)

which is equal to 0. □

Note that some of minors in (1.3) are equal to 0. They are the minorsmI∪{l,l̄}

if l or l̄ belongs to I.

Definition 1.13. We call forbidden the subsets J ⊂ {1, . . . , n}, 0 < |I| ≤ n
and the minors mJ such that for some a < b jb = ā. The remaining subsets
J ⊂ {1, . . . , n}, 0 < |I| ≤ n and minors mJ we call allowed.

Remark 1.14. For each forbidden minor mJ there exists a number b such
that jb = b, jb+1 = b̄.

Remark 1.15. It is an easy combinatorial check that for l ≥ 2 there is(
2n
l

)
−
(
2n
l−2

)
allowed minors mI , |I| = l.

The next lemma essentially belongs to C. De Concini [DC]. We use
slightly different monomial order so we give it with the complete proof.

Lemma 1.16. Each forbidden minor is equivalent modulo relations (1.3)
to the linear combination of allowed minors which are greater than or equal
to this minor with respect to the order ≻.

Proof. For a forbidden minor mJ let b be the smallest number such that
jb = b, jb+1 = b̄. Let A = {a1, . . . , as} be the set of numbers ap < b such that
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both ap, āp ∈ J , C = {c1, . . . , cs} be the set of numbers cp < b such that both
cp, c̄p ̸∈ J (clearly the cardinalities of these sets are equal).

We put D := A ∪ C ∪ {b}. For each s-element subset E ⊂ D, E =
{e1, . . . , es} we define Ē := {ē1, . . . , ēs}. Take the (|J | − 2)-element subset
I := J\(A ∪ Ā ∪ {b, b̄}) ∪ (E ∪ Ē). Then we consider the equality (1.3) for
such a subset I. We have

(
2s+1
s

)
equalities of such a type. Note that all these

equalities are indeed the linear combination of the following variables:

• for s+ 1 element subset F ⊂ D the minorsmJ\(A∪Ā∪{b,b̄})∪(F∪F̄ ), there

are
(
2s+1
s+1

)
such variables;

• variables mK such that for some k the elements greater than k be-
long or don’t belong to K and J together and k ∈ K, k ̸∈ J ; for such
variables we have mK ≻ mJ .

We consider this system of
(
2s+1
s

)
equalities as the system of linear equa-

tions in
(
2s+1
s+1

)
variables of the first type. We prove that this system is non-

degenerate, and hence, the monomials of the first type lie in the linear span
of the monomials of the second type.

The matrix of this system is the following. Its columns are enumerated by
the s+ 1 element subsets of 2s+ 1 element set, and its rows are enumerated
by s element subsets of the same set The element of the column A and
the row B is equal to 1 if B ⊂ A, 0, otherwise. We note that this matrix
is S2s+1 equivariant, so its kernel has to be S2s+1 invariant subset. It is
easy to check that the

(
2s+1
s

)
dimensional module spanned by s+ 1 element

subsets of 2s+ 1 element set splits to s+ 1 irreducible representations and
all these representations don’t lie in the kernel of the matrix. □

Thus the ring k[SP2n]
n+

is generated by the allowed minors and the product
of any pair of uncomparable allowed minors can be expressed as the linear
combination of the products of pairs of the comparable minors (because they
satisfy the relations from Lemma 1.7).

Our next goal is to give a proof of the linear independence of products
of comparable allowed minors. We will use the method of toric degeneration
analogous to the case of GLn.

Lemma 1.17. The defining ideal of SP2n has a trivial intersection with
the polynomial subalgebra

k[zuv]v∈{1,2,...,n},(u,v) ̸=(k̄,l),k<l.
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Proof. We denote by F the field k(zuv)v∈{1,2,...,n},(u,v) ̸=(k̄,l),k<l. Consider the
n(n− 1)/2 relations

(1.4)

n∑

k=1

(zkuzk̄v − zk̄uzkv) = 0

for u, v ∈ {1, 2, . . . , n}. These relations are the subset of relations (1.2) con-
taining only zuv, v ∈ {1, . . . , n}. They are linear in variables zk̄v. Consider
the variables zk̄l, k < l. It is easy to see that the system (1.4) is triangular
with respect to these n(n− 1)/2 variables. Therefore these relations as a
system of equations on zk̄l, k < l, can be rewritten in the form

zk̄l − ak̄l, ak̄l ∈ F .

Thus they generate a proper ideal in the polynomial ring F [zk̄l] = F [zk̄l −
ak̄l]. Hence this ideal has trivial intersection with the field F and thus with
the ring k[zuv]v∈{1,2,...,n},(u,v) ̸=(k̄,l),k<l as well. Moreover we have:

F [zk̄l]/⟨zk̄l − ak̄l⟩ ≃ F .

Therefore the elements zuv, (u, v) = (k̄, l), k < l belong to F .
Take now an algebra F [zuv̄]u∈{1,1̄,...,n,n̄},v∈{1,...,n}. Consider the remaining

relations (1.2). They form an ideal in this ring. We need to prove that this
ideal is proper, i.e. it contains a point. However the vectors (zuv), with fixed
v ∈ {1, . . . , n} span a Lagrangian subspace L in 2n dimensional space over
F . Thus there is a Lagrangian subspace L spanned by (zuv), with fixed
v ∈ {1̄, . . . , n̄}, such that the vectors (zuv), v ∈ {1̄, . . . , n̄} are symplectic
dual to (zuv), v ∈ {1, . . . , n}. This gives a needed point. This completes the
proof. □

Theorem 1.18. Leading monomials for different products of comparable
allowed minors are different.

Proof. The leading monomial of an allowed minor mI is equal to

zi11 . . . zi|I|,|I| ⊂ k[zuv]v∈{1,2,...,n},(u,v) ̸=(k̄,l),k<l.

We identify the leading monomials of type SP2n with some leading monomi-
als of type SL2n. Renaming the indices (u, v) 7→ (2u− 1, v), (ū, v) 7→ (2u, v)
for u, v ∈ {1, 2, . . . , n}, the comparable minors come to comparable. Thus
this theorem is the partial case of Theorem 1.10. □
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Corollary 1.19. Different products of comparable allowed minors are dif-
ferent. In particular the products of comparable allowed minors form a basis
of k[G/U ]. They are called symplectic Young tableaux in [DC].

Corollary 1.20. There exists the toric degeneration of the flag variety in
type C similar to Gonciulea-Lakshmibai toric degeneration.

Remark 1.21. One could construct such a toric degeneration of flag vari-
eties only in types A and C. The essential property of allowed minors in type
C is that they form a subalgebra of the algebra generated by minors in type
A. This is not the case even for type SOn. Moreover any natural choice of
leading monomials in the products of right invariant minors in k[SOn] is not
closed under multiplication. In the case of spinor or exceptional groups the
situation is even worse. It is not so easy to describe the defining equations
for the group, so it is difficult to study the ring M inside the ring k[G].

2. Current algebras and Weyl modules

In this section we recall some properties of current groups and algebras.
We call the current Lie algebra the Lie algebra g⊗ k[t]. It is a subalgebra
of maximal parabolic subalgebra of the untwisted affine Kac-Moody Lie
algebra attached to g with codimension two. Consider a finite dimensional
Lie group G. We call the current group G[[t]] the group of k[[t]]-points of the
group G. Let g be the Lie algebra of the Lie group G. There is the natural
action of the Lie algebras g⊗ k[[t]], g⊗ k[t] on the ring of algebraic function
on G[[t]].

The variety G[[t]] is in the other terms called the variety of arcs over G
([Na]). For an affine variety the arc variety has the following description.

Assume that an affine variety V has the coordinate ring

k[x1 . . . , xr]/⟨p1(x1 . . . , xr), . . . , pl(x1 . . . , xr)⟩.

Then the arc variety has the following coordinate ring. We take the set of

variables x
(k)
i , i = 1, . . . , r; k = 0, 1, . . . and define the formal series:

(2.1) xi(s) =

∞∑

k=0

x
(k)
i .

Then the coordinate ring of the arc variety is

k[x
(k)
i ]/⟨p1(x1(s), . . . , xr(s)), . . . , pl(x1(s), . . . , xr(s))⟩,
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where p1(x1(s) . . . , xr(s)) means the set of all s-coefficients of this polyno-
mial. (See for details [Fr, EM])

Proposition 2.1. The arc scheme of an algebraic group is reduced, i.e. its
coordinate ring has no nilpotents.

Proof. This scheme is the group scheme (of k[[t]] points). Therefore it is
reduced ([Oo]). □

We are interested in the following representations of the current Lie
algebra.

Definition 2.2. [CP] Let λ ∈ P+. Then the global Weyl module W(λ) is
the cyclic g⊗ k[t] module with a generator vλ and the following defining
relations:

(eα ⊗ tk)vλ = 0, α ∈ ∆+, k ≥ 0;(2.2)

(f−α ⊗ 1)⟨α
∨,λ⟩+1vλ = 0, α ∈ ∆+.(2.3)

Local Weyl modules W (λ) are defined by previous conditions and one addi-
tional condition:

(2.4) h⊗ tkvλ = 0 for all h ∈ h, k > 0.

Weyl modules are the natural analogues of finite-dimensional simple g-
modules V (λ). They are graded by the degree of t:

W(µ) =

∞⊕

k=0

W(µ)(k)

with finite-dimensional homogeneous components. Therefore we can define
the restricted dual module:

W(µ)∗ =

∞⊕

k=0

(W(µ)(k))∗.

Dual global Weyl modules have the following properties.

Lemma 2.3. W(µ)∗ is cocyclic, i.e. there exists an element (cogenerator)
v∗ ∈ W(µ)∗ such that for any element u ∈ W(µ)∗ there exists an element
f ∈ U(g⊗ k[t]) such that fu = v∗. The set of cogenerators coincides with
(W(µ)(0))∗ ≃ V (µ)∗ .
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Proof. This is a direct consequence of the fact that Weyl module is cyclic.
□

For a dominant weight λ =
∑rk(g)

k=1 mkωk we define

(q)λ =

rkg∏

k=1

mk∏

i=1

(1− qi).

Each Weyl module is graded by the h-weights and by t-degree. For any
g⊗ k[t]-module U with such a grading let U(ν,m), ν ∈ h∗, m ∈ Z be the
weight space of the corresponding weight.

Definition 2.4.

ch U =
∑

ν,m

dimU(ν,m)xνqm.

Proposition 2.5. [CFK, N]

chW(µ) =
chW (µ)

(q)µ
.

Moreover, the algebra of endomorphisms of W(µ) is a polynomial alge-
bra generated by hαi

tr, 1 ≤ r ≤ ⟨µ, αi⟩. We denote this algebra by Aµ. This
makes W(µ) the g-Aµ bimodule.

Lemma 2.6. [Kat1] The g⊗ k[t]-submodule of W(λ)⊗W(µ) generated by
vλ ⊗ vµ is isomorphic to W(λ+ µ).

Corollary 2.7. There exists a surjection of dual Weyl modules:

(2.5) W
∗(λ)⊗W

∗(µ) ↠ W
∗(λ+ µ),

inducing the structure of associative and commutative algebra on the space⊕
λ∈P+

W
∗(λ). We denote this algebra by W = W(g).

Remark 2.8. The algebra W is an analogue of the algebra
⊕

λ∈X+
V (λ)∗.

The following proposition is a direct consequence of Corollary 2.7.

Proposition 2.9. W is generated by the space
⊕rk(g)

k=1 W(ωk)
∗.
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The structure of this algebra is complicated and we want to study this
algebra using the algebra k[G[[t]]] of functions on the current algebraic group.

Analogously to the usual (left) Weyl modules on can define the right
Weyl modules W(λ)o and dual right Weyl modules W(λ)o∗. These modules
are Aλ-g bimodules. Thus we can define the g-g bimodules

W(λ)∗ ⊗Aλ
W(λ)o∗.

We have the following Peter-Weyl theorem for current algebras. Recall
that w0 is the longest element of the Weyl group.

Theorem 2.10. [FKM] For a simply-connected group G there is a filtration
on k[G[[t]]] with subquotients W(λ)∗ ⊗Aλ

W(λ)o∗. The components of this
filtration Fλ are cogenerated as b-b bimodules by elements v−w0(λ) ⊗ v−w0(λ)

of left and right weight −w0(λ) and t-degree 0.

Corollary 2.11.

k[G[[t]]]n+[t] ≃ W.

In particular it is generated by the components of fundamental weights ωi.

Proof. Consider the space of n+[t]-invariant vectors of right h-weights λ. For
an element u of this space we have un+ ̸= 0 ⇔ ∃γ ∈ ∆+, k ≥ 0,wt(ueγt

k) >
λ and thus u is not cogenerated by element of weight λ.

Therefore the space of elements cogenerated by v−w0(λ) ⊗ v−w0(λ) and
n+ invariant is equal to

W
∗
λ ⊗Aλ

Aλ.

Thus it is isomorphic to W
∗
λ as the left module. We have that

v−w0(λ) ⊗ v−w0(λ) × v−w0(µ) ⊗ v−w0(µ) 7→ v−w0(λ+µ) ⊗ v−w0(λ+µ).

Thus by cocyclicity we have that the algebra structure of k[G[[t]]]n+[t] coin-
cides with W. □

3. Semi-infinite Plücker relations in type A

The goal of this section is to give an easier and conceptually different proof of
the results of [FeMa2]. We recall the construction of quadratic semi-infinite
Plücker relations. Then we prove that they form a basis of ideal of relations
using arc varieties over toric degenerations.
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3.1. Structure of the algebra of functions on current group

Recall (1.1):

(3.1) k[SLn] ≃ k[zij ]

/〈
det




z11 · · · z1n
...

. . .
...

zn1 · · · znn


− 1

〉
.

We are interested in the current group of this group, or in the other
terms we consider the arc variety with the following algebra of functions.

Consider the family of variables z
(k)
ij , 1 ≤ i, j ≤ n, k = 0, 1, . . . . As before we

define:

zij(s) :=

∞∑

k=0

z
(k)
ij s

k.

Then we have:

(3.2) k[SLn[t]] ≃ k[z
(k)
ij ]

/〈
det




z11(s) · · · z1n(s)
...

. . .
...

zn1(s) · · · znn(s)


− 1

〉
.

Here as before ⟨f(s)⟩ means the ideal generated by all s-coefficients of f(s).
The right action of the current Lie algebra g[t] on this algebra is the follow-
ing.

Let eab be the matrix unit, then the element eabt
c acts in the following

way:

z(k)uv eabt
c =

{
z
(k−c)
ub , if a = v; k − c ≥ 0;

0, otherwise.

The left action can be described in a similar way.
We study the ring of n+[t] invariant functions with respect to the right

action. The next proposition tells that this ring is generated by coefficients
of minors on first columns.

Let I ⊂ {1, . . . , n} be a nonzero proper subset, let i1 < i2 < · · · < ik be
the elements of I.

Definition 3.1.

mI(s) = det




zi11(s) · · · zi1k(s)
...

. . .
...

zik1(s) · · · zikk(s)
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Expanding mI(s) we denote its coefficients:

mI(s) =:

∞∑

k=0

m
(k)
I sk.

Proposition 3.2.

k[SLn[[t]]]
n+[t] = k[m

(k)
I ]I⊂{1,...,n},|I|̸=0,n,k≥0

Proof. Clearly each m
(k)
I is invariant under n+[t]. The Weyl module Wωp

has the graded dimension equal to the graded dimension of the linear span
of these elements with |I| = p. Therefore the space of invariant functions
of the right weight ωp is equal to the span of these elements. Therefore
Proposition 2.9 and Corollary 2.11 imply the desired equality. □

3.2. Semi-infinite Plücker relations

From this moment till the end of this section we study the algebra generated

by m
(k)
I . We have proved that this algebra is isomorphic to the algebra of

dual Weyl modules. We denote the algebra generated by m
(k)
I by W too.

Denote by W[[s]] the algebra of formal series in variable s over algebra W.
First we recall semi-infinite Plücker relations.

Recall the order 1.4 on the proper nonzero subsets of {1, . . . , n}.

Definition 3.3. Assume that for some I ≺ J we have the following set of
inequalities:

i|J | ≤ j|J |, . . . , ik1+1 ≤ ik1+1,

ik1
> jk1

, ik1−1 ≥ jk1−1, . . . , ik2+1 ≥ jk2+1,

ik2
< jk2

, ik2−1 ≤ jk2−1, . . . .

We define strictly decreasing sequence of elements

S(I, J) = (i|I|, i|I|−1, . . . , i|J |+1, . . . , ik1+1, ik1
, jk1

, jk1−1, . . . , jk2
, ik2

, . . . ).

We set

k(I, J) = |S(I, J)| − |I|.

We call the set S(I, J) the snake. The number k(I, J) measures how
much uncomparable are I and J , k(I, J) = 0 iff I and J are comparable.

These monomials satisfy the following relations (see [FeMa2]).
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Proposition 3.4. a). For any k′ ≤ k(I, J)− 1 we have the following equal-
ity in W[[s]]:

(3.3)
∑

A⊂S(I,J),|A|=|I∩S|

(−1)sign(A)∂
k′

mI\S∪A(s)

∂sk′ mI\S∪(S\A)(s) = 0.

b). The series

∂k
′

mI(s)

∂sk′ mJ(s)

is the leading part in the left hand side of the previous equation.

Recall the monomial order from Definition 1.4. We define the order on
monomials m

(k1)
I1 . . .m

(ka)
Ia such that

m
(k1)
I1 . . .m

(ka)
Ia ≽ m

(l1)
J1 . . .m

(lb)
Jb ⇔ mI1 . . .mIa ≽ mJ1 . . .mJb .

In particular this order doesn’t fill the upper indices and elements which
differ only by the upper indices are equivalent.

We now consider the degeneration of equations (3.3) with respect to the
order ≺.

Definition 3.5. We denote by W̃ the free polynomial algebra with gener-

ators m̄
(k)
I modulo the relations

(3.4)
∂k

′

m̃I(s)

∂sk′ m̃J(s) = 0, 0 ≤ k′ < k(I, J).

Clearly the character of the degenerate algebra is greater than or equal
to the character of the algebra W.

We use the notation αi = εi − εi+1; ωk =
∑k

p=1 εp. In these notation the

grading of an elementm
(k)
I is equal to

∑|I|
p=1 εipq

k. Note that the semi-infinite
Plücker relations are homogenous with respect to this grading.

Degenerate Plücker relations are homogenous with respect to a stronger
grading. More precisely consider the free commutative semigroup generated
by nonempty proper subsets I ⊂ {1, . . . , n} and the variable δ. Attach the

grading I + kδ to the variable m
(k)
I . Then it is clear that the relations (3.4)

are homogenous with respect to this grading. We use the notation xδ = q.
For a Nδ-graded space V =

⊕
p Vp we define its q-dimension by

∑
p dimVpq

p.
Our next goal is to compute the q-dimension of N[I]-homogenous com-

ponents of the algebra W̃ and to describe its basis. Denote these components
by W̃r for r = (rI).
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The next proposition is proven in [FeMa2]. We give it with the complete
proof because we use the methods of this proof in the study of arcs over
toric degeneration below. Recall the notation (q)r =

∏r
i=1(1− qi).

Proposition 3.6.

(3.5) chW̃r =
q
∑

I≺J
k(I,J)rIrJ

∏
I(q)rI

.

Proof. We consider a functional realization of the dual space of W̃r. Namely,
given a linear function ξ on the space W̃r, we attach to it the polynomial fξ
in variables YI,p, I ⊂ {1, . . . , n}, 1 ≤ p ≤ rI defined as follows:

(3.6) fξ = ξ
(∏

I

rI(YI,1) . . . rI(YI,rI )
)
.

We claim that formula (3.6) defines an isomorphism between the space of

functionals on W̃(
∑

I rII) and the space Pol(
∑

I rII) of polynomials f in
variables YI,p subject to the following conditions:

• f is symmetric in variables YI,j for each I,

• f is divisible by (YI,j1 − YJ,j2)
k(I,J) for all I, J, j1, j2.

The first condition holds because of commutativity of multiplication in W̃ .
The second one comes from the relations (3.4). Indeed these relations mean
that this space contains polynomials in YI,p which go to 0 under the substi-
tution YI,p = YJ,q with their YI,p-derivatives from 0th to k′(I, J)− 1st.

We note that the q-dimension on W̃r is now translated into the counting
of the total degree in all variables YI,p. Now the q-character of the space
Pol(

∑
I rII) is given by

(3.7)
q
∑

I≺J
k(I,J)rIrJ

∏
σ(q)rσ

.

Indeed, (q)−1
r is the character of the space of symmetric polynomials in r

variables and the factor
∏

I≺J(YI,p1
− Yτ,p2

)k(I,J) produces the numerator of
the above formula. □
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Corollary 3.7. The homogeneous component W̃r ⊂ W̃ has the basis con-
sisting of monomials of the form

(3.8)
∏

I⊂{1,...,n}

m
(l1,I)
I . . .m

(lrI ,I)
I , 0 ≤ l1,I ≤ · · · ≤ lrI ,I

such that l1,I ≥
∑

J≺I k(I, J)rJ .

Proof. We note that the character of the set of monomials (3.8) is equal to

(3.7). Hence it suffices to show that the elements (3.8) span the space W̃r.

Assume that there exists an element ξ ∈ (W̃r)
∗ vanishing on all the

monomials (3.8). We want to show that in this case ξ is zero; equiva-
lently, we need to prove that fξ = 0. A non-zero polynomial divisible by∏

I≺J(YI,p1
− YJ,p2

)k(I,J) contains a monomial

(3.9)
∏

I⊂{1,...,n}

Y
l1,I
I . . . Y

lrI ,I

I , 0 ≤ l1,I ≤ · · · ≤ lrI ,I

such that l1,I ≥
∑

J≺I rJJ (coming from the choice of the term Y
k(I,J)
J,p2

in

each bracket (YI,p1
− YJ,p2

)k(I,J)). However, the coefficient in front of mono-

mial (3.9) is equal to ξ(m
(l1,J)
J . . .m

(lrJ ,J)
J ). Therefore, if ξ vanishes on all the

elements (3.8), then fξ is zero. □

3.3. Arcs for toric degeneration

We need the following lemma.

Lemma 3.8. The defining ideal of SLn[[t]] has the trivial intersection with

the polynomial algebra k[z
(k)
uv ](u,v) ̸=(n,n).

Proof. Rewrite the generating function of the generators of defining ideal in
the following form:

(3.10) det




z11(s) · · · zn1(s)
...

. . .
...

z1n(s) · · · znn(s)


− 1 =

n∑

i=1

zni(s)m{1,...,n}\{i}(s)− 1.

Each s-coefficient of this element is a linear function on z
(k)
nn with co-

efficients in k[z
(k)
uv ](u,v) ̸=(n,n). Moreover this is a triangular linear system,
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because the coefficient of sl depends only on z
(l)
nn, l ≤ k. Hence these co-

efficients generate a proper ideal in the polynomial algebra F [z
(l)
nn], where

F = k(z
(k)
uv )(u,v) ̸=(n,n). Thus this ideal doesn’t intersect F . This completes

the proof. □

Consider the following order ◁ on variables z
(k)
uv . It is lexicographic with

respect to lower indices and it doesn’t feel the upper indices. More pre-

cisely z
(k)
uv ◁ z

(k′)
u′v′ if v < v′ or v = v′ and u < u′. Note that all variables are

comparable with respect to this order and for fixed u, v variables z
(k)
uv are

equivalent. We introduce the degree-restricted lexicographic order on mono-

mials in z
(k)
uv . This is a monomial order, i.e. for monomials a, b, c if a◁ b,

then ac◁ bc.
Note that all coefficients of minors m

(k)
I lie in the polynomial algebra

k[z
(k)
uv ], (u, v) ̸= (n, n) due to Lemma 3.8. Then the following lemma is obvi-

ous.

Lemma 3.9. The leading part of mI(s) with respect to ◁ is equal to

dI(s) := zi11(s)zi22(s) . . . zi|I||I|(s).

We denote by d
(k)
I the coefficient of sk in the series dI(s), i.e.:

dI(s) :=

∞∑

k=0

d
(k)
I .

Remark 3.10. The algebra k[d
(k)
I ] is the reduced function algebra on the

affine toric degeneration of flag variety. The classical toric degeneration of
the flag variety is due to Gonciulea-Lakshmibai [GL].

The goal of the remainder of this section is to prove that the leading
parts of monomials from (3.8) are linear independent.

Lemma 3.11. The leading part of

∏

I⊂{1,...,n}

m
(l1,I)
I . . .m

(lrI ,I)
I , 0 ≤ l1,I ≤ · · · ≤ lrI ,I

is equal to

∏

I⊂{1,...,n}

d
(l1,I)
I . . . d

(lrI ,I)
I , 0 ≤ l1,I ≤ · · · ≤ lrI ,I
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Proof. The order ◁ is monomial. Therefore the leading part of a product is
equal to the product of leading parts. □

We have:

d
(k)
I ∈ k[z

(k)
ij ]i≥j .

Consider the vector space

Ur := ⟨
∏

I⊂{1,...,n}

d
(l1,I)
I . . . d

(lrI ,I)
I , 0 ≤ l1,I ≤ · · · ≤ lrI ,I⟩

with fixed vector of numbers r = (rI) and arbitrary (lp,I). We study the
functional realization of the dual space U∗

r
. We take

∑
I rI variables YI,p,

1 ≤ p ≤ rI and consider the expression

(3.11)
∏

I

dI(YI,1) . . . dI(YI,rI ).

Clearly the coefficients of this expression are all of the form

∏

I

d
(l1,I)
I . . . d

(lrI ,I)
I .

They span a subspace of the space spanned by elements

∏

u≥v

z(kuv,1)
uv . . . z(kuv,auv )

uv ,

where auv =
∑

I|iv=u rI , i.e. auv is equal to the number of appearance of zuv
as a factor of dI . Denote this vector of numbers auv by a and this subspace
by Va.

Consider the expression

(3.12)
∏

uv

zuv(Xuv,1) . . . zuv(Xuv,auv
).

As before for each χ ∈ V ∗
a
we define the function:

fχ := χ
(∏

uv

zuv(Xuv,1) . . . zuv(Xuv,auv
)
)
.

The functions fχ form the following space (in fact, the algebra):

k[Xuv,p]
Sa11

×Sa21
×...
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of polynomials inXuv,p symmetric in all group of variablesXuv,1, . . . , Xuv,auv
.

Thus the space V ∗
a
is naturally isomorphic to this space of polynomials.

Note that we have the following substitution map

(3.13) φr : Xuv,
∑

iv=jv=u,I◁J
rI+j 7→ YJ,j .

Then to each variable YI,j we substitute |I| variables Xikk,p. By the
construction we have:

(3.14) φr

(
∏

uv

zuv(Xuv,1) . . . zuv(Xuv,auv
)

)
=
∏

I

dI(YI,1) . . . dI(YI,rI ).

We have:

U∗
r
= V ∗

a
/ann(Ur),

where ann(Ur) is the annihilator of the subspace (Ur). Thus the functional
realization of U∗

r
can be obtained in the following way. We fix χ ∈ Va∗. Then

fχ(YI,p) = χ(
∏

I

dI(YI,1) . . . dI(YI,rI )).

Hence the dual space of Ur is naturally isomorphic to φr(k[Xuv,p]
Sa11

×Sa21
×...).

Remark 3.12. Note that φr(k[Xuv,p]
Sa11

×Sa21
×...) ⊂ k[YI,j ]

×IS|I| . In gen-
eral this inclusion is not an equality.

Example 3.13. Consider the case n = 3. Then we have 6 Plücker variables
with leading monomials

d1 = z11, d2 = z21, d3 = z31, d12 = z11z22, d13 = z11z32, d23 = z21z32.

Take a vector r = (r1, r2, r3, r12, r13, r23). Then:

a11 = r1 + r12 + r13, a21 = r2 + r23, a31 = r3, a22 = r12, a32 = r13 + r23.

The space V ∗
a
is isomorphic to the following algebra:

(3.15) k[X11,1, . . . , X11,a11
, X21,1, . . . , X21,a21

, X31,1, . . . , X31,a31
,

X22,1, . . . , X22,a22
, X32,1, . . . , X32,a32

]Sa11
×Sa21

×Sa31
×Sa22

×Sa32

i.e. the algebra of polynomials symmetric in five groups of variables.
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The map φr is as follows:

X11,p 7→ Y12,p; p = 1, . . . , r12, X11,r12+p 7→ Y13,p, p = 1, . . . , r13,

X11,r12+r13+p 7→ Y1,p, p = 1, . . . , r1;

X21,p 7→ Y23,p; p = 1, . . . , r23, X21,r23+p 7→ Y2,p; p = 1, . . . , r2;

X31,p 7→ Y3,p; p = 1, . . . , r23;

X22,p 7→ Y12,p; p = 1, . . . , r12;

X32,p 7→ Y13,p; p = 1, . . . , r13, X32,r13+p 7→ Y23,p; p = 1, . . . , r23.

In particular the image of φr is the subalgebra in k[YI,p] generated by
five subalgebras isomorphic to symmetric algebras in aij variables.

Next lemmas contain the properties of symmetric and supersymmetric
polynomials which we need for the proof.

Definition 3.14. We take k groups of variables Yl,i, l = 1, . . . , k, i = 1, . . . ,
rl and q subsets Sj ⊂ {1, . . . , k}. We denote:

RSj
= k[Yl,i]

S∑
l∈Sj

rl

l∈Sj , i=1,...,rl
.

We define the subalgebra generated by k subalgebras of symmetric functions:

R{S1,...,Sq} := k[RS1
, . . . ,RSk

] ⊂ k[Yl,i]l=1,...,k, i=1,...,rl .

Lemma 3.15. Assume that q = k and the indicator matrix (δji ), δ
j
i = 1 if

i ∈ Sj, 0 otherwise, is invertible. Then:

R{S1,...,Sq} = k[Yl,i]
Sr1

×···×Srk

l=1,...,k, i=1,...,rl
.

Proof. It is sufficient to prove that every power sum of elements in each
group belongs to this algebra, i.e.:

pl,m =

rl∑

i=1

Y m
l,i ∈ k[RS1

, . . . ,RSk
].

However by the construction we have:

∑

l∈Sj

pl,m ∈ RSj
⊂ k[RS1

, . . . ,RSk
].
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Then using the invertibility of (δji ) we have that pl,m are linear combi-
nations of these elements. This completes the proof of the lemma. □

Next lemma contains a property of supersymmetric functions. Recall the
definition.

Take two groups of variables A1, . . . , Ar, B1, . . . , Bl. A polynomial f ∈
k[Ai, Bj ]

Sr×Sl is called supersymmetric if the following holds for the sub-
stitution Ar 7→ X,Bl 7→ X:

f |Ar 7→X,Bl 7→X ∈ k[Ai, Bj , i ≤ r − 1, j ≤ l − 1]Sr−1×Sl−1 .

I.e. this substitution doesn’t depend on the variable X.

Lemma 3.16. The ring of supersymmetric functions is generated by coef-
ficients of the series ∏r

j=1(1− tAj)
∏l

j=1(1− tBj)
.

The ideal of the ring k[A1, . . . , Ar, B1, . . . , Bl]
Sr×Sl generated by

(3.16)
∏

1≤i≤r,1≤j≤l

(Ai −Bj)

belongs to the ring of supersymmetric polynomials and is equal to the kernel
of the substitution map f 7→ f |Ar 7→X,Bl 7→X .

Proof. The first claim is proved in [M], Chapter 1.5. The second claim is
obvious. □

Take two numbers aα, aβ and two groups of variables Xα,1, . . . , Xα,aα
,

Xβ,1, . . . , Xβ,aβ
. Define the vector of numbers r = (rb, rc, rd) such that rb +

rc = aα, rd + rc = aβ and take three groups of variables B1, . . . , Brb , C1, . . . ,
Crc , D1, . . . , Drd . Consider the map

φr : k[Xα,1, . . . , Xα,aα
, Xβ,1, . . . , Xβ,aβ

]Saα×Saβ

→ k[B1, . . . , Brb , C1, . . . , Crc , D1, . . . , Drd ]
Srb

×Src×Srd :

φr(Xα,1) = B1, . . . , φr(Xα,ab
)

= Bab
, φr(Xα,ab+1) = C1, . . . , φr(Xα,ab+ac

) = Cac
;
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φr(Xβ,1) = D1, . . . , φr(Xβ,ad
)

= Dad
, φr(Xβ,ad+1) = C1, . . . , φr(Xβα,ad+ac

) = Cac
.

We consider the order r < r′ = (r′b, r
′
c, r

′
d) if rc < r′c.

Lemma 3.17. There exists a subspace

Sr ⊂ k[Xα,1, . . . , Xα,aα
, Xβ,1, . . . , Xβ,aβ

]Saα×Saβ

such that φr
′(Sr) = {0} for r′ > r and

φr(Sr) =∏

1≤i≤rb,1≤j≤rd

(Bi −Dj)k[B1, . . . , Brb , C1, . . . , Crc , D1, . . . , Drd ]
Srb

×Src×Srd .

Proof. We denote

R(r) := k[B1, . . . , Brb , C1, . . . , Crc , D1, . . . , Drd ]
Srb

×Src×Srd .

Define a substitution map R(r) → R(r′) for r′ > r.

ηr
′

r
: Brb 7→ Crc+1, Drd 7→ Crc+1, . . . , Brb−r′c+rc+1 7→ Cr′c , Drd−r′c+rc+1 7→ Cr′c .

Note that φr
′ = ηr

′

r
◦ φr. Consider the coefficients of the formal series

∏aα

i=1(1− tXα,i)∏aβ

i=1(1− tXβ,i)
.

By Lemma 3.16 their image under φr generate the ring of supersymmetric
functions in B1, . . . , Brb and D1, . . . , Drd and in particular the space

∏

1≤i≤rb,1≤j≤rd

(Bi −Dj)k[B1, . . . , Brb , D1, . . . , Drd ]
Srb

×Srd .

Using Lemma 3.14 we have that the image of φr contains the whole principal
ideal generated by ∏

1≤i≤rb,1≤j≤rd

(Bi −Dj).

However:

ηr
′

r

∏

1≤i≤rb,1≤j≤rd

(Bi −Dj) = 0.

Therefore the preimage of this subspace under φr is the needed subspace
Sr. This completes the proof of the lemma. □
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Fix a vector a = (auv)u≥v. We recall the order ≺ on the vectors r =
(rI). Our goal is to study the symmetric polynomials in Xuv,i which are
annihilated by all maps φr

′ for r′ ≻ r.
We use the following notation to simplify the formulas:

(3.17)
∏

1≤i≤rI ,1≤j≤rJ

(YI,i − YJ,j) =:
(
YI,i − YJ,j

)
.

We next prove the needed property of symmetric functions in the case rI = 0
for |I| ≥ 3 or equivalently auv = 0 for v ≥ 3. We omit the braces when we
write the set I, i.e. we use a notation {a, b} = ab.

Proposition 3.18. Assume that auv = 0 for v ≥ 3. Then for each r there
exists a subspace Sr such that

φr
′(Sr) = 0 for r′ ≻ r;

φr(Sr) =
∏

a<b<c<d

(Yad,i − Ybc,j)k[YI,j ]
×IS|I| .

Proof. For a subset I we define the set of variables XI
uv,l, l = 1, . . . , aIuv,

where

aIuv = auv −
∑

jv=u,J⪯I

rJ .

Define then the algebra RI of polynomials symmetric in groups of variables
YJ,l, J ≺ I and XI

uv,l. Note that the order ≺ is linear, therefore the largest

element I ′ such that I ′ ≺ I is well defined, denote it by I−. In the same
way we denote by I+ the smallest element larger than I. We denote I++ :=
(I+)+, etc. Then we have the map φI

r
: RI−

→ RI :

φI
r
(XI−

l ) = YI,l, l ≤ rI ; φ
I
r
(XI−

uv,rI+l) = XI
uv,l, if Iv = u;

φI
r
(XI−

uv,l) = XI
uv,l, otherwise;

φI
r
(YJ,l) = YJ,l, J ≺ I.

Then φr is equal to the composition of all maps φI
r
.

Note that the conditions |I| ≤ 2 means that if (u, v) ̸∈ {(i1, 1), (i2, 2)},
then the map φI

r
bijectively sets the group of variables XI−

uv,p to the group
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of variables XI
uv,p. Thus we can apply Lemma 3.17 to the groups of vari-

ables XI−

i11,p
, XI−

i22,p
. Hence there exists the subspace SI

r
whose image is the

principal ideal generated by

∏

l=1,...,aI
i11,m=1,...,aI

i22

(XI
i11,l −XI

i22,m)

and φI
r
′(SI

r
) = 0 if r′I > rI .

One can compute:

φ
{n}
r ◦ φ

{n−1}
r ◦ · · · ◦ φI++

r
◦ φI+

r


 ∏

l=1,...,aI
i11,m=1,...,aI

i22

(XI
i11,l −XI

i22,m)




=
∏

i1<b<i2<c

(
Yi1c − Ybi2

)
.

Thus comparing the properties of maps φI
r
we obtain that there is a

subspace Sr such that for each I its image under φI−

r
◦ . . . φ12

r
is contained

in SI
r
and φ(Sr) is equal to

∏
a<b<c<d(Yad,i − Ybc,j)k[YI,j ]

×IS|I| . If r′ ≻ r,
then there exists the smallest I such that rI < r′I . Then the algebras RJ are
the same for J ≺ I. Therefore the space SI

r
is contained in the kernel of φI

r
′

and thus Sr is contained in the kernel of φr
′ . This completes the proof of

the proposition. □

Now we a ready to prove the needed property of the morphism φr in the
whole generality.

Theorem 3.19. For each r there exists a subspace Sr ⊂ k[Xuv,i]
×Sauv such

that

φr
′(Sr) = 0 for r′ ≻ r;

φr(Sr) =
∏

I≺J

(YI,i − YJ,j)
k(I,J)

k[YI,j ]
×IS|I| .

Proof. We fix a number l, 1 ≤ l ≤ n− 1. Recall the truncation map. For
I ⊂ {1, . . . , n}, |I| ≥ l, we put

trl−1(I) := {il, . . . , i|I|},

i.e. this operation deletes from I its l − 1 smallest elements and is l − 1st
power of the operator tr deleting the smallest element of the set.
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For each subset U ⊂ {l, . . . , n− 1} we define

rl−1
U :=

∑

trl−1(I)=U

rI .

Denote the vector of these numbers by rl−1.
We construct the algebra Rl−1

r
l−1 as a symmetric algebra in Xuv,p, v ≤

l − 1, p = 1, . . . auv and Y l−1
U,p , U ⊂ {l, . . . , n− 1}, 1 ≤ p ≤ rl−1

U . In particular

R0
r
is a symmetric algebra is YI,p.
Define a map ψl

r
: Rl

r
l → Rl−1

r
l−1 :

Y l
U,p 7→ Y l−1

{1}∪U,p, p = 1, . . . , rl−1
{1}∪U ;

Y l
U,rl−1

{1}∪U
+p

7→ Y l−1
{1}∪U,p, p = 1, . . . , rl−1

{2}∪U , . . . ;

Xul,
∑

U′≺U
rl
U′p

7→ Y{u}∪U,p.

Then we have

φr := ψ1
r
◦ ψ2

r
· · · ◦ ψn−1

r
.

We equip the elements Y l
U,p the lexicographic order, i.e. U ◀ V if for some

p their p− 1 smallest elements coincide and the pth element of U is smaller
then the pth element on V . Note that this order doesn’t coincide with the
order ≺. Then we define the lexicographic order on the vectors rl−1 with
the same truncation to rl. Thus using Proposition 3.18 we have that there
exists a subspace S

r
l−1 ⊂ Rl

r
l such that for each r′l−1 ≻ rl−1 ψl−1

r
′l−1(Srl) = 0

and

ψl−1
r
′l−1(Srl−1) =

∏

U◀V,1≤a<b≤n

(
YU∪{b} − YV ∪{a}

)
Rl−1

r
l−1 .

Then we complete the proof of the theorem by induction. □

Corollary 3.20. The monomials (3.8) as elements of W are linear inde-
pendent.

Proof. The linear span of leading parts of monomials (3.8) has the same

graded dimension as the degenerate algebra W̃. However the graded di-
mension of the degenerate algebra is greater then or equal to the graded
dimension of original algebra and the linear span of leading parts of a set of
polynomials is less than or equal to the graded dimension of the linear span
of this set of polynomials. Therefore these dimensions are equal and the set
of monomials (3.8) is linear independent. This completes the proof of the
corollary. □
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4. Semi-infinite Plücker relations in type C

We consider the current group of the symplectic group. The algebra of

functions k[SP2n[[t]]] on this group is generated by elements z
(k)
uv , u, v ∈

{1, 1̄, . . . , n, n̄}, k = 0, 1, . . . and is defined by the relations:

n∑

l=1

zlu(s)zl̄v(s)− zl̄u(s)zlv(s) =





1, if v = ū

−1, if u = v̄

0, otherwise.

Analogously to the finite-dimensional case we have:

Proposition 4.1. For any I ⊂ {1, 2, . . . , n, 1̄, . . . , n̄}, |I| ≤ n− 2 we have:

mI∪{1,1̄}(s) +mI∪{2,2̄}(s) + · · ·++mI∪{n,n̄}(s) = 0,

where union means the union of multisets.

Our plan is to study the subalgebra of k[SP2n[[t]]] invariants under the
right n+[t] action. We first need to prove the analogue of Proposition 3.2 for
the symplectic algebra.

Proposition 4.2.

k[SPn[[t]]]
n+[t] = k[m

(k)
I ]I is allowed

Proof. The proof literally coincides with the proof of Proposition 3.2. □

It is clear that the minors in type Cn satisfy the same (semi-infinite
Plücker) relations as the minors in type A2n. More precisely for allowed I, J
we define the number k(I, J) as in Definition 3.3.

Proposition 4.3. a). For any k′ ≤ k(I, J)− 1 we have the following equal-
ity in W[[s]]:

(4.1)
∑

A⊂S(I,J),|A|=|I∩S|

(−1)sign(A)∂
k′

mI\S∪A(s)

∂sk′ mI\S∪(S\A)(s) = 0.

b). We have

∂k
′

mI(s)

∂sk′ mJ(s)

is the leading part of the previous equation.
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Thus one can define the degenerated algebra W̃ generated by allowed

minors m
(k)
I and satisfying the relations

(4.2)
∂k

′

mI(s)

∂sk′ mJ , k
′ < k(I, J).

The graded character of this algebra is greater than or equal to the graded

character of W. Attach the degree I + lδ to the allowed monomial m
(l)
I .

Proposition 4.4. The algebra W̃ is graded by the free group in generators
I ⊂ {1, 1̄ . . . , n, n̄}, ip ≥ p and symbol δ. It is isomorphic to the subalgebra of

the degenerated algebra W̃ of type A2n generated by minors m
(l)
I , ip ≥ 2p− 1.

In particular the character of the homogenous subset W̃r ⊂ W̃, r =
∑
rII,

of type Cn is equal to

(4.3) chW̃r =
q
∑

I≺J
k(I,J)rIrJ

∏
I(q)rI

.

The homogeneous component W̃r ⊂ W̃ has the basis consisting of monomials
of the form

(4.4)
∏

I⊂{1,...,n}

m
(l1,I)
I . . .m

(lrI ,I)
I , 0 ≤ l1,I ≤ · · · ≤ lrI ,I

such that l1,I ≥
∑

J≺I k(I, J)rJ , mI ,mJ are allowed minors.

Proof. The defining relations are homogenous with respect to the grading

coming from the attaching degree I + lδ to m
(l)
I .

We identify the algebra W̃ of type Cn with subalgebra of the algebra W̃

of type A2n in the following way. We identify the subsets I ⊂ {1, 1̄ . . . , n, n̄},
ip ≥ p with the subsets I ⊂ {1, . . . , 2n}, ip ≥ 2p− 1 by the map on elements
p 7→ 2p− 1, p̄ 7→ 2p. The map is well defined because the defining relations
of the algebra W̃ of type Cn coincide with the defining relations of this
subalgebra.

Each graded component W̃r goes to the graded component and the basis
(4.4) of this component goes to the basis (3.8) In particular the image of this
inclusion is the sum of some homogenous components of the graded algebra.
This gives the needed character formula. □

Next we prove the current analogue of Lemma 1.17.
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Lemma 4.5. The defining ideal of k[SP2n[[t]]] has trivial intersection with

the polynomial subalgebra k[z
(k)
uv ], v ∈ {1, 2, . . . , n}, (u, v) ̸= (p̄, l), p < l.

Proof. The proof is parallel to the proof of Lemma 1.17. Consider first the

algebra generated by elements z
(k)
uv , v ∈ {1, 2, . . . , n};

G′ := k[z(k)uv ]/⟨

n∑

k=1

zuv(s)zūv(s)− zūv(s)zuv(s)⟩.

Take the field F = k(z
(0)
uv ), v ∈ {1, 2, . . . , n}, (u, v) ̸= (p̄, l), p < l. Define the

algebra

G := F [z(k)uv ]/⟨

n∑

k=1

zuv(s)zūv(s)− zūv(s)zuv(s)⟩,

(u, v, k) ̸= ((p̄, l, 0), p < l. This is the algebra of fractions for G′. The series
zuv(s) ⊂ G[[s]], (u, v) ̸= (p̄, l), p < l, is invertible (because its free term is
invertible). Then as in the proof of Lemma 1.17 we have that the set of
n(n− 1)/2 equations

n∑

v=1

zuv(s)zūv(s)− zūv(s)zuv(s) = 0

is a triangular linear system for the n(n− 1)/2 variables zp̄,l(s), p < l and
the diagonal coefficients of this system are invertible. Therefore the defining
relations of G can be rewritten in the form:

zp̄l(s)− ap̄l(s) = 0, p < l, ap̄l ∈ F [z(k)uv ], v ∈ {1, 2, . . . , n},

(u, v) ̸= (p̄, l), p < l, k ≥ 1.

These are the linear equations one for each element z
(k)
p̄l , p < l. Hence the

ideal generated by these equations doesn’t intersect the ring F [z
(k)
uv ], v ∈

{1, 2, . . . , n}, (u, v) ̸= (p̄, l), p < l, k ≥ 1 and moreover the ring of polyno-

mials in z
(k)
uv , v ∈ {1, 2, . . . , n}, (u, v) ̸= (p̄, l), p < l. In particular we have

G ≃ F [z
(k)
uv ], v ∈ {1, 2, . . . , n}, (u, v) ̸= (p̄, l), p < l, k ≥ 1. Let G̃ be the frac-

tion field of this ring. Consider the algebra over this field generated by

variables z
(k)
uv , v ∈ {1̄, 2̄, . . . , n̄} modulo the remaining defining relations of

the algebra of functions over symplectic group, i.e. the relations that the
vectors (zuv̄(s)), u = 1, . . . , n, 1̄, . . . , n̄ are dual to the vectors (zuv(s)), u =
1, . . . , n, 1̄, . . . , n̄. As in the proof of Lemma 1.17 the ideal generated by these
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relations doesn’t intersect the field G̃((s)) because each Lagrangian subspace
in 2n dimensional symplectic space has a dual subspace. This completes the
proof. □

Next define the order of elements z
(k)
uv , u ∈ {1, . . . , n, 1̄, . . . , n̄}, v ∈ {1, . . . , n},

k ≥ 0 as the lexicographic order in (u, v), i.e. z
(k)
uv ≤ z

(k′)
u′v′ , if v < v′ or v = v′

and u ≤ u′ (recall the order 1 < 1̄ < · · · < n < n̄). Define the monomial or-
der on the monomials in these elements as the degree restricted lexicographic
order. Then we easily have that the leading part of the allowed minors in
mI(s) is equal to

dI(s) = zi1,1(s)zi2,2(s) . . . , zi|I|,|I|(s).

Our goal is to study the algebra

k[d
(k)
I ]

of leading terms of the algebra generated by allowed minors.

Proposition 4.6. The leading parts of the monomials (4.4) are linear in-
dependent. In particular the monomials (4.4) are linear independent.

Proof. Consider the identification zuv 7→ z2u−1,v, zūv 7→ z2u,v. This map sends
the leading terms of monomials in type C to leading parts of monomials in
type A. Then the comparison to the similar property of leading monomials
in type A completes the proof. □

We summarize the results of this section in the following theorem. We use
the notation eεl̄ = e−εl

Theorem 4.7. The algebra W in type SP2n is generated by allowed minors

m
(k)
I with defining relations (4.1) and its basis is (4.4). In particular the

character or the Weyl module W(
∑
λpωp) is the following:

∑

r

q
∑

I≺J
k(I,J)rIrJ

∏
I(q)rI


∏

I

|I|∏

k=1

eεik




rI

,

where the summation is on r such that
∑

|I|=p rI = λp.

Proof. We sum up the q degrees of homogenous components W̃ multiplied
by the weight of this components with respect to Cartan subalgebra. □
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