Counting twisted Higgs bundles

Sergey Mozgovoy and Ronan O’Gorman

Abstract

We prove an explicit formula, conjectured earlier by the first author, counting semistable twisted Higgs bundles over a smooth projective curve.

1. Introduction

Let X be a smooth projective curve of genus g defined over a finite field \mathbb{F}_{q}. Let L be a line bundle of degree ℓ over X and let $\mathcal{M}_{L}(r, d)$ be the moduli space of semistable L-twisted Higgs bundles over X. It parametrizes pairs (E, ϕ), where E is a vector bundle of rank r and degree d over X and $\phi: E \rightarrow E \otimes L$ is a homomorphism. A formula for the computation of the number of points of $\mathcal{M}_{L}(r, d)$ for coprime r, d was conjectured in [18] and is proved in this note.

The above conjecture was obtained as a solution of a recursive formula, called an ADHM recursion, conjectured by Chuang, Diaconescu, and Pan [3]. The ADHM recursion was itself based on a conjectural wall-crossing formula for the refined Donaldson-Thomas invariants on a noncompact 3CY variety $Y=L \oplus\left(\omega_{X} \otimes L^{-1}\right)$, where ω_{X} is the canonical bundle of X, as well as a conjectural formula for the asymptotic ADHM invariants. The latter invariants can be interpreted as Pandharipande-Thomas invariants of Y [21]. The formula counting them was derived in [3] by string theoretic methods, hence remains conjectural from the mathematical point of view.

On the other hand, the formula for $\mathcal{M}_{L}(r, d)$ conjectured in [18] can be considered as a generalization of the conjecture by Hausel and RodriguezVillegas [11] in the case of usual Higgs bundles, where the twisting line bundle L is equal to ω_{X}. A breakthrough for the counting of usual Higgs bundles was made by Schiffmann [23] who proved an explicit, albeit rather complicated formula for these invariants, quite different from the conjecture of [11]. An equivalence between these formulas was proved recently by purely combinatorial methods in a series of papers by Mellit [14-16].

Results on the invariants of moduli spaces of Higgs bundles for small rank and degree were obtained in [3, 7, 9-12, 22]. The conjecture of Hausel and

Rodriguez-Villegas was proved for the y-genus in [6]. An alternative general formula for twisted Higgs bundles on \mathbb{P}^{1} - in terms of quiver representations - was obtained in [19]. Other interesting results related to counting of Higgs bundles can be found in [1, 2, 4, 5].

In this paper we will apply Mellit's methods in order to prove a formula for general L-twisted Higgs bundles. This task will be rather straightforward as Schiffmann's computation was generalized earlier for twisted Higgs bundles in [20] (see §3). More precisely, let $\mathfrak{M}_{L}^{\text {ss }}(r, d)$ be the moduli stack of semistable L-twisted Higgs bundles over X. Given a finite type algebraic stack \mathcal{X} over \mathbb{F}_{q}, we define its volume (see $\$ 2.4$ for more details on volumes)

$$
\begin{equation*}
[\mathcal{X}]=\left(\# \mathcal{X}\left(\mathbb{F}_{q^{n}}\right)\right)_{n \geq 1}, \quad \# \mathcal{X}\left(\mathbb{F}_{q^{n}}\right)=\sum_{x \in \mathcal{X}\left(\mathbb{F}_{q^{n}}\right) / \sim} \frac{1}{\# \operatorname{Aut}(x)} \tag{1}
\end{equation*}
$$

Define (integral) Donaldson-Thomas (DT) invariants $\Omega_{r, d}$ using the plethystic logarithm (see \$2.2)

$$
\begin{equation*}
\sum_{d / r=\tau} \Omega_{r, d} T^{r} z^{d}=(q-1) \log \left(\sum_{d / r=\tau}\left(-q^{\frac{1}{2}}\right)^{-\ell r^{2}}\left[\mathfrak{M}_{L}^{\mathrm{ss}}(r, d)\right] T^{r} z^{d}\right), \quad \tau \in \mathbb{Q} \tag{2}
\end{equation*}
$$

Note that if r and d are coprime, then every $E \in \mathfrak{M}_{L}^{\text {ss }}(r, d)$ is stable and $\operatorname{End}(E)=\mathbb{F}_{q}$ (see Remark 3.1). Therefore

$$
\begin{equation*}
\frac{\left[\mathcal{M}_{L}(r, d)\right]}{q-1}=\left[\mathfrak{M}_{L}^{\mathrm{ss}}(r, d)\right]=\left(-q^{\frac{1}{2}}\right)^{\ell r^{2}} \frac{\Omega_{r, d}}{q-1} \tag{3}
\end{equation*}
$$

hence we can recover $\left[\mathcal{M}_{L}(r, d)\right.$] from the DT invariant $\Omega_{r, d}$. In the case of non-coprime r and d we can recover only the volumes $\left[\mathfrak{M}_{L}^{\text {ss }}(r, d)\right]$ from the DT invariants. Consider the zeta function of the curve X

$$
Z_{X}(t)=\exp \left(\sum_{n \geq 1} \frac{\# X\left(\mathbb{F}_{q^{n}}\right)}{n} t^{n}\right)=\frac{\prod_{i=1}^{g}\left(1-\alpha_{i} t\right)\left(1-\alpha_{i}^{-1} q t\right)}{(1-t)(1-q t)}
$$

where α_{i} are the Weil numbers of X (see $\$ 2.4$). The following result was conjectured in [18] (cf. §4.3). We formulate it in the case $\operatorname{deg} L>2 g-2$ (see Remark 4.5 for the case $L=\omega_{X}$).

Theorem 1.1. Assume that $p=\ell-(2 g-2)>0$. Given a partition λ and a box $s \in \lambda$, let $a(s)$ and $l(s)$ denote its arm and leg lengths respectively
(see \$2). Define
(4) $\quad \hat{\Omega}^{\circ}(T, q, z)=$

$$
\sum_{\lambda} T^{|\lambda|} \prod_{s \in \lambda}\left(-q^{a(s)} z^{l(s)}\right)^{p} \frac{\prod_{i=1}^{g}\left(q^{a(s)}-\alpha_{i}^{-1} z^{l(s)+1}\right)\left(q^{a(s)+1}-\alpha_{i} z^{l(s)}\right)}{\left(q^{a(s)}-z^{l(s)+1}\right)\left(q^{a(s)+1}-z^{l(s)}\right)}
$$

$$
\begin{equation*}
\sum_{r \geq 1} \Omega_{r}^{\circ}(q, z) T^{r}=(q-1)(1-z) \log \hat{\Omega}^{\circ}(T, q, z) \tag{5}
\end{equation*}
$$

Then $\Omega_{r}^{\circ}(q, z) \in \mathbb{Z}\left[q, z, \alpha_{1}^{ \pm 1}, \ldots, \alpha_{g}^{ \pm 1}\right]$ and $\Omega_{r, d}=q^{p r / 2} \Omega_{r}^{\circ}(q, 1)$ for all $d \in \mathbb{Z}$. In particular, if r, d are coprime, then

$$
\begin{equation*}
\left[\mathcal{M}_{L}(r, d)\right]=(-1)^{p r} q^{(g-1) r^{2}+p\binom{r+1}{2}} \Omega_{r}^{\circ}(q, 1) \tag{6}
\end{equation*}
$$

Note that, by the Weil conjectures, the formula for the Poincaré polynomials of the moduli spaces $\mathcal{M}_{L}(r, d)$ is obtained from the previous result by considering $\alpha_{i}=q^{\frac{1}{2}}$. It is unclear how to compute DT invariants when the twisting line bundle has degree $0<\ell<2 g-2$.

2. Preliminaries

2.1. Partitions

A partition is a sequence of integers $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \ldots\right)$ such that $\lambda_{n}=0$ for $n \gg 0$. We define its length $l(\lambda)=\#\left\{i \mid \lambda_{i} \neq 0\right\}$ and its weight $|\lambda|=\sum_{i} \lambda_{i}$. Define its Young diagram (also denoted by λ)

$$
\begin{equation*}
d(\lambda)=\left\{(i, j) \in \mathbb{Z}^{2} \mid i \geq 1,1 \leq j \leq \lambda_{i}\right\} \tag{7}
\end{equation*}
$$

An element $s=(i, j) \in \lambda$ is called a box of the Young diagram located at the i-th row and j-th column. Define the conjugate partition λ^{\prime} with λ_{j}^{\prime} equal the number of boxes in the j-th column of λ. Given a box $s=(i, j) \in \lambda$, define its arm and leg lengths respectively

$$
\begin{equation*}
a(s)=\lambda_{i}-j, \quad l(s)=\lambda_{j}^{\prime}-i \tag{8}
\end{equation*}
$$

Define the hook length $h(s)=a(s)+l(s)+1$.

Figure 1: Young diagram for $\lambda=(4,4,2)$. Here $\lambda^{\prime}=(3,3,2,2), s=(2,1)$, $a(s)=3, l(s)=1, h(s)=5$.

Define

$$
\begin{equation*}
n(\lambda)=\sum_{s \in \lambda} l(s)=\sum_{i \geq 1}\binom{\lambda_{i}^{\prime}}{2}=\sum_{i \geq 1}(i-1) \lambda_{i} \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
\langle\lambda, \lambda\rangle=\sum_{i \geq 1}\left(\lambda_{i}^{\prime}\right)^{2}=2 n(\lambda)+|\lambda| . \tag{10}
\end{equation*}
$$

Define

$$
\begin{equation*}
N_{\lambda}(u, q, t)=\prod_{s \in \lambda}\left(q^{a(s)}-u t^{l(s)+1}\right)\left(q^{a(s)+1}-u^{-1} t^{l(s)}\right) . \tag{11}
\end{equation*}
$$

One can show that

$$
\begin{equation*}
N_{\lambda}(u, q, t)=N_{\lambda^{\prime}}(u, t, q) . \tag{12}
\end{equation*}
$$

2.2. λ-rings and symmetric functions

For simplicity we will introduce only λ-rings without \mathbb{Z}-torsion. To make things even simpler we can assume that our rings are algebras over \mathbb{Q}. Then the axioms of a λ-ring can be formulated just in terms of Adams operations.

We define the (graded) ring of symmetric polynomials

$$
\Lambda_{n}=\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]^{S_{n}},
$$

where $\operatorname{deg} x_{i}=1$. We define the (graded) ring of symmetric functions $\Lambda=$ $\lim _{\leftarrow} \Lambda_{n}$, where the limit is taken in the category of graded rings. For any commutative ring A, we define $\Lambda_{A}=\Lambda \otimes_{\mathbb{Z}} A$. As in [13], we define generators
of Λ (complete symmetric and elementary symmetric functions)

$$
h_{n}=\sum_{i_{1} \leq \cdots \leq i_{n}} x_{i_{1}} \ldots x_{i_{n}}, \quad e_{n}=\sum_{i_{1}<\cdots<i_{n}} x_{i_{1}} \ldots x_{i_{n}}
$$

and generators of $\Lambda_{\mathbb{Q}}$ (power sums)

$$
p_{n}=\sum_{i} x_{i}^{n}
$$

The elements h_{n}, e_{n}, p_{n} have degree n. We also define $h_{0}=e_{0}=p_{0}=1$ for convenience. For any partition λ of length $\leq n$, define monomial symmetric polynomials $m_{\lambda}=\sum x^{\alpha} \in \Lambda_{n}$, where the sum runs over all distinct permutations $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ of $\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. They induce monomial symmetric functions $m_{\lambda} \in \Lambda$ which form a \mathbb{Z}-basis of Λ.

We define a λ-ring R to be a commutative ring (without \mathbb{Z}-torsion) equipped with a map

$$
\Lambda \times R \rightarrow R, \quad(f, a) \mapsto f[a]
$$

called a plethysm, such that, with $\psi_{n}=p_{n}[-]: R \rightarrow R$, called Adams operations, we have
(1) The map $\Lambda \rightarrow R, f \mapsto f[a]$, is a ring homomorphism, for all $a \in R$.
(2) $\psi_{1}: R \rightarrow R$ is the identity map.
(3) The map $\psi_{n}: R \rightarrow R$ is a ring homomorphism, for all $n \geq 1$.
(4) $\psi_{m} \psi_{n}=\psi_{m n}$, for all $m, n \geq 1$.

The first axiom implies that it is enough to specify just Adams operations $\psi_{n}=p_{n}[-]$ or σ-operations $\sigma_{n}=h_{n}[-]$ or λ-operations $\lambda_{n}=e_{n}[-]$. It also implies that $1[a]=1$, for all $a \in R$.

We equip algebras of the form $\mathbb{Q}\left[x_{1}, \ldots, x_{k}\right], \mathbb{Q}\left(x_{1}, \ldots, x_{k}\right), \mathbb{Q} \llbracket x_{1}, \ldots, x_{k} \rrbracket$ with the λ-ring structure given by

$$
\begin{equation*}
\psi_{n}(f)=p_{n}[f]=f\left(x_{1}^{n}, \ldots, x_{k}^{n}\right) \tag{13}
\end{equation*}
$$

Similarly, we equip the ring Λ of symmetric functions with the λ-ring structure given by

$$
\begin{equation*}
\psi_{n}(f)=p_{n}[f]=f\left(x_{1}^{n}, x_{2}^{n}, \ldots\right), \quad f \in \Lambda \tag{14}
\end{equation*}
$$

Note that $p_{m}\left[p_{n}\right]=p_{m n}$. If R is a λ-ring, then we have

$$
\begin{equation*}
f[g[a]]=(f[g])[a], \quad f, g \in \Lambda, a \in R \tag{15}
\end{equation*}
$$

Given two λ-rings R and R^{\prime}, we equip the ring $R \otimes_{\mathbb{Z}} R^{\prime}$ with the λ-ring structure given by

$$
\begin{equation*}
\psi_{n}(a \otimes b)=\psi_{n}(a) \otimes \psi_{n}(b), \quad a \in R, b \in R^{\prime} \tag{16}
\end{equation*}
$$

The ring Λ can be considered as a free λ-ring with one generator in the following sense. Consider the category Ring $_{\lambda}$ of λ-rings (with morphisms that respect plethystic operations). The forgetful functor $F: \operatorname{Ring}_{\lambda} \rightarrow$ Set has a left adjoint

$$
\text { Sym : Set } \rightarrow \operatorname{Ring}_{\lambda} .
$$

Given a finite set $\left\{X_{1}, \ldots, X_{n}\right\}$, we denote $\operatorname{Sym}\left\{X_{1}, \ldots, X_{n}\right\}$ by $\operatorname{Sym}\left[X_{1}, \ldots, X_{n}\right]$. Then, for a one-point set $\{X\}$, there is a unique isomorphism of λ-rings

$$
\operatorname{Sym}[X] \xrightarrow{\sim} \Lambda
$$

that maps X to p_{1}. We will usually identify Λ and $\operatorname{Sym}[X]$ using this isomorphism.

Let us define a filtered λ-ring R to be a λ-ring equipped with a filtration

$$
R=F^{0} R \supset F^{1} R \supset \ldots
$$

such that $F^{i} R \cdot F^{j} R \subset F^{i+j} R$ and $\psi_{n}\left(F^{i} R\right) \subset F^{n i} R$. It is called complete if the natural homomorphism $R \rightarrow \underset{\longleftarrow}{\lim } R / F^{i} R$ is an isomorphism. For example, the ring Λ is graded, hence we have a decomposition $\Lambda=\bigoplus_{k \geq 0} \Lambda^{k}$ into graded components. We equip Λ with the filtration $F^{k} \Lambda=\bigoplus_{i \geq k} \Lambda^{i}$ and define the completion

$$
\begin{equation*}
\hat{\Lambda}=\lim _{\leftrightarrows} \Lambda / F^{k} \Lambda \simeq \mathbb{Z} \llbracket h_{1}, h_{2}, \ldots \rrbracket . \tag{17}
\end{equation*}
$$

This ring can be considered as a free complete λ-ring with one generator. One can see that if R is a complete λ-ring, then the plethystic pairing extends
to

$$
\hat{\Lambda} \times F^{1} R \rightarrow R .
$$

In particular, the element

$$
\begin{equation*}
\operatorname{Exp}[X]=\sum_{n \geq 0} h_{n}[X]=\exp \left(\sum_{n \geq 1} \frac{p_{n}[X]}{n}\right)=\prod_{i \geq 1} \frac{1}{1-x_{i}} \in \hat{\Lambda} \tag{18}
\end{equation*}
$$

called a plethystic exponential, induces a map Exp : $F^{1} R \rightarrow 1+F^{1} R$ which satisfies

$$
\begin{equation*}
\operatorname{Exp}[a+b]=\operatorname{Exp}[a] \operatorname{Exp}[b] \tag{19}
\end{equation*}
$$

This map has an inverse, called a plethystic logarithm,
(20) $\quad \log : 1+F^{1} R \rightarrow F^{1} R, \quad \log [1+a]=\sum_{n \geq 1} \frac{\mu(n)}{n} p_{n}[\log (1+a)]$.

2.3. Modified Macdonald polynomials

For an introduction to modified Macdonald polynomials see [8] or [15]. Let \mathcal{P}_{n} denote the set of partitions λ with $|\lambda|=n$. Define the natural partial order on \mathcal{P}_{n} by

$$
\lambda \leq \mu \Longleftrightarrow \sum_{i=1}^{k} \lambda_{i} \leq \sum_{i=1}^{k} \mu_{i} \quad \forall k \geq 1
$$

One can show that $\lambda \leq \mu \Longleftrightarrow \mu^{\prime} \leq \lambda^{\prime}$ [13, 1.1.11]. Let $\Lambda^{\leq \lambda} \subset \Lambda$ be the subspace spanned by monomial symmetric functions $m_{\mu} \in \Lambda$ with $\mu \leq \lambda$.

Let us define

$$
\begin{equation*}
F=\mathbb{Q}(q, t), \quad \Lambda_{F}=\Lambda \otimes_{\mathbb{Z}} F \tag{21}
\end{equation*}
$$

We equip F and Λ with the λ-ring structures using (13) and (14), and we equip Λ_{F} with the λ-ring structure using (16). For any symmetric function $f \in \Lambda_{F}$, we will sometimes denote $f[X]$ by $f[X ; q, t]$ to indicate dependence
on q, t. Let $P_{\lambda}[X ; q, t] \in \Lambda_{F}$ be Macdonald polynomials [13, §6]. Define modified Macdonald polynomials $\widetilde{H}_{\lambda}[X ; q, t] \in \Lambda_{F}$ [8, I.8-I.11]

$$
\begin{align*}
\widetilde{H}_{\lambda}[X ; q, t] & =H_{\lambda}\left[X ; q, t^{-1}\right] \cdot t^{n(\lambda)} \\
H_{\lambda}[X] & =P_{\lambda}\left[\frac{X}{1-t}\right] \cdot \prod_{s \in \lambda}\left(1-q^{a(s)} t^{l(s)+1}\right) \tag{22}
\end{align*}
$$

Alternatively, one can uniquely determine $\widetilde{H}_{\lambda}[X ; q, t] \in \Lambda_{F}$ by the properties
(1) $\widetilde{H}_{\lambda}[(1-t) X] \in \Lambda_{\bar{F}}^{\leq \lambda}$.
(2) Cauchy identity:

$$
\sum_{\lambda} \frac{\widetilde{H}_{\lambda}[X] \widetilde{H}_{\lambda}[Y]}{\prod_{s \in \lambda}\left(q^{a(s)}-t^{l(s)+1}\right)\left(q^{a(s)+1}-t^{l(s)}\right)}=\operatorname{Exp}\left[\frac{X Y}{(q-1)(1-t)}\right]
$$

We have by [8, Cor. 2.1] (see also [13, 6.6.17])

$$
\begin{equation*}
\widetilde{H}_{\lambda}[1-u ; q, t]=\prod_{s \in \lambda}\left(1-q^{a^{\prime}(s)} t^{l^{\prime}(s)} u\right) \tag{23}
\end{equation*}
$$

where $a^{\prime}(s)=j-1, l^{\prime}(s)=i-1$ for $s=(i, j) \in \lambda$. This implies $\widetilde{H}_{\lambda}[1 ; q, t]=$ 1. The symmetric function \widetilde{H}_{λ} has degree $|\lambda|$, hence, applying it to $z \in F[z]$, we obtain

$$
\begin{equation*}
\widetilde{H}_{\lambda}[z ; q, t]=z^{|\lambda|} . \tag{24}
\end{equation*}
$$

Finally, we have by [8, Cor.2.2]

$$
\begin{equation*}
\widetilde{H}_{\lambda}[X ; q, t]=\widetilde{H}_{\lambda^{\prime}}[X ; t, q] . \tag{25}
\end{equation*}
$$

2.4. Volume ring

Following [17], we will introduce in this section a λ-ring which is an analogue of the Grothendieck ring of algebraic varieties or the ring of motives. We define it to be the ring $\mathcal{V}=\prod_{n \geq 1} \mathbb{Q}$ with Adams operations

$$
\begin{equation*}
\psi_{m}(a)=\left(a_{m n}\right)_{n \geq 1}, \quad a=\left(a_{n}\right)_{n \geq 1} \in \mathcal{V} \tag{26}
\end{equation*}
$$

and call it the volume ring or the ring of counting sequences [17.

Given an algebraic variety X over a finite field \mathbb{F}_{q}, we define its volume

$$
\begin{equation*}
[X]=\left(\# X\left(\mathbb{F}_{q^{n}}\right)\right)_{n \geq 1} \in \mathcal{V} \tag{27}
\end{equation*}
$$

More generally, given a finite type algebraic stack \mathcal{X} over \mathbb{F}_{q}, we define its volume

$$
\begin{equation*}
[\mathcal{X}]=\left(\# \mathcal{X}\left(\mathbb{F}_{q^{n}}\right)\right)_{n \geq 1} \in \mathcal{V} \tag{28}
\end{equation*}
$$

where, for the finite groupoid $\mathcal{G}=\mathcal{X}\left(\mathbb{F}_{q^{n}}\right)$, we define

$$
\begin{equation*}
\# \mathcal{G}=\sum_{x \in \mathcal{G} / \sim} \frac{1}{\# \operatorname{Aut}(x)} \tag{29}
\end{equation*}
$$

Let us fix a projective genus g curve X over the field \mathbb{F}_{q} and consider its zeta function

$$
\begin{align*}
& Z_{X}(t)=\exp \left(\sum_{n \geq 1} \frac{\# X\left(\mathbb{F}_{q^{n}}\right)}{n} t^{n}\right)=\frac{\prod_{i=1}^{g}\left(1-\alpha_{i} t\right)\left(1-\alpha_{i}^{-1} q t\right)}{(1-t)(1-q t)} \tag{30}\\
& \quad \# X\left(\mathbb{F}_{q^{n}}\right)=1+q^{n}-\sum_{i=1}^{g} \alpha_{i}^{n}-q^{n} \sum_{i=1}^{g} \alpha_{i}^{-n} \quad \forall n \geq 1 \tag{31}
\end{align*}
$$

Note that the zeta function $Z_{X}(t)$ (and the elements $\alpha_{i} \in \mathbb{C}$) is uniquely determined by the volume $[X]$ and, conversely, the volume $[X]$ is uniquely determined by the zeta function.

Let us consider the algebra

$$
\begin{equation*}
R_{g}=\mathbb{Q}\left[\boldsymbol{q}^{ \pm 1}, \boldsymbol{\alpha}_{1}^{ \pm 1}, \ldots \boldsymbol{\alpha}_{g}^{ \pm 1},\left(\boldsymbol{q}^{n}-1\right)^{-1}: n \geq 1\right] \tag{32}
\end{equation*}
$$

equipped with the usual λ-ring structure

$$
\psi_{n}(f)=f\left(\boldsymbol{q}^{n}, \boldsymbol{\alpha}_{1}^{n}, \ldots, \boldsymbol{\alpha}_{g}^{n}\right) \quad \forall f \in R_{g}
$$

We consider the λ-ring homomorphism

$$
\begin{equation*}
\sigma: R_{g} \rightarrow \mathcal{V}_{\mathbb{C}}=\prod_{n \geq 1} \mathbb{C}, \quad \boldsymbol{q} \mapsto\left(q^{n}\right)_{n \geq 1}, \quad \boldsymbol{\alpha}_{i} \mapsto\left(\alpha_{i}^{n}\right)_{n \geq 1} \tag{33}
\end{equation*}
$$

It restricts to

$$
\begin{equation*}
\sigma: R_{g}^{S_{g} \ltimes S_{2}^{g}} \rightarrow \mathcal{V} \tag{34}
\end{equation*}
$$

where S_{g} permutes variables $\boldsymbol{\alpha}_{i}$ and the i-th copy of S_{2} permutes $\boldsymbol{\alpha}_{i}$ and $\boldsymbol{q} \boldsymbol{\alpha}_{i}^{-1}$.

Note that $\sigma(\boldsymbol{q})=\left[\mathbb{A}^{1}\right]$, the volume of the affine line. Applying (31), we obtain

$$
\begin{equation*}
\sigma\left(1+\boldsymbol{q}-\sum_{i=1}^{g} \boldsymbol{\alpha}_{i}-\boldsymbol{q} \sum_{i=1}^{g} \boldsymbol{\alpha}_{i}^{-1}\right)=[X] . \tag{35}
\end{equation*}
$$

In this paper we will express volumes of stacks as images under σ of some elements in R_{g}. For simplicity, we will write $[\mathcal{X}]=f$, whenever $[\mathcal{X}] \in \mathcal{V}$ and $f \in R_{g}$ satisfy $[\mathcal{X}]=\sigma(f)$. Also, we will write q and α_{i} instead of \boldsymbol{q} and $\boldsymbol{\alpha}_{i}$ respectively, hoping it will not lead to any confusion.

3. Positive Higgs bundles

In this section we will review the formula from [20] counting positive Higgs bundles. Then we will simplify it using an approach from [16]. Let X be a smooth projective curve of genus g over a field \mathbb{k} and let L be a line bundle of degree ℓ over X. Given a coherent sheaf $E \in \operatorname{Coh} X$, we define its slope $\mu(E)=\operatorname{deg} E / \operatorname{rk} E$ and we call E semistable if $\mu(F) \leq \mu(E)$ for all $F \subset E$.

Remark 3.1. We call E stable if $\mu(F)<\mu(E)$ for all proper $F \subset E$. In this case $K=\operatorname{End}(E)$ is a finite-dimensional division algebra over \mathbb{k} by Schur's lemma. In particular, $K=\mathbb{k}$ if \mathbb{k} is algebraically closed. If $\mathrm{rk} E$ and $\operatorname{deg} E$ are coprime and E is semistable, then E is automatically stable. Let us show that if rank and degree are coprime and the field \mathbb{k} is finite, then $K=\mathbb{k}$. First of all, K is a finite (Galois) field extension of \mathfrak{k} by Wedderburn's little theorem. We can decompose $E_{K}=E \otimes_{\mathbb{k}} K$ over $X_{K}=X \times_{\text {Speck }}$ Spec K as a direct sum $\bigoplus_{\sigma \in \operatorname{Gal}(K / \mathbb{k})} F^{\sigma}$, where F^{σ} have the same rank and degree [17]. If $[K: \mathbb{k}]>1$, this would imply that $\mathrm{rk} E$ and $\operatorname{deg} E$ are not coprime, a contradiction.

Every coherent sheaf $E \in \operatorname{Coh} X$ has a unique filtration, called a HarderNarasimhan filtration,

$$
0=E_{0} \subset E_{1} \subset \ldots \subset E_{n}=E
$$

such that E_{i} / E_{i-1} are semistable and $\mu\left(E_{1} / E_{0}\right)>\cdots>\mu\left(E_{n} / E_{n-1}\right)$. We will say that E is positive if $\mu\left(E_{n} / E_{n-1}\right) \geq 0$. Equivalenly, for any semistable sheaf F with $\mu(F)<0$, we have $\operatorname{Hom}(E, F)=0$.

Recall that an L-twisted Higgs sheaf is a pair (E, ϕ), where E is a coherent sheaf over X and $\phi: E \rightarrow E \otimes L$ is a homomorphism. We will say that (E, ϕ) is positive if E is positive. Let $\operatorname{Higgs}_{L}(X)$ be the category of L-twisted Higgs sheaves and $\operatorname{Higgs}_{L}^{+}(X)$ be the category of positive L-twisted Higgs sheaves. We will say that $(E, \phi) \in \operatorname{Higgs}_{L}(X)$ is semistable if $\mu(F) \leq \mu(E)$ for every $\left(F, \phi^{\prime}\right) \subset(E, \phi)$.

Let $\mathfrak{M}_{L}(r, d)$ denote the stack of all Higgs bundles having rank r and degree $d, \mathfrak{M}_{L}^{\text {ss }}(r, d) \subset \mathfrak{M}_{L}(r, d)$ denote the stack of semistable Higgs bundles and $\mathfrak{M}_{L}^{+}(r, d) \subset \mathfrak{M}_{L}(r, d)$ denote the stack of positive Higgs bundles (not necessarily semistable). Assuming that \mathbb{k} is a finite field \mathbb{F}_{q}, we define (exponential) DT invariants

$$
\begin{equation*}
\hat{\Omega}_{r, d}=\left(-q^{\frac{1}{2}}\right)^{-\ell r^{2}}\left[\mathfrak{M}_{L}^{\mathrm{ss}}(r, d)\right] \tag{36}
\end{equation*}
$$

and define (integral) DT invariants by the formula

$$
\begin{equation*}
\sum_{d / r=\tau} \Omega_{r, d} T^{r} z^{d}=(q-1) \log \left(\sum_{d / r=\tau} \hat{\Omega}_{r, d} T^{r} z^{d}\right), \quad \tau \in \mathbb{Q} \tag{37}
\end{equation*}
$$

Ideally, one would like to define DT invariants by taking the plethystic logarithm of the series that counts volumes of the stacks $\mathfrak{M}_{L}(r, d)$ (of all Higgs bundles) of arbitrary slope, instead of the above formula, where the stacks $\mathfrak{M}_{L}^{\text {ss }}(r, d)$ of semistable Higgs bundles of a fixed slope are considered. The problem with this approach is that the stacks $\mathfrak{M}_{L}(r, d)$ have infinite volume in general. To resolve this issue, it was suggested in [20] to use the stacks $\mathfrak{M}_{L}^{+}(r, d)$ of positive Higgs bundles as an approximation of the stacks $\mathfrak{M}_{L}(r, d)$. Let us consider the series

$$
\begin{equation*}
\hat{\Omega}^{+}(T, q, z)=\sum_{r, d}\left(-q^{\frac{1}{2}}\right)^{-\ell r^{2}}\left[\mathfrak{M}_{L}^{+}(r, d)\right] T^{r} z^{d} \tag{38}
\end{equation*}
$$

and define positive (integral) DT invariants by the formula

$$
\begin{equation*}
\sum_{r, d} \Omega_{r, d}^{+} T^{r} z^{d}=(q-1) \log \hat{\Omega}^{+}(T, q, z) \tag{39}
\end{equation*}
$$

The following result was proved in [20]:
Theorem 3.2. For every $r \geq 1$, we have
(1) $\hat{\Omega}_{r, d+r}=\hat{\Omega}_{r, d}$.
(2) $\Omega_{r, d+r}=\Omega_{r, d}$.
(3) $\Omega_{r, d}=\Omega_{r, d}^{+}$for $d \gg 0$.

The last result implies that it is enough to find the positive DT invariants $\Omega_{r, d}^{+}$in order to determine the usual DT invariants $\Omega_{r, d}$. The following explicit formula for the series $\hat{\Omega}^{+}(T, q, z)$ was proved in [20].

Theorem 3.3. Assuming that $p=\ell-(2 g-2)>0$, we have

$$
\hat{\Omega}^{+}(T, q, z)=\sum_{\lambda}\left(-q^{\frac{1}{2}}\right)^{\ell(\lambda, \lambda)} z^{p n\left(\lambda^{\prime}\right)} J_{\lambda}(q, z) H_{\lambda}(q, z) T^{|\lambda|},
$$

where the sum runs over all partitions λ and $J_{\lambda}(q, z), H_{\lambda}(q, z)$ are certain expressions (independent of ℓ) defined in [20].

The following simplification of the above expression was obtained in [16, Prop. 3.1].

Proposition 3.4. Given a partition λ of length n, let us define
(40) $f\left(z_{1}, \ldots, z_{n} ; q, \bar{\alpha}\right)=\prod_{i=1}^{n} \prod_{k=1}^{g} \frac{1-\alpha_{k}^{-1}}{1-\alpha_{k}^{-1} z_{i}}$
$\times \sum_{\sigma \in S_{n}} \sigma\left(\prod_{i>j}\left(\frac{1}{1-z_{i} / z_{j}} \prod_{k=1}^{g} \frac{1-\alpha_{k}^{-1} z_{i} / z_{j}}{1-q \alpha_{k}^{-1} z_{i} / z_{j}}\right) \prod_{i>j+1}\left(1-q z_{i} / z_{j}\right) \prod_{i \geq 2}\left(1-z_{i}\right)\right)$,

$$
\begin{equation*}
f_{\lambda}(q, z)=f\left(z_{1}, \ldots, z_{n} ; q, \bar{\alpha}\right), \quad z_{i}=q^{i-n} z^{\lambda_{i}}, i=1, \ldots, n \tag{41}
\end{equation*}
$$

where $\bar{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{g}\right)$. Then (see (11) for the definition of $\left.N_{\lambda}\right)$

$$
\begin{equation*}
q^{(g-1)\langle\lambda, \lambda\rangle} J_{\lambda}(q, z) H_{\lambda}(q, z)=\frac{\prod_{i=1}^{g} N_{\lambda}\left(\alpha_{i}^{-1}, z, q\right)}{N_{\lambda}(1, z, q)} f_{\lambda}(q, z) \tag{42}
\end{equation*}
$$

The last two results imply
Corollary 3.5. Assuming that $p=\ell-(2 g-2)>0$, we have

$$
\begin{align*}
& \hat{\Omega}^{+}\left(q^{-p / 2} T, q, z\right) \tag{43}\\
& \quad=\sum_{\lambda}\left((-1)^{|\lambda|} q^{n\left(\lambda^{\prime}\right)} z^{n(\lambda)}\right)^{p} \frac{\prod_{i=1}^{g} N_{\lambda}\left(\alpha_{i}^{-1}, q, z\right)}{N_{\lambda}(1, q, z)} f_{\lambda^{\prime}}(q, z) \cdot T^{|\lambda|}
\end{align*}
$$

Proof. Using the fact that $\langle\lambda, \lambda\rangle=2 n(\lambda)+|\lambda|$ (see $10 \mid$), we obtain

$$
\begin{aligned}
& \hat{\Omega}^{+}(T, q, z) \\
& \quad=\sum_{\lambda}\left((-1)^{|\lambda|} q^{n(\lambda)} z^{n\left(\lambda^{\prime}\right)}\right)^{p} \frac{\prod_{i=1}^{g} N_{\lambda}\left(\alpha_{i}^{-1}, z, q\right)}{N_{\lambda}(1, z, q)} f_{\lambda}(q, z) \cdot\left(q^{p / 2} T\right)^{|\lambda|} .
\end{aligned}
$$

Now we sum up over conjugate partitions and apply (12).
Lemma 3.6. We have

$$
f \in \mathbb{Q}\left[z_{1}^{ \pm 1}, \ldots, z_{n}^{ \pm 1} ; q^{ \pm 1}\right] \llbracket \alpha_{1}^{-1}, \ldots, \alpha_{g}^{-1} \rrbracket .
$$

Proof. The factors $\left(1-z_{i} / z_{j}\right)$ disappear from the denominator of f when we sum over S_{n}, so looking at the remaining factors we see that

$$
f\left(z_{1}, \ldots, z_{n}\right) \cdot \prod_{k=1}^{g}\left(\prod_{i=1}^{n}\left(1-\alpha_{k}^{-1} z_{i}\right) \prod_{i \neq j}\left(1-q \alpha_{k}^{-1} z_{i} / z_{j}\right)\right)
$$

is a Laurent polynomial. The result follows on observing that every factor in the brackets is invertible in $\mathbb{Q}\left[z_{1}^{ \pm 1}, \ldots, z_{n}^{ \pm 1} ; q^{ \pm 1}\right] \llbracket \alpha_{1}^{-1}, \ldots, \alpha_{g}^{-1} \rrbracket$.

Proposition 3.7 (see [16, §4.2]). We have

$$
f\left(1, z_{1}, \ldots, z_{n}\right)=f\left(q z_{1}, \ldots, q z_{n}\right)
$$

4. Main result

4.1. Admissibility

Let R be a λ-ring flat over $\mathbb{Q}(q)\left[t^{ \pm 1}\right]$ and let $R^{*}=R \otimes_{\mathbb{Q}(q)\left[t^{ \pm 1}\right]} \mathbb{Q}(q, t)$. We will say that $F \in R^{*}$ is admissible if $(1-t) \log F$ is contained in R (usually R will be clear from the context). In view of Proposition 3.7, we introduce the following concept.

Definition 4.1. Let us consider the rings

$$
\bar{\Lambda}_{n}=R\left[z_{1}^{ \pm 1}, \ldots, z_{n}^{ \pm 1}\right]^{S_{n}}, \quad n \geq 0
$$

and the ring homomorphisms

$$
\pi_{n}: \bar{\Lambda}_{n+1} \rightarrow \bar{\Lambda}_{n}, \quad\left(\pi_{n} f\right)\left(z_{1}, \ldots, z_{n}\right)=f\left(1, q^{-1} z_{1}, \ldots, q^{-1} z_{n}\right)
$$

We define a q-twisted symmetric function $f=\left(f_{n}\right)_{n \geq 0}$ to be an element of $\bar{\Lambda}=\lim _{幺} \bar{\Lambda}_{n}$.

Given a q-twisted symmetric function f, we define, for any partition λ (cf. (41)),

$$
\begin{equation*}
f_{\lambda}(q, t)=f_{n}\left(z_{1}, \ldots, z_{n}\right), \quad z_{i}=q^{i-n} t^{\lambda_{i}}, n \geq l(\lambda) \tag{44}
\end{equation*}
$$

Note that this expression is independent of the choice of $n \geq l(\lambda)$.
Remark 4.2. The following result is a reformulation of [16, Lemma 5.1]. Here we exchange the roles of q, t and use conjugate partitions. We also add an invertible factor $(q-1)$.

Theorem 4.3. Let $f(u)=\sum_{i \geq 0} f^{(i)} u^{i} \in \bar{\Lambda} \llbracket u \rrbracket$ be a power series with $f^{(0)}=$ 1 and let

$$
\begin{aligned}
& \hat{\Omega}[X ; u]=\sum_{\lambda} c_{\lambda} \widetilde{H}_{\lambda}[X ; q, t] f_{\lambda^{\prime}}(u, q, t), \\
& \Omega[X ; u]=(q-1)(1-t) \log \hat{\Omega}[X ; u]
\end{aligned}
$$

where $c_{\lambda} \in R^{*}$ and $c_{\varnothing}=1$. If $\hat{\Omega}[X ; 0]$ is admissible, then $\Omega[X ; u]-\Omega[X ; 0]$ has coefficients in $(t-1) R$. In particular, $\Omega[X ; u]$ is independent of u at $t=1$.

4.2. Proof of Theorem 1.1

In this section we will use the variable t in place of z as it is customary in the theory of orthogonal symmetric polynomials.

Theorem 4.4 (cf. Theorem 1.1). Assume that $p=\ell-(2 g-2)>0$. Define (see (11) for the definition of N_{λ})

$$
\begin{equation*}
\hat{\Omega}^{\circ}(T, q, t)=\sum_{\lambda}\left((-1)^{|\lambda|} q^{n\left(\lambda^{\prime}\right)} t^{n(\lambda)}\right)^{p} \frac{\prod_{i=1}^{g} N_{\lambda}\left(\alpha_{i}^{-1}, q, t\right)}{N_{\lambda}(1, q, t)} T^{|\lambda|} \tag{45}
\end{equation*}
$$

$$
\begin{equation*}
\Omega^{\circ}(T, q, t)=\sum_{r \geq 1} \Omega_{r}^{\circ}(q, t) T^{r}=(q-1)(1-t) \log \hat{\Omega}^{\circ}(T, q, t) \tag{46}
\end{equation*}
$$

Then $\Omega_{r}^{\circ}(q, t) \in \mathbb{Z}\left[q, t, \alpha_{1}^{ \pm 1}, \ldots, \alpha_{g}^{ \pm 1}\right]$ and

$$
\Omega_{r, d}=q^{p r / 2} \Omega_{r}^{\circ}(q, 1) \quad \forall d \in \mathbb{Z}
$$

Proof. According to Theorem 3.2 it is enough to show that $\Omega_{r, d}^{+}=$ $q^{p r / 2} \Omega_{r}^{\circ}(q, 1)$ for $d \gg 0$, where $\Omega_{r, d}^{+}$are determined by (39) and Corollary 3.5;

$$
\begin{align*}
& \hat{\Omega}^{+}\left(q^{-p / 2} T, q, t\right) \tag{47}\\
& \quad=\sum_{\lambda}\left((-1)^{|\lambda|} q^{n\left(\lambda^{\prime}\right)} t^{n(\lambda)}\right)^{p} \frac{\prod_{i=1}^{g} N_{\lambda}\left(\alpha_{i}^{-1}, q, t\right)}{N_{\lambda}(1, q, t)} f_{\lambda^{\prime}}(q, t) \cdot T^{|\lambda|},
\end{align*}
$$

$$
\begin{equation*}
\Omega^{+}(T, q, t)=\sum_{r} \Omega_{r}^{+}(q, t) T^{r}=\sum_{r, d} \Omega_{r, d}^{+} T^{r} t^{d}=(q-1) \log \hat{\Omega}^{+}(T, q, t) \tag{48}
\end{equation*}
$$

We will compare the series $\hat{\Omega}^{+}\left(q^{-p / 2} T, q, t\right)$ and the series $\hat{\Omega}^{\circ}(T, q, t)$ using Theorem4.3. Consider the ring of Laurent series

$$
\begin{equation*}
R=\mathbb{Q}(q)\left[t^{ \pm 1}\right]\left(\left(\alpha_{1}^{-1}, \ldots, \alpha_{g}^{-1}\right)\right) \tag{49}
\end{equation*}
$$

and the series $\tilde{f}(u)=\sum_{i \geq 0} \tilde{f}^{(i)} u^{i}$ which is a deformation of $f 40$ defined by

$$
\tilde{f}^{(i)}=\left(\tilde{f}_{n}^{(i)}\right)_{n \geq 0}, \quad \tilde{f}_{n}\left(z_{1}, \ldots, z_{n} ; u\right)=\sum_{i \geq 0} \tilde{f}_{n}^{(i)} u^{i}=f\left(z_{1}, \ldots, z_{n} ; q, u^{-1} \bar{\alpha}\right)
$$

where every α_{i} is substituted by $u^{-1} \alpha_{i}$. It follows from Lemma 3.6 that

$$
\tilde{f}_{n} \in \mathbb{Q}\left[q^{ \pm 1}, \alpha_{1}^{ \pm 1}, \ldots, \alpha_{g}^{ \pm 1}\right]\left[z_{1}^{ \pm 1}, \ldots, z_{n}^{ \pm 1}\right]^{S_{n}} \llbracket u \rrbracket
$$

hence by Proposition 3.7 the coefficients $\tilde{f}^{(i)}$ are q-twisted symmetric functions over R. It follows from [16, Theorem 5.2] that $\left.\tilde{f}_{n}\right|_{u=0}=1$, hence $\tilde{f}(0)=1$.

As before, we define

$$
\tilde{f}_{\lambda}(u, q, t)=\tilde{f}_{n}\left(z_{1}, \ldots, z_{n} ; u\right), \quad z_{i}=q^{i-n} t^{\lambda_{i}}, n \geq l(\lambda)
$$

and consider the series of symmetric functions

$$
\begin{align*}
& \hat{\Omega}[X ; u, q, t] \tag{50}\\
& =\sum_{\lambda}\left((-1)^{|\lambda|} q^{n\left(\lambda^{\prime}\right)} t^{n(\lambda)}\right)^{p} \frac{\prod_{i=1}^{g} N_{\lambda}\left(\alpha_{i}^{-1}, q, t\right)}{N_{\lambda}(1, q, t)} \widetilde{H}_{\lambda}[X ; q, t] \tilde{f}_{\lambda^{\prime}}(u, q, t),
\end{align*}
$$

$$
\begin{equation*}
\Omega[X ; u, q, t]=(q-1)(1-t) \log \hat{\Omega}[X ; u, q, t] . \tag{51}
\end{equation*}
$$

Then (45) and (47) translate to

$$
\begin{array}{ll}
\hat{\Omega}[T ; 0, q, t]=\hat{\Omega}^{\circ}(T, q, t), & \Omega[T ; 0, q, t]=\Omega^{\circ}(T, q, t) \\
\hat{\Omega}[T ; 1, q, t]=\hat{\Omega}^{+}\left(q^{-p / 2} T, q, t\right), & \Omega[T ; 1, q, t]=(1-t) \Omega^{+}\left(q^{-p / 2} T, q, t\right) .
\end{array}
$$

In order to apply Theorem 4.3 we need to show that

$$
\hat{\Omega}[X ; 0, q, t]=\sum_{\lambda}\left((-1)^{|\lambda|} q^{n\left(\lambda^{\prime}\right)} t^{n(\lambda)}\right)^{p} \frac{\prod_{i=1}^{g} N_{\lambda}\left(\alpha_{i}^{-1}, q, t\right)}{N_{\lambda}(1, q, t)} \widetilde{H}_{\lambda}[X ; q, t]
$$

is admissible. The series

$$
\sum_{\lambda} \frac{\prod_{i=1}^{g} N_{\lambda}\left(\alpha_{i}^{-1}, q, t\right)}{N_{\lambda}(1, q, t)} \widetilde{H}_{\lambda}[X ; q, t]
$$

is admissible according to [14]. The operator ∇ defined by

$$
\widetilde{H}_{\lambda} \mapsto(-1)^{|\lambda|} q^{n\left(\lambda^{\prime}\right)} t^{n(\lambda)} \widetilde{H}_{\lambda}
$$

preserves admissibility by [14, Cor. 6.3]. Therefore the series $\hat{\Omega}[X ; 0, q, t]$ is also admissible (one actually obtains from [14] that the coefficients of $\Omega[X ; 0, q, t]$ are in $\mathbb{Z}\left[q, t, \alpha_{1}^{ \pm 1}, \ldots, \alpha_{g}^{ \pm 1}\right]$, hence the same is true for $\left.\Omega^{\circ}(T, q, t)\right)$.

We conclude from Theorem 4.3 that

$$
\begin{equation*}
\Omega[T ; u, q, t]-\Omega[T ; 0, q, t] \in(1-t) R \llbracket T, u \rrbracket . \tag{52}
\end{equation*}
$$

By Lemma 3.6 we can consider $\hat{\Omega}[T ; u, q, t]$ as a series with polynomial coefficients in u

$$
\hat{\Omega}[T ; u, q, t] \in \mathbb{Q}(q, t)[u]\left(\left(\alpha_{1}^{-1}, \ldots, \alpha_{g}^{-1}\right)\right) \llbracket T \rrbracket .
$$

The same then applies to $\Omega[T ; u, q, t]$ and we can set $u=1$ in (52). We obtain

$$
(1-t) \Omega^{+}\left(q^{-p / 2} T, q, t\right)-\Omega^{\circ}(T, q, t) \in(1-t) R \llbracket T \rrbracket .
$$

This implies that $(1-t) q^{-p r / 2} \Omega_{r}^{+}(q, t)-\Omega_{r}^{\circ}(q, t)=(1-t) h$ for some $h \in R$. Therefore

$$
q^{-p r / 2} \sum_{d \geq 0} \Omega_{r, t^{+}} t^{d}=\frac{\Omega_{r}^{\circ}(q, t)}{1-t}+h
$$

Comparing the coefficients of the monomials in $\alpha_{1}, \ldots, \alpha_{g}$ and using the fact that $\Omega_{r, d+r}^{+}=\Omega_{r, d}^{+}$for $d \gg 0$, we conclude that $q^{-p r / 2} \Omega_{r, d}^{+}=\Omega_{r}^{\circ}(q, 1)$ for $d \gg 0$.

Remark 4.5. Let us also formulate the result in the case $L=\omega_{X}$ (the canonical bundle) for completeness [16]. In this case we have $\ell=2 g-2$ and $p=\ell-(2 g-2)=0$. Define as before

$$
\begin{equation*}
\Omega^{\circ}(T, q, t)=\sum_{r \geq 1} \Omega_{r}^{\circ}(q, t) T^{r}=(q-1)(1-t) \log \hat{\Omega}^{\circ}(T, q, t) . \tag{54}
\end{equation*}
$$

Using results of [20] and the same proof as before, we obtain the formula for integral Donaldson-Thomas invariants $\Omega_{r, d}=q \Omega_{r}^{\circ}(q, 1)$ (note the additional factor q). These invariants are related to the invariants $A_{r, d}$ counting absolutely indecomposable vector bundles of rank r and degree d over X : $\Omega_{r, d}=q A_{r, d}$ [20]. This implies that $A_{r, d}=\Omega_{r}^{\circ}(q, 1)$, as was proved by Mellit in (16).

4.3. Alternative formulation

The following result was conjectured in [18, Conj. 3].
Theorem 4.6. Assume that $p=\ell-(2 g-2)>0$. Consider the series

$$
\begin{gathered}
\mathcal{H}(T, q, t)=\sum_{\lambda} T^{|\lambda|} \prod_{s \in \lambda}\left(-t^{a(s)-l(s)} q^{a(s)}\right)^{p} t^{(1-g)(2 l(s)+1)} Z_{X}\left(t^{h(s)} q^{a(s)}\right), \\
\mathbf{H}^{\circ}(T, q, t)=\sum_{r \geq 1} \mathbf{H}_{r}^{\circ}(q, t) T^{r}=(1-t)(1-q t) \log \mathcal{H}(T, q, t) .
\end{gathered}
$$

Then $\mathbf{H}_{r}^{\circ}(q, t) \in \mathbb{Z}\left[q, t^{ \pm 1}, \alpha_{1}^{ \pm 1}, \ldots, \alpha_{g}^{ \pm 1}\right]$ and $\Omega_{r, d}=q^{p r / 2} \mathbf{H}_{r}^{\circ}(q, 1)$.
Proof. Using the substitution $t \mapsto t^{-1}$, we obtain

$$
\begin{aligned}
& \mathcal{H}\left(T, q, t^{-1}\right)=\sum_{\lambda} T^{|\lambda|} \prod_{s \in \lambda}\left(-t^{l-a} q^{a}\right)^{p} t^{(g-1)(2 l+1)} Z_{X}\left(t^{-h} q^{a}\right) \\
& \quad=\sum_{\lambda} T^{|\lambda|} \prod_{s \in \lambda}\left(-t^{l-a} q^{a}\right)^{p} \frac{\prod_{i=1}^{g}\left(t^{l+1}-\alpha_{i} t^{-a} q^{a}\right)\left(t^{l}-\alpha_{i}^{-1} t^{-a-1} q^{a+1}\right)}{\left(t^{l+1}-t^{-a} q^{a}\right)\left(t^{l}-t^{-a-1} q^{a+1}\right)},
\end{aligned}
$$

while

$$
t \mathbf{H}^{\circ}\left(T, q, t^{-1}\right)=(1-t)\left(t^{-1} q-1\right) \log \mathcal{H}\left(T, q, t^{-1}\right)
$$

Using the substitution $q \mapsto q t$, we obtain

$$
\begin{aligned}
\mathcal{H}\left(T, q t, t^{-1}\right)=\sum_{\lambda} T^{|\lambda|} & \prod_{s \in \lambda}\left(-t^{l} q^{a}\right)^{p} \frac{\prod_{i=1}^{g}\left(t^{l+1}-\alpha_{i} q^{a}\right)\left(t^{l}-\alpha_{i}^{-1} q^{a+1}\right)}{\left(t^{l+1}-q^{a}\right)\left(t^{l}-q^{a+1}\right)} \\
& =\sum_{\lambda} T^{|\lambda|}\left((-1)^{|\lambda|} q^{n\left(\lambda^{\prime}\right)} t^{n(\lambda)}\right)^{p} \frac{\prod_{i=1}^{g} N_{\lambda}\left(\alpha_{i}^{-1}, q, t\right)}{N_{\lambda}(1, q, t)}
\end{aligned}
$$

Now the result follows from Theorem 4.4.

References

[1] P.-H. Chaudouard, Sur le comptage des fibrés de Hitchin, Astérisque (2015), no. 369, 223-284.
[2] P.-H. Chaudouard and G. Laumon, Sur le comptage des fibrés de Hitchin nilpotents, J. Inst. Math. Jussieu 15 (2016), no. 1, 91-164.
[3] W.-y. Chuang, D.-E. Diaconescu, and G. Pan, Wallcrossing and cohomology of the moduli space of Hitchin pairs, Commun. Number Theory Phys. 5 (2011), no. 1, 1-56.
[4] G. Dobrovolska, V. Ginzburg, and R. Travkin, Moduli spaces, indecomposable objects and potentials over a finite field (2016).
[5] R. Fedorov, A. Soibelman, and Y. Soibelman, Motivic classes of moduli of Higgs bundles and moduli of bundles with connections, Commun. Number Theory Phys. 12 (2018), no. 4, 687-766.
[6] O. García-Prada and J. Heinloth, The y-genus of the moduli space of PGL_{n}-Higgs bundles on a curve (for degree coprime to n), Duke Math. J. 162 (2013), no. 14, 2731-2749.
[7] O. García-Prada, J. Heinloth, and A. Schmitt, On the motives of moduli of chains and Higgs bundles, J. Eur. Math. Soc. (JEMS) 16 (2014), no. 12, 2617-2668.
[8] A. M. Garsia and M. Haiman, A remarkable q, t-Catalan sequence and q-Lagrange inversion, J. Algebraic Combin. 5 (1996), no. 3, 191-244.
[9] P. B. Gothen, The Betti numbers of the moduli space of stable rank 3 Higgs bundles on a Riemann surface, Internat. J. Math. 5 (1994), no. 6, 861-875.
[10] T. Hausel, Mirror symmetry and Langlands duality in the non-abelian Hodge theory of a curve, in Geometric methods in algebra and number theory, Vol. 235 of Progr. Math., 193-217, Birkhäuser Boston, Boston, MA (2005).
[11] T. Hausel and F. Rodriguez-Villegas, Mixed Hodge polynomials of character varieties, Invent. Math. 174 (2008), no. 3, 555-624. With an appendix by Nicholas M. Katz.
[12] N. J. Hitchin, The self-duality equations on a Riemann surface, Proc. London Math. Soc. (3) 55 (1987), no. 1, 59-126.
[13] I. G. Macdonald, Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, Oxford University Press, second edition (1995), ISBN 0-19-853489-2. With contributions by A. Zelevinsky.
[14] A. Mellit, Integrality of Hausel-Letellier-Villegas kernels, Duke Math. J. 167 (2018), no. 17, 3171-3205.
[15] —, Poincaré polynomials of character varieties, Macdonald polynomials and affine Springer fibers, Ann. of Math. (2) 192 (2020), no. 1, 165-228.
[16] —, Poincaré polynomials of moduli spaces of Higgs bundles and character varieties (no punctures), Invent. Math. 221 (2020), no. 1, 301-327.
[17] S. Mozgovoy, Poincaré polynomials of moduli spaces of stable bundles over curves, Manuscripta Math. 131 (2010), no. 1-2, 63-86.
[18] -, Solutions of the motivic ADHM recursion formula, Int. Math. Res. Not. (2012), no. 18, 4218-4244.
[19] -, Higgs bundles over \mathbb{P}^{1} and quiver representations (2016).
[20] S. Mozgovoy and O. Schiffmann, Counting Higgs bundles and type A quiver bundles, Compos. Math. 156 (2020), no. 4, 744-769.
[21] R. Pandharipande and R. P. Thomas, Curve counting via stable pairs in the derived category, Invent. Math. 178 (2009), no. 2, 407-447.
[22] S. Rayan, Co-Higgs bundles on \mathbb{P}^{1}, New York J. Math. 19 (2013) 925945.
[23] O. Schiffmann, Indecomposable vector bundles and stable Higgs bundles over smooth projective curves, Ann. of Math. (2) 183 (2016), no. 1, 297-362.

School of Mathematics, Trinity College Dublin
College Green, Dublin 2, Ireland
E-mail address: mozgovoy@maths.tcd.ie

Deptartment of Mathematics, University of California, Berkeley CA 94720-3840, USA
E-mail address: ronan_ogorman@berkeley.edu
Received August 3, 2020
Accepted December 21, 2021

