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Counting twisted Higgs bundles

SERGEY M0zGOVOY AND RONAN O’GORMAN

We prove an explicit formula, conjectured earlier by the first au-
thor, counting semistable twisted Higgs bundles over a smooth pro-
jective curve.

1. Introduction

Let X be a smooth projective curve of genus g defined over a finite field
F,. Let L be a line bundle of degree ¢ over X and let My (r,d) be the
moduli space of semistable L-twisted Higgs bundles over X. It parametrizes
pairs (E, ¢), where E is a vector bundle of rank r and degree d over X and
¢: E — E® L is a homomorphism. A formula for the computation of the
number of points of M, (r, d) for coprime r, d was conjectured in [I8] and is
proved in this note.

The above conjecture was obtained as a solution of a recursive formula,
called an ADHM recursion, conjectured by Chuang, Diaconescu, and Pan
[3]. The ADHM recursion was itself based on a conjectural wall-crossing
formula for the refined Donaldson-Thomas invariants on a noncompact 3CY
variety Y = L @ (wx ® L™!), where wx is the canonical bundle of X, as well
as a conjectural formula for the asymptotic ADHM invariants. The latter
invariants can be interpreted as Pandharipande-Thomas invariants of Y [21].
The formula counting them was derived in [3] by string theoretic methods,
hence remains conjectural from the mathematical point of view.

On the other hand, the formula for My (r,d) conjectured in [I§] can be
considered as a generalization of the conjecture by Hausel and Rodriguez-
Villegas [I1] in the case of usual Higgs bundles, where the twisting line
bundle L is equal to wx. A breakthrough for the counting of usual Higgs
bundles was made by Schiffmann [23] who proved an explicit, albeit rather
complicated formula for these invariants, quite different from the conjecture
of [TI]. An equivalence between these formulas was proved recently by purely
combinatorial methods in a series of papers by Mellit [I4H16].

Results on the invariants of moduli spaces of Higgs bundles for small rank
and degree were obtained in [3} [7, 912, 22]. The conjecture of Hausel and
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Rodriguez-Villegas was proved for the y-genus in [6]. An alternative general
formula for twisted Higgs bundles on P! — in terms of quiver representations
— was obtained in [19]. Other interesting results related to counting of Higgs
bundles can be found in [I 2 4] [5].

In this paper we will apply Mellit’s methods in order to prove a formula
for general L-twisted Higgs bundles. This task will be rather straightfor-
ward as Schiffmann’s computation was generalized earlier for twisted Higgs
bundles in [20] (see §3). More precisely, let M5 (r,d) be the moduli stack
of semistable L-twisted Higgs bundles over X. Given a finite type algebraic
stack X over F,, we define its volume (see for more details on volumes)

(1) [X] = (#X(Fgn))n>1, #X(Fgn) = Z #Al

TEX(Egn) [~

Define (integral) Donaldson-Thomas (DT) invariants €2, 4 using the plethys-
tic logarithm (see
(2)

Y T = (g DLog [ > (=) " [MF(r, )T, reQ.
d/r=7 d/r=7

Note that if  and d are coprime, then every E € 97 (r,d) is stable and
End(E) = F, (sec Remark [3.1)). Therefore

(Me(r, d)]
qg—1

152 €2 d
(3) = [ (r,d)] = (—q2)" 7,
g—1
hence we can recover [Mr,(r,d)] from the DT invariant €, 4. In the case of
non-coprime r and d we can recover only the volumes [97(r, d)] from the
DT invariants. Consider the zeta function of the curve X

#FXEgr) | _ (1= ait) (1= oy ' qt)
n o 0-nl-e)

Zx(t) = exp Z

n>1

where «; are the Weil numbers of X (see §2.4). The following result was

conjectured in [I8] (cf. §4.3). We formulate it in the case degL > 2g — 2
(see Remark {.5| for the case L = wy).

Theorem 1.1. Assume that p=1{ — (29 —2) > 0. Given a partition \ and
a box s €\, let a(s) and l(s) denote its arm and leg lengths respectively
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(see §2)). Define

(4) Q(T.q,2) =

S A gt TEa 0~ SO0 a0
/\ (qa(s) _ Zl(8)+1)(qa(8)+1 _ zl(s)) ’

SEA

(5) > 2(a,2)T" = (q = 1)(1 - 2) Log (T, ¢, 2).

Then Q2(q,2) € Z[g, 2,05, . . ., a;tl] and Q.4 = ¢""/?Q2(q,1) for all d € Z.
In particular, if r,d are coprime, then

r+1

(6) M (r, d)] = (=1)Pqo= D +2(31) 02 (g, 1).

Note that, by the Weil conjectures, the formula for the Poincaré poly-
nomials of the moduli spaces M (7, d) is obtained from the previous result
by considering «; = q%. It is unclear how to compute DT invariants when
the twisting line bundle has degree 0 < £ < 2g — 2.

2. Preliminaries
2.1. Partitions

A partition is a sequence of integers A = (A1 > A2 > ... ) such that \,, = 0 for
n > 0. We define its length I(A\) = # {7 | \; # 0} and its weight [\ = >, A;.
Define its Young diagram (also denoted by A)

(7) dN) = {(i,j) € 2? |i=2 1,1 < j < A}

An element s = (i,7) € \is called a box of the Young diagram located at the
i-th row and j-th column. Define the conjugate partition A\’ with )\;- equal
the number of boxes in the j-th column of A. Given a box s = (i,j) € A,
define its arm and leg lengths respectively

(8) a(s) =\ — j, I(s) = X; —i.

Define the hook length h(s) = a(s) 4+ I(s) + 1.
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Figure 1: Young diagram for A = (4,4,2). Here N = (3,3,2,2), s =(2,1),
a(s) =3,1(s) =1, h(s) = 5.

Define

(10) (A A) =D (X)) = 2n(X) + [A].

i>1
Define
(11) Ny(u,q,t) = H(qa(s) ) (o)L L)y,
SEA
One can show that
(12) Ni(u,q,t) = Ny (u,t,q).

2.2. A-rings and symmetric functions

For simplicity we will introduce only A-rings without Z-torsion. To make

things even simpler we can assume that our rings are algebras over Q. Then

the axioms of a A\-ring can be formulated just in terms of Adams operations.
We define the (graded) ring of symmetric polynomials

An = Z[(L‘l, ey xn]s”,
where degx; = 1. We define the (graded) ring of symmetric functions A =

LiLnAn, where the limit is taken in the category of graded rings. For any
commutative ring A, we define Ay = A ®7 A. As in [13], we define generators
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of A (complete symmetric and elementary symmetric functions)

h, = g iy, oo T, en = g Tiy - Ti,

1< Sy ERSEAS

and generators of Ag (power sums)
Pn = Z ﬂf?
i

The elements h,,, e,, p, have degree n. We also define hg = eg = pg =1 for
convenience. For any partition A of length < n, define monomial symmetric
polynomials my = > x® € A,, where the sum runs over all distinct permu-
tations o = (@, ..., ) of (A1,...,A;). They induce monomial symmetric
functions my € A which form a Z-basis of A.

We define a A-ring R to be a commutative ring (without Z-torsion)
equipped with a map

AxR—= R, (fa)— fld],

called a plethysm, such that, with ¢, = p,[—] : R — R, called Adams oper-
ations, we have

(1) The map A — R, f + flal, is a ring homomorphism, for all a € R.
(2) 91 : R — R is the identity map.

(3) The map 1, : R — R is a ring homomorphism, for all n > 1.

(4) Yimtn = Ymn, for all m,n > 1.

The first axiom implies that it is enough to specify just Adams operations
Yy, = pp|—] or o-operations o, = h,[—] or A-operations A, = e,[—]. It also
implies that 1[a] = 1, for all a € R.

We equip algebras of the form Q[z1, ..., 2], Q(z1, ..., 2k), Qz1,. .., xk]
with the A-ring structure given by

(13) @Z}n(f) :pn[f] :f(w?vv$2)

Similarly, we equip the ring A of symmetric functions with the A-ring struc-
ture given by

(14) wn(f) :pn[f] = f($?7x7217 - ')7 f € A.



1556 S. Mozgovoy and R. O’Gorman

Note that pp,[pn] = Pmn- If R is a A-ring, then we have

(15) flglal] = (flgDlal,  frg€ A acR.

Given two A-rings R and R’, we equip the ring R ®7 R’ with the A-ring
structure given by

(16) Yn(a@b) = Pp(a) @Yn(b), acRbER.

The ring A can be considered as a free A-ring with one generator in the
following sense. Consider the category Ring, of A-rings (with morphisms
that respect plethystic operations). The forgetful functor F': Ring, — Set
has a left adjoint

Sym : Set — Ring, .

Given a finite set {Xi,...,X,}, we denote Sym {Xi,...,X,} by
Sym[X71,...,Xy]. Then, for a one-point set {X}, there is a unique isomor-
phism of A-rings

Sym[X] — A

that maps X to p;. We will usually identify A and Sym[X] using this iso-
morphism.
Let us define a filtered A-ring R to be a A-ring equipped with a filtration

R=F'ROF'R>...

such that F'R- FIR C F'" R and v, (F'R) C F™R. It is called complete
if the natural homomorphism R — lglR/ F'R is an isomorphism. For ex-
ample, the ring A is graded, hence we have a decomposition A = @+ AF
into graded components. We equip A with the filtration F¥A = D~ A? and
define the completion

(17) A =limA/FFA = Z[ha, ha, ... ].

This ring can be considered as a free complete A-ring with one generator.
One can see that if R is a complete A-ring, then the plethystic pairing extends
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to
Ax F'R = R.
In particular, the element

(18)  Exp[X] =Y hy[X] = exp Zp"[X] =11 L e,

n L11 —x
n>0 n>1 i>1

called a plethystic exponential, induces a map Exp : F'R — 1 4+ F'R which
satisfies

(19) Expla + b] = Expla] Exp[b].

This map has an inverse, called a plethystic logarithm,

(200 Log:1+ F'R— F'R,  Log[l+a]= “Ej)pn[log(l + a)].

n>1
2.3. Modified Macdonald polynomials
For an introduction to modified Macdonald polynomials see [§] or [15]. Let

P, denote the set of partitions A with |A| = n. Define the natural partial
order on P, by

k k
A<p = Y NS i VE>1
i=1 =1

One can show that A < pu <= p/ <N [I3, 1.1.11]. Let AS* C A be the
subspace spanned by monomial symmetric functions m, € A with p < A
Let us define

We equip F' and A with the A-ring structures using and , and we
equip Ap with the A-ring structure using (16). For any symmetric function
f € Ar, we will sometimes denote f[X] by f[X;q,t] to indicate dependence
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on q,t. Let P\[X;q,t] € Ar be Macdonald polynomials [13} §6]. Define mod-
ified Macdonald polynomials H)[X;q,t] € Ap [8, 1.8-1.11]
H\[X:q,t) = Hy [X;5q,t71] - "™,

(22) H)\[X] - P, |:1)(_t:| . H(l B qa(s)tl(s)—&-l)'
SEA

Alternatively, one can uniquely determine H A[X; q,t] € Ap by the properties
(1) Hy\J(1 - t)X] e AN
(2) Cauchy identity:

H,y\[X|H,\[Y] Exp [ XY ]
= X | .
oo (@) — t01) (a1 — 109 G- D-7
We have by [8, Cor. 2.1] (see also [13], 6.6.17])
(23) Hy[1—u;q,1] = [[(1 = ¢" " @),

SEX

where a'(s) = j — 1,1'(s) = i — 1 for s = (4,7) € X. This implies Hy[1;q,] =
1. The symmetric function Hy has degree |A|, hence, applying it to z € F[z],
we obtain
(24) Hy\[2;q,1] = 2.
Finally, we have by [8, Cor.2.2]
(25) H\[X;q,t] = Hy[X;t,q].

2.4. Volume ring
Following [17], we will introduce in this section a A-ring which is an analogue
of the Grothendieck ring of algebraic varieties or the ring of motives. We

define it to be the ring V =[], Q with Adams operations

(26) VYm(a) = (@mn)n>1, a = (an)n>1 €V,

and call it the volume ring or the ring of counting sequences [17].
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Given an algebraic variety X over a finite field Fy, we define its volume
(27) [(X] = (#X([Fgn))n>1 € V.

More generally, given a finite type algebraic stack X over F,, we define its
volume

(28) [X] = (#X(Fg))n>1 €V,

where, for the finite groupoid G = X (Fy»), we define

(29) #G=) y vt

Let us fix a projective genus g curve X over the field [F; and consider its
zeta function

(30) Zx(t) = exp Z wtn _ [T9,(1 —ast)(1 — a;lqt)7

= n (1—-t)(1—qt)

9 9
(31) #X(Fqn)zl—&—qn—Za?—q”Za;" Vn > 1.
i=1 i=1

Note that the zeta function Zx(t) (and the elements «; € C) is uniquely
determined by the volume [X] and, conversely, the volume [X] is uniquely
determined by the zeta function.

Let us consider the algebra

(32) Ry =Qlg*,of!,. .ol ("= 1) in > 1],

equipped with the usual A-ring structure

We consider the A-ring homomorphism

(33) o: Ry — Ve = H C, q = (¢")n>1, ;i = (0 )n>1.
n>1

It restricts to

(34) U:Rgs-"[xs37 -V,



1560 S. Mozgovoy and R. O’Gorman

where S, permutes variables a; and the i-th copy of Sy permutes o; and
qo; 1

Note that o(q) = [A!], the volume of the affine line. Applying , we
obtain

(35) a<1+q—2ai—q2ail> = [X].
i=1 i=1

In this paper we will express volumes of stacks as images under ¢ of some
elements in R,. For simplicity, we will write [X] = f, whenever [X] € V and
[ € Ry satisfy [X] = o(f). Also, we will write ¢ and o instead of q and oy
respectively, hoping it will not lead to any confusion.

3. Positive Higgs bundles

In this section we will review the formula from [20] counting positive Higgs
bundles. Then we will simplify it using an approach from [16]. Let X be a
smooth projective curve of genus g over a field k and let L be a line bundle
of degree ¢ over X. Given a coherent sheaf E € Coh X, we define its slope
w(E) = deg E/rk E and we call F semistable if pu(F) < u(FE) for all F C E.

Remark 3.1. We call E stable if u(F) < p(E) for all proper F' C E. In this
case K = End(F) is a finite-dimensional division algebra over k by Schur’s
lemma. In particular, K =k if k is algebraically closed. If rk F and deg
are coprime and F is semistable, then F is automatically stable. Let us show
that if rank and degree are coprime and the field k is finite, then K = k.
First of all, K is a finite (Galois) field extension of k by Wedderburn'’s little
theorem. We can decompose Ex = E Qi K over X = X Xgpeck Opec K as
a direct sum @,cqa(x/K) F7, where F7 have the same rank and degree
[17]. If [K : k] > 1, this would imply that rk F' and deg E' are not coprime,
a contradiction.

Every coherent sheaf £ € Coh X has a unique filtration, called a Harder-
Narasimhan filtration,

O=FyCF,C...CE,=F
such that F;/E;_1 are semistable and u(E1/Ey) > -+ > u(En/En—1). We

will say that F is positive if u(E,/E,—1) > 0. Equivalenly, for any semistable
sheaf F' with p(F) < 0, we have Hom(E, F') = 0.
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Recall that an L-twisted Higgs sheaf is a pair (E, ¢), where E is a coher-
ent sheaf over X and ¢ : F — F ® L is a homomorphism. We will say that
(E, ¢) is positive if F is positive. Let Higgs; (X) be the category of L-twisted
Higgs sheaves and Higgs“LF (X)) be the category of positive L-twisted Higgs
sheaves. We will say that (E, ¢) € Higgs; (X) is semistable if pu(F) < u(E)
for every (F,¢') C (E, ).

Let My (r,d) denote the stack of all Higgs bundles having rank r and
degree d, MT(r,d) C M (r,d) denote the stack of semistable Higgs bun-
dles and M} (r,d) C My (r,d) denote the stack of positive Higgs bundles
(not necessarily semistable). Assuming that k is a finite field F,, we define
(exponential) DT invariants

(36) Qg = (—q2) 7" [M(r, d)]

and define (integral) DT invariants by the formula

(37) > QT = (q-DLog [ Y QT72"|, 71€Q
d/r=1 d/r=1

Ideally, one would like to define DT invariants by taking the plethystic log-
arithm of the series that counts volumes of the stacks 9 (r, d) (of all Higgs
bundles) of arbitrary slope, instead of the above formula, where the stacks
MP(r,d) of semistable Higgs bundles of a fixed slope are considered. The
problem with this approach is that the stacks 9tz (r,d) have infinite vol-
ume in general. To resolve this issue, it was suggested in [20] to use the
stacks ‘JJT}S (r,d) of positive Higgs bundles as an approximation of the stacks
My (r,d). Let us consider the series

(38) ON(T,q,2) = (—q2) " [0 (r, d)| T" 2"
r,d

and define positive (integral) DT invariants by the formula

(39) Z Q:dTrzd = (¢ —1)Log Q" (T, q, 2).
r,d

The following result was proved in [20]:

Theorem 3.2. For every r > 1, we have

(1) Qr,dJrr - Qr,d-
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(2) Qr,dJrr = Qr,d-
(3) Qpg= Q:d for d>0.

The last result implies that it is enough to find the positive DT invari-
ants de in order to determine the usual DT invariants €2, 4. The following

explicit formula for the series Q1 (T, ¢, z) was proved in [20].

Theorem 3.3. Assuming that p = — (29 — 2) > 0, we have

ON(T,q,2) =Y _(—q2)" VN5 (g, 2) Hag, 2)TH,
A

where the sum runs over all partitions A and Jx(q,z), Hx(q,z) are certain
expressions (independent of £) defined in [20)].

The following simplification of the above expression was obtained in [16),
Prop. 3.1].

Proposition 3.4. Given a partition A of length n, let us define

_ 1—a,
(40) f(zlv"wzn;Q)a):HHlikl
i—lk=1 - %k i
1 g 1—a; 2/
xY o H( [1— =25 ] (- qzi/z) [J0 -2 |
A e A T el Sk T it i>2
(41) f)\(qu):f(zla"'vzn;Q7O_4)a Zi:qi_nZAi, i:1,...,n,

where & = (a1, ...,a4). Then (see for the definition of Ny )

9 Na(es 't 2,q)
42 (g_l)<)‘7)‘>J , 2 H ,2) = Hl:l A R ,2).
(42) q A(q,2)Hx(q, 2) Ny(12.q) falg, 2)

The last two results imply
Corollary 3.5. Assuming that p=+{ — (29 —2) > 0, we have
(43) QF(¢7PPT,q,2)

g —1
_ Z 1) gn) )" [lio Ma(ei 5 4,2) N
( < ) N)\(l,q, Z) f)\ (Q7 Z) T N
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Proof. Using the fact that (A, A\) = 2n(\) + |A| (see ([10))), we obtain

O (T,q,2)

prg ! szg: N/\(a;l’zaQ)
—Z( 1Pg m) }V)\(l,z,q) fala, ) - (T,

Now we sum up over conjugate partitions and apply . Il

Lemma 3.6. We have

fEQ[Zl ,'-'727:1:1;qi][[a1 st _lﬂ

Proof. The factors (1 — z;/z;) disappear from the denominator of f when
we sum over Sy, so looking at the remaining factors we see that

n

Fz,. ..,z U TT (= aptz) [] (- qo2/2)

i=1 i£j

is a Laurent polynomial. The result follows on observing that every factor

in the brackets is invertible in Q[z£!,..., 2z ¢ [ag s . . ., ozg_l]]. O

Proposition 3.7 (see [16), §4.2]). We have
F(L 21,00, 20) = f(gz1,- -, q2n)-
4. Main result
4.1. Admissibility

Let R be a A-ring flat over Q(q)[t*!] and let R* = R ®q(g) =1 Qlg, t). We
will say that F' € R* is admissible if (1 — ¢) Log F' is contained in R (usually
R will be clear from the context). In view of Proposition we introduce
the following concept.
Definition 4.1. Let us consider the rings

An—R[Z1 ,...,zil]s”, n >0,

and the ring homomorphisms

ot A1 — Ay, (T f)(215. oy 2n) = f(l,qilzl, ... 7qilzn).
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We define a g-twisted symmetric function f = (fn)n>0 to be an element of
Given a ¢-twisted symmetric function f, we define, for any partition A

(cf. ),

(44) Mat) = fulz,yzn),  z=q 7N, n =N,

Note that this expression is independent of the choice of n > I(\).

Remark 4.2. The following result is a reformulation of [16, Lemma 5.1].
Here we exchange the roles of ¢,t and use conjugate partitions. We also add
an invertible factor (¢ — 1).

Theorem 4.3. Let f(u) =Y ;o0 fPu’ € Afu] be a power series with f(©) =
1 and let -

Q[Xa u] = ZC)\-E[)\[X; Q7t]f)\/(u7 Q7t)7
A
Q[X;u) = (¢ — 1)(1 — t) Log Q[X; u],

where ¢y € R* and ¢y = 1. If Q[X;0] is admissible, then Q[X;u] — Q[X;0]

has coefficients in (t — 1)R. In particular, Q[X;u] is independent of u at
t=1.

4.2. Proof of Theorem [I.1]

In this section we will use the variable ¢ in place of z as it is customary in
the theory of orthogonal symmetric polynomials.

Theorem 4.4 (cf. Theorem [1.1)). Assume thatp ={¢ — (29 —2) > 0. De-
fine (see for the definition of Ny)

g —1
(15) (gt =3 ()P ) Ll a

\ N)\(ant)
(46) °(T,q,t) =Y _(q,t (q—1)(1 = #) Log Q°(T' g, 1).
r>1

Then §2(q,t) € Zlqg, t, Oélﬂ7 . -aagil] and

Qra=¢"?Q%(q,1)  VdeZ
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Proof. According to Theorem it is enough to show that Q+ =
¢""?Q2(q, 1) for d > 0, where Q+d are determined by (39) and Corollary.
(47) QY (¢ PP T,q,t)

_ 1) A X)) [T7-; Maloi ' a.1) Y
5 (e T .

(48) QF (T, q,t Z Qg )T = QF Tt = (g — 1) Log @ (T, ¢, 1).
r,d

We will compare the series Q+(q_p/2T, q,t) and the series QO(T, q,t)
using Theorem Consider the ring of Laurent series

(49) R=Q)[t*](ar",...,az")
and the series f(u) = >0 f@ul which is a deformation of f defined
FO = (F N0, Falzrsoszaiu) =Y fPu = f(z1,- 020 g, u ),
i>0
where every «; is substituted by u ey Tt follows from Lemma that
fo€ Qg™ ot oz L 25 [l

hence by Proposition the coefficients f(i) are g¢-twisted symmetric
functions over R. It follows from [16l Theorem 5.2] that f,|,—0 = 1, hence

f0)=1.

As before, we define
fN/\(ua q7t) = fn(zh <oy 2n; U), Zi = qiint)\ia n Z l()\)7
and consider the series of symmetric functions

(50) Q[X;u,q,1]

g —1
= 57 ((~1)Pgngn ) Mo Mo et 7o o
g ( t ) N)\(l,q,t) )\[ 7Q7t]f)\ (U, q, t)7
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(51) Q[X;u,q,t] = (¢ — 1)(1 — t) Log Q[X;u, ¢, ¢].
Then and translate to
Q[T;0,q,t] = Q°(T, q, 1), QIT;0,q,t] = Q°(T, q,1),

QT3 1,q,1) = QT (¢7P2T,q,t), Q[T31,q.1 = (1) (g P/*T,q,1).

In order to apply Theorem [£.3] we need to show that

g —1
ATy _ e\ iz Nalag S a.t) &~
Q[X;0,4,1 %:« R T

is admissible. The series

H lN)\ 7t)~
L Hy[X;q,t
E AT q’ ) A[ X5 g, ]

is admissible according to [I4]. The operator V defined by
Hy s (=) g

preserves admissibility by [14, Cor. 6.3]. Therefore the series Q[X ;0,q,1]

is also admissible (one actually obtains from [14] that the coefficients of

Q[X;0,q,t] are in Zlg, t, afl, el ozgﬂ], hence the same is true for Q°(7T, ¢, t)).
We conclude from Theorem [4.3] that

(52) Q[T;u,q,t] — QT;0,q,t] € (1 —t)R[T, u].

By Lemma we can consider Q[T; u, q, t] as a series with polynomial
coefficients in u

QT5u,q.t) € Qg, ) [u](ar ..., ay HITT.
The same then applies to Q[T’; u, ¢, t] and we can set u = 1 in . We obtain
(1—0)Q* (¢ 77T, q,t) = Q°(T, q,1) € (1 — t)R[T].

This implies that (1 —t)g~?"/2Q:} (¢,t) — Q°(q,t) = (1 — t)h for some h € R.
Therefore

0°(q, t
ey o= el
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Comparing the coefficients of the monomials in a1,...,a, and using the
fact that QF rdir = Q::d for d > 0, we conclude that q_p"/2ﬂid =02(q,1) for
d> 0. d

Remark 4.5. Let us also formulate the result in the case L = wx (the
canonical bundle) for completeness [16]. In this case we have £ = 2g — 2 and
p=1{— (29 —2) = 0. Define as before

K 1N>\ PN
53 °(T,q,t 1= T
(54)  Q(T,q.t) = (gt (q—1)(1 =) Log Q°(T, g, 1).
r>1

Using results of [20] and the same proof as before, we obtain the formula
for integral Donaldson-Thomas invariants €, 4 = ¢€27(¢,1) (note the addi-
tional factor ¢). These invariants are related to the invariants A, 4 counting
absolutely indecomposable vector bundles of rank r and degree d over X:
Q4 = qAy 4 [20]. This implies that A, 4 = Q7(q, 1), as was proved by Mellit
in [16].

4.3. Alternative formulation

The following result was conjectured in [I8, Conj. 3].

Theorem 4.6. Assume that p=1{ — (29 — 2) > 0. Consider the series

H(T,q,t ZTWH _pals)=l(s) a ))pt(l_g)(2l(s)+1)ZX(th(s)qa(s))’

SEA
T q,t ZHO q,t (1 _t)(l _qt) LOgH<Ta Q7t)
r>1
Then H(q,t) € Z[g, t*', i, ... ,o5] and Qg = PrI2HS (g, 1).

Proof. Using the substitution ¢ — ¢t~!, we obtain

T q,t_l ETM\ H _¢l-a q* pt(g 1)(2l+1)Z ( )
SEX
_ ZT\AI T4 Lyt —aat g (' — o7t ")
(tl+1 — aqa)(tl t— a—lqa+1) ’

SEA
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while
tH°(T,q,t ") = (1 —t)(t"'q — 1) Log H(T, ¢, t ).

Using the substitution ¢ — ¢t, we obtain

(tl+ Ctiqa)(tl Q; lqa+1)
H(T, qt, t7 1) T T T (=tq%)
Z g\ (tl+1 qa)(tl qa+1)
_ ZTW ( 1)Algn (X)tn()\)> [T Naleg ,qyt)_
N)\(]-v q, )
Now the result follows from Theorem [4.4] O
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