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Counting twisted Higgs bundles

Sergey Mozgovoy and Ronan O’Gorman

We prove an explicit formula, conjectured earlier by the first au-
thor, counting semistable twisted Higgs bundles over a smooth pro-
jective curve.

1. Introduction

Let X be a smooth projective curve of genus g defined over a finite field
Fq. Let L be a line bundle of degree ℓ over X and let ML(r, d) be the
moduli space of semistable L-twisted Higgs bundles over X. It parametrizes
pairs (E, ϕ), where E is a vector bundle of rank r and degree d over X and
ϕ : E → E ⊗ L is a homomorphism. A formula for the computation of the
number of points ofML(r, d) for coprime r, d was conjectured in [18] and is
proved in this note.

The above conjecture was obtained as a solution of a recursive formula,
called an ADHM recursion, conjectured by Chuang, Diaconescu, and Pan
[3]. The ADHM recursion was itself based on a conjectural wall-crossing
formula for the refined Donaldson-Thomas invariants on a noncompact 3CY
variety Y = L⊕ (ωX ⊗ L

−1), where ωX is the canonical bundle of X, as well
as a conjectural formula for the asymptotic ADHM invariants. The latter
invariants can be interpreted as Pandharipande-Thomas invariants of Y [21].
The formula counting them was derived in [3] by string theoretic methods,
hence remains conjectural from the mathematical point of view.

On the other hand, the formula forML(r, d) conjectured in [18] can be
considered as a generalization of the conjecture by Hausel and Rodriguez-
Villegas [11] in the case of usual Higgs bundles, where the twisting line
bundle L is equal to ωX . A breakthrough for the counting of usual Higgs
bundles was made by Schiffmann [23] who proved an explicit, albeit rather
complicated formula for these invariants, quite different from the conjecture
of [11]. An equivalence between these formulas was proved recently by purely
combinatorial methods in a series of papers by Mellit [14–16].

Results on the invariants of moduli spaces of Higgs bundles for small rank
and degree were obtained in [3, 7, 9–12, 22]. The conjecture of Hausel and
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Rodriguez-Villegas was proved for the y-genus in [6]. An alternative general
formula for twisted Higgs bundles on P1 – in terms of quiver representations
– was obtained in [19]. Other interesting results related to counting of Higgs
bundles can be found in [1, 2, 4, 5].

In this paper we will apply Mellit’s methods in order to prove a formula
for general L-twisted Higgs bundles. This task will be rather straightfor-
ward as Schiffmann’s computation was generalized earlier for twisted Higgs
bundles in [20] (see §3). More precisely, let M

ss
L (r, d) be the moduli stack

of semistable L-twisted Higgs bundles over X. Given a finite type algebraic
stack X over Fq, we define its volume (see §2.4 for more details on volumes)

(1) [X ] = (#X (Fqn))n≥1, #X (Fqn) =
∑

x∈X (Fqn )/∼

1

#Aut(x)
.

Define (integral) Donaldson-Thomas (DT) invariants Ωr,d using the plethys-
tic logarithm (see §2.2)
(2)

∑

d/r=τ

Ωr,dT
rzd = (q − 1) Log



∑

d/r=τ

(−q
1

2 )−ℓr2 [Mss
L (r, d)]T

rzd


 , τ ∈ Q.

Note that if r and d are coprime, then every E ∈M
ss
L (r, d) is stable and

End(E) = Fq (see Remark 3.1). Therefore

(3)
[ML(r, d)]

q − 1
= [Mss

L (r, d)] = (−q
1

2 )ℓr
2 Ωr,d

q − 1
,

hence we can recover [ML(r, d)] from the DT invariant Ωr,d. In the case of
non-coprime r and d we can recover only the volumes [Mss

L (r, d)] from the
DT invariants. Consider the zeta function of the curve X

ZX(t) = exp



∑

n≥1

#X(Fqn)

n
tn


 =

∏g
i=1(1− αit)(1− α

−1
i qt)

(1− t)(1− qt)
,

where αi are the Weil numbers of X (see §2.4). The following result was
conjectured in [18] (cf. §4.3). We formulate it in the case degL > 2g − 2
(see Remark 4.5 for the case L = ωX).

Theorem 1.1. Assume that p = ℓ− (2g − 2) > 0. Given a partition λ and
a box s ∈ λ, let a(s) and l(s) denote its arm and leg lengths respectively
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(see §2). Define

(4) Ω̂◦(T, q, z) =

∑

λ

T |λ|
∏

s∈λ

(−qa(s)zl(s))p
∏g

i=1(q
a(s) − α−1

i zl(s)+1)(qa(s)+1 − αiz
l(s))

(qa(s) − zl(s)+1)(qa(s)+1 − zl(s))
,

(5)
∑

r≥1

Ω◦
r(q, z)T

r = (q − 1)(1− z) Log Ω̂◦(T, q, z).

Then Ω◦
r(q, z) ∈ Z[q, z, α±1

1 , . . . , α±1
g ] and Ωr,d = qpr/2Ω◦

r(q, 1) for all d ∈ Z.
In particular, if r, d are coprime, then

(6) [ML(r, d)] = (−1)prq(g−1)r2+p(r+1

2
)Ω◦

r(q, 1).

Note that, by the Weil conjectures, the formula for the Poincaré poly-
nomials of the moduli spacesML(r, d) is obtained from the previous result
by considering αi = q

1

2 . It is unclear how to compute DT invariants when
the twisting line bundle has degree 0 < ℓ < 2g − 2.

2. Preliminaries

2.1. Partitions

A partition is a sequence of integers λ = (λ1 ≥ λ2 ≥ . . . ) such that λn = 0 for
n≫ 0. We define its length l(λ) = # { i |λi ̸= 0} and its weight |λ| =

∑
i λi.

Define its Young diagram (also denoted by λ)

(7) d(λ) =
{
(i, j) ∈ Z2

∣∣ i ≥ 1, 1 ≤ j ≤ λi
}
.

An element s = (i, j) ∈ λ is called a box of the Young diagram located at the
i-th row and j-th column. Define the conjugate partition λ′ with λ′j equal
the number of boxes in the j-th column of λ. Given a box s = (i, j) ∈ λ,
define its arm and leg lengths respectively

(8) a(s) = λi − j, l(s) = λ′j − i.

Define the hook length h(s) = a(s) + l(s) + 1.
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s

Figure 1: Young diagram for λ = (4, 4, 2). Here λ′ = (3, 3, 2, 2), s = (2, 1),
a(s) = 3, l(s) = 1, h(s) = 5.

Define

(9) n(λ) =
∑

s∈λ

l(s) =
∑

i≥1

(
λ′i
2

)
=
∑

i≥1

(i− 1)λi,

(10) ⟨λ, λ⟩ =
∑

i≥1

(λ′i)
2 = 2n(λ) + |λ| .

Define

(11) Nλ(u, q, t) =
∏

s∈λ

(qa(s) − utl(s)+1)(qa(s)+1 − u−1tl(s)).

One can show that

(12) Nλ(u, q, t) = Nλ′(u, t, q).

2.2. λ-rings and symmetric functions

For simplicity we will introduce only λ-rings without Z-torsion. To make
things even simpler we can assume that our rings are algebras over Q. Then
the axioms of a λ-ring can be formulated just in terms of Adams operations.

We define the (graded) ring of symmetric polynomials

Λn = Z[x1, . . . , xn]
Sn ,

where deg xi = 1. We define the (graded) ring of symmetric functions Λ =
lim
←−

Λn, where the limit is taken in the category of graded rings. For any
commutative ring A, we define ΛA = Λ⊗Z A. As in [13], we define generators
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of Λ (complete symmetric and elementary symmetric functions)

hn =
∑

i1≤···≤in

xi1 . . . xin , en =
∑

i1<···<in

xi1 . . . xin ,

and generators of ΛQ (power sums)

pn =
∑

i

xni .

The elements hn, en, pn have degree n. We also define h0 = e0 = p0 = 1 for
convenience. For any partition λ of length ≤ n, define monomial symmetric
polynomials mλ =

∑
xα ∈ Λn, where the sum runs over all distinct permu-

tations α = (α1, . . . , αn) of (λ1, . . . , λn). They induce monomial symmetric
functions mλ ∈ Λ which form a Z-basis of Λ.

We define a λ-ring R to be a commutative ring (without Z-torsion)
equipped with a map

Λ×R→ R, (f, a) 7→ f [a],

called a plethysm, such that, with ψn = pn[−] : R→ R, called Adams oper-
ations, we have

(1) The map Λ→ R, f 7→ f [a], is a ring homomorphism, for all a ∈ R.

(2) ψ1 : R→ R is the identity map.

(3) The map ψn : R→ R is a ring homomorphism, for all n ≥ 1.

(4) ψmψn = ψmn, for all m,n ≥ 1.

The first axiom implies that it is enough to specify just Adams operations
ψn = pn[−] or σ-operations σn = hn[−] or λ-operations λn = en[−]. It also
implies that 1[a] = 1, for all a ∈ R.

We equip algebras of the form Q[x1, . . . , xk], Q(x1, . . . , xk), Q[[x1, . . . , xk]]
with the λ-ring structure given by

(13) ψn(f) = pn[f ] = f(xn1 , . . . , x
n
k).

Similarly, we equip the ring Λ of symmetric functions with the λ-ring struc-
ture given by

(14) ψn(f) = pn[f ] = f(xn1 , x
n
2 , . . . ), f ∈ Λ.
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Note that pm[pn] = pmn. If R is a λ-ring, then we have

(15) f [g[a]] = (f [g])[a], f, g ∈ Λ, a ∈ R.

Given two λ-rings R and R′, we equip the ring R⊗Z R
′ with the λ-ring

structure given by

(16) ψn(a⊗ b) = ψn(a)⊗ ψn(b), a ∈ R, b ∈ R′.

The ring Λ can be considered as a free λ-ring with one generator in the
following sense. Consider the category Ringλ of λ-rings (with morphisms
that respect plethystic operations). The forgetful functor F : Ringλ → Set
has a left adjoint

Sym : Set→ Ringλ .

Given a finite set {X1, . . . , Xn}, we denote Sym {X1, . . . , Xn} by
Sym[X1, . . . , Xn]. Then, for a one-point set {X}, there is a unique isomor-
phism of λ-rings

Sym[X] ∼−−→ Λ

that maps X to p1. We will usually identify Λ and Sym[X] using this iso-
morphism.

Let us define a filtered λ-ring R to be a λ-ring equipped with a filtration

R = F 0R ⊃ F 1R ⊃ . . .

such that F iR · F jR ⊂ F i+jR and ψn(F
iR) ⊂ FniR. It is called complete

if the natural homomorphism R→ lim
←−

R/F iR is an isomorphism. For ex-

ample, the ring Λ is graded, hence we have a decomposition Λ =
⊕

k≥0 Λ
k

into graded components. We equip Λ with the filtration F kΛ =
⊕

i≥k Λ
i and

define the completion

(17) Λ̂ = lim
←−

Λ/F kΛ ≃ Z[[h1, h2, . . . ]].

This ring can be considered as a free complete λ-ring with one generator.
One can see that if R is a complete λ-ring, then the plethystic pairing extends
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to

Λ̂× F 1R→ R.

In particular, the element

(18) Exp[X] =
∑

n≥0

hn[X] = exp



∑

n≥1

pn[X]

n


 =

∏

i≥1

1

1− xi
∈ Λ̂,

called a plethystic exponential, induces a map Exp : F 1R→ 1 + F 1R which
satisfies

(19) Exp[a+ b] = Exp[a] Exp[b].

This map has an inverse, called a plethystic logarithm,

(20) Log : 1 + F 1R→ F 1R, Log[1 + a] =
∑

n≥1

µ(n)

n
pn[log(1 + a)].

2.3. Modified Macdonald polynomials

For an introduction to modified Macdonald polynomials see [8] or [15]. Let
Pn denote the set of partitions λ with |λ| = n. Define the natural partial
order on Pn by

λ ≤ µ ⇐⇒

k∑

i=1

λi ≤

k∑

i=1

µi ∀k ≥ 1.

One can show that λ ≤ µ ⇐⇒ µ′ ≤ λ′ [13, 1.1.11]. Let Λ≤λ ⊂ Λ be the
subspace spanned by monomial symmetric functions mµ ∈ Λ with µ ≤ λ.

Let us define

(21) F = Q(q, t), ΛF = Λ⊗Z F.

We equip F and Λ with the λ-ring structures using (13) and (14), and we
equip ΛF with the λ-ring structure using (16). For any symmetric function
f ∈ ΛF , we will sometimes denote f [X] by f [X; q, t] to indicate dependence
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on q, t. Let Pλ[X; q, t] ∈ ΛF be Macdonald polynomials [13, §6]. Define mod-
ified Macdonald polynomials H̃λ[X; q, t] ∈ ΛF [8, I.8–I.11]

(22)

H̃λ[X; q, t] = Hλ

[
X; q, t−1

]
· tn(λ),

Hλ[X] = Pλ

[
X

1− t

]
·
∏

s∈λ

(1− qa(s)tl(s)+1).

Alternatively, one can uniquely determine H̃λ[X; q, t] ∈ ΛF by the properties

(1) H̃λ[(1− t)X] ∈ Λ≤λ
F .

(2) Cauchy identity:

∑

λ

H̃λ[X]H̃λ[Y ]∏
s∈λ(q

a(s) − tl(s)+1)(qa(s)+1 − tl(s))
= Exp

[
XY

(q − 1)(1− t)

]
.

We have by [8, Cor. 2.1] (see also [13, 6.6.17])

(23) H̃λ[1− u; q, t] =
∏

s∈λ

(1− qa
′(s)tl

′(s)u),

where a′(s) = j − 1, l′(s) = i− 1 for s = (i, j) ∈ λ. This implies H̃λ[1; q, t] =
1. The symmetric function H̃λ has degree |λ|, hence, applying it to z ∈ F [z],
we obtain

(24) H̃λ[z; q, t] = z|λ|.

Finally, we have by [8, Cor.2.2]

(25) H̃λ[X; q, t] = H̃λ′ [X; t, q].

2.4. Volume ring

Following [17], we will introduce in this section a λ-ring which is an analogue
of the Grothendieck ring of algebraic varieties or the ring of motives. We
define it to be the ring V =

∏
n≥1Q with Adams operations

(26) ψm(a) = (amn)n≥1, a = (an)n≥1 ∈ V,

and call it the volume ring or the ring of counting sequences [17].
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Given an algebraic variety X over a finite field Fq, we define its volume

(27) [X] = (#X(Fqn))n≥1 ∈ V.

More generally, given a finite type algebraic stack X over Fq, we define its
volume

(28) [X ] = (#X (Fqn))n≥1 ∈ V,

where, for the finite groupoid G = X (Fqn), we define

(29) #G =
∑

x∈G/∼

1

#Aut(x)
.

Let us fix a projective genus g curve X over the field Fq and consider its
zeta function

ZX(t) = exp



∑

n≥1

#X(Fqn)

n
tn


 =

∏g
i=1(1− αit)(1− α

−1
i qt)

(1− t)(1− qt)
,(30)

#X(Fqn) = 1 + qn −

g∑

i=1

αn
i − q

n
g∑

i=1

α−n
i ∀n ≥ 1.(31)

Note that the zeta function ZX(t) (and the elements αi ∈ C) is uniquely
determined by the volume [X] and, conversely, the volume [X] is uniquely
determined by the zeta function.

Let us consider the algebra

(32) Rg = Q[q±1,α±1
1 , . . .α±1

g , (qn − 1)−1 : n ≥ 1],

equipped with the usual λ-ring structure

ψn(f) = f(qn,αn
1 , . . . ,α

n
g ) ∀f ∈ Rg.

We consider the λ-ring homomorphism

(33) σ : Rg → VC =
∏

n≥1

C, q 7→ (qn)n≥1, αi 7→ (αn
i )n≥1.

It restricts to

(34) σ : RSg⋉Sg

2

g → V,
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where Sg permutes variables αi and the i-th copy of S2 permutes αi and
qα−1

i .
Note that σ(q) = [A1], the volume of the affine line. Applying (31), we

obtain

(35) σ

(
1 + q −

g∑

i=1

αi − q

g∑

i=1

α−1
i

)
= [X].

In this paper we will express volumes of stacks as images under σ of some
elements in Rg. For simplicity, we will write [X ] = f , whenever [X ] ∈ V and
f ∈ Rg satisfy [X ] = σ(f). Also, we will write q and αi instead of q and αi

respectively, hoping it will not lead to any confusion.

3. Positive Higgs bundles

In this section we will review the formula from [20] counting positive Higgs
bundles. Then we will simplify it using an approach from [16]. Let X be a
smooth projective curve of genus g over a field k and let L be a line bundle
of degree ℓ over X. Given a coherent sheaf E ∈ CohX, we define its slope
µ(E) = degE/ rkE and we call E semistable if µ(F ) ≤ µ(E) for all F ⊂ E.

Remark 3.1. We call E stable if µ(F ) < µ(E) for all proper F ⊂ E. In this
case K = End(E) is a finite-dimensional division algebra over k by Schur’s
lemma. In particular, K = k if k is algebraically closed. If rkE and degE
are coprime and E is semistable, then E is automatically stable. Let us show
that if rank and degree are coprime and the field k is finite, then K = k.
First of all, K is a finite (Galois) field extension of k by Wedderburn’s little
theorem. We can decompose EK = E ⊗k K over XK = X ×Spec k SpecK as
a direct sum

⊕
σ∈Gal(K/k) F

σ, where F σ have the same rank and degree
[17]. If [K : k] > 1, this would imply that rkE and degE are not coprime,
a contradiction.

Every coherent sheaf E ∈ CohX has a unique filtration, called a Harder-
Narasimhan filtration,

0 = E0 ⊂ E1 ⊂ . . . ⊂ En = E

such that Ei/Ei−1 are semistable and µ(E1/E0) > · · · > µ(En/En−1). We
will say that E is positive if µ(En/En−1) ≥ 0. Equivalenly, for any semistable
sheaf F with µ(F ) < 0, we have Hom(E,F ) = 0.
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Recall that an L-twisted Higgs sheaf is a pair (E, ϕ), where E is a coher-
ent sheaf over X and ϕ : E → E ⊗ L is a homomorphism. We will say that
(E, ϕ) is positive if E is positive. Let HiggsL(X) be the category of L-twisted
Higgs sheaves and Higgs+L (X) be the category of positive L-twisted Higgs
sheaves. We will say that (E, ϕ) ∈ HiggsL(X) is semistable if µ(F ) ≤ µ(E)
for every (F, ϕ′) ⊂ (E, ϕ).

Let ML(r, d) denote the stack of all Higgs bundles having rank r and
degree d, Mss

L (r, d) ⊂ML(r, d) denote the stack of semistable Higgs bun-
dles and M

+
L (r, d) ⊂ML(r, d) denote the stack of positive Higgs bundles

(not necessarily semistable). Assuming that k is a finite field Fq, we define
(exponential) DT invariants

(36) Ω̂r,d = (−q
1

2 )−ℓr2 [Mss
L (r, d)]

and define (integral) DT invariants by the formula

(37)
∑

d/r=τ

Ωr,dT
rzd = (q − 1) Log



∑

d/r=τ

Ω̂r,dT
rzd


 , τ ∈ Q,

Ideally, one would like to define DT invariants by taking the plethystic log-
arithm of the series that counts volumes of the stacks ML(r, d) (of all Higgs
bundles) of arbitrary slope, instead of the above formula, where the stacks
M

ss
L (r, d) of semistable Higgs bundles of a fixed slope are considered. The

problem with this approach is that the stacks ML(r, d) have infinite vol-
ume in general. To resolve this issue, it was suggested in [20] to use the
stacks M+

L (r, d) of positive Higgs bundles as an approximation of the stacks
ML(r, d). Let us consider the series

(38) Ω̂+(T, q, z) =
∑

r,d

(−q
1

2 )−ℓr2 [M+
L (r, d)]T

rzd

and define positive (integral) DT invariants by the formula

(39)
∑

r,d

Ω+
r,dT

rzd = (q − 1) Log Ω̂+(T, q, z).

The following result was proved in [20]:

Theorem 3.2. For every r ≥ 1, we have

(1) Ω̂r,d+r = Ω̂r,d.
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(2) Ωr,d+r = Ωr,d.

(3) Ωr,d = Ω+
r,d for d≫ 0.

The last result implies that it is enough to find the positive DT invari-
ants Ω+

r,d in order to determine the usual DT invariants Ωr,d. The following

explicit formula for the series Ω̂+(T, q, z) was proved in [20].

Theorem 3.3. Assuming that p = ℓ− (2g − 2) > 0, we have

Ω̂+(T, q, z) =
∑

λ

(−q
1

2 )ℓ⟨λ,λ⟩zpn(λ
′)Jλ(q, z)Hλ(q, z)T

|λ|,

where the sum runs over all partitions λ and Jλ(q, z), Hλ(q, z) are certain
expressions (independent of ℓ) defined in [20].

The following simplification of the above expression was obtained in [16,
Prop. 3.1].

Proposition 3.4. Given a partition λ of length n, let us define

(40) f(z1, . . . , zn; q, ᾱ) =

n∏

i=1

g∏

k=1

1− α−1
k

1− α−1
k zi

×
∑

σ∈Sn

σ



∏

i>j

(
1

1− zi/zj

g∏

k=1

1− α−1
k zi/zj

1− qα−1
k zi/zj

)
∏

i>j+1

(1− qzi/zj)
∏

i≥2

(1− zi)


 ,

(41) fλ(q, z) = f(z1, . . . , zn; q, ᾱ), zi = qi−nzλi , i = 1, . . . , n,

where ᾱ = (α1, . . . , αg). Then (see (11) for the definition of Nλ)

(42) q(g−1)⟨λ,λ⟩Jλ(q, z)Hλ(q, z) =

∏g
i=1Nλ(α

−1
i , z, q)

Nλ(1, z, q)
fλ(q, z).

The last two results imply

Corollary 3.5. Assuming that p = ℓ− (2g − 2) > 0, we have

(43) Ω̂+(q−p/2T, q, z)

=
∑

λ

(
(−1)|λ|qn(λ

′)zn(λ)
)p ∏g

i=1Nλ(α
−1
i , q, z)

Nλ(1, q, z)
fλ′(q, z) · T |λ|.



✐

✐

“11-OGorman” — 2023/4/18 — 23:44 — page 1563 — #13
✐

✐

✐

✐

✐

✐

Counting twisted Higgs bundles 1563

Proof. Using the fact that ⟨λ, λ⟩ = 2n(λ) + |λ| (see (10)), we obtain

Ω̂+(T, q, z)

=
∑

λ

(
(−1)|λ|qn(λ)zn(λ

′)
)p ∏g

i=1Nλ(α
−1
i , z, q)

Nλ(1, z, q)
fλ(q, z) · (q

p/2T )|λ|.

Now we sum up over conjugate partitions and apply (12). □

Lemma 3.6. We have

f ∈ Q[z±1
1 , . . . , z±1

n ; q±1][[α−1
1 , . . . , α−1

g ]].

Proof. The factors (1− zi/zj) disappear from the denominator of f when
we sum over Sn, so looking at the remaining factors we see that

f(z1, . . . , zn) ·

g∏

k=1




n∏

i=1

(
1− α−1

k zi
)∏

i ̸=j

(
1− qα−1

k zi/zj
)



is a Laurent polynomial. The result follows on observing that every factor
in the brackets is invertible in Q[z±1

1 , . . . , z±1
n ; q±1][[α−1

1 , . . . , α−1
g ]]. □

Proposition 3.7 (see [16, §4.2]). We have

f(1, z1, . . . , zn) = f(qz1, . . . , qzn).

4. Main result

4.1. Admissibility

Let R be a λ-ring flat over Q(q)[t±1] and let R∗ = R⊗Q(q)[t±1] Q(q, t). We
will say that F ∈ R∗ is admissible if (1− t) LogF is contained in R (usually
R will be clear from the context). In view of Proposition 3.7, we introduce
the following concept.

Definition 4.1. Let us consider the rings

Λ̄n = R[z±1
1 , . . . , z±1

n ]Sn , n ≥ 0,

and the ring homomorphisms

πn : Λ̄n+1 → Λ̄n, (πnf)(z1, . . . , zn) = f(1, q−1z1, . . . , q
−1zn).



✐

✐

“11-OGorman” — 2023/4/18 — 23:44 — page 1564 — #14
✐

✐

✐

✐

✐

✐

1564 S. Mozgovoy and R. O’Gorman

We define a q-twisted symmetric function f = (fn)n≥0 to be an element of
Λ̄ = lim

←−
Λ̄n.

Given a q-twisted symmetric function f , we define, for any partition λ
(cf. (41)),

(44) fλ(q, t) = fn(z1, . . . , zn), zi = qi−ntλi , n ≥ l(λ).

Note that this expression is independent of the choice of n ≥ l(λ).

Remark 4.2. The following result is a reformulation of [16, Lemma 5.1].
Here we exchange the roles of q, t and use conjugate partitions. We also add
an invertible factor (q − 1).

Theorem 4.3. Let f(u) =
∑

i≥0 f
(i)ui ∈ Λ̄[[u]] be a power series with f (0) =

1 and let

Ω̂[X;u] =
∑

λ

cλH̃λ[X; q, t]fλ′(u, q, t),

Ω[X;u] = (q − 1)(1− t) Log Ω̂[X;u],

where cλ ∈ R
∗ and c∅ = 1. If Ω̂[X; 0] is admissible, then Ω[X;u]− Ω[X; 0]

has coefficients in (t− 1)R. In particular, Ω[X;u] is independent of u at
t = 1.

4.2. Proof of Theorem 1.1

In this section we will use the variable t in place of z as it is customary in
the theory of orthogonal symmetric polynomials.

Theorem 4.4 (cf. Theorem 1.1). Assume that p = ℓ− (2g − 2) > 0. De-
fine (see (11) for the definition of Nλ)

(45) Ω̂◦(T, q, t) =
∑

λ

(
(−1)|λ|qn(λ

′)tn(λ)
)p ∏g

i=1Nλ(α
−1
i , q, t)

Nλ(1, q, t)
T |λ|,

(46) Ω◦(T, q, t) =
∑

r≥1

Ω◦
r(q, t)T

r = (q − 1)(1− t) Log Ω̂◦(T, q, t).

Then Ω◦
r(q, t) ∈ Z[q, t, α±1

1 , . . . , α±1
g ] and

Ωr,d = qpr/2Ω◦
r(q, 1) ∀d ∈ Z.
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Proof. According to Theorem 3.2 it is enough to show that Ω+
r,d =

qpr/2Ω◦
r(q, 1) for d≫ 0, where Ω+

r,d are determined by (39) and Corollary 3.5:

(47) Ω̂+(q−p/2T, q, t)

=
∑

λ

(
(−1)|λ|qn(λ

′)tn(λ)
)p ∏g

i=1Nλ(α
−1
i , q, t)

Nλ(1, q, t)
fλ′(q, t) · T |λ|,

(48) Ω+(T, q, t) =
∑

r

Ω+
r (q, t)T

r =
∑

r,d

Ω+
r,dT

rtd = (q − 1) Log Ω̂+(T, q, t).

We will compare the series Ω̂+(q−p/2T, q, t) and the series Ω̂◦(T, q, t)
using Theorem 4.3. Consider the ring of Laurent series

(49) R = Q(q)[t±1]((α−1
1 , . . . , α−1

g ))

and the series f̃(u) =
∑

i≥0 f̃
(i)ui which is a deformation of f (40) defined

by

f̃ (i) = (f̃ (i)n )n≥0, f̃n(z1, . . . , zn;u) =
∑

i≥0

f̃ (i)n ui = f(z1, . . . , zn; q, u
−1ᾱ),

where every αi is substituted by u−1αi. It follows from Lemma 3.6 that

f̃n ∈ Q[q±1, α±1
1 , . . . , α±1

g ][z±1
1 , . . . , z±1

n ]Sn [[u]],

hence by Proposition 3.7 the coefficients f̃ (i) are q-twisted symmetric
functions over R. It follows from [16, Theorem 5.2] that f̃n|u=0 = 1, hence
f̃(0) = 1.

As before, we define

f̃λ(u, q, t) = f̃n(z1, . . . , zn;u), zi = qi−ntλi , n ≥ l(λ),

and consider the series of symmetric functions

(50) Ω̂[X;u, q, t]

=
∑

λ

(
(−1)|λ|qn(λ

′)tn(λ)
)p ∏g

i=1Nλ(α
−1
i , q, t)

Nλ(1, q, t)
H̃λ[X; q, t]f̃λ′(u, q, t),
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Ω[X;u, q, t] = (q − 1)(1− t) Log Ω̂[X;u, q, t].(51)

Then (45) and (47) translate to

Ω̂[T ; 0, q, t] = Ω̂◦(T, q, t), Ω[T ; 0, q, t] = Ω◦(T, q, t),

Ω̂[T ; 1, q, t] = Ω̂+(q−p/2T, q, t), Ω[T ; 1, q, t] = (1− t)Ω+(q−p/2T, q, t).

In order to apply Theorem 4.3 we need to show that

Ω̂[X; 0, q, t] =
∑

λ

(
(−1)|λ|qn(λ

′)tn(λ)
)p ∏g

i=1Nλ(α
−1
i , q, t)

Nλ(1, q, t)
H̃λ[X; q, t]

is admissible. The series

∑

λ

∏g
i=1Nλ(α

−1
i , q, t)

Nλ(1, q, t)
H̃λ[X; q, t]

is admissible according to [14]. The operator ∇ defined by

H̃λ 7→ (−1)|λ|qn(λ
′)tn(λ)H̃λ

preserves admissibility by [14, Cor. 6.3]. Therefore the series Ω̂[X; 0, q, t]
is also admissible (one actually obtains from [14] that the coefficients of
Ω[X; 0, q, t] are in Z[q, t, α±1

1 , . . . , α±1
g ], hence the same is true for Ω◦(T, q, t)).

We conclude from Theorem 4.3 that

(52) Ω[T ;u, q, t]− Ω[T ; 0, q, t] ∈ (1− t)R[[T, u]].

By Lemma 3.6 we can consider Ω̂[T ;u, q, t] (50) as a series with polynomial
coefficients in u

Ω̂[T ;u, q, t] ∈ Q(q, t)[u]((α−1
1 , . . . , α−1

g ))[[T ]].

The same then applies to Ω[T ;u, q, t] and we can set u = 1 in (52). We obtain

(1− t)Ω+(q−p/2T, q, t)− Ω◦(T, q, t) ∈ (1− t)R[[T ]].

This implies that (1− t)q−pr/2Ω+
r (q, t)− Ω◦

r(q, t) = (1− t)h for some h ∈ R.
Therefore

q−pr/2
∑

d≥0

Ω+
r,dt

d =
Ω◦
r(q, t)

1− t
+ h.
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Comparing the coefficients of the monomials in α1, . . . , αg and using the
fact that Ω+

r,d+r = Ω+
r,d for d≫ 0, we conclude that q−pr/2Ω+

r,d = Ω◦
r(q, 1) for

d≫ 0. □

Remark 4.5. Let us also formulate the result in the case L = ωX (the
canonical bundle) for completeness [16]. In this case we have ℓ = 2g − 2 and
p = ℓ− (2g − 2) = 0. Define as before

(53) Ω̂◦(T, q, t) =
∑

λ

∏g
i=1Nλ(α

−1
i , q, t)

Nλ(1, q, t)
T |λ|

(54) Ω◦(T, q, t) =
∑

r≥1

Ω◦
r(q, t)T

r = (q − 1)(1− t) Log Ω̂◦(T, q, t).

Using results of [20] and the same proof as before, we obtain the formula
for integral Donaldson-Thomas invariants Ωr,d = qΩ◦

r(q, 1) (note the addi-
tional factor q). These invariants are related to the invariants Ar,d counting
absolutely indecomposable vector bundles of rank r and degree d over X:
Ωr,d = qAr,d [20]. This implies that Ar,d = Ω◦

r(q, 1), as was proved by Mellit
in [16].

4.3. Alternative formulation

The following result was conjectured in [18, Conj. 3].

Theorem 4.6. Assume that p = ℓ− (2g − 2) > 0. Consider the series

H(T, q, t) =
∑

λ

T |λ|
∏

s∈λ

(−ta(s)−l(s)qa(s))pt(1−g)(2l(s)+1)ZX(th(s)qa(s)),

H◦(T, q, t) =
∑

r≥1

H◦
r(q, t)T

r = (1− t)(1− qt) LogH(T, q, t).

Then H◦
r(q, t) ∈ Z[q, t±1, α±1

1 , . . . , α±1
g ] and Ωr,d = qpr/2H◦

r(q, 1).

Proof. Using the substitution t 7→ t−1, we obtain

H(T, q, t−1) =
∑

λ

T |λ|
∏

s∈λ

(−tl−aqa)pt(g−1)(2l+1)ZX(t−hqa)

=
∑

λ

T |λ|
∏

s∈λ

(−tl−aqa)p
∏g

i=1(t
l+1 − αit

−aqa)(tl − α−1
i t−a−1qa+1)

(tl+1 − t−aqa)(tl − t−a−1qa+1)
,
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while

tH◦(T, q, t−1) = (1− t)(t−1q − 1) LogH(T, q, t−1).

Using the substitution q 7→ qt, we obtain

H(T, qt, t−1) =
∑

λ

T |λ|
∏

s∈λ

(−tlqa)p
∏g

i=1(t
l+1 − αiq

a)(tl − α−1
i qa+1)

(tl+1 − qa)(tl − qa+1)

=
∑

λ

T |λ|
(
(−1)|λ|qn(λ

′)tn(λ)
)p ∏g

i=1Nλ(α
−1
i , q, t)

Nλ(1, q, t)
.

Now the result follows from Theorem 4.4. □
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