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Convex hull property for ancient

harmonic map heat flows
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For an ancient solution u to the harmonic map heat flow from a
complete manifold M into a Cartan-Hadamard manifold N with
curvature bounded between two negative constants, we show that
the image of u is contained in the convex hull of its intersection
with the ideal boundary of N together with at most k interior
points in N, where k is the dimension of the space of bounded
ancient solutions to the heat equation on M. In the case M has
nonnegative Ricci curvature and u is of polynomial growth, its
image is contained in an ideal polyhedron with estimable number
of vertices in terms of the growth order.

1. Introduction

Various geometric flows such as the Ricci flow [11] and the mean curvature
flow [13] have been introduced and extensively studied ever since the pi-
oneering work of Eells-Sampson [8] on harmonic map heat flow. It is well
known by now that singularity analysis of geometric flows naturally leads to
ancient solutions to the flows, that is, solutions which exist for all negative
time. In the case of harmonic map heat flow, an ancient solution is simply
a smooth map u(x, t) : M × (−∞, 0) → N satisfying

τ(u)(x, t) =
∂u

∂t
(x, t),

where (Mm, g) and (Nn, h) are smooth Riemannian manifolds of the indi-
cated dimensions, and τ(u) is the tension field of map u.
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Recall that τ(w) = 0 is the Euler-Lagrange equation for critical points
of the energy functional

E(v) =

ˆ

M

e(v)dµg

with e(v) being the energy density or the trace of the pull-back symmetric
quadratic form v∗(h) with respect to metric g, where dµg is the Riemannian
volume form of M. Such map w is called a harmonic map. In terms of local
coordinates x1, · · · , xm on M and y1, · · · , yn on N, the metrics g and h are
given as

g =

m∑

i,j=1

gij(x)dx
idxj , h =

n∑

α,β=1

hαβ(y)dy
αdyβ

and the map v as v(x) = (v1, · · · , vn). Then the energy density e(v) of v is
given by

e(v)(x) =

m∑

i,j=1

n∑

α,β=1

gij(x)
∂vα

∂xi
(x)

∂vβ

∂xj
(x)hαβ(v(x))

and the tension field of map v by

τβ(v) = ∆vβ +
∑

i,j,γ,δ

gij(x)Γβ
γδ(v(x))

∂vγ

∂xi
∂vδ

∂xj
,

were ∆ is the Laplace-Beltrami operator on M and Γβ
γδ are the Christoffel

symbols of N.
Historically, in the case that M and N are compact, and N is non-

positively curved, Eells-Sampson [8] have shown that there is a smooth har-
monic map w : M → N homotopic to any given smooth map u0 : M → N.
This is proven by solving the following harmonic map heat flow

∂u

∂t
= τ(u)

with initial data u(0) = u0. Their result says that the solution exists for all
time t > 0 and converges to a smooth harmonic map w. In solving the so-
called Dirichlet problem at infinity for harmonic maps between hyperbolic
spaces, Li-Tam [18] have established a general existence result concerning
the harmonic map heat flow for the case when M and N are complete.
Their result was further extended by Wang [26] to more general initial data.
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Suffice to say, in the case when N is a Cartan-Hadamard manifold, solution
to the harmonic map heat flow exists for all positive time for any initial map
satisfying some mild growth assumptions.

Our interest here is to analyze ancient solutions to the harmonic map
heat flow. First, let us introduce some definitions. For a Cartan-Hadamard
manifoldN, we denote byN its geometric compactification [24] and ∂∞(N) =
N \N its ideal boundary. Cartan-Hadamard manifold N is said to have
strongly negative curvature if its sectional curvature satisfies −b ≤ KN ≤ −a
for some positive constants a and b.

Definition 1.1. A subset C of N is a convex set if for every pair of points
in C, any geodesic segment joining them is also in C.

Definition 1.2. For a subset A in N , its convex hull C(A) is defined to be
the smallest convex subset of N containing A.

The following result may be viewed as a parabolic version of the result in
[19] for harmonic maps. We denote by P0(M) the space of bounded ancient
solutions f to the heat equation on M, namely,

(
∆− ∂

∂t

)
f = 0 on M ×

(−∞, 0) and f is bounded.

Theorem 1.3. Suppose that the space P0(M) is finite dimensional. Then
for harmonic map heat flow u : M × (−∞, 0) → N from a complete mani-
fold M into a Cartan-Hadamard manifold N with strongly negative curva-
ture, its image must satisfy ∪t<0{u(x, t)|x ∈ M} ⊂ C

(
A ∪ {yi}ki=1

)
with A =

∪t<0{u(x, t)|x ∈ M} ∩ ∂∞(N) and yi ∈ N, i = 1, · · · , k, and k ≤ dimP0(M).

Corollary 1.4. A bounded ancient solution to the harmonic map heat flow
from a complete manifold M into a Cartan-Hadamard manifold must be
constant if dimP0(M) = 1.

Corollary 1.5. An ancient solution to the harmonic map heat flow from a
complete manifold M into a Cartan-Hadamard manifold with strongly neg-
ative curvature must be constant if its image is inside a horoball of N and
dimP+(M) = 1, where P+(M) is the space spanned by the positive ancient
solutions to the heat equation on M.

Clearly, if M satisfies parabolic Harnack inequality, that is, there ex-
ists constant c > 0 such that u(x, t1) ≤ c u(y, t2) whenever t2 − t1 ≥ d2(x, y)
for any positive solution u to the heat equation on M, then dimP+(M) =
dimP0(M) = 1. More generally, one has dimP0(M) < ∞ provided that a



✐

✐

“12-Sung” — 2023/4/18 — 23:47 — page 1574 — #4
✐

✐

✐

✐

✐

✐

1574 Chiung-Jue Anna Sung

parabolic mean value inequality holds on M. Note that recent work [7, 21]
provides a description of polynomial growth ancient solutions to the heat
equation in terms of harmonic functions under suitable assumption on M.
In particular, by [7], if the volume of M is of polynomial growth, then
P0(M) = H0(M), the space of bounded harmonic functions on M. The fol-
lowing result is a nonlinear analogue for ancient solutions to the harmonic
map heat flow.

Theorem 1.6. Let u : M × (−∞, 0) → N be a bounded solution to the har-
monic map heat flow from a complete manifold M into a Cartan-Hadamard
manifold N. If dimP0(M) = dimH0(M) < ∞, then u must be harmonic.

If we restrict to polynomial growth ancient solutions to the harmonic
map heat flows, then Theorem 1.3 can be strengthened considerably.

Theorem 1.7. Let M be a complete manifold with nonnegative Ricci cur-
vature and N a Cartan-Hadamard manifold with strongly negative curvature.
Then any nonconstant, polynomial growth, harmonic map heat flow solution
u : M × (−∞, 0) → N must satisfy ∪t<0{u(x, t)|x ∈ M} ⊂ C({ai}ki=1) with

A = ∪t<0{u(x, t)|x ∈ M} ∩ ∂∞(N) = {ai}
k
i=1.

Moreover, k can be explicitly estimated in terms of m, the dimension of M,
and α, the growth order of u.

Here, u is of polynomial growth of order α if for some fixed points p ∈ M
and q ∈ N

dN (u(x, t), q) ≤ C
(
dM (x, p) +

√
|t|+ 1

)α

for all x ∈ M and t ∈ (−∞, 0), where dM and dN are the distance on M and
N, respectively.

Our proof relies on the following concept of parabolic massive sets and
is strongly influenced by the work of [19], where the corresponding results
were established for harmonic maps.

Definition 1.8. A domain Ω ⊂ M × (−∞, 0) is said to be parabolic α-
massive if there exists a nonnegative, nonconstant, function f(x, t) on M ×
(−∞, 0) with f = 0 outside Ω such that

(
∆− ∂

∂t

)
f ≥ 0 and f(x, t) ≤

C
(
dM (x, p) +

√
|t|+ 1

)α
for x ∈ M and t < 0.
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Such function f is called a potential of Ω. By the maximum principle, if

sup
x∈M

f(x, T ) > 0

for some T, so is supx∈M f(x, t) for t < T. In the case α = 0, we will simply
call Ω parabolic massive. The elliptic analogue of massive sets were first
introduced in [9], where it was shown that the dimension ofH0(M), the space
of bounded harmonic functions on M, is the same as the maximal number of
disjoint massive subsets of M. It turns out that a parabolic analogue holds
as well, that is, the dimension of P0(M) is equal to the maximal number of
disjoint parabolic massive subsets in M × (−∞, 0).

The concept of α-massive sets were introduced in [19] to study the image
of a polynomial growth harmonic map. Our definition of parabolic α-massive
sets is a natural extension and seems to suit well for the study of ancient
solutions to harmonic map heat flows.

The paper is organized as follows. In section 2, we recall some basic facts
concerning convex hulls in Cartan-Hadamard manifolds and show that the
maximal number of disjoint parabolic massive sets is exactly the dimension
of P0(M). In section 3, we deal with general ancient solutions to the har-
monic map heat flows and prove Theorem 1.3 and Theorem 1.6. Finally,
we take up the polynomial growth solutions and establish Theorem 1.7 in
section 4.

2. Preliminaries

We collect some basic facts about convex hulls in a Cartan-Hadamard man-
ifold and establish some results concerning parabolic massive sets in this
section. The result will be used to prove Theorem 1.3 in next section.

Recall the following definition from [19].

Definition 2.1. A Cartan-Hadamard manifold N is said to satisfy the sep-
aration property if for every closed convex subset A in N and point p not in
A, there exists a closed convex set C properly containing A and separating p
from A, i.e., A ⊂ C, A ∩ ∂∞(N) is contained in the interior of C ∩ ∂∞(N)
and p is not in C.

The following lemma is proved in [19].
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Lemma 2.2. A Cartan Hadamard manifold N satisfies the separation prop-
erly if and only if for every closed subset A and monotone decreasing se-
quence of closed subsets {An} in N such that ∩∞

n=1An = A,

∩∞

n=1 C(An) = C(A).

The above Lemma indicates that the separation property is quite natural
in the study of convex sets. Using the result in [1, 3], Li-Wang showed the
following statement.

Lemma 2.3. Let N be a Cartan-Hadamard manifold with strongly negative
curvature. Denote by dH(A,B) the Hausdorff distance between sets A and
B in N. Then for every closed subset A and monotone decreasing sequence
of closed subsets {An} in N such that ∩∞

n=1An = A,

dH(∩∞

n=1 C(An), C(A)) < ∞.

The following definition and lemma are also from [19].

Definition 2.4. Cartan-Hadamard manifold N is said to satisfy the sep-
aration property at infinity if for any closed subset A of ∂∞(N), the ideal
boundary of N, and any point p ∈ ∂∞(N) \A, there exists a closed convex
subset C in N such that A is contained in the interior of C ∩ ∂∞(N) and p
not in C.

Lemma 2.5. Let N be a Cartan-Hadamard manifold. Then for every closed
set K in N,

C(K) ∩ ∂∞(N) = K ∩ ∂∞(N)

if and only if N satisfies the separation property at infinity.

Upon improving a result of M. Anderson [1], A. Borbély [3] has shown
that Cartan-Hadamard manifold N has separation property at infinity pro-
vided that its sectional curvature satisfies −Ceλd(x) ≤ KN (x) ≤ −1 for some
constant C > 0 and 0 ≤ λ < 1/3, where d(x) is the distance from point x to
a fixed point o ∈ N.

We now switch our consideration to massive sets defined in [9].

Definition 2.6. A domain Γ in M is said to be massive if there exists a
bounded, nonnegative, nontrivial, subharmonic function f on M such that
f = 0 outside Γ.
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Clearly, M has at least one massive set if and only if it is nonparabolic
or admits a positive Green’s function. Moreover, according to [9], the max-
imal number of disjoint massive sets in M is always equal to dimH0(M),
the dimension of the space of bounded harmonic functions on M. So if
dimH0(M) = k0, thenM has exactly k0 disjoint massive subsets Γ1, . . . ,Γk0

.
The following result shows that a parabolic analogue holds as well. Recall

a domain Ω ⊂ M × (−∞, 0) is parabolic massive if there exists a bounded,
nonnegative, nontrivial, subsolution f of the heat equation on M × (−∞, 0)
with f(x, t) = 0 outside Ω.

Proposition 2.7. For complete manifold M, the maximal number of dis-
joint parabolic massive sets in M × (−∞, 0) is always equal to dimP0(M),
the dimension of the space of bounded ancient solutions to the heat equation
on M.

Proof. Suppose that the maximal number of disjoint parabolic massive sets
in M × (−∞, 0) is k. Denote by Ω1, · · · ,Ωk disjoint parabolic massive sets
in M × (−∞, 0) with corresponding potential f1, · · · , fk. We may assume
sup fi = 1 for i = 1, · · · , k. For each fi, we solve the following heat equation
for each T < 0 and large R on the geodesic ball Bp(R) ⊂ M, where p ∈ M
is a fixed point.

(∆−
∂

∂t
)uR,T (x, t) = 0

with uR,T (x, T ) = fi(x, T ) for x ∈ Bp(R) and uR,T (x, t) = fi(x, t) for x ∈
∂Bp(R) and T < t < 0. Then the maximum principle implies that fi(x, t) ≤
uR,T (x, t) ≤ 1 on Bp(R)× [T, 0). In particular, we may pick a subsequence
of Rj → ∞ and Tj → −∞ such that uRj ,Tj

converges to ui(x, t), an ancient
solution to the heat equation on M × (−∞, 0) satisfying

fi(x, t) ≤ ui(x, t) ≤ 1.

In conclusion, we obtain ancient solutions u1, · · · , uk to the heat equation
on M × (−∞, 0) satisfying

fi(x, t) ≤ ui(x, t) ≤ 1.

Since Ω1, · · · ,Ωk are disjoint,
∑k

i=1 fi(x, t) ≤ 1 on M × (−∞, 0). Again, by

the maximum principle, we have
∑k

i=1 ui(x, t) ≤ 1 on M × (−∞, 0). How-
ever, supui = sup fi = 1. It then follows that u1, · · · , uk must be linearly
independent. Consequently, k ≤ dimP0(M).
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We now claim that {u1, · · · , uk} forms a basis for the space P0(M).
First, we have

∑k
i=1 ui(x, t) = 1 on M × (−∞, 0). Otherwise, the function

v = 1−
∑k

i=1 ui is positive somewhere on M × (−∞, 0). So for sup v = ϵ0 >

0, there exists sufficiently small ϵ > 0 such that the sets Ω̃ = {v > ϵ0
2 } and

Ω̃i = {ui > 1− ϵ}, i = 1, · · · , k, are mutually disjoint. Note that Ω̃ and Ω̃i

are parabolic massive with potential given by the positive part of v − ϵ0
2

and ui − 1 + ϵ, respectively. This contradicts with the fact that k is the
maximal number of disjoint parabolic massive sets. Now for u ∈ P0(M),
to express u as a linear combination of u1, · · · , uk, we may assume u ≥ 0 as
the constant 1 =

∑k
i=1 ui. Let Li = {ui >

1
2}, i = 1, · · · , k, and ci = supLi

u.

For w = u−
∑k

i=1 ci ui, if supw = δ0 > 0, then we claim that there exists
sufficiently small ϵ > 0 such that the sets {w > δ0

2 } and {ui > 1− ϵ}, i =
1, · · · , k, are mutually disjoint. Indeed, this is obvious so for the sets {ui >
1− ϵ}, i = 1, · · · , k. Now suppose that there exists a point with w(z) > δ0

2
and uj(z) > 1− ϵ for some j. Then we have

u(z) ≥ w(z) + cj uj(z) >
δ0
2

+ cj (1− ϵ) > cj .

This is a contradiction as z ∈ Lj . So the claim follows.
Since the sets {w > δ0

2 } and {ui > 1− ϵ}, i = 1, · · · , k, are all parabolic
massive, the claim implies that M × (−∞, 0) has more than k disjoint
parabolic massive sets. This contradiction shows that w ≤ 0. Similarly, one
shows that w ≥ 0. In conclusion, w = 0 or u =

∑k
i=1 ci ui. □

We end this section with the following result.

Lemma 2.8. Domain Γ ⊂ M is a massive set in M if and only if Γ×
(−∞, 0) is a parabolic massive set in M × (−∞, 0).

Proof. Obviously, Γ× (−∞, 0) is a parabolic massive set in M × (−∞, 0) if
Γ ⊂ M is a massive set in M. So we need only to show the other implication.
To do so, we claim that

v(x) = sup
−∞<t<0

f(x, t)

is subharmonic on M for any bounded subsolution f to the heat equation
on M × (−∞, 0). Clearly, the result follows from the claim.

To check the claim, for any compact smooth domain Γ̃ ⊂ M, let ω be
the harmonic function on Γ̃ with ω = v on ∂Γ̃. Then we have ω ≥ f(x, t)
on ∂Γ̃. Since ω is a solution and f is a subsolution to the heat equation on
Γ̃, the maximum principle implies that ω(x) ≥ f(x, t) for x ∈ Γ̃ and t < 0.
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Indeed, consider u(x, t) = (f(x, t)− ω(x))+ , the positive part of the function

f(x, t)− ω(x). Then u is a subsolution to the heat equation on Γ̃ with u = 0
on ∂Γ̃. Now

d

dt

ˆ

Γ̃
u2 ≤ 2

ˆ

Γ̃
u∆u

= −2

ˆ

Γ̃
|∇u|2

≤ −2λ1

ˆ

Γ̃
u2,

where λ1 is the first Dirichlet eigenvalue of Γ̃. Integrating in t, we obtain
that for t2 < t1 < 0,

ˆ

Γ̃
u2(x, t1) dx ≤ exp (−2λ1(t1 − t2))

ˆ

Γ̃
u2(x, t2) dx.

Since u is bounded and Γ̃ is compact, by letting t2 → −∞ we conclude that
´

Γ̃ u
2(x, t1) dx = 0 or u(x, t1) = 0 for all x ∈ Γ̃ and t1. Therefore, ω(x) ≥

f(x, t) for x ∈ Γ̃ and t < 0. It follows that

ω ≥ v

on Γ̃ and v is subharmonic on M. The proof is completed. □

3. General ancient solutions

In this section, we prove Theorem 1.3 and Theorem 1.6 together with some
corollaries.

Theorem 3.1. For ancient solution u : M × (−∞, 0) → N to the harmonic
map heat flow from M into a Cartan-Hadamard manifold N with strongly

negative curvature, let A =
(
∪t<0{u(x, t)|x ∈ M}

)
∩ ∂∞(N), where ∂∞(N)

is the ideal boundary of N. Then there exists a set of points {yi}
k
i=1 ⊂(

∪t<0{u(x, t)|x ∈ M}
)
∩N with k ≤ dimP0(M) such that

{u(x, t)|x ∈ M} ⊂ C(A ∪ {yi}ki=1)

for all −∞ < t < 0.

Proof. The proof follows [19] closely. So we only sketch the main steps.
Suppose dimP0(M) = k0. Then by Proposition 2.7M has exactly k0 disjoint
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parabolic massive subsets Ω1, · · · ,Ωk0
in M × (−∞, 0). In the following, we

denote Z = M × (−∞, 0) and Ẑ its Stone-Cêch compactification. For each
i ∈ {1, · · · , k0}, let

Si = ∩{ẑ ∈ Ẑ | v(ẑ) = sup v},

where the intersection is taken over all the potential functions v of Ωi. Then
arguing as in [19] implies that each Si is nonempty. Moreover, for a bounded
ancient subsolution v to the heat equation on M, the set

S = {ẑ | v(ẑ) = sup v}

must contain some Si, and for each j, either S ∩ Sj = ∅ or Sj ⊂ S.
We first show that there exist k points {y1, . . . , yk} in N with k ≤ k0

such that

u(Z) ⊂ ∩ϵ>0 C(Aϵ ∪ {yi}ki=1)

for every ϵ > 0, where Aϵ is the ϵ-neighborhood of A in S∞(N).
Pick a point y0 ∈ u(Z) ∩N. If

u(Z) ⊂ ∩ϵ>0 C(Aϵ ∪ {y0}),

then we are done. Hence we may assume that there exists a ϵ-neighborhood
Aϵ of A in S∞(N) such that the set

u(Z) \ C(Aϵ ∪ {y0}) ̸= ∅.

One can easily check that it is bounded in N. Since u is a solution to the
harmonic map heat flow and the function d(y, C(Aϵ ∪ {y0})) is convex, the
composition function

f(x, t) = d(u(x, t), C(Aϵ ∪ {y0}))

is a bounded nonconstant ancient subsolution to the heat equation on M.
Thus, it attains its maximum at every point of some Si, say S1. In particular,
there exists ẑ1 ∈ S1 such that f(ẑ1) = supZ f. One may find a net {zα} in
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Z converging to ẑ1 in Ẑ such that u(zα) converges to y1 ∈ N. Again, if

u(Z) ⊂ ∩ϵ>0 C(Aϵ ∪ {y1})

then we are done. Otherwise, by choosing a smaller ϵ if necessary, the func-
tion

g(x, t) = d(u(x, t), C(Aϵ ∪ {y1}))

is a bounded nonconstant ancient subsolution to the heat equation on M. If
supZ g is achieved on S1, then g(ẑ) = sup g for ẑ ∈ S1. In particular,

sup g = g(ẑ1) = d(y1, C(Aϵ ∪ {y1})) = 0,

which is impossible. Hence, we may assume g achieves its maximum on S2.
For a net {zα} in Z converging to a point ẑ2 in S2, there exists a subnet

of {u(zα)} that converges to y2 ∈ N. Suppose that we have chosen l points
y1, . . . , yl described in the above procedure. If

u(Z) ⊂ ∩ϵ>0 C(Aϵ ∪ {yi}li=1),

then we are done. Otherwise, by choosing a smaller ϵ if necessary, we define
the function

h(x, t) = d(u(x, t), C(Aϵ ∪ {yi}li=1))

which is a bounded nonconstant ancient subsolution to the heat equation
on M. Then h cannot achieve its maximum on ∪l

i=1Si. Hence, h achieves its
maximum on some Sj with j > l. We may assume that j = l + 1.

Let us pick a point x̂l+1 ∈ Sl+1 and a net {zα} converging to ẑl+1. Sup-
pose yl+1 is an accumulation point of the net {u(zα)}. It is clear that this
process must stop after at most k0 steps since there are only k0 parabolic
massive sets. In particular, there exist k points {y1, . . . , yk} with k ≤ k0 such
that

u(Z) ⊂ ∩ϵ>0 C(Aϵ ∪ {yi}ki=1).

Moreover, yi ∈ u(Z) ∩N.
Finally, using the fact thatN has strongly negative curvature and Lemma

2.3, one can follow the argument of Li-Wang [19] to conclude

u(Z) ⊂ C(A ∪ {yi}ki=1).

This completes our proof. □
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Note that the assumption that N has strongly negative curvature is not
needed if u is bounded or the set A = ∅.

Corollary 3.2. For a bounded ancient solution u : M × (−∞, 0) → N to
the harmonic map heat flow from M into a Cartan-Hadamard manifold

N, there exists a set of points {yi}
k
i=1 ⊂

(
∪t<0{u(x, t)|x ∈ M}

)
∩N with

k ≤ dimP0(M) such that

{u(x, t)|x ∈ M} ⊂ C({yi}ki=1)

for all −∞ < t < 0.

This immediately leads to the following Liouville type result. Note in the
case that the Ricci curvature of M is nonnegative, the result can be derived
from the gradient estimate established in [14].

Corollary 3.3. Let u be a bounded ancient solution to the harmonic map
heat flow from complete manifold M into a Cartan-Hadamard manifold N.
Then u must be a constant map if every bounded ancient solution to the heat
equation on M is constant or dimP0(M) = 1.

The following result may be interpreted as a strong Liouville property
for ancient solutions to harmonic map heat flow. The harmonic map case
was proved by Shen [23] and Li-Wang [19].

Corollary 3.4. An ancient solution to the harmonic map heat flow from a
complete manifold M into a Cartan-Hadamard manifold with strongly neg-
ative curvature must be constant if its image is inside a horoball of N and
dimP+(M) = 1, where P+(M) is the space spanned by the positive ancient
solutions to the heat equation on M.

Proof. Since a horoball of N intersects with the ideal boundary ∂∞(N) at
one point and P0(M) ⊂ P+(M), it follows from Theorem 3.1 that the image
of u lies on a geodesic ray. In particular, u may be viewed as a nonnegative
ancient solution to the heat equation on M, namely, u ∈ P+(M). Therefore,
u is a constant map. □

We now turn to Theorem 1.6 which is restated below.

Theorem 3.5. Let u : M × (−∞, 0) → N be a bounded solution to the har-
monic map heat flow from a complete manifold M into a Cartan-Hadamard
manifold N. If dimP0(M) = dimH0(M) < ∞, then u must be harmonic.
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Proof. Since dimP0(M) = dimH0(M) = k0 < ∞, by [9], we conclude that
M has disjoint massive sets Γ1, · · · ,Γk0

with potential u1, · · · , uk0
, respec-

tively. We normalize ui such that supM ui = 1. An elliptic version of the
proof of Proposition 2.7 (see [9]) implies that for each i there is a bounded
harmonic function fi with ui ≤ fi ≤ 1.

Now by Proposition 2.7 Ωi = Γi × (−∞, 0), i = 1, · · · , k0, are maximal
disjoint parabolic massive sets in M × (−∞, 0). Following the proof of The-
orem 3.1, for each Ωi we have the corresponding subset Si in the Stone-
Cêch compactification Ẑ of Z = M × (−∞, 0). Pick yi an accumulation
point of u(zα) for a net of points zα ∈ Z = M × (−∞, 0) converging to
a point ẑ ∈ Si, i = 1, · · · , k0. Let (y1, · · · , yn) be the normal coordinates
of N centered at point p. In this coordinate system, yi = (a1i, · · · , ani),
1 ≤ i ≤ k0. Let h = (h1, · · · , hn) be the vector-valued harmonic function
with hl =

∑k0

i=1 alifi. For a sequence of exhausting smooth compact domains
Ωi ⊂ M, according to [12], for each i, there exists a harmonic map wi from
Ωi to N such that wi = h on ∂Ωi. Moreover, by Lemma 3.1 in [2], wi satisfies
the following estimate.

d(wi, h) ≤ C

(
v −

n∑

l=1

h2l

)

on Ωi for some constant C > 0 independent of Ωi, where

v =

k0∑

i=1

(
n∑

l=1

(ali)
2

)
fi.

In particular, wi remains uniformly bounded from h. We may therefore as-
sume, by taking a subsequence if necessary, that wi converges to a harmonic
map w from M to N. Clearly, the following inequality holds for w on M.

d(w, h) ≤ C

(
v −

n∑

l=1

h2l

)
.

Viewing the harmonic function fi as a function on Z, one has fi = 1 on
Si and fi = 0 on Sj for j ̸= i. It follows from the definition of h that w = yi
on Si for i = 1, · · · , k0 by considering w as a map from Z to N. Now the
function d(u(x, t), w(x)) is a bounded, nonnegative, ancient subsolution to
the heat equation on M. So its maximum value on Z is achieved at every
point of some Si. However, by the choice of yi, there exists a net zα in Z such
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that zα converges to a point in Si with u(zα) converging to yi. In conclusion,
we have d(u(x, t), w(x)) = 0 and u = w is a harmonic map. □

4. Polynomial growth ancient solutions

In this section, we deal with polynomial growth ancient solutions to har-
monic map heat flow and prove Theorem 1.7. We begin by recalling the
definition of parabolic α-massive sets.

Definition 4.1. An open subset Ω of M × (−∞, 0) is said to be parabolic
α-massive if there exists a nonnegative, nonconstant, ancient subsolution f
of the heat equation on M × (−∞, 0) satisfying

f(x, t) ≤ C
(
dM (x, p) +

√
|t|+ 1

)α

Note that a parabolic α-massive set is parabolic α′-massive if α ≤ α′.

Lemma 4.2. Let M be a complete manifold such that the maximum num-
ber of disjoint parabolic α-massive sets of M × (−∞, 0) is kα. Suppose that
u : M × (−∞, 0) → N is an ancient solution to the harmonic map heat flow
from M into Cartan-Hadamard manifold N and that N satisfies the sep-
aration property at infinity. Assume that there exists a point q ∈ N such
that

dN (u(x, t), q) ≤ C
(
dM (x, p) +

√
|t|+ 1

)α

for some nonnegative constant C and p ∈ M. Then

A =
(
∪t<0{u(x, t)|x ∈ M}

)
∩ ∂∞(N) = {ai}

k′

i=1

with k′ ≤ kα − k0, where k0 is the maximum number of disjoint parabolic
massive sets of M × (−∞, 0). If, in addition, N has strongly negative cur-
vature, then there exist k points

{yj}
k
j=1 ⊂

(
∪t<0{u(x, t)|x ∈ M}

)
∩N

with k′ + k ≤ kα such that

{u(x, t)|x ∈ M} ⊂ C({ai}k
′

i=1 ∪ {yj}kj=1)

for all t ∈ −(∞, 0).
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Proof. Let k0 be the maximum number of disjoint parabolic massive sets
in M × (−∞, 0). If A contains at least k′ points, then there exist disjoint
open sets {Ui}

k′

i=1 in N such that Ui ∩A ̸= ∅ for i = 1, 2, . . . , k′. Since N is
assumed to satisfy the separation property at infinity, Lemma 2.5 implies

that ∪t<0{u(x, t)|x ∈ M} is not a subset of C(N \ Ui). In particular, the
function

fi(x, t) = dN

(
u(x, t), C((N \ Ui)

)

is not identically zero on u−1(Ui) ⊂ M × (−∞, 0) and sup fi = ∞. Clearly,
fi = 0 outside the set u−1(Ui) and

fi(x, t) ≤ C
(
dM (x, p) +

√
|t|+ 1

)α
.

This implies that each set u−1(Ui) is a parabolic α-massive but not parabolic
massive set. In particular, since they are disjoint, k′ ≤ kα − k0. It follows that
A = {ai}

k′

i=1 has at most kα − k0 points, and the first conclusion follows. If,
in addition, N has strongly negative curvature, then Theorem 3.1 implies
that

∪t<0{u(x, t)|x ∈ M} ⊂ C({ai}k
′

i=1 ∪ {yj}kj=1),

where

{yj}
k
j=1 ⊂

(
∪t<0{u(x, t)|x ∈ M}

)
∩N

and k ≤ k0. Therefore, k
′ + k ≤ kα and the theorem is proved. □

We now turn to estimate kα. The following parabolic mean value prop-
erty will play an important role for this purpose. It is well-known that a
scaling invariant Sobolev inequality implies such a mean value inequality
via Moser iteration argument [15]. For further discussions and results of the
mean value property, we refer to [20].

Definition 4.3. Complete manifold M is said to have parabolic mean value
property (PM) if there exists a constant λ > 0, such that, for x ∈ M and r >
0, any nonnegative subsolution of the heat equation f defined on Bx(2r)×
[t− r2, t] must satisfy

f(x, t) ≤
λ

r2Vx(r)

ˆ t

t−r2

ˆ

B(x,r)
f(y, s)dyds.

Lemma 4.4. Let M be a complete manifold satisfying parabolic mean value
property (PM). Suppose that the volume growth of M satisfies Vp(r) =
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O(rν) for some positive constant ν, where Vp(r) is the volume of the geodesic
ball Bp(r) centered at point p of radius r. Then M × (−∞, 0) has only finitely
many disjoint parabolic α-massive sets and kα ≤ λ3(2α+ν). If M is further
assumed to satisfy weak volume comparison, that is, there exist constants
C0 > 0 and ν > 0 such that

Vx(r
′) ≤ C0

(
r′

r

)ν

Vx(r)

for all x ∈ M and 0 < r ≤ r′ < ∞, then there exists a constant C > 0 de-
pending only on C0 and ν such that the number of disjoint parabolic α-
massive sets kα ≤ C λαν−1.

Proof. Our proof is an adaption from [19]. Let Ω1, . . . ,Ωkα
be kα disjoint

parabolic α-massive sets in M × (−∞, 0). Let u1, . . . , ukα
be the correspond-

ing potential functions. Then ui is a nonnegative ancient subsolution of the
heat equation on M and each ui is of polynomial growth of degree at most
α, namely,

ui(x, t) ≤ C
(
dM (x, p) +

√
|t|+ 1

)α
.

Obviously, for a fixed t < 0, there exists r0 > 0 such that

ˆ t

t−r2
0

ˆ

Bp(r0)
u2i dx ds > 0

for each i = 1, · · · , kα. Since Ωi, i = 1, · · · , kα, are disjoint, the set of func-
tions {ui}

kα

i=1 forms an orthogonal basis with respect to the inner product

Ar(u, v) =

ˆ t

t−r2

ˆ

Bp(r)
u v dx ds

for all r ≥ r0 on the space W spanned by {ui}
kα

i=1. Using the fact that each
ui is of polynomial growth of order α and the assumption that Vp(r) ≤ C rν ,
one concludes from [16] that for each β > 1 and δ > 0 there exists r > r0
satisfying

(4.1)

kα∑

i=1

´ t

t−r2

´

Bp(r)
u2i

´ t

t−(βr)2

´

Bp(βr)
u2i

≥ kα β
−(2α+ν+δ).
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Note that the function

kα∑

i=1

u2i (x, s)
´ t

t−(βr)2

´

Bp(βr)
u2i

is an ancient subsolution of the heat equation. The maximum principle im-
plies that there exists a point q ∈ ∂Bp(r) such that

kα∑

i=1

u2i (x, s)
´ t

t−(βr)2

´

Bp(βr)
u2i

≤
kα∑

i=1

u2i (q, t− r2)
´ t

t−(βr)2

´

Bp(βr)
u2i

=
u2j (q, t− r2)

´ t

t−(βr)2

´

Bp(βr)
u2j

for all x ∈ Bp(r) and t− r2 ≤ s ≤ t, where in the last equality we have used
the fact that functions {ui}

kα

i=1 have disjoint support.
Applying the parabolic mean value property (PM) we have

Vq(2r)u
2
j (q, t− r2) ≤ (2r)−2 λ

ˆ t−r2

t−5r2

ˆ

Bq(2r)
u2j

≤ (2r)−2 λ

ˆ t

t−(3r)2

ˆ

Bp(3r)
u2j .

Therefore,

kα∑

i=1

´ t

t−r2

´

Bp(r)
u2i

´ t

t−(βr)2

´

Bp(βr)
u2i

≤ r2Vp(r)
u2j (q, t− r2)

´ t

t−(βr)2

´

Bp(βr)
u2j

≤ r2Vq(2r)
u2j (q, t− r2)

´ t

t−(βr)2

´

Bp(βr)
u2j

≤ λ

´ t

t−(3r)2

´

Bp(3r)
u2j (x, t)

´ t

t−(βr)2

´

Bp(βr)
u2j

.

Choosing β = 3 in (4.1) we conclude that

kα3
(−2α+ν+δ) ≤ λ

or

kα ≤ λ3(2α+ν)
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as δ > 0 is arbitrary.
In the case M satisfies the weak volume comparison, a similar argument

in [19] can be applied to conclude that kα ≤ C λαν−1 with the choice of
β = 1 + (2α)−1. We omit the details here. □

By combining Lemma 4.1 with Lemma 4.2, we deduce the main struc-
tural theorem on polynomial growth ancient solutions of harmonic heat flow.

Theorem 4.5. Let M be a complete manifold with parabolic mean value
property (PM) and volume growth Vp(r) = O(rν) for some point p ∈ M. Let
N be a Cartan-Hadamard manifold with strongly negative curvature. Then
for u : M × (−∞, 0) → N, an ancient solution to the harmonic heat flow
satisfying

dN (u(x, t), q) ≤ C
(
dM (x, p) +

√
|t|+ 1

)α

for some constant α, there exists sets of k′ points

{ai}
k′

i=1 =
(
∪t<0{u(x, t)|x ∈ M}

)
∩ ∂∞(N)

and of k points {yj}
k
j=1 ⊂

(
∪t<0{u(x, t)|x ∈ M}

)
∩N with k′ + k ≤ λ3(2α+ν)

such that

∪t<0{u(x, t)|x ∈ M} ⊂ C({ai}k
′

i=1 ∪ {yj}kj=1).

In the case that M satisfies the weak volume comparison

Vx(r
′) ≤ C0

(
r′

r

)ν

Vx(r)

for all x ∈ M and 0 < r ≤ r′ < ∞, the same conclusion holds with an im-
proved estimate k′ + k ≤ Cαν−1.

We now prove Theorem 1.7. The theorem in fact holds under weaker
assumptions that for all x ∈ M and r > 0 the volume doubling property (V)

Vx(2r) ≤ c Vx(r)

holds and that the Neumann Poincaré inequality (P)

inf
a∈R

ˆ

Bx(r)
|ϕ− a|2 ≤ c r2

ˆ

Bx(r)
|∇ϕ|2

is valid for all smooth function ϕ. We start with the following lemma.
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Lemma 4.6. Let M be a complete manifold satisfying (V) and (P). Sup-
pose Ω is a parabolic massive set of M × (−∞, 0). Then M × (−∞, 0) \ Ω
does not contain any parabolic α-massive set.

Proof. First, we claim that for any fixed t < 0,

lim
r→∞

1

r2 Vp(r)

ˆ t−r2

t−2r2

ˆ

Bp(r)
f(x, s) dx ds = sup

M×(−∞,0)
f

for a bounded ancient subsolution f to the heat equation on M.
Indeed, let a = supM×(−∞,0) f. Then g = a− f is a nonnegative ancient

supersolution to the heat equation with infM×(−∞,0) g = 0. So for any ϵ >
0, there exists x ∈ M and s < 0 such that g(x, s) < ϵ. By the maximum
principle, we may choose s to be as negative as one likes. In particular, we
pick s < t. Since M satisfies both (V) and (P), the weak Harnack inequality
(see [10, 22]) implies that for some constant c > 0,

1

r2 Vp(r)

ˆ t−r2

t−2r2

ˆ

Bp(r)
g(x, s) dx ds ≤ c inf

Bp(
r

2
)×(t− r2

2
,t)
g

for all r > 0. So we conclude that

lim sup
r→∞

1

r2 Vp(r)

ˆ t−r2

t−2r2

ˆ

Bp(r)
g(x, s) dx ds ≤ c ϵ.

But ϵ > 0 is arbitrary, this gives

lim
r→∞

1

r2 Vp(r)

ˆ t−r2

t−2r2

ˆ

Bp(r)
g(x, s) dx ds = 0

and the claim follows.
From the definition of parabolic massive set, there exists a non-negative,

bounded, nonconstant, ancient subsolution f to the heat equation onM with
support in Ω ⊂ M × (−∞, 0). Then by the above claim, for any ϵ > 0, there
exists r0 such that for all r ≥ r0, we have

(1− ϵ) sup
M×(−∞,0)

f ≤ r−2 V −1
p (r)

ˆ t−r2

t−2r2

ˆ

Bp(r)
f(x, s) dx ds

≤ r−2 V −1
p (r)

ˆ t−r2

t−2r2
V (Ω(s) ∩Bp(r)) ds sup

M×(−∞,0)
f,
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where Ω(s) = {x ∈ M : (x, s) ∈ Ω}. In conclusion,

(4.2) ϵ r2 Vp(r) ≥

ˆ t−r2

t−2r2
V (Bp(r) \ Ω(s)) ds

for r ≥ r0.
Suppose now that there exists a parabolic α-massive set disjoint from Ω

with g being its potential. Define

M(r) = sup
Bp(r)×(t−2r2,t−r2)

g.

Then

(4.3)

ˆ t−(2r)2

t−(4r)2

ˆ

Bp(2r)
g dx ds ≤ M(2r)

ˆ t−(2r)2

t−(4r)2
V (Bp(2r) \ Ω(s)) ds.

On the other hand, the mean value inequality implies that there exists a
constant C > 0 such that

(4.4)

ˆ t−(2r)2

t−(4r)2

ˆ

Bp(2r)
g dx ds ≥ CM(r) r2 Vp(2r).

Therefore, we conclude from (4.3) and (4.4) that

CM(2r)

ˆ t−(2r)2

t−(4r)2
V (Bp(2r) \ Ω(s)) ds ≥ M(r) r2 Vp(2r).

Combining with (4.2), we have

C ϵM(2r) ≥ M(r)

for all r ≥ r0. Setting r = r0 and iterating this inequality k times, we arrive
at the inequality

(4.5) (C ϵ)k M(2kr0) ≥ M(r0).

Since g is of polynomial growth of degree α, we have

M(r) ≤ C1 r
α.

Hence

M(2kr0) ≤ C12
kα rα0 .
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This contradicts (4.5) if we choose ϵ with 2αC ϵ < 1. The lemma is proved.
□

Theorem 4.7. Let M be a complete manifold satisfying (V) and (P).
Then any nonconstant, polynomial growth, harmonic map heat flow u : M ×
(−∞, 0) → N from M into a Cartan-Hadamard manifold N with strongly
negative curvature must satisfy

∪t<0{u(x, t)|x ∈ M} ⊂ C({ai}k
′

i=1)

with {ai}
k′

i=1 = ∪t<0{u(x, t)|x ∈ M} ∩ ∂∞(N).

Proof. Due to the fact that the parabolic mean value inequality (PM) is a
consequence of (P) and (V) [10, 15], Theorem 4.5 applies and A = {ai}

k′

i=1.
Let us assume the contrary that u is nonconstant and its image is not a sub-
set of C(A). Then Lemma 2.3 implies that either d(u(x, t), C(A)) is bounded
or there exists a tubular neighborhood Aϵ of A in N with ϵ > 0 and the
image of u is not contained in C(Aϵ). Since M satisfies (V) and (P), the
parabolic Harnack inequality holds on M by [10] and [22]. In particular,

(4.6) dimP0(M) = dimP+(M) = 1.

Therefore, Theorem 3.1 implies that ∪t<0{u(x, t)|x ∈ M} ⊂ C(A ∪ {y}) for
some y ∈ ∪t<0{u(x, t)x ∈ M} ∩N. It is then easy to see that the function
d(u(x, t), C(Aϵ)) is bounded. In either case, we conclude that there exists a
closed subset W in N such that the function

f(x, t) = d(u(x, t), C(W ))

is a bounded, nonnegative, non-constant, subsolution to the heat equation
on M. Moreover, the set C = (∪t<0{u(x, t)|x ∈ M}) \ C(W ) is a non-empty
bounded set in N. Its convex hull C(C) is also bounded and

(∪t<0{u(x, t)|x ∈ M}) \ C(C)

is non-empty because u is non-constant. The distance function

g(x, t) = d(u(x, t), C(C))

is a non-negative, non-constant, subsolution to the heat equation of polyno-
mial growth. Also the support of f is in u−1(C) and the support of g is on
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M \ u−1(C(C)). This is impossible because of Lemma 4.6, and the theorem
is proved. □

On a complete manifold with nonnegative Ricci curvature, note that
the volume doubling property (V) follows from the Bishop-Gromov volume
comparison theorem (see [15]), and that the Neumann Poincaré inequality
(P) holds by a result of Buser [4] (see [5] for a different proof). Since both
the volume doubling property (V) and the Neumann Poincaré inequality (P)
are preserved under quasi-isometry, we have the following corollary.

Corollary 4.8. Let u : M × (−∞, 0) → N be a non-constant harmonic map
heat flow of polynomial growth with order α. Suppose N is a Cartan-
Hadamard manifold with strongly negative curvature. Assume that M is
an m-dimensional manifold quasi-isometric to a manifold with non-negative
Ricci curvature. Then there exists a set of k′ points

{ai}
k′

i=1 = ∪t<0{u(x, t)|x ∈ M ∩ ∂∞(N)

with k′ ≤ Cαm−1 such that ∪t<0{u(x, t)|x ∈ M} ⊂ C({ai}k
′

i=1), where the con-
stant C > 0 depends only on m and the quasi-isometric constant.
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