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In this note we provide a generalization for the definition of a tri-
section of a 4-manifold with boundary. We demonstrate the utility
of this more general definition by finding a trisection diagram for
the Cacime Surface, and also by finding a trisection-theoretic way
to perform logarithmic surgery. In addition, we describe how to
perform 1-surgery on closed trisections. The insight gained from
this description leads us to the classification of an infinite family
of genus three trisections. We include an appendix where we ex-
tend two classic results for relative trisections for the case when
the trisection surface is closed.
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1596 Román Aranda and Jesse Moeller

1. Introduction

In [14], Gay and Kirby proved that every closed smooth 4-manifold ad-
mits a trisection. A trisection of a closed 4-manifold X is a decomposition
X = X1 ∪X2 ∪X3 into three 4-dimensional 1-handlebodies so that the pair-
wise intersections are 3-dimensional 1-handlebodies Xi ∩Xj , and the triple
intersection is a closed surface Σ = X1 ∩X2 ∩X3. The genus of the trisec-
tion is defined as the genus of Σ. In recent years, the notion of trisections
has been extended to 4-manifolds with several boundaries [7], knotted sur-
faces in 4-manifolds [24] and finitely presented groups [1]. See [18] for an
exposition on recent advances in the theory of trisections of 4-manifolds.

The main goal of this paper is to introduce a generalization of trisections
of 4-manifolds, called ⋆-trisections, and to develop the diagrammatics of this
new theory. One dificulty of studying trisections of 4-manifolds is the rate at
which the genus of the trisections grows under certain operations. Softening
the definition of a trisection of a 4-manifold with boundary can potentially
reduce this complexity. For example, in [9], a genus seven trisection of T 2 ×
S2 was obtained by taking the double of a genus 3 trisection for T 2 ×D2.
In Figure 18, we use a genus one ⋆-trisection for T 2 ×D2 to draw a genus
four trisection for T 2 × S2.

We generalize the definition of trisection by relaxing the definition of the
4-manifolds which make up the pieces of the trisection. The definition of ⋆-
trisections can be found in Section 2. For the interested reader, in Section 3
we dedicate several remarks, lemmas, and figures to the exposition of these
new 4-dimensional pieces which we use to build ⋆-trisections; we discuss
two equivalent constructions of these pieces, and describe the boundary of
a ⋆-trisected 4-manifold. The diagrammatics of these new ⋆-trisections are
presented in Section 4.

In Sections 6 and 8, we show how to find ⋆-trisections for the comple-
ments of neighborhoods of certain embedded submanifolds. Motivated by
[9], we prove a pasting lemma in Section 5 which allows us to glue two ⋆-
trisected 4-manifolds along connected components of their boundaries. In
Section 8 we use this pasting lemma explicitly to produce a closed trisection
diagram for the Cacime Surface. In addition, we use the pasting lemma to
decribe how to trisect the Fintushel-Stern knot surgery [12] and Logarithmic
transforms in the spirit of [3].
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Trisections of genus three

In [23], Meier and Zupan classified all trisections of genus at most two. It
is therefore natural to seek a classification for trisections of low genus. As
a proving ground, in this paper we study an infinite family of genus three
trisection diagrams. Consider three rational numbers a

b ,
c
d ,

p
q in reduced

form. Let α1 and α2 be the top and middle curves of the left diagram in
Figure 1 and let α3 be the

a
b torus knot in the torus obtained by compressing

along α1 and α2. Take α to be the union of these curves and define β and γ
similarly using c

d and p
q , respectively. Observe that (Σ, α, β) is a Heegaard

diagram for S1 × S2 or S3 whenever |ad− bc| ≤ 1. When this condition is
satisfied for each pair of fractions, the tuple (Σ;α, β, γ) is a genus three
trisection diagram. We call such tuple a Farey diagram D(ab ,

c
d ,

p
q ).

Figure 1: The Farey diagram D(11 ,
1
2 ,

2
3).

The problem of understanding Farey diagrams was proposed during the
first day of the 2019 Spring Trisectors Meeting at UGA. By this time,
progress had already been made on this problem in [21], where Meier showed
that D( qp ,

q
p ,

q
p) is the diagram of a spun lens space L(p, q). Seeking a classi-

fication for genus three trisections, he conjectured the following.

Conjecture 1 (Meier [21]). Every irreducible 4-manifold with trisection
genus three is either the spin of a lens space, or a Gluck twist on a specific
2-knot in the spin of a lens space.

In Section 7, we show that every Farey diagram is the result of pasting to-
gether �-trisections for S2 ×D2 and X − (S1 ×B3) along their boundaries,

where X ∈ {S1 × S3, S4,CP2,CP2}. In particular, Farey diagrams yield tri-
sections for spun lens spaces or reducible 4-manifolds. We can further prove
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1598 Román Aranda and Jesse Moeller

that these diagrams are actually standard. Theorem 7.2, in conjunction with
Meier’s results on spun lens spaces, proves Conjecture 1 for the family of
Farey trisections.

Theorem 7.2. Let {a
b ,

c
d ,

p
q} ⊂ Q ∪ {1

0} with d(x, y) ≤ 1 for each x, y ∈
{a
b ,

c
d ,

p
q}. If at least two of these fractions are distinct, then D(ab ,

c
d ,

p
q ) is

equivalent to the standard diagram for T#S where T ∈ {S4,CP2,CP2} and
S ∈ {S2 × S2, S2×̃S2}.

Classic relative trisections

It is worthy of note that the current work on trisections of 4-manifolds with
boundary is restricted to the case of the trisection surface having non-empty
boundary. Besides a few remarks in the original trisections paper, not much
has been said in the closed case. In order to complete the discussion of the
basic theory of trisections of manifolds with boundary, in Appendix A we
offer adaptations of proofs of the main theorems in [5] and [7] by Castro,
Gay, and Pinzón-Caicedo. We prove that the algorithm which recovers the
monodromy ϕ : P → P of the induced circular structure ∂X = P ×φ S1 also
works in the case where P is a closed surface, and extend the algorithm to
obtain a relative trisection from a Kirby diagram of X and a page of an
open book decomposition (or fibration over S1) on ∂X within the diagram.

2. Trisections of 4-manifolds

This section will be broken into two parts. In the first part, we will review the
original definition of a 4-manifold trisection given by Gay and Kirby in [14].
We elaborate slightly on the definition by giving an equivalent definition
involving 3-dimensional compression bodies as well as by including a de-
scription of the induced decomposition of the boundary in the relative case.
This elaboration will assist in our exposition of ⋆-trisections. We formally
introduce ⋆-trisections in the second part of this section.

2.1. Original definitions for trisections

A trisection of a closed, connected 4-manifold X is a decomposition of X
into three 4-dimensional 1-handlebodies X = X1 ∪X2 ∪X3 such that for
each pair i ̸= j the intersection Xi ∩Xj is a 3-dimensional handlebody and
the common intersection X1 ∩X2 ∩X3 is a closed surface. Here we offer an
equivalent definition through the lens of viewing the 4-dimensional pieces in
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Figure 2: A picture two-dimensions lower of a trisection.

Figure 2 as thickened 3-dimensional handlebodies. Let Ck be a 3-dimensional
handlebody with boundary a closed surface of genus k, Fk. Let Zk = [0, 1]×
Ck ≈ �k

(
S1 ×B3

)
. The boundary of Zk admits a Heegaard splitting Yk =

∂Zk = Y +
k ∪ Y −

k where

Y +
k = ([1/2, 1]× ∂Fk) ∪ ({1} × Ck) and Y −

k = ({0} × Ck) ∪ ([0, 1/2]× Fk) .
(1)

Given an integer g ≥ k, let Yk = Y +
k,g ∪ Y −

k,g be the standard genus g Hee-
gaard splitting of Yk obtained by stabilizing the genus k Heegaard splitting
g − k times.

Definition 2.1 (Trisection of closed 4-manifold). A trisection of a
closed, connected 4-manifoldX is a splittingX = X1 ∪X2 ∪X3 and integers
0 ≤ k, n, g with n ≤ k ≤ g such that each Xi is diffeomorphic to Zk via
a diffeomorphism ϕi : Xi → Zk for which ϕi(Xi ∩Xi+1) = Y +

k,g and ϕi(Xi ∩

Xi−1) = Y −
k,g.

Notice that Zk is a 4-dimensional 1-handlebody and the pairwise inter-
sections Xi ∩Xj are 3-dimensional handlebodies of genus g. This definition
is just a slightly more technical rewording of the original presented at the
beginning of the section. In [14], Gay and Kirby generalize this definition
to allow 4-manifolds which have surface bundles over S1 as boundary. We
will again present this definition by presenting the wedges of the trisection
as thickened 3-dimensional pieces.

For integers k, b ≥ 0, let Fk,b be a connected orientable surface of genus
k with b boundary components. Fix non-negative integers b, k and n with
n < k and let Ck,b,n denote a 3-dimensional compression body with Fk,b
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as the positive boundary and with Fk−n,b as the negative boundary. This
compression body is built by attaching n 3-dimensional 2-handles to {1} ×
Fk ⊂ [0, 1]× Fk, yielding a cobordism from Fk,b to Fk−n,b. Now consider the
4-manifold Zk,b,n := [0, 1]× Ck,b,n. Part of ∂Zk,b,n is

Yk,b,n := ({0} × Ck,b,n) ∪ ([0, 1]× Fk,b) ∪ ({1} × Ck,b,n) ,(2)

which has a natural genus k Heegaard splitting into two compression bodies

Y +
k,b,n := ([1/2, 1]× Fk,b) ∪ ({1} × Ck,b,n) ,(3)

Y −
k,b,n := ({0} × Ck,b,n) ∪ ([0, 1/2]× Fk,b) .(4)

Finally, given any g ≥ k, let Yk,b,n = Y +
k,b,n,g ∪ Y −

k,b,n,g be the genus g Hee-
gaard splitting obtained from the natural genus k splitting by stabilizing
g − k times.

Definition 2.2 (Relative trisection). A trisection of a connected 4-
manifold X with non-empty connected boundary is a splitting X = X1 ∪
X2 ∪X3 and integers 0 ≤ k, b, n, g with n < k ≤ g such that each Xi is dif-
feomorphic to Zk,b,n via a diffeomorphism ϕi : Xi → Zk,b,n for which

ϕi(Xi ∩Xi+1) = Y +
k,b,n,g and ϕi(Xi ∩Xi−1) = Y −

k,b,n,g.

Figure 3: A (relative) trisected 4-manifold is built by gluing three standard
4-dimensional pieces along submanifolds of their boundary.

We can interpret a 3-dimensional handlebody Ck as a cobordism from a
closed surface Fk to the empty set. This way, Definition 2.2 generalizes Def-
inition 2.1. For a detailed discussion on the properties of relative trisections
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one can see [5, 7, 14]. The authors of this paper like to think of trisections
of 4-manifolds as decompositions into three ‘standard’ pieces Zi glued along
submanifolds of their boundary. In this paper we will see some interactions
between relative and ⋆-trisections. In the following subsection we will de-
scribe the standard models for the 4-manifold pieces in a ⋆-trisection.

2.2. ⋆-Trisections of 4-manifolds

Here we will define a more general definition of 4-manifold trisection, which
we call ⋆-trisection, by first defining analogous 4-dimensional wedges and
then gluing these along submanifolds of their boundaries. Informally, these
are obtained by gluing two copies of the 4-manifolds Zk,b,n in Subsection 2.1,
and removing properly embedded 2-disks in a controlled way.

Let F+ = Fk,b and F− =
⋃̇s

i=1Fki,bi be two orientable surfaces with
k ≥

∑
ki, b =

∑
bi and s ≥ 0. F+ is a connected surface and F− has

s ≥ 0 connected components. We will always assume that F− has no 2-
sphere components. Let C be a 3-dimensional connected compression body
with positive boundary ∂+C = F+ and negative boundary ∂−C = F−. This
compression body is obtained by attaching 3-dimensional 2-handles to
F+ × {1} ⊂ F+ × [0, 1], and capping-off the resulting 2-sphere components
with 3-handles. This produces a cobordism C from F+ to F−. The 2-handles
above are attached along a collection of pairwise disjoint, non isotopic and
possibly boundary parallel simple closed curves δ ⊂ F+.

Let C̃ be a compression body with positive boundary Fk,b0 . Consider

C̃0, C̃1 ⊂ C̃ two sub-compression bodies spanning C̃ with common part a
sub-compression body C̃all; i.e., C̃ is built using a collection of pairwise
disjoint simple closed curves δ̃ ⊂ Fk,b0 such that δ̃ = δ0 ∪ δ1, δall = δ0 ∩ δ1

with C̃i determined by δi and C̃all determined by δall. Define

Z̃ = C̃0 × [0, 1/2]
⋃

C̃all×{1/2}

C̃1 × [1/2, 1].(5)

Consider the submanifold of ∂Z̃,

Ỹ =
(
C̃0 × {0}

)
∪ (Fk,b0 × [0, 1]) ∪

(
C̃1 × {1}

)
.(6)
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Figure 4: A diagram of Z̃ two dimensions down.

Both ∂Z̃ and Ỹ are connected 3-manifolds. Moreover, the surface Fk,b0 ×

{1/2} determines a natural Heegaard splitting of Ỹ = Ỹ+ ∪ Ỹ− given by

Ỹ− =
(
C̃0 × {0}

)
∪ (Fk,b0 × [0, 1/2])(7)

and Ỹ+ = (Fk,b0 × [1/2, 1]) ∪
(
C̃1 × {1}

)
.

Define Z to be the 4-manifold obtained from Z̃ by attaching m ≥ 0
1-handles with both feet in Ỹ . Equivalently, Z is obtained by carving a
collection of boundary parallel 2-dimensional disks (D, ∂D) ⊂ (Z̃, Ỹ ). We
will prove in Lemma 3.5 that there is a unique isotopy class of boundary
parallel disks in Z̃ with a given boundary. Thus the boundary link U =
D ∩ Ỹ is an unlink of unknots determining the collection D. Isotope U in
bridge position with respect to the Heegaard splitting Ỹ = Ỹ− ∪ Ỹ+; this

means that U ∩
(
C̃i × {i}

)
is a collection of boundary parallel arcs on each

compression body, and U ∩ (Fk,b0 × [0, 1]) is a colection of product arcs.

Set Ci = (C̃i × {1/2})− η(U), Y = Ỹ − η(U) and Z = Z̃ − η(D). By
construction C0 and C1 are compression bodies with positive boundary
the surface Fk,b = Fk,b0 − η(U) with b := b0 + |U ∩ (Fk,b0 × {1/2})|. Further-
more, Y ⊂ Z is given by

Y = YC0,C1 :=
(
C0 × {0}

)
∪ (Fk,b × [0, 1]) ∪

(
C1 × {1}

)
,(8)

which admits a Heegaard splitting YC0,C1 = Y +
C0,C1 ∪ Y −

C0,C1 as follows

Y +
C0,C1 := (Fk,b × [1/2, 1]) ∪

(
C1 × {1}

)

Y −
C0,C1 :=

(
C0 × {0}

)
∪ (Fk,b × [0, 1/2])
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For g ≥ k, let YC0,C1 = Y +
C0,C1;g ∪ Y −

C0,C1;g be the splitting above stabilized
g − k times. In the next section we will see that the 4-manifold Z can be
built from the information of C0, C1 and Call, where Call is the common
compression body between C0 and C1 obtained by embedding the loops δ̃all
into Σ and adding some new loops from U (see Remark 3.8). Thus we write
Z = Z(C0, C1, Call) to emphasize this dependence.

Definition 2.3 (⋆-Trisection). A ⋆-trisection of a connected 4-manifold
X is a decompositionX = X1 ∪X2 ∪X3 with connected compression bodies
C0
(i), C

1
(i), C(i),all as above and an integer g ≥ g(∂+C

j
(i)) for i = 1, 2, 3, j =

0, 1, such that each Xi is diffeomorphic to Z(C0
(i), C

1
(i), C(i),all) via a map

φi : Xi → Z(C0
(i), C

1
(i), C(i),all) for which

φi(Xi ∩Xi+1) = Y +
C0

(i),C
1
(i);g

and φi(Xi−1 ∩Xi) = Y −
C0

(i),C
1
(i);g

.

The triple intersection is a connected surface Σ of genus g with b ≥ 0 bound-
ary components called the ⋆-trisection surface.

Remark 2.4 (Classic trisections). If all of the compression bodies Cj
(i)

have empty negative boundary, each Y ±
C0

(i),C
1
(i);g

is a handlebody and it follows

thatX is closed. Here, the definition above agrees with the original definition
of a trisection when X is closed [14]. If for all i we have that C0

(i) and C1
(i) are

compression bodies determined by the same loops with connected negative
boundary or Y ±

C0
(i),C

1
(i);g

are determined by the curves in Figure 5 of [7], then

this decomposition is the same as a trisection of a 4-manifold with bound-
ary in [5, 7, 14]. Such trisections induce an open book decomposition on ∂X
with binding a b-component link. We will refer to all the above as classical
trisections, among them we refer to the ones with ∂X ̸= ∅ as relative tri-
sections. We will sometimes wish to distinguish whether or not the binding
of the open book ∂X is empty; in these cases we will simply write b = 0
or b > 0, referring to the number of boundary components on the relative
trisection diagram. The most general trisection, or ⋆-trisection, is when
C0
(i) is not the same as C1

(i) for some i. The following section is dedicated to
present different ways of thinking about the sectors of ⋆-trisections.
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Figure 5: A �-trisected 4-manifold X is built by gluing three ‘standard’
4-dimensional pieces Z(C0

(i), C
1
(i), C(i),all) (i = 1, 2, 3) along submanifolds of

their boundary. Notice that if for each i the compression bodies C0
(i) and

C1
(i) are determined by the same sets of curves, then the extra ‘blue fins’ in

the diagram disapear, giving us a foliation of the boundary of X by copies
of ∂−C(1),all.

3. The standard pieces

In this section we will describe two equivalent ways of building the ‘standard’
4-dimensional piece Z(C0

(i), C
1
(i), C(i),all) of a �-trisection. The first construc-

tion presents these standard pieces as boundary-connected sums of simple
4-dimensional blocks and also establishes the uniqueness of the boundary
parallel disks in Z̃, which are carved to form Z, up to isotopy. The second
construction presents these standard pieces from the handlebody perspec-
tive. Remarks 3.8 and 3.9 summarize the conclusions of this section in the
form of four equations (15-18) and a description of the types of curves needed
to build a ‘standard piece’.

Notation. Let C̃ be a compression body with positive boundary Fk,b0 .

Consider C̃0, C̃1 ⊂ C̃ two sub-compression bodies spanning C̃ with fixed
common part a sub-compression body C̃all; i.e., there is a collection of simple
closed curves δ̃ ⊂ Fk,b0 determining C̃ such that δ̃ = δ0 ∪ δ1, δall = δ0 ∩ δ1
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Figure 6: Example of loops determining the compression bodies C̃i, C̃i, and
C̃all. Note in this case C̃ is a handlebody and δ̃0 ∪ δ̃1 ∪ δ̃all is not a minimal
set of meridians for C̃. The bottom part shows two distinct chioces for loops
in δ̃all.

with C̃i determined by δi and C̃all determined by δall. Denote by F̃all the
negative boundary of C̃all. Denote by C̃i = C̃i − int(C̃all). C̃i is a (possibly
disconnected) compression body with positive boundary F̃all determined by
the curves1 δ̃i = δ̃i − δ̃all.

We will always choose δ̃i such that the following condition is satisfied:
when compressing each component of F̃all along δ̃i, the resulting surface
will have at most one sphere component; with equality if and only if the
component of C̃i is a handlebody. In particular we will always be able to
build C̃all with no 3-handles unless F̃all is empty and C̃all is a handlebody.

Remark 3.1 (Non-uniqueness of C̃all). Given two compression bodies
C̃0, C̃1 ⊂ C̃, the compression body C̃all is not uniquely determined up to iso-
topy inside C̃. This can be seen by taking the 3-manifold with the Heegaard
splitting W = C0 ∪Fk,b0

C1. Separating loops in δ̃all come from separating
spheres in W , which might not be isotopic depending on the topology of W .
The bottom part of Figure 6 shows an example of distinct δ̃all sets.

1The curves δ̃i in Fk,b0 can also be drawn in Fall since they are disjoint from δ̃all.
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Figure 7: How to pull F̃all × {1/2} ‘up’. Notice that the isotopy has support
in a subset of Z̃ diffeomorphic to F̃all × E, where E is the shaded disk.

3.1. Construction 1

Using Figure 4, we can convince ourselves that Z̃ can be built from C̃all ×
[0, 1] by gluing collars of the subcompression bodies Ci. More precisely,

Z̃ = C̃0 × [0, 1/2]
⋃

F̃all×[0,1/2]

C̃all × [0, 1]
⋃

F̃all×[1/2,1]

C̃1 × [1/2, 1].(9)

We think of the product regions C̃0 × [0, 1/2] and C̃1 × [1/2, 1] as ‘fins’ at-
tached to C̃all × [0, 1], with the interval directions being horizontal in Figure
4. Imagine pulling F̃all × {1/2} ‘up’ in order to horizontally align the fibers
C̃i × {pt} of the fins (see Figure 7). This makes the interval directions for
the product regions C̃0 × [0, 1/2] and C̃1 × [1/2, 1] now vertical in the fig-
ure. Such isotopy only affects points in Z̃ near F̃all × [0, 1] ⊂ C̃all × [0, 1] so

it can be chosen to be the identity in
(
C̃all − η(F̃all)

)
× [0, 1]. Thus Z̃ is

diffeomorphic to the union

Z̃ ≈
((

C̃0 ∪F̃all
C̃1

)
× [0, 1]

)⋃
C̃all × [0, 1],(10)

where we glue a neighborhood of the surface F̃all × {0} in
(
C̃0 ∪F̃all

C̃1

)
×

{0} with the product F̃all × [0, 1] in C̃all × [0, 1].
Recall that a connected compression body C can be built from its neg-

ative boundary by adding l = 1
2 (χ(∂−C)− χ(∂+C)) 1-handles to ∂−C ×

{1} ⊂ ∂−C × [0, 1]. If ∂−C = ∅, one must add (l + 1) 1-handles to a 3-ball
(0-handle). Thus, if F̃all �= ∅ then Z̃ is obtained by attaching 1-handles to(
C̃0 ∪F̃all

C̃1

)
× [0, 1] along

(
C̃0 ∪F̃all

C̃1

)
× {0}. If F̃all is empty, then C̃all

is a handlebody, C̃0 and C̃1 are empty, and Z̃ is a 4-dimensional handlebody.
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We can safely conclude that

Z̃ ≈ (0-handle) ∪
(
(C̃0 ∪F̃all

C̃1)× [0, 1]
)
∪ (|δall| 1-handles) .(11)

Remark 3.2. Even though the 3-manifold C̃0 ∪F̃all
C̃1 might be discon-

nected2, each component of
(
C̃0 ∪F̃all

C̃1

)
× [0, 1] has connected 3-manifold

boundary. Thus, up to diffeomorphism, each 1-handle in Equation 11 cor-
responds to a boundary connected sum between two components or with a
copy of S1 ×B3.

Remark 3.3. Suppose that all of the components of ∂−C̃0 and ∂−C̃1 are
surfaces with boundary. By construction of δ̃0 and δ̃1, one can show that
C̃0 ∪F̃all

C̃1 is also a 3-dimensional handlebody. Therefore, both the stan-

dard piece Z̃ and Z are 4-dimensional 1-handlebodies in this specific case.
Classical relative trisections satisfy this condition.

The following lemma is a refinement of Equation 11.

Lemma 3.4. Z̃ is diffeomorphic to a boundary connected sum of a 4-
dimensional 1-handlebody with the boundary connected sum of the trivial
bundles F ×D2, where F runs through the components of the negative
boundary of C̃.

Proof. We use the notation described at the begining of the subsection.
Remark 3.2 allows us to only look at the connected components of C̃0 ∪F̃all

C̃1, which are in correspondance with |F̃all|. We then suppose that F̃all is a
connected non-empty surface.

The fact that C̃all is the common sub-compression body between C̃0 and
C̃1 implies that there are no essential simple closed curves in F̃all bounding
disks in both C̃0 and C̃1. In particular, if both collections of curves δ̃i are
non-empty, then the result of compressing F̃all along δ̃0 ∪ δ̃1 contains no
sphere components, and the compression body C̃ − int(C̃all), determined
by δ̃0 ∪ δ̃1 in F̃all, has non-empty negative boundary. In other words, we
do not need 3-dimensional 3-handles to build C̃ − int(Call) using the loops
δ̃0 ∪ δ̃1.

Suppose that both δ̃0 and δ̃1 are non-empty. The observation above tells
us that no 3-handles are needed to build each C̃i. Thus the 3-manifold
C̃0 ∪ C̃1 is built from F̃all × [0, 1] by attaching 2-handles along δ̃i × {i} ⊂

2In fact C̃0 ∪F̃all
C̃1 has as many components as |F̃all|.
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F̃all × {i} for i = 0, 1. This implies that
(
C̃0 ∪ C̃1

)
× [0, 1] can be built

from F̃all ×D2 ≈ F̃all × [0, 1]2 by attaching 4-dimensional 2-handles along
δ̃i × {(−1)i} ⊂ F̃all × {(−1)i} for i = 0, 1 with framing given by the fiber
surface. Since δ̃0 and δ̃1 are disjoint in F̃all, we can isotope the attaching
regions of the 2-handles in F̃all × S1 to lie in the same fiber F̃all × {1}. Us-

ing the previous paragraph we get that
(
C̃0 ∪ C̃1

)
× [0, 1] is diffeomorphic

to
(
C̃ − int(C̃all)

)
× [0, 1]. Notice that the same conclusion holds if one of

δ̃i is empty.
To end, recall that Ĉ = C̃ − int(C̃all) is a compression body satisfying

∂+Ĉ = C̃all and ∂−Ĉ = ∂−C̃. If ∂−Ĉ is empty, then Ĉ is a handlebody and
Z̃ ≈ Ĉ × [0, 1] is a 1-handlebody. On the other hand, if ∂−Ĉ ̸= ∅ then Ĉ is

built from
(
∂−Ĉ

)
× [0, 1] by attaching 1-handles along

(
∂−Ĉ

)
× {1} and Z̃

has the right diffeomorphism class. □

In order to build a standard 4-dimensional piece for a ⋆-trisection, we
remove boundary parallel disks from the 4-manifold Z̃. We want such disks
to be defined solely by their boundary. This is the case when Z̃ is a 4-ball
[4] or a 1-handlebody [24]. The following technical lemma proves uniqueness
for any Z̃.

Lemma 3.5. Let Z̃ as above, and let L be an unlink in ∂Z̃. Up to isotopy
fixing L, the unlink L bounds a unique collection of simultaneously boundary
parallel disks in Z̃.

Proof. The argument in the third paragraph of the proof of Lemma 8 of [24]
proves the following statement: “Suppose A1 and A2 are 4-manifolds with
connected boundary satisfying (1) Ai has unique trivial disks (up to isotopy
relative their boundary), and (2) any embedded sphere in ∂Ai bounds a
properly embedded 3-ball in Ai. Then A1♮A2 has unique trivial disks.” Also
in Lemma 8 of [24] is proven that 1-handlebodies satisfy properties (1) and
(2). Hence, using the decomposition of Lemma 3.4, it is enough to check
uniqueness of trivial disks for F ×D2 where F is a connected closed surface
of positive genus.

Let F ̸= S2 be a closed surface and let L be an unlink in F × S1. Suppose
D and D′ are two collections of properly embedded trivial disks in F ×D2

with boundary equal to L. We want to show that they are isotopic relative
to L. There exist a collection of disks D∗ (resp. D′

∗) in F × S1 isotopic to
D (resp. D′) via an isotopy fixing L. Perturb D∗ and D′

∗ to intersect trans-
versely (away from L) in a finite set of loops. Suppose int(D∗) ∩ int(D′

∗) ̸= ∅.
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Let E ⊂ D∗ be a disk with interior disjoint from D′
∗ and boundary a loop

in int(D∗) ∩ int(D′
∗). Let E′ be the disk in D′

∗ with same boundary as E.
Since F × S1 is irreducible, the embedded 2-sphere E ∪ E′ bounds a 3-ball
B ⊂ F × S1. Push the interior of B into int(F ×D2) to make it disjoint
from D∗ and D′

∗, we can do this since D∗ ∪D′
∗ lies in F × S1. Isotope E′

through B to remove the intersection loop E ∩ E′ ⊂ int(D∗) ∩ int(D′
∗). We

can perform this type of isotopy until int(D∗) ∩ int(D′
∗) = ∅. Again, the

sphere D∗ ∪D′
∗ bounds a collection of 3-balls in F × S1 which we can use

(as before) to isotope D∗ onto D′
∗ as desired. □

3.2. Construction 2

Recall that a 3-dimensional compression body C can be built from its
positive boundary F by attaching 2-handles along F × {1} ⊂ F × [0, 1]
and 3-handles along the resulting spherical components. Thus C × [0, 1]
is obtained from F × [0, 1]2 by attaching 4-dimensional 2-handles along
loops in F × {1} × {1/2} with framing given by the interval direction,
and 4-dimensional 3-handles along the spheres obtained by compressing
F × {1} × {1/2} by the 2-handles.

Equation 9 of the previous subsection implies that Z̃ can be built
from C̃all × [0, 1] by attaching 4-dimensional 2-handles along the loops
δ̃0 × {1/4} ⊂ F̃all × {1/4} and δ̃1 × {3/4} ⊂ F̃all × {3/4} with framing given
by the surface, and attaching 4-dimensional 3-handles along any 2-sphere
obtained from compressing F̃all × {1/4 + i/2} along δ̃i × {1/4 + i/2}.

Suppose F̃all is non-empty. We can build C̃all × [0, 1] as above using
the surface Fk,b0 , the curves δ̃all, and no 3-handles. Furthermore, we can
‘double’ the 2-handles at the expense of adding 4-dimensional 3-handles as
follows

C̃all × [0, 1] ≈ Fk,b0 × [0, 1]2 ∪
(
2-handles δ̃all × {1} × {1/4, 3/4}

)
(12)

∪ (3-handles) .

The core 2-spheres of the 3-handles in the previous equation are built by con-
necting the core disks of the 2-handles δ̃all × {1} × {1/4, 3/4} with the annuli
δ̃all × {1} × [1/4, 3/4]. For i = 0, 1, Fk,b0 × {1} × {1/4 + i/2} compresses to

a copy of F̃all. We can then glue copies of C̃i × [0, 1] to C̃all × [0, 1] in the
form of 4-dimensional 2-handles and 3-handles as in the previous paragraph.
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Figure 8: A schematic of C̃all × [0, 1] after ‘doubling’ its 2-handles and 3-
handle. In this paper we will normally find �-trisections with F̃all �= ∅. In
such cases, we don’t add the 3-handles and 4-handle in red in the figure and
obtain the description in Equation 12.

Therefore, via Equation 9 we can conclude that Z̃ is diffeomorphic to

Fk,b0 × [0, 1]2 ∪
(
2-handles δ̃0 × {1} × {1/4} and δ̃1 × {1} × {3/4}

)
(13)

∪ (3-handles) ,

where the 3-handles are attached along the sphere components obtained
from compressing Fk,b0 × {1} × {1/4 + i} along δ̃i × {1} × {1/4 + i/2}, and

the spheres built from the common curves in δ̃all.

Remark 3.6. If F̃all = ∅, in order to build C̃all you must add one fi-
nal 3-dimensional 3-handle after attaching 2-handles to Fk,b0 × [0, 1] along

δ̃all × {1}. This final 3-handle becomes a 4-dimensional 3-handle when form-
ing the product C̃all × [0, 1] (see Figure 8), and can be ‘doubled’ at the ex-
pense of adding one 4-dimensional 4-handle (in the form of a 3-4-cancelling
pair). In this situation, C̃0 and C̃1 are both empty, Fk,b0 = Fk is a closed

surface, and C̃ = C̃all is a 3-dimensional handlebody. Hence Z̃ = C̃all × [0, 1]
is a 4-dimensional 1-handlebody with boundary admitting a Heegaard split-
ting of the form C̃all ∪Fk

C̃all. The resulting model of Z̃ is the standard 4-
dimensional piece of a ‘classic’ trisection of a closed, connected 4-manifold.

3.3. The unlink U and the standard piece Z

We are ready to discuss the 4-manifold Z in detail. We keep using the same
notation as before.
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Let Ỹ be the 3-manifold given by the Heegaard splitting Ỹ = C̃1 ∪Fk,b0

C̃0, and let U ⊂ Ỹ be an unlink of unknots. Ỹ embeds into ∂Z̃ as

Ỹ ≈
(
C̃0 × {0}

)
∪ (Fk,b0 × [0, 1]) ∪

(
C̃1 × {1}

)
⊂ ∂Z̃.

Lemma 3.5 states that U ⊂ ∂Z̃ bounds a unique3 collection of properly
embedded disks D ⊂ Z̃ that can be isotoped (fixing U) into embedded disks
in ∂Z̃. Define Z to be a copy of Z̃ after removing an open neighborhood of
D. The facts that the disks are parallel to the boundary and Ỹ is connected
imply that Z is diffeomorphic to Z̃♮

(
♮|U |S

1 ×B3
)
. In what follows, we will

see that the 4-manifold Z can be built as in Subsection 3.2 using a new pair
of compression bodies.

Isotope U in Ỹ to be in bridge position with respect to the given Hee-
gaard splitting. This means that for i = 0, 1 the intersection U ∩ C̃i consists
of properly embedded arcs in C̃i which can be projected to embedded arcs
in Fk,b0 = ∂+C̃

i. We will refer to such projected arcs in Fk,b0 as shadows of

Ỹ ∩ C̃i. The number of arcs in U ∩ C̃0 is called the number of bridges of U .
Notice that U ∩ Fk,b0 is a set of 2|U ∩ C̃0| points.

Let Y be the complement of U in Ỹ and Ci := C̃i − η(U). The intersec-
tion C0 ∩ C1 becomes a copy of Fk,b0 with 2|U ∩ C̃0| open disks removed.
Furthermore, each Ci is a compression body with positive boundary the
surface Fk,b, where b = b0 + 2|U ∩ C̃0|; and Y = C0 ∪Fk,b

C1 is a Heegaard
splitting.

Since U is an unlink of unknots, we can think of Y as the connected sum
of Ỹ with the complement of an unlink U ′ in S3. Using Haken’s lemma we
can choose the connected sum sphere S to intersect Fk,b in one loop. Thus

the loops in Fk,b0 ⊂ Ỹ bounding disks in C̃i can be identified with loops in
Fk,b bounding disks in Ci on one side of such separating sphere. We can
further use Haken’s lemma to find pairwise disjoint spheres S∗, away from
S, decomposing S3 − η(U ′) into a connected sum of complements of unknots
in S3 in bridge position, satisfying that each component of S∗ intersects Fk,b

in one loop.
In conclusion, we can find sets of curves δi ⊂ Fk,b determining the com-

pression body Ci so that the loops δ̃i and (S∗ ∩ Fk,b) are contained in δi.

Define δall = δ̃all ∪ (S∗ ∩ Fk,b). Observe that the curves in δi consist in the

loops in δ̃i, together with the new loops in (S∗ ∩ Fk,b) and loops obtained
from the complement of each unknot component of U . The proof of the

3Up to isotopy relative to the boundary.
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following lemma (Figure 9) shows us how complicated these new loops can
be.

Lemma 3.7. The 4-manifold Z can be built as in Equation 13 with Fk,b

and the loops δ0, δ1 and δall. More precisely, Z is diffeomorphic to

Fk,b × [0, 1]2 ∪
(
2-handles δ0 × {1} × {1/4} and δ1 × {1} × {3/4}

)
(14)

∪ (3-handles) ,

where the 3-handles are attached along the sphere components obtained from
compressing Fk,b × {1} × {1/4 + i} along δi × {1} × {1/4 + i/2} for i = 0, 1,
and the spheres built from the common curves in δall.

Proof. Suppose first that each component of U has bridge number one. Since
U is an unlink, we can find a set of disks D∗ ⊂ Y bounded by U intersecting
Fk,b in a single arc per disk in D∗. The spheres S∗ in Y can be chosen
to be ∂η(D∗). In this case, the curves determining the compression bodies
are given by δi = δ̃ ∪ (S∗ ∩ Fk,b). Using such curves, the right hand side of

Equation 14 is diffeomorphic to Z̃♮
(
♮|U |S

1 ×B3
)
≈ Z, which is what we

want. One way to see this is to first note that if c ⊂ δall is a separating curve
decomposing Fk,b as Fk1,b1#cFk2,b2 , then the 4-manifold from the right hand
side decomposes as a boundary connected sum of 4-manifolds built in the
same way from the surfaces Fkj ,bj (j = 1, 2); and then check that the 4-
manifold obtained from an annulus F0,2 and δ0 = δ1 = δall = ∅ is S1 ×B3.

We now proceed with the general case. First recall that any bridge posi-
tion of an unlink of unknots in a 3-manifold is always perturbed. This result
was proven for S3 in [25], and for any 3-manifold in [16]. A perturbation
is a local isotopy of a link in bridge position around the Heegaard surface
shown in Figure 9. It increases the bridge number by one. Figure 9 describes
how the complement of the link changes after a perturbation, and shows
us how the δi sets increase by one loop. The main observation is that the
4-manifolds built from the right hand side of Equation 14 are diffeomorphic
because the operation of removing two disks to Fk,b and adding two curves
(not in δall) corresponds to add two 4-dimensional 1-2-cancelling pairs of
handles (See Figure 9).

Hence, for any bridge position of U in Ỹ , after fixing a set of spheres
S∗, we can slide the curves of δi − δall over the curves in δi until ‘detecting’
a pair of curves intersecting like in Figure 9. This pattern determines a
perturbation of U which we undo to decrease the bridge number, without
changing the resulting 4-manifold. We can repeat this procedure until each
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Figure 9: (a) An image of a perturbation of U around a point U ∩ F . (b) How
a perturbation changes the complement of U in both compression bodies. (c)
A perturbation changes the collections of disks δi by adding a curve to each
of them. (d) A perturbation changes the decomposition of the 4-dimensional
piece by adding two 1-2-cancelling pairs of handles.

component of U has bridge number one, in which case the result is known.
Therefore, for any bridge position of U , Equation 14 holds. �

Remark 3.8 (Stabilization). For an integer g ≥ k, we can stabilize the
Heegard splitting of Y = C0 ∪Fk,b

C1 (g − k) times to obtain the decompo-
sition Y = Y −

C0,C1 ∪ Y +
C0,C1 . This changes the Heegaard diagram (Fk,b; δ

0, δ1)
by connected sum with (g − k) copies of the genus one diagram (F1,0; a0, a1),
where a0 and a1 are loops intersecting once. We write the new diagram as
(Σ;∆0,∆1) where Σ = Fg,b and ∆i = δi ∪ δistab and (δ0stab, δ

1
stab) correspond

to the new dual loops. Note that stabilizations on the diagram correspond to
adding two 1-2-cancelling pairs of handles to the 4-manifold built in Equa-
tion 14. Therefore, using Lemma 3.7 we conclude that Z is diffeomorphic
to

Σ× [0, 1]2 ∪
(
2-handles ∆0 × {1} × {1/4} and ∆1 × {1} × {3/4}

)
(15)

∪ (3-handles) ,

where the 3-handles are attached along the sphere components obtained from
compressing Σ× {1} × {1/4 + i} along ∆i × {1} × {1/4 + i/2} for i = 0, 1,
and the spheres built by connecting the core disks of the 2-handles δall ×
{1} × {1/4, 3/4} with the annuli δall × {1} × [1/4, 3/4]. Recall that we need
to add extra 3-handles and 4-handles if F̃all is empty (see Remark 3.6). Thus,
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if both C0 and C1 are handlebodies (i.e., have empty negative boundary)
then one of the boundary components of the resulting 4-manifold is a copy
of S4, which we cap-off uniquelly with one 4-handle. This last case occurs
for classical trisections of closed 4-manifolds.

Denote by Call the compression body built from Σ× [0, 1] using the
loops ∆all = ∆0 ∩∆1 in Σ, and by Fall the negative boundary of Call. By
construction Fall is homeomorphic to a copy of F̃all, together with the dis-
joint union of planar surfaces (complements of the bridge spheres for each
component of U). Denote by C0 (resp. C1) the compression body obtained
from Fall and the curves in ∆i = ∆i −∆all. Starting from Equation 15, we
can undo the ‘doubling’ procedure in Subsection 3.2 and conclude that Z is
diffeomorphic to the union

Z ≈ C0 × [0, 1/2]
⋃

Fall×[0,1/2]

Call × [0, 1]
⋃

Fall×[1/2,1]

C1 × [1/2, 1].(16)

Moreover, using Figure 4, we can check that Z is diffeomorphic to

Z ≈ Y −
C0,C1 × [0, 1/2]

⋃

Call×{1/2}

Y +
C0,C1 × [1/2, 1].(17)

From here, we can perform the isotopy described in Subsection 3.1 and
conclude that Z is diffeomorphic to the union

Z ≈ ((C0 ∪Fall
C1)× [0, 1])

⋃
Call × [0, 1],(18)

where we glue a neighborhood of the surface Fall × {0} in (C0 ∪Fall
C1)× {0}

with the product Fall × [0, 1] in Call × [0, 1].

Remark 3.9 (Diagrammatics). The previous equations show us sev-
eral equivalent ways of building the standard 4-manifold piece Z using the
compression bodies C0, C1 and Call which are determined by the tuple
(Σ;∆0,∆1,∆all) up to isotopies and handle slides. The combinatorics of the
loops ∆0 and ∆1 in Σ is summarized in Figure 10. The curves on each set
∆i are pairwise disjoint and the sets decompose as ∆i = δistab ∪∆all ∪∆i.
The curves in δ0stab and δ1stab are in bijective correspondence and only the
paired loops intersect in exactly one point while the rest are pairwise dis-
joint. The curves in ∆all are in both ∆0 and ∆1 and are pairwise disjoint.
There are two types of families of loops in ∆0 ∪∆1: the fist type is formed of
non-isotopic pairwise disjoint loops (identified with loops in δ̃i ⊂ Fk,b0); the
loops in the second type form Heegaard splittings of the complement of an



�

�

“1-Moeller” — 2023/4/26 — 16:50 — page 1615 — #21
�

�

�

�

�

�

Diagrams of �-trisections 1615

Figure 10: The combinatorics of the tuple (Σ;∆0,∆1,∆all). For this exam-
ple, observe that U has two components, one of which has bridge number
one and the other bridge number three.

unknot in bridge position (obtained from the trivial arcs of each component
of U).

3.4. The boundary of Z

Let C be a compression body built from F × [0, 1] by attaching some 3-
dimensional 2-handles along F × {1}. Recall that the boundary of C is given
by copies of its positive boundary (F × {0}) and its negative boundary (the
non-spherical components of F × {1} after compression), connected by an-
nuli of the form ∂0C := (∂F )× [0, 1].

Let B := (∂F )× {1/2} × {1/2} be the core of the solid torus (∂0C)×
[0, 1] inside ∂ (C × [0, 1]). The 3-manifold ∂ (C × [0, 1])− η(B) can be built
by taking two copies of C and gluing their negative (and positive) bound-
aries together using the identity map. Such splitting induces a circular handle
decomposition of ∂ (C × [0, 1]) with binding B, built from F × [0, 1] by at-
taching 2-handles on both sides F × {0, 1} and identifying the resulting non-
spherical components4 (see Figure 11). Using Equation 17, we can glue the
circular handle decompositions for ∂ (Y − × [0, 1/2]) and ∂ (Y + × [1/2, 1])
together along Call × {1/2} to find a circular handle decomposition of the

4Recall we always attach 3-handles along the new sphere components. In partic-
ular, if C is a handlebody this contruction yields the classical handle decomposition
of #S1 × S2 which we still think of circular.
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Figure 11: Circular handle decomposition on ∂ (Y − × [0, 1/2]). We can fur-
ther decompose one copy of Y − as Call ∪Fall

C0.

Figure 12: How to build ∂Z using the tuple
(
Σ;∆0,∆1

)
. Compare with right

side of Figure 4.

boundary of a standard piece Z(C0, C1, Call). We draw them in Figures 11
and 12.

Remark 3.10 (Boundary of X). In a �-trisected 4-manifold X = X1 ∪
X2 ∪X3, the pieces labeled Y ± on the boundary of all standard piecesXi are
glued together. This implies that Xi ∩ ∂X, away from η(B), is of the form
C0 ∪Fall

C1 (see Figure 12) which is the disjoint union of Heegaard splittings
with Heegaard surfaces being the components of Fall. Thus the boundary
of X admits a circular handle decomposition with binding the boundary
of the trisection surface B = ∂Σ. The decomposition on ∂X − η(B) can be
obtained by taking copies of the 3-manifolds C0 ∪Fall

C1 obtained from each
Xi and gluing ∂−C0 from Xi with ∂−C1 from Xi+1 as in Figure 5.

4. Trisection diagrams

In this section we will describe the diagrammatics of �-trisections. We will
compare our notion of trisection diagrams with the existent literature. We
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end this section by discussing a diagramatic operation on ⋆-trisections with
boundary called poking.

Let X = X1 ∪X2 ∪X3 be a ⋆-trisected 4-manifold. The trisection sur-
face Σ = X1 ∩X2 ∩X3 is a connected orientable surface of genus g and b ≥ 0
boundary components. The pairwise intersection Xi ∩Xj is a compression
body with positive boundary the surface Σ, denote the compresion bodies
by Hα = X1 ∩X3, Hβ = X2 ∩X3 and Hγ = X1 ∩X2. By definition, the 4-
manifold piece X1 is diffeomorphic to the 4-manifold Z(Hγ , Hα, Hγ∩α) for
a given common subcompression body Hγ∩α of Hγ and Hα. Let ∆γ∩α be
loops in Σ determining the compression body Hγ,α. We define Hα∩β , ∆α∩β ,
Hβ∩γ and ∆β∩γ in a similar way. Let α, β and γ be loops in Σ determining
the compression bodies Hα, Hβ and Hγ , respectively.

Due to Equation 15, we can use the tuple (Σ;α, β, γ; ∆γ∩α,∆α∩β ,∆β∩γ)
to build the 4-manifold X as follows: Let p±α , p

±
β , p

±
γ be six distinct points

in the unit circle as in Figure 13. Start with Σ×D2 and glue copies of col-
lars of the compresion bodies5 Hε × [p−ε , p

+
ε ] along the arcs [p−ε , p

+
ε ]× Σ for

ε ∈ {α, β, γ}. For each pair (ε, µ) ∈ {(γ, α), (α, β), (β, γ)}, the compression
bodies Hε × {p±ε } are contained in the boundary of the resulting 4-manifold,
and the ‘common’ curves ∆ε∩µ × {p−ε , p

+
µ } bound disks on them. Attach 4-

dimensional 3-handles with core spheres given by connecting such disks with
the annuli ∆ε∩µ × [p−ε , p

+
µ ]. If one of the common compression bodies has

empty negative boundary (see Remark 3.6), say ∂−Hα∩β = ∅, after adding
the 3-handles, the new boundary will have a component homeomorphic to
S3 in the interval [p−α , p

+
β ]. In such case, we attach a 4-dimensional 4-handle

to cap-off the S3 component. The end result is our trisected 4-manifold X.

Remark 4.1 (Diagrammatics). We will refer to the data

(Σ;α, β, γ; ∆γ∩α,∆α∩β ,∆β∩γ)

as a ⋆-trisection diagram. The curves of a given diagram can be modi-
fied via handle slides along curves of the same label, or via homeomor-
phisms of the surface Σ without changing the diffeomorphism class of the
⋆-trisected 4-manifold. The authors of this paper find the following inter-
pretation of ⋆-trisection diagrams useful: A ⋆-trisection diagram is a tuple
(Σ;α, β, γ) such that each pair (ε, µ) ∈ {(γ, α), (α, β), (β, γ)}, after adding

5This is equivalent to add 4-dimensional 2-handles to Σ×D2 along ε× {pε} with
framing given by the surface, and 3-handles along the sphere components obtained
by compressing Σ× {ptε} for ε ∈ {α, β, γ}.
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Figure 13: A schematic of how to build X from the tuple
(Σ;α, β, γ; ∆γ∩α,∆α∩β ,∆β∩γ). Compare this with Figure 8.

Figure 14: (left to right) A trisection of CP2, a relative trisection of the spin
of S1 ×D2, a relative trisection of a disk bundle over S2 with e = −1, a
�-trisection of CP2 \ η(S1).

some redundant curves to the ε, µ sets, is handle slide equivalent to a stan-
dard pair (∆0,∆1) from Remark 3.9 with ∆ε∩µ = ∆all. Figure 14 shows
examples of various �-trisection diagrams with empty common curves; i.e.
∆γ∩α = ∆α∩β = ∆β∩γ = ∅. In Section 6 we will see why the rightmost figure
is a �-trisection diagram.

Remark 4.2 (Classic diagrams). For classical trisections, each pair of
curves (ε, µ) in a relative trisection diagram is slide equivalent to a stan-
dard pair (∆0,∆1) diffeomorphic to the one in Figure 5 of [7]. In particular
the ∆i sets decompose as ∆i = ∆all ∪ δistab, making the information of the
∆ε∩µ redundant. In this case the tuple (Σ;α, β, γ) is enough to build the
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Figure 15: Example of how to poke a �-trisection diagram.

4-manifold X. For general compression bodies Hε and Hµ the choice of the
common compression body Hε∩µ may not be unique, forcing us to record
∆ε∩µ in the �-trisection diagram. Fortunately, the choice of common curves
will be easy to see for most of the �-trisection diagrams that appear in this
paper.

4.1. New relative diagrams from old

Let D = (Σ;α, β, γ; ∆γ∩α,∆α∩β ,∆β∩γ) be a �-relative trisection diagram
(see Remark 4.1) for a 4-manifold X with non-empty boundary. Let
pα, pβ , pγ ⊂ Σ− (α ∪ β ∪ γ) be three finite collections of points. Define D′ =

(Σ′;α′, β′, γ′; ∆γ∩α,∆α∩β ,∆β∩γ) be a new tuple given by Σ′ = Σ−
◦
η(pα ∪

pβ ∪ pγ) and ε′ = ε ∪ ∂η(ε) for ε = α, β, γ. Using Equation 15 one can show
that if D′ is a �-trisection diagram, then it is a diagram for X. We will refer
to the operation of replacing D by D′ by poking.

Poking a �-trisection diagram adds new boundary components to the
trisection surface and to the negative boundaries of the compression bodies
Cα, Cβ and Cγ . This operation comes handy when gluing �-trisections. One
condition for two �-trisections to be able to be glued along their boundaries is
that the surfaces ∂−Cε (ε = α, β, γ) have all non-empty boundary. Figure 15
shows an example of how to poke a �-trisection diagram in order to satisfy
this condition.

In practice, one can poke a diagram by drawing one pair of curves,
say (α, β), into standard position (∆0,∆1), and then pick the poking points
pγ ⊂ Σ− (α ∪ β ∪ γ) whenever needed. The location of the points in pγ with
respect to the curves in γ is irrelevant since we think of the curves in a
diagram defined up-to handle slides and we can always slide ∂η(pγ) over γ
as required.
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Figure 16: Two relative trisection diagram for S2 ×D2.

Remark 4.3 (Relative double twists). If we can pick points |pα| =
|pβ | = |pγ | = 1 so that all lie in the same component of Σ− (α ∪ β ∪ γ),
poking corresponds to connect sum the given �-trisection diagram with the
diagram τ1 in Figure 16. In this case, one could also connect sum the dia-
gram τ2 instead and still obtain a �-trisection of the same 4-manifold. The
new diagram will change the circular handle decomposition in the boundary
by taking a solid torus neighborhood of a regular circle fiber and replacing
it with the Seifert fibered space S(0, 1;+1,−1). For relative trisection di-
agrams, the new monodromy is given by composing one positive and one
negative Dehn twist along the two new boundary components, respectively
(see Section 3.1 of [10]). The operation of connect summing (when possi-
ble) a relative trisection diagram with τ2 is exactly the relative double twist
move defined by Castro, Islambouli, Miller and Tomova in [8]. Using this
move, the authors were able to show that any two relative trisections for the
same 4-manifold with connected boundary and non-closed trisection surface
(b > 0) are related by sequence of ambient isotopies, stabilizations, relative
stabilizations, relative double twists, and the inverses of these moves.

5. Pasting �-trisections

Motivated by the work of Castro and Ozbagci [6, 9], we want to describe a
method to paste two compatible �-trisections along their boundaries. The
main technical observation that makes Theorem 5.1 work is that when we
paste two standard pieces Z(C0, C1, Call) along some connected components
of C0 ∪Fall

C1, the resulting 4-manifold is also a standard piece whenever all
the glued surfaces in Fall have boundary. The interested reader might note
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that our proof follows the same outline that the one of Theorem 2 of [6]
applied to the setting of ⋆-trisections.

We first review the circular handle decomposition on a ⋆-trisected 4-
manifold. Let X = X1 ∪X2 ∪X3 be a 4-manifold with a fixed ⋆-trisection.
Let B := ∂Σ be the boundary of the trisection surface embedded as a
link in ∂X; B might be empty. Observe that ∂X − η(B) decomposes as
the union of three 3-manifolds, one per 4-dimensional piece. Remark 3.10
states that for each i = 1, 2, 3, the 3-manifold Xi ∩ (∂X − η(B)) admits a
Heegaard splitting of the form C(i),0 ∪F(i),all

C(i),1. The compression bod-
ies in this decomposition are obtained from the data in the identification
Xi ≈ Z(C0

(i), C
1
(i), C(i),all) and have as many connected components as F(i),all

(see Remark 3.8 for more details).

Theorem 5.1 (Pasting lemma for ⋆-relative trisections). Let W =
W1 ∪W2 ∪W3 and W ′ = W ′

1 ∪W ′
2 ∪W ′

3 be two ⋆-trisected 4-manifolds with
non-empty boundary. LetM ⊂ W andM ′ ⊂ W ′ be closed 3-manifolds of the
boundary of each 4-manifold. Let f : M → M ′ be a homeomorphism satisfy-
ing f(Wi ∩M) = W ′

i ∩M ′ and preserving the Heegaard decompositions on
Wi ∩M and W ′

i ∩M ′ induced by the trisections for all i. Suppose that each
component of the surfaces Wi ∩Wj ∩M and W ′

i ∩W ′
j ∩M ′ has boundary

for all i ̸= j. Then X = W ∪f W ′ admits a ⋆-trisection with pieces given by
Wi ∪f W ′

i (i = 1, 2, 3), and ⋆-trisection surface the result of gluing the tri-
section surfaces of W and W ′ along their boundary components intersecting
with M and M ′, respectively.

Proof. Let Xi = Wi ∪f W ′
i . We will show that X = X1 ∪X2 ∪X3 is a ⋆-

trisection.
We will first focus on the pairwise intersection Xi ∩Xj . Fix i ̸= j and let

C = Wi ∩Wj and C ′ = W ′
i ∩W ′

j . By definition C and C ′ are compression
bodies with positive boundary the connected ⋆-trisection surfaces Σ and
Σ′, respectively. Let PM = ∂−C ∩M and PM ′ = f(PM ) = ∂−C

′ ∩M ′ be the
negative boundary components of C and C ′ lying inside the gluing regions
M and M ′. By assumption each component of PM and PM ′ is a surface
with boundary. This implies that H = C ∪f C ′ is also a compression body

with positive boundary Σ̃ = Σ ∪f Σ′. In particular, the triple intersection

X1 ∩X2 ∩X3 is a copy of Σ̃. Let ε ⊂ Σ and ε′ ⊂ Σ′ be loops determining C
and C ′. Let a ⊂ PM be pairwise disjoint properly embedded arcs which cut
PM into disks and let a′ = f(a) be the corresponding arcs in PM ′ . We can
think of the arcs in a (resp. a′) as subsets of Σ (resp. Σ′), disjoint from ε



✐

✐

“1-Moeller” — 2023/4/26 — 16:50 — page 1622 — #28
✐

✐

✐

✐

✐

✐

1622 Román Aranda and Jesse Moeller

(resp. ε′). The curves in Σ̃ = Σ ∪f Σ′ determining H are given by ε ∪ ε′ and
the glued arcs a ∪f a′.

We now show that each pieceXi is diffeomorphic to a standard piece. Fix
i ∈ {1, 2, 3}, by definition Wi ≈ Z(C0, C1, Call) and W ′

i ≈ Z(C ′0, C ′1, C ′
all)

for some compression bodies. We use the notation of Remark 3.9; i.e., C0 and
C1 are determined by essential loops ∆0,∆1 ⊂ Σ, and the common curves
∆all = ∆0 ∩∆1 determine the Call. Let Fall be the negative boundary of Call.
For j = 0, 1 let Cj = Cj − int(Call) be the compression body with positive
boundary the surface Fall, and let Pj be the negative boundary of Cj . Recall
that, due to Remark 3.10, Wi ∩ ∂W contains a copy of C0 ∪Fall

C1.
If Fall is disconnected, we can pick ∆all ⊂ Σ having separating simple

closed curves. Each such curve decomposes the diagram (Σ;∆1,∆0,∆all)
as a connected sum of standard diagrams in lower genus surfaces. This de-
composes Wi into a boundary connected sum of the corresponding standard
4-manifolds. The same argument holds for W ′

i . Hence, it is enough to check
that Wi ∪f W ′

i is a standard piece when Fall and F ′
all are connected surfaces.

Suppose Fall is a connected surface. In particular, the curves in ∆all ⊂ Σ
do not separate the surface and Call is built from Fall × [0, 1] by attaching
|∆all| 1-handles

6 along Fall × {1}. Then, using Equation 18 we conclude that
Wi is diffeomorphic to the result of adding |∆all| 1-handles to (C0 ∪Fall

C1)×
[0, 1]. Since Fall is connected, Remark 3.2 explains that the location of the
feet of the 1-handles is not necessary. Furthermore, since (Σ;∆0,∆1,∆all) is
a standard pair and Fall is connected, it follows that ∆0 ∪∆1 only has curves
of one type (see Remark 3.9). In any case, we get that (C0 ∪Fall

C1)× [0, 1]) is
a 1-handlebody of genus N . Here N =

(
1− χ(Fall)− |∆0| − |∆1| − 2|δ0stab|

)

if ∆0 ∪∆1 is of type 1 or N = 1 if type 2. One can see this by building Wi

like in Equation 15 and noticing that each circle in ∆0 ∪∆1 cancels a 1-
handles from the 1-handlebody Fall × [0, 1]2 (recall Fall has boundary). On
the other hand, to build Xi we must glue (C0 ∪Fall

C1)× [0, 1] and (C ′
0 ∪F ′

all

C ′
1)× [0, 1] using f × {1}, and then add copies of Call × [0, 1] and C ′

all × [0, 1]
as in Equation 18 (see right side of Figure 7). Therefore, Xi = Wi ∪f W ′

i is
a 1-handlebody of genus K = |∆all|+ |∆′

all|+N .
To end, observe that the boundary of Xi = Wi ∪f W ′

i has a decom-
position of the form H0 ∪Σ̃ H1 where Hj = (Cj ∪f C ′j). In particular,
both H0 and H1 are handlebodies and this is a Heegaard splitting for
∂Xi = #KS1 × S2. Waldhausen’s Theorem [26] implies that this splitting
is a g(Σ̃)−K times stabilization of the standard genus K Heegaard split-
ting. We can take this standard splitting to be Hall and conclude that Xi

6No 3-handles are needed in this case since we are assuming Fall is non empty.
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is diffeomorphic to the standard piece Z(H1, H0, Hall). This finishes the
proof. □

Remark 5.2 (The diagrammatics). Take two ⋆-trisected 4-manifolds
W , W ′ with a diffeomorphism f : M → M ′ between closed submani-
folds of their boundaries respecting the handle respective handle de-
compositions. Suppose that all components of Wi ∩Wj ∩M have non-
empty boundary. Let (Σ;α, β, γ; ∆γ∩α,∆α∩β ,∆β∩γ) be a ⋆-trisection di-
agram for W (resp. W ′). Using Lemma 5.1, we get a ⋆-trisection dia-
gram (Σ̃; α̃, β̃, γ̃; ∆γ̃∩α̃,∆α̃∩β̃ ,∆β̃∩γ̃) for X = W ∪f W ′ with trisection sur-

face Σ̃ = Σ ∪f Σ′. For ε̃ = α̃, β̃, γ̃, the curves in the compression body Hε̃

are given by:

1) Loops in ε ⊂ Σ and ε′ ⊂ Σ′.

2) Disks obtained from pairwise disjoint arcs filling the compressed page
Pε, glued along their boundaries to their images on Pε′ under f .

In the proof of Lemma 5.1 we showed that the curves in (ε̃, µ̃) obtained from
the second item above are slide equivalent to a collection of isotopic curves
and curves intersecting in one point (coming from stabilizations). Thus the
curves in ∆ε̃∩µ̃ are given by the curves in ∆ε∩µ ∪∆ε′∩µ′ , together with this
new parallel curves.

Since relative trisections with non-empty binding (b > 0) satisfy the con-
ditions of Lemma 5.1, our result extends the gluing theorems of [6] and [9]. In
this case (b > 0), the monodromy algorithm of [5] is helpful to find the image
of the filling arcs under f . In general, in order to glue two ⋆-trisections with
Theorem 5.1, one might need to poke the given diagrams (see Subsection 4.1)
enough times to ensure that every connected component ∂−(Wi ∩Wj) is a
surface with boundary. In particular, for relative trisections with b = 0, it is
sufficient to poke the trisection surface three times.

Corollary 5.3 (Pasting lemma for relative trisections with empty
binding). Let W = W1 ∪W2 ∪W3 and W ′ = W ′

1 ∪W ′
2 ∪W ′

3 be two tri-
sected 4-manifolds with non-empty connected boundary and closed trisec-
tion surfaces Σ and Σ′, respectively. Let P and P ′ be the pages of the
fibration over S1 on ∂W and ∂W ′ induced by the trisections, respectively.
Let f : ∂W → ∂W ′ be a homeomorphism between the boundaries respecting
the pages; i.e., f(P ) = P ′. Then the glued closed 4-manifold X = W ∪f W ′
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admits a (G;K)-trisection where

G = g(Σ) + g(Σ′) + 2 and Ki = ki + k′i + 2g(P ).

Here ki denote the number of common curves in the trisection diagrams.

Remark 5.4 (Diagrammatics for relative trisections with empty
binding). Suppose now that we are given two relative trisection diagrams
with closed trisection surface for two 4-manifolds with connected bound-
ary. Suppose that we are also given a homeomorphism f : ∂W → ∂W ′ be-
tween connected components of the boundaries preserving the pages of the
open book decomposition. To build the trisection diagram for the union
W ∪f W ′ we need to find three poking points pα, pβ , pγ ⊂ Σ− (α ∪ β ∪ γ).
These points can be thought as lying in a page P for the open book decom-
position in ∂W . Thus we can take their image under f to be points in the
page P ′ ⊂ ∂W ′. Denote by p′α, p

′
β , p

′
γ ⊂ Σ′ − (α′ ∪ β′ ∪ γ′) the corresponding

points in Σ′. It follows that these are also poking points and the two new tri-
section diagrams for W and W ′ (obtained by poking) satisfy the conditions
of Lemma 5.1. Hence, W ∪f W ′ admits a trisection diagram (Σ̃; α̃, β̃, γ̃) with
trisection surface

Σ̃ =
(
Σ− ∪ε

◦
η(ε)

) ⋃

∂η(ε)=∂η(ε′)

(
Σ′ − ∪ε′

◦
η(ε′)

)
.

For ε̃ = α̃, β̃, γ̃, the curves in ε̃ are given by:

1) Loops in ε ⊂ Σ and ε′ ⊂ Σ′.

2) Disks obtained from pairwise disjoint arcs filling the compressed page
Pε, glued along their boundaries to their images on Pε′ under f .

3) The loop ∂η(pε).

Example 5.5 (Sphere bundles over RP 2). During the last day of the
2019 Spring Trisectors Meeting at UGA, the pair of trisection diagrams of
Figure 19 was discussed. Work of Gay and Meier in [15] shows that B is a
Gluck twist of A along some embedded 2-sphere. We can use Theorem 5.1 to
decompose the 4-manifolds A and B as the union of two 4-manifolds along
glued along their boundary: A = (S2 ×D2) ∪f X and B = (S2 ×D2) ∪g X.
Remark 6.2 and Figure 23 show that X is the complement of a circle in
S1 × S3 representing twice the generator of first homology. We can think of
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Figure 17: Two distinct ways of gluing a pair of thickened spheres. The map
τ twists the S2 fiber once while traversing the S1 direction.

Figure 18: Trisection diagram for T 2 × S2. One can see two thrice punctured
tori (left and right) corresponding to each copy of T 2 ×D2.

this circle as the points {0} × {±1} in {0} × S1 ⊂ {0} × S3 being rotated
by π-radians when traversing in the S1 direction. This way, X is the total
space of a non-orientable bundle of 2-spheres over a Möbius band. Hence,
A is the total space of S2-bundle over RP 2 and B is a Gluck twist along a
fiber.

6. The complement of a simple closed curve

Let X be a compact 4-manifold with �-trisection X = X1 ∪X2 ∪X3. Let
Σ be the trisection surface and consider c ⊂ X a simple closed curve in
X. Since π1(Σ) � π1(X), the curve c is homotopic to an immersed curve
S1 � Σ. Given an immersed curve as such, we are interested in finding a
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Figure 19: A pair of genus 3 trisection diagrams that differ by Gluck twist.

Figure 20: Decomposing A as A = (S2 ×D2) ∪f X. Note that X is a trisec-
tion diagram for the complement of a circle in S1 × S3 representing twice
the generator of first homology. (see Section 6.1).

�-trisection for X − η(c). To accomplish this, we decompose the immersed
curve into a union of embedded arcs, push the arcs into the handlebodies,
and then remove the tubular neighborhood of each arc.

Definition 6.1. Given a �-trisection (Σ;α1, α2, α3), we say that an im-
mersed curve c ⊂ Σ is decomposed if c is the union of three collections of
embedded arcs c = a1 ∪ a2 ∪ a3 with the property that a1 ∩ α1 = a2 ∩ α2 =
a3 ∩ α3 = ∅ and that each arc in ai is connected to one arc from each of ai−1

and ai+1. Denote the discrete set of points ai−1 ∩ ai+1 by bi.

Starting with a decomposed curve c, push each arc of ai into Hαi
,

leaving the endpoints fixed. We claim that the decomposition X − η(c) =
∪3
i=1Xi − η(c) is a �-trisection. Since c ∩Xi = ai−1 ∪ ai ⊂ ∂Xi is a collection

of disjoint arcs in the boundary of Xi, the complement X̃i := Xi − η(c) is
diffeomorphic to Xi. By construction, the arcs ai are simultaneously parallel
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Figure 21: How a �-trisection diagram changes when taking the complement
of a decomposed curve in Σ.

to the boundary of Hi, thus X̃i ∩ X̃i+1 is also a compression body. Hence
we have a �-trisection of X − η(c).

We now describe the �-trisection diagram for X − η(c) resulting from
this procedure. The trisection surface Σ̃ = ∩iX̃i is a copy of Σ with open
disks removed around the endpoints of all the arcs. Start by drawing a �-
trisection diagram

(Σ;α1, α2, α3; ∆α1∩α2
,∆α2∩α3

,∆α3∩α1
)

for X together with the immersed decomposed curve c = a1 ∪ a2 ∪ a3. Let Σ̃
be the punctured surface Σ− ∪3

i=1η(bi). Then the compression body H̃i =

X̃i ∩ X̃i+1 can be built from Σ̃ by attaching 2-handles along the following
curves (see Figure 21).

1) The original curves αi,

2) the boundary parallel curves ∂η(bi) and

3) the non-boundary parallel components of ∂η(ai).

For each pair (i, i+ 1), the new standard picture is given by adding extra
loops in ∆αi∩αi+1

as in Part (b) of Figure 6.2.

Remark 6.2. IfX is closed and we can decompose the curve c so that |ai| =
1, then the �-trisection diagram given by the procedure above introduces an
unnecessary curve which we can remove. The new �-trisection diagram for
the complement is depicted in Figure 22. To see why this is true, compress Σ̃
along all of the original α curves. What remains is a thrice punctured surface.
The two new α curves introduced by the procedure above become parallel,
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Figure 22: How the �-trisection diagram changes if each |ai| = 1 and ∂X =
∅.

Figure 23: A trisection diagram for S1 × S3 together with a decomposed
curve c homotopic to twice the generator S1 × {pt}. The right picture is a
�-trisection diagram for the complement.

thus we can remove one of them. Figure 23 shows a concrete example of this
operation.

6.1. Loops in genus one trisections

Recall that all simple closed curves in a 4-manifold X representing a fixed
homotopy class [c] ∈ π1(X) are isotopic. It is therefore natural to wonder
if, for simple �-trisections, any two decomposed curves representing a given
class [c] ∈ π1(X) are slide equivalent in the �-trisection surface. We prove
that this is the case for embedded curves in genus one classical trisections.
The following technical proposition is key to show in Section 7 that an
infinite family of genus three trisection diagrams is standard.

Proposition 6.3. Let (Σ;α, β, γ) be a genus one trisection diagram for a
closed 4-manifold. Let c be an embedded decomposed curve with |ai| = 1 in
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Σ. Let {µ, λ} be a basis for π1(Σ) with [α] = [µ]. If [c] = [mµ+ nλ], then
by sliding the arcs ai over the boundaries bi = ai+1 ∩ ai−1, and sometimes
sliding a1 over α, c is slide equivalent to an immersed curve representing
[nλ] with a1 twisting around b3 a total of m times.

Proof. Throughout this argument β and γ will be pushed around as needed.
If γ or β are in the way of sliding ai over bi for i = 1, 2, simply include them
in the slide as in the left of Figure 24. Since c is embedded and a1 ∩ α =
∅, the n intersections of c with α occur on a2 ∪ a3. Isotope c such that
a2 ∩ α = ∅. Since a1 and a2 both miss α, we may isotope them such that a1
is a small segment leaving b2, a2 is a small segment leaving b3 with a1 ∪ a2
being contained in a small disk D disjoint from λ ∪ µ. This way, all of the
intersections of c with λ ∪ µ occur on a3. Therefore, since c is embedded in
Σ, a3 −D is a properly embedded arc in Σ−D. Thus we may assume from
the beginning that the trisection as well as the embedded decomposed curve
are isotopic to the model in the right of Figure 24 where we have suppressed
the β and γ curves. At this point in the argument, the β and γ curves cannot
be assumed to lie in any kind of special position with respect to c.

Figure 24: (left) How the β and γ curves behave as we manipulate c. (right)
The initial position of embedded c with [c] = [4µ+ 3λ].

Let w be the word in the alphabet {µ, λ} which represents [c] and de-
compose w into three subwords w1, w2, w3 such that w = w1w2w3 and each
wi records the intersections of ai with µ and λ. Initially, as described above,
we have that w1 and w2 are empty words and w3 is a certain permutation of
the multiset {mµ, nλ} which allows a3 to be an embedded arc. We claim that
a decomposed c representing [mµ+ nλ], m > 0, in such a way that w1 and
w2 are empty words, can be slid to be a representative of [(m− 1)µ+ nλ]
with w1 and w2 being empty words.
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Suppose that c represents [mµ+ nλ],m > 0 with w1 and w2 empty. Then
since m > 0, let j ≥ 0 such that λjµ is a prefix of w3. The endpoint of a2
connected to a3 is b1. We can make b1 “move past” α and a1 by performing
the local move in Figure 25.

Figure 25: How b1 moves past α or a1 in this argument.

We can therefore move b1 along a3 until w2 reads λjµ, Figure 26. Using
the fact that this is a genus one trisection, and the fact that λjµ is embedded,
by sliding a2 over b2 when necessary as in Figure 27 we can commute µ past
λj . After an isotopy of a1 and a2, reading from left to right in the two
leftmost frames in 28, we achieve w1 = µ and w2 = λj . From this position,
we can slide a1 against α to yield w1 = ∅ at the expense of adding a single
twist of a1 around b3. This introduces a bigon between a1 and λ which is
easily resolved. This slide and subsequent isotopy are shown in the last 2
frames. Now it is possible to commute µ past λj by sliding a2 over b2 when

Figure 26: In this example w2 consumes λµ from w3, accomplished by ex-
tending b2.

necessary.
After completing this slide to eliminate µ, we can shrink a2, removing

λj from w2 and appending λj to the front of w3. The decomposed curve
at this stage is a representative of [(m− 1)µ+ nλ] with w1 = w2 empty, so
the claim is proved. By repeating this process, we can slide c to the model
representative of [nλ] below with w1 = w2 being empty and w3 = λl. �
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Figure 27: A depiction of an isotopy of a2 which corresponds to the rewriting
λµ → µλ in w2.

Figure 28: Eliminating µ from w by sliding a1 over α.

Figure 29: The final product.

Continuing the argument in Proposition 6.3. Suppose that (Σ, α, β, γ) is
a genus one trisection for a simply connected 4-manifold with [λ] = [β]. Then
we can say even more: Since w = λn, we may extend a2 so that w2 = λn and
w1 = w3 are empty words. Putting β back into the picture, it is now clear
that we can slide λ off as well, see Figure 30. This proves the following.

Corollary 6.4. Let (Σ;α, β, γ) be a genus one trisection diagram for a sim-
ply connected closed 4-manifold. Let c be an embedded decomposed curve
in Σ. Let {µ, λ} be a basis for π1(X) with [α] = [µ] and [β] = [λ]. If c =
mµ+ nλ, then by sliding the arcs ai over the boundaries bi = ai+1 ∩ ai−1,
sometimes sliding a1 over α, and sometimes sliding a2 over β, c is slide
equivalent to an immersed curve representing 1 ∈ π1(Σ, b2) with a1 twisting
around b3 a total of m times and a2 twisting around b1 a total of n− 1 times.
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Figure 30: An immersed curve representing 1 ∈ π1(Σ, b2) with twists around
boundary points.

Figure 31: (left) The longitude (l) and meridian (m) for each of the three
tori. (right) The diagram D(23 ,

1
1 ,

1
2).

7. Trisections of genus 3

For two irreducible fractions a
b ,

c
d ∈ Q ∪ {1

0}, define d(ab ,
c
d) := det

(
a c
b d

)
.

Given an ordered triple of rational numbers a
b ,

c
d ,

p
q ∈ Q ∪ {1

0}, we can con-

sider the diagram D(ab ,
c
d ,

p
q ) as in the right side of Figure 31. Here one

curve of each α, β, γ set has slope a
b ,

c
d ,

p
q , respectively, in the torus ob-

tained by compressing the genus three surface along the two central curves
of the same color as in the left side of Figure 32. The diagram D(ab ,

c
d ,

p
q ) is a

trisection diagram for some closed smooth 4-manifold if and only if each pair
x, y ∈ {a

b ,
c
d ,

p
q} satisfies the inequality |d(x, y)| ≤ 1. If the three numbers in

the triplet are all distinct with d(x, y) = ±1 for all x �= y ∈ {a
b ,

c
d ,

p
q}, then

we call {a
b ,

c
d ,

p
q} a Farey triplet. In this case, {a

b ,
c
d ,

p
q} corresponds to a

triangle in the Farey graph.
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Figure 32: Decomposing X as (S2 ×D2) ∪∂ Y glued via some map f : S1 ×
S2 → ∂Y .

The question we will discuss now is what 4-manifolds the diagrams
D(ab ,

c
d ,

p
q ) represent. Meier proved in [21] that D( qp ,

q
p ,

q
p) is the diagram of a

spun lens space L(p, q). He conjectured that the only 4-manifolds admitting
genus three trisections are spun lens spaces and certain connected sums of

combinations of S1 × S3, S2 × S2, CP2, and CP2. We will call the latter
combinations standard manifolds. Note that D(ab ,

c
d ,

p
q ) is simply connected

whenever {a
b ,

c
d ,

p
q} contains two or three distinct numbers. Thus, such dia-

grams must represent standard manifolds if we expect the conjecture to be
true. We prove that this is indeed the situation.

Theorem 7.1. Let a
b ,

c
d ,

p
q ∈ Q ∪ {1

0} satisfying |d(x, y)| ≤ 1 for all x, y ∈
{a
b ,

c
d ,

p
q}. Then D(ab ,

c
d ,

q
p) describes a trisection diagram for

1) either CP2#CP2#CP2 or CP2#CP2#CP2 if {a
b ,

c
d ,

p
q} is a Farey triplet,

2) either S2 × S2 or S2×̃S2 if {a
b ,

c
d ,

p
q} = {x, y} with d(x, y) = ±1,

3) a spun lens space if {a
b ,

c
d ,

p
q} = {x}.

To find out the specific 4-manifold the above diagrams represent, it is
enough to compute its intersection matrix using [11] or [13].

Proof. The third part was done by Meier in [21]. Denote byX the 4-manifold
represented by the diagram D(ab ,

c
d ,

p
q ). Notice that we can decompose the

genus three surface in Figure 31 into a thrice punctured sphere and a thrice
puntured torus glued together along their boundaries, see Figure 32. The-
orem 5.3 implies that X decomposes as the union X = (S2 ×D2) ∪∂ Y for
some 4-manifold Y .

Remark 6.2 implies that the �-trisection diagram corresponding to Y can
be viewed as the result of taking the complement of a decomposed curve in
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a genus one trisection. So if {a
b ,

c
d ,

p
q} is a Farey triplet, the diagram for Y

implies that Y is the complement of a curve c in CP2 (or CP2). Since CP2

is simply connected, we can isotope c to lie inside a small 4-ball and so
Y = CP2#(S2 ×D2). Hence X is the connected sum of CP2 with a sphere
bundle over the sphere. Suppose now {a

b ,
c
d ,

p
q} = {x, y} with d(x, y) = ±1,

then Remark 6.2 implies that Y is the complement of a decomposed loop in
a genus one trisection for S4. Thus Y = S4 − (S1 ×B3) and X is a copy of
S2 × S2 or S2×̃S2.

We have shown the 4-manifolds associated to the trisection diagrams
D(ab ,

c
d ,

p
q ) are diffeomorphic to standard ones. To figure out which ones

specifically, it is sufficient to compute the intersection form QX . The inter-
section form of X, computed from D(ab ,

c
d ,

p
q ) using [11], is given by

QX =




bd
ad−bc −1 b(cq−dp)

bc−ad

−1 0 0
b(cq−dp)
bc−ad 0 (bp−aq)(cq−dp)

bc−ad


 .

In the case that c
d = p

q , notice the third column and third row become zero

and we are left with the intersection formQX =

[
bd

ad−bc −1

−1 0

]
which is equiv-

alent to the intersection form for S2 × S2 when bd is even and to S2×̃S2

when bd is odd. If all rationals are distinct, then without loss of generality
suppose that d(ab ,

c
d) = 1. Because {a

b ,
c
d ,

p
q} is a Farey triple, we know that

p
q = a±c

b±d . This gives

QX =



bd −1 b
−1 0 0
b 0 ∓1


 .

By inspection, one determines that QX is equivalent to ⟨1⟩ ⊕ ⟨∓1⟩ ⊕ ⟨−1⟩.
□

7.1. Farey trisections are standard

We will now demonstrate that in cases 1 or 2 of Theorem 7.1, the diagrams
D(ab ,

c
d ,

p
q ) are actually reducible and thus standard.

Theorem 7.2. Let {a
b ,

c
d ,

p
q} ⊂ Q ∪ {1

0} with d(x, y) ≤ 1 for each x, y ∈
{a
b ,

c
d ,

p
q}. If at least two of these fractions are distinct, then D(ab ,

c
d ,

p
q )

is handle slide equivalent to the standard diagram for T#S where T ∈
{S4,CP2,CP2} and S ∈ {S2 × S2, S2×̃S2}.
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Proof. Decompose D(ab ,
c
d ,

p
q ) into two pieces as suggested by Figure 32; let

D′ denote the thrice punctured torus component of this decomposition and
let P denote the thrice punctured sphere component. Notice that this ⋆-
trisection D′ is a diagram for the complement of an embedded curve in
a simply connected 4-manifold. Specifically, D′ is the result of taking the
complement of the c = λ curve in a genus 1 trisection with curves α = aλ+
bµ, β = cλ+ dµ, and γ = pλ+ qµ where the curve c has been decomposed
as suggested by the left side of Figure 32. By Corollary 6.4, the decomposed
curve c is slide equivalent to an immersed decomposed curve c′ representing
the trivial curve where some of the arcs twist around the boundary points,
as in the last frame of Figure 30. In particular, α and β are disjoint from
c′. Using the fact that c′ represents the trivial loop, we can slide γ against
b3 until γ is disjoint from c′ also. Thus there is a curve δ separating c′

from α, β, γ. By surgering D′ along δ we get two components. Let Q be the
component coming from the side of δ containing c′ and let T be the torus
component containing α, β, γ. Notice that S = Q ∪f P , with the attaching
map f given by the ai, is a genus two trisection of a closed 4-manifold with
an intersection form of full rank. By the work of Meier and Zupan [23], S
is a trisection diagram for S2 × S2 or S2×̃S2. The component T is a genus

one trisection of a simply connected closed 4-manifold: S4,CP2 or CP2. □

Remark 7.3 (Spun lens spaces). In [21], Meier asked if the diagrams
D(pq ,

p
q ,

p
q ) andD(1q ,

1
q ,

1
q ) depict diffeomorphic trisections. With this in mind,

we can proceed as in Theorem 7.2 and see that Proposition 6.3 implies
that the diagrams D(pq ,

p
q ,

p
q ) and D(1q ,

1
q ,

1
q ) are handle slide equivalent to

diagrams which are identical outside of the regular neighborhood of a γ
curve, say γ0. In this annulus ν(γ0), the diagrams differ by their α curves,
where one twists q times around this annulus and the other twists once
(see Figure 33). This motivates the following question about uniqueness of
trisection diagrams for 1-surgeries.

Question 7.1. Let c be an embedded loop in a 4-manifoldX represented by
a (possibly immersed) decomposed curve in the genus g trisection surface.
If |ai| = 1 in the decomposition of the curve, is the resulting genus g +
2 trisection diagram for (X − η(c)) ∪ (S2 ×D2), with a specific choice of
framing in Z/2Z, unique up to handle slides and diffeomorphisms of the
surface? In particular, are the trisections given by the diagrams in Figure 33
diffeomorphic?
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Figure 33: How the handle slides described in Proposition 6.3 change the
diagram D(35 ,

3
5 ,

3
5). The middle and right diagrams difeer by removing an

embedded S2 ×D2 and regluing it using a power of the Gluck twist map.
Question 7.1 asks if whether these two diagrams depict diffeomorphic tri-
sections for even powers the Gluck twist map.

8. Surface surgery

The main goal of this section is to use �-trisections to draw diagrams for
closed 4-manifolds obtained by various kinds of surgery. Drawings for these
4-manifolds could be theoretically derived using previous work on relative
trisections. However, the genus of these diagrams will often be large. For
example, in [9], a genus seven trisection of T 2 × S2 was obtained by taking
the double of a genus 3 relative trisection for T 2 ×D2. In Figure 18, we used
a genus one �-trisection for T 2 ×D2 to draw a genus four trisection for T 2 ×
S2. This section provides diagrams for the Cacime Surface (Section 8.2),
and algorithms to perform Fintushel-Stern knot surgery (Section 8.3) and
torus surgeries (Section 8.4) such as Logarithmic transforms and Luttinger
transforms. The careful reader might observe that the diagrams for these
transformations change by concatenating a fixed picture or by changing
some loops in a high enough stabilization of the original trisection diagram.
Thus to study the behavior of 4-manifold invariants under surface surgery,
it could be worthwhile to explore each local modifications in detail.

8.1. Embedded surfaces and their complements

Let X = X1 ∪X2 ∪X3 be a �-trisected 4-manifold and let F ⊂ X be an
embedded closed surface. Following Meier and Zupan [24], we say that F
is in (g; c1, c2, c3)-bridge position with respect to the �-trisection if, for
each i �= j, Di = F ∩Xi is a collection of ci trivial disks in Xi, and the arcs
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Di ∩ Dj form a trivial b-tangle in the compression body Cij = Xi ∩Xj . As a
consequence, the intersection F ∩ (X1 ∩X2 ∩X3) is a collection of 2b points.

Given a ⋆-trisection diagram (Σ;α, β, γ), we can decode7 a (b; c1, c2, c3)-
bridge trisection of F by three sets of b embeded arcs sα, sβ , sγ in Σ cor-
responding to the shadows of the trivial tangles F ∩ Cε, ε ∈ {α, β, γ}. The
shadow arcs have 2b common endpoints t = F ∩ Σ. We consider the arcs in
sε to be disjoint from the loops in ε. Thus, isotopy of the arcs F ∩ Cε rel-
ative to their boundaries corresponds to sliding the shadows sε over ε. For
each pair (ε, µ) ∈ {(α, β), (β, γ), (γ, α)}, the arcs sε, sµ in Σ determine a ci-
component unlink in bridge position with respect to the Heegaard splitting
Cε ∪Σ Cµ, where i ∈ {1, 2, 3} is the index corresponding to the pair (ε, µ).
For more details and examples of bridge trisections see [20, 22, 24].

Given a bridge trisected surface F ⊂ X, there is an obvious ⋆-trisection
for the complement X − η(F ) given by X̃i = Xi − η(Di), i = 1, 2, 3. Let sα,
sβ , sγ be a set of shadows for F in the ⋆-trisection diagram (Σ;α, β, γ). A ⋆-

trisection diagram for X − η(F ) is given by (Σ̃; α̃, β̃, γ̃) where Σ̃ = Σ− η(t)
is a copy of Σ with |t| disks removed, and for each ε ∈ {α, β, γ}, ε̃ = ε ∪ ε′

where the extra loops in ε′ are obtained from the non-boundary parallel
components of ∂η (sε ∪ η(t)). Using the notation of Remark 3.9, the curves
in ε′ correspond to new curves of type 2.

See Figure 34 for a concrete example. In the rest of the section we will
see how we can use ⋆-trisection diagrams to draw diagrams for surgeries
along bridge trisected surfaces.

Remark 8.1. It is important to mention that this decomposition was pre-
viously discussed by Kim and Miller in [17]. The authors of [17] observed that
the above ⋆-trisection is a classic trisection only when F is a 2-sphere. To
obtain a classical relative trisection, Kim and Miller performed a sequence
of “boundary-stabilizations” to the ⋆-trisection above. This procedure in-
creases the complexity of the trisection surface in a controlled way, and in
principle can also be used to perform surgery along surfaces following the
methods in this section.

Example 8.2 (Trisecting the 4-torus). Figure 34 shows a ⋆-trisection
diagram for T 3 × [0, 1] obtained from removing an open neighborhood of
T 2 × {0} inside T 2 ×D2. We can poke this diagram in order to satisfy the
boundary conditions of Lemma 5.1. To build T 4, we glue two copies of T 3 ×
[0, 1] along the identity in their boundaries. Diagram-wise, this corresponds

7This is a consequence of Lemma 3.5.
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Figure 34: (left) A bridge trisection for T 2 × {pt} inside T 2 ×D2. (right) A
�-trisection for T 2 × S1 × [0, 1] = T 3 × [0, 1].

to ‘double’ the poked diagram for T 3 × [0, 1] and add some extra loops using
Remark 5.2. For each color ε ∈ {α, β, γ}, we draw embedded arcs disjoint
from ε cutting the compressed surface Σε into a disjoint union of disks. The
new curves are given by gluing two copies of the arcs, one on each surface,
along their endpoints as in Figure 36. The resulting diagram represents a
(10;4)-trisection for the 4-torus.

Figure 35: Trisecting the 4-torus.

The following proposition explains how obtain a trisection for fiber sums
of two 4-manifolds.

Proposition 8.3. Let X and X ′ be two closed connected 4-manifolds. Let
τ = W1 ∪W2 ∪W3 (resp. τ ′) be a (g; k1, k2, k3)-trisection for X (resp. X ′).
Suppose F ⊂ X (resp. F ′ ⊂ X ′) is a closed embedded surface in (b; c1, c2, c3)-
bridge position with respect to τ (resp. τ ′). Suppose F · F = F ′ · F ′ and that
the cell decompositions in F and F ′ induced by the bridge trisections agree;
in other words, b = b′ and ci = c′i for i = 1, 2, 3. Then the fiber sum of X and
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Figure 36: How to double the diagram for T 3 × [0, 1].

X ′ along F and F ′, denoted by X�X ′, admits a (G;K1,K2,K3)-trisection
where G = g + g′ + 2b− 1 and Ki = ki + k′i + ci.

Proof. The condition F · F = F ′ · F ′ is so that the gluing map f : ∂ηF →
∂ηF ′ exists. To trisect the fiber sum of X and X ′ one must trisect the
complements X − η(F ) and X ′ − η(F ′) using the bridge trisections. Since
b = b′ and ci = c′i for i = 1, 2, 3, the handle decompositions in ∂η(F ) and
∂η(F ′) induced by the �-trisections agree. Thus we can apply Lemma 5.1
and obtain a trisection for X�X ′. The �-trisection surface for X − η(F ) is
connected of genus g and 2b boundary components; similarly for X ′ − η(F ′).
By Remark 5.2, the trisection surface for X�X ′ is a closed surface of genus
G = g + g′ + 2b− 1.

To determine the value of each Ki we need to dive into the proof of
Lemma 5.1. Fix i ∈ {1, 2, 3}, the 4-manifold piece Wi − η(F ) is determined
by the tuple (Σ;∆1,∆0,∆all) as in Remark 3.9; similarly for W ′

i − η(F ′). By
definition of bridge trisection, F ∩ ∂Wi is a ci component unlink in bridge
position. By construction, ∆all contains separating curves breaking Σ as the
connected sum of a genus g closed surface and a ci spheres, each of them with
positive even number of boundary components. Each sphere corresponds to a
component of the unlink F ∩ ∂Wi. The curves (∆

0,∆1) in the genus g surface
determine a 1-handlebody with ki 1-handles. For each planar surface, the
curves (∆0,∆1) are only of type 2 which determine 4-dimensional pieces that
get glued with other 4-dimensional pieces coming from W ′

i − η(F ′). After
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Figure 37: The involutions τ2 and τ3.

gluing each planar surface determines a copy of S1 ×B3 (see paragraph
4 of the proof of Lemma 5.1). Thus, as explained in paragraph 3 of the
proof of Lemma 5.1, the glued 4-manifold piece Wi ∪W ′

i is diffeomorphic to
�Ki

S1 ×B3 where Ki = ki + k′i + ci. �

8.2. Cacime surface

Let F2, F3 be oriented surfaces of genus two and three, respectively. Define
τi : Fi → Fi to be involutions as in Figure 37. Define the Cacime Surface
to be the quotient C = F2 × F3/τ2 × τ3. Following Chapter 4.2 of [2], C is
diffeomorphic to a fiber sum of F2 bundles over T 2

C =
(
F2 × T 2

)
�
(
F2 × S1 × [0, 1]

)
/τ̃2,

here τ̃2(x, t) = (τ2(x), t) is a diffeomorphism of F2 × S1. To obtain a trisec-
tion diagram for C we follow the following three steps drawn in Figures 38,
39, 40, 41, 42 and 43

1) Draw a genus 5 Heegaard splitting for F2 × S1 and perform Koenig’s
algorithm [19] to draw a (21; 6, 6, 11)-trisection diagram for Xf =
(F2 × S1)× [0, 1]/f for f ∈ {id, τ̃2}.

2) Notice that F2 × {pt} can be seen in the Heegaard splitting for F2 ×
S1 and use this to draw a system of shadows of a (5; 1, 1, 1)-bridge
trisection for F2 × {pt} × {pt}.

3) Apply the method in Section 8.1 to �-trisect the complements Xf −
η(F2) and tube the corresponding boundaries using the Pasting
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Lemma to obtain a (51; 13, 13, 23)-trisection diagram for C (See Propo-
sition 8.3).

Koenig showed in [19] that his algorithm always results in a trisection which
can be destabilized. Here, we can destabilize ten times (five on each Xf ) and
get a (41; 13)-trisection for the Cacime Surface. This trisection will yield a
handle decomposition with one 0-handle, 13 1-handles, 28 2-handles, 13 3-
handles and one 4-handles. This picture resembles the handle diagram in
Figure 4.17 of [2]. Thus we think of the Pasting Lemma as the trisection
analog of the Roping Method for handle decompositions.

Question 8.1. Is there an interpretation for the phrase “upside-down tri-
section”? If so, is there a different method of gluing two ⋆-trisected 4-
manifolds besides the one in Lemma 5.1?

8.3. Knot surgery

Let K be a knot in S3, and let m denote a meridian of K. Let MK be the
3-manifold obtained by 0-surgery along K. Notice that m can be viewed
as a circle in MK and that the torus Tm = m× S1 ⊂ MK × S1 has self-
intersection zero. Let X be a 4-manifold containing an embedded torus T
with self-intersection zero. Denote by XK the fiber sum

XK = X♮T=Tm
(MK × S1).

Here, we glue the complement of the corresponding thickened tori along a
diffeomorphism preserving {pt} × ∂D2. Fintushel and Stern introduced the
knot surgery operation in [12] to build exotic copies of smooth 4-manifolds by
controlling the change of the Seiberg-Witten invariants using the Alexander
polynomial of K.

The goal of this subsection is to describe how to draw trisection diagrams
for XK . Figures 44, 45, 46, 47 and 48 show the steps taking K to be the
trefoil knot.

Let K be a knot in S3. Find a Heegaard splitting for S3 such that K can
be isotoped to be inside one of the handlebodies intersecting one meridian
disk exactly in one point. In order to do this one can consider a tunnel system
for K as in Figure 44. Project K onto the Heegaard surface F in such a way
that is an embedded circle in F and the framing induced by the surface
is the 0-framing on K. By construction, we can find a Heegaard diagram
(F ; a, b) such that an isotopic copy of m belongs to a and K is disjoint from
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Figure 38: Genus five Heegaard splitting for F2 × S1 and a genus 21 tri-
section diagram for Xid = F2 × T 2. Both diagrams are drawn in punctured
surfaces with the correct identifications on the boundaries. The bottom left
annulus is a diagrammatic representation of the trisection for Xid. The col-
ored arcs in the core of the annulus correspond to thickened punctured
Heegaard surfaces, and the rest of the arcs are copies of the 3-dimensional
handlebodies of the original Heegaard splitting. For more detailes see [19].

all other elements of a. The pink circle in Figure 44 are possible choices for
the meridian m as subsets of F . A Heegaard diagram for MK is given by
(F ; a′, b) where a′ = (a−m) ∪K. Furthermore, the loop m as a subset of F
corresponds to the meridian of K inside MK as in Figure 44.

Now perform Koenig’s algorithm [19] to draw a trisection diagram
(Σ;α, β, γ) for MK × S1 using (F ; a′, b). Our choice of m as a subset of
F allows us to see a bridge position for Tm = m× S1. To see this recall that
Σ is obtained by four copies of F tubed as in Figure 45. Draw m on each
copy of Σ and pick four distinct points on each circle. Then push-off Tm

away from F × S1 fixing the 16 selected points. This procedure gives us the
bridge trisection of Tm with 8 bridges as in Figure 45.

Now let T be a torus with self-intersection zero embedded in a 4-manifold
X. Suppose T is in bridge position with respect to some trisection of X.
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Figure 39: A genus 21 trisection diagram for Xτ2 . Notice the twist on some
of the blue arcs is decoding the action of τ2 in the Heegaard splitting of
F2 × S1.

Figure 40: The green shaded area corresponds to a copy of F2 × {pt} inside
the Heegaard splitting for F2 × S1 (left) and F2 × {pt} × {pt} in Xf .

There are two approaches we can take in order to draw a trisection diagram
for XK .

The first approach to trisect XK is to perturb8 both bridge trisec-
tions for Tm and T until the new bridge trisections induce the same cell
decomposition on both Tm and T . Then, to draw a trisection for XK we

8See [24].
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Figure 41: Local models for the bridge trisection of F2 × {pt} × {pt} in Xf

(left), and the �-trisection diagram for its complement (right).

Figure 42: Genus 51 trisection diagram of the Cacime surface.

have to draw the �-trisection diagrams for the corresponding surface com-
plements following Section 8.1 and tube them using the Pasting Lemma as
we did for the Cacime Surface.

The second approach to trisect XK is to glue a copy of T 3 × [0, 1]
in such a way that the new boundary has a nice S1-fibration with fiber a
copy of the surface Tm × {pt} (similarly for T ). In order to do this, draw
the cell decomposition induced by the bridge trisection on the torus Tm (see
Figure 46). This picture can be thought as a bridge trisection for Tm × {0}
inside Tm ×D2. Thus we can draw a �-trisection diagram for Tm × S1 × [0, 1]
with one boundary having the same handle decomposition as the �-trisection
in Figure 45 and other boundary a S1-fibration with fiber Tm × {pt}. This
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Figure 43: A close-up of the above trisection. The disks with common la-
bels are identified as shown. Notice that some curves can be erased as in
Figure 48.

Figure 44: Heegaard diagram for MK with K a trefoil knot.

new trisection is drawn in Figure 46. Now tube this new �-trisection with
the trisection for the complement of Tm in MK × S1 to obtain a classical
relative trisection (with empty binding) with a copy of Tm as the fiber on
its boundary, as desired. Notice the appearance of sphere components in
the compressed surfaces Σα, Σβ and Σγ , thus some curves are redundant
(see Figure 47). The final trisection diagram is depicted in Figure 48. After
performing a similar process to the bridge trisection of T in X one, in theory,
can perform Pasting Lemma one last time to draw a trisection for XK .

The advantage of the second method is that any diffeomorphism of
the form f × idS1 : Tm × ∂D2 → T × ∂D2 can be used to perform the fiber
sum.
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Figure 45: Bridge trisection diagram for Tm ⊂ MK × S1. After an isotopy,
we draw a �-trisection diagram for the complement (MK × S1)− (Tm ×D2).

Figure 46: (left and middle) The cell decomposition induced by the bridge
trisection on Tm, notice that also describes a bridge trisection for Tm ×
{0} ⊂ Tm ×D2. (right) The associated �-trisection for the complement of
this bridge trisected surface.

Figure 47: Red loops after performing the pasting lemma. Notice that they
are some redundancies.
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Figure 48: A trisection diagram for the complement of Tm × S1 insideMK ×
S1 with boundary admitting a S1-foliation with fiber Tm × {pt}. To perform
knot surgery, we must attach this diagram to the complement of a torus
in X.

8.4. Torus surgery

Let F be an embedded torus with trivial tubular neighborhood in a �-
trisected 4-manifoldX. The goal of this subsection is to describe how to draw
trisection diagrams for all the 4-manifolds XF,g := (X − η(F )) ∪g (T

2 ×D2)
where g : ∂η(F ) → T 3 is an isotopy class of homeomorphism of T 3. In prin-
ciple, there are SL3(Z) many such maps.

Suppose F is in (b; c1, c2, c3)-bridge position with respect to the given
trisection of X. Begin by performing the construction of a �-trisection for
the complement of F in X as in Section 8.1. The handle decomposition on
the boundary of the new �-trisection for X − η(F ) is rather complicated.
To overcome this problem, we can paste our diagram for X − η(F ) with a
special diagram for T 3 × [0, 1]. The bridge trisection on F induces a cell de-
composition on the 2-dimensional torus. Given any such cell decomposition,
we can draw a bridge position for T 2 × {0} in T 2 ×D2 inducing the same
cell decomposition. We can then draw a �-trisection diagram for T 3 × [0, 1]
with one boundary having the same handle decomposition as the trisection
for X − η(F ). We will refer to such �-trisections by τ0. Figures 34 and 46
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show examples of the τ0 ⋆-trisections for specific cell decompositions of the
2-torus.

Gluing τ0 to the ⋆-trisection of X − η(F ) maintains the diffeomorphism
type of the complement fixed, and replaces the restrictive handle decompo-
sition in the boundary with the S1-foliation F × S1 with fiber an isotopic
copy of F × {pt}. We can now apply Pasting Lemma to this new trisection
of X − η(F ) using diffeomorphisms of the form g = f × idS1 for some home-
omorphism f : F → F . We think of this kind of gluing g as acting on the

standard basis for H1(T
3,Z) via the matrix

(
a b 0
c d 0
0 0 1

)
.

Denote by τ23 the relative trisection diagram of Example A.3. This dia-
gram yields a relative trisection for T 3 × [0, 1] with closed trisection surface
such that the S1-foliation induced in ∂(T 3 × [0, 1]) has page S1 × S1 × {pt}
in T 3 × {0} and page S1 × {pt} × S1 in T 3 × {1}. We think of τ23 as act-
ing on the standard basis for H1(T

3,Z) via a permutation matrix σ23 =(
1 0 0
0 0 −1
0 1 0

)
. By modifying the labelings in τ23, we can draw trisections dia-

grams τ31 and τ12 of T 3 × [0, 1] corresponding to 2-cycles (3, 1) and (1, 2)
respectively.

Any matrix in SL3(Z) can be written as a product of permutation ma-

trices (τij) and matrices of the form
(

1 1 0
0 1 0
0 0 1

)
(special kind f × idS1). Hece,

equipped with the trisections τ0 and τij we can, in theory, draw ⋆-trisection
diagrams for all the 4-manifolds XF,g. The procedure of performing torus
surgery becomes then a linear algebra problem. We will explain this explic-
itly by showing methods to trisect Logarithmic transforms and Luttinger
Transforms.

Example 8.4 (Logarithmic transform). Let F be an embedded torus
in X with self-intersection number zero. Fix a basis for H1(F,Z) and a
trivialization η(F ) ∼= T 2 ×D2. Following [3], given a matrix A =

(
a11 a12
a21 a22

)
∈

SL2(Z), we will denote as A-Logarithmic transform the 4-manifold XF,A =
(X − η(F )) ∪g (T

2 ×D2), where g : T 2 ×D2 → T 2 ×D2 is a homeomor-

phism given by the matrix
(

1 0 0
0 a11 a12

0 a21 a22

)
. Suppose that F is in bridge position

with respect to some trisection τ of X. Notice that

A =



0 0 1
0 1 0
1 0 0


 ·



a22 a21 0
a12 a11 0
0 0 1


 ·



0 0 1
0 1 0
1 0 0


 .

Thus to perform A-logarithmic transform along F we can take the ⋆-
trisection τ̃ for the complement of F in X, and concatenate it with specific
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trisections as follows,

XF,A : τ̃
⋃

id

τ0
⋃

id

τ31
⋃

A×idS1

τ31
⋃

id

τ∅.

Here τ∅ is the relative trisection for T 2 ×D2 given by the empty diagram
on a closed torus.

Integral logarithmic transform is given by the matrix Ap =
(

0 1
−1 p

)
. In

particular 0-logarithmic transform is given by the map gluing map corre-
sponding with the permutation (2, 3) and so the trisection diagram for the
0-logarithmic transform XF,0 can be simplified as follows:

XF,0 : τ̃
⋃

id

τ0
⋃

id

τ23
⋃

id

τ∅.

Example 8.5 (Luttinger surgery). For an embedded torus F in X with
self-intersection zero, a Luttinger surgery is an operation X 7→ Xm,n where
Xm,n is torus surgery along F via a homeomorphism given by the matrix

Am,n =
(

1 0 m
0 1 n
0 0 1

)
. Since Am,n factors as follows,

A =



1 0 0
0 0 1
0 1 0


 ·



1 m 0
0 1 0
0 0 1


 ·



0 0 1
0 1 0
1 0 0




·



1 n 0
0 1 0
0 0 1


 ·



0 0 1
0 1 0
1 0 0


 ·



1 0 0
0 0 1
0 1 0


 .

We can preform Luttinger surgery along F , after fixing a trivialization
η(F ) ∼= T 2 ×D2 and a basis for H1(F,Z), by concatenating the following
trisections.

XF,m,n : τ̃
⋃

id

τ0
⋃

id

τ23
⋃

( 1 m
0 1 )×id

τ13
⋃

( 1 n
0 1 )×id

τ13
⋃

id

τ23
⋃

id

τ∅.

Here, τ̃ is the ⋆-trisection for the complement of F and τ∅ is the empty
trisection diagram for T 2 ×D2.

Appendix A. Classic diagrams

Let X be a ⋆-trisected 4-manifold with non-empty boundary. If the tri-
section is a classic relative trisection, the compression bodies given by the
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Figure A1: The standard picture for “classic” relative trisection diagrams.

pairwise intersection satisfy C0
i = C1

i for all i = 1, 2, 3. In particular, any
diagram (Σ;α, β, γ) of such trisections satisfies that each pair of loops is
slide equivalent to the loops like in Figure A1. In this case, there is a open
book decomposition on ∂X induced by the trisection with binding having
b = |∂Σ| components. In the existing literature algorithms have only been
developed when the trisection surface has boundary (b > 0). The goal of this
appendix is to extend these results to the case b = 0.

A.1. Relative trisections from Kirby diagrams

LetX be a connected 4-manifold with connected boundary. In [7] the authors
showed how to draw a trisection diagram from a Kirby diagram of X if a
page P for an open book decomposition of ∂X is given in the Kirby diagram.
As expected, the proper modification of this result holds if P is the page
of a fibration of ∂X over S1; i.e., if ∂P = ∅. We will state the result in full
generality.

Theorem A.1 (Adaptation from Main Theorem of [7]). Take a han-
dle decomposition of X with one 0-handle, some 1-handles, 2-handles and
3-handles described explicitly in the form of a Kirby diagram. Let P be the
page of an open book decomposition or a fibration over S1 of ∂X. Suppose
that P is explicitly drawn in the Kirby diagram. Then there is an algorithm
to draw a trisection diagram for X described as follows:

1) Isotope P in the diagram so that P has a 2-dimensional handle decom-
position induced by the 0-handle and some 1-handles and 2-handles
of X. You might need to add 1/2-cancelling pairs to do so.

2) If not all the 1-handles of X were used to build P , add genus to P by
tubing it as in Figure A2. Call this new surface Σ̃.
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Figure A2: Tubing the page.

Figure A3: How to fix a crossing.

3) Project the attaching regions of the rest of the 2-handles onto Σ̃. With
the help of Reidemeister I moves ensure that the framing of the handles
is given by the surface; and use Reidemeister II moves to ensure that
every loop has at least one overcrossing in the link projection.

4) Stabilize Σ̃ so that the link above has no crossing following Figure A3.
Call this new surface Σ. Let γ be the loops in Σ arising from the link
projection, let α and β be the red and blue curves in Σ coming from
the stabilizations.

5) By construction |α| = |β| ≥ |γ|. If the inequality is strict, we do the
following: For each component γi, by construction we can pick a loop
βJi

intersecting γi transversely in one point and disjoint from other γ
curves. Take a βj not in the selected set {βJi

}i; βj intersects a unique
γ curve in one point, say γi0 . Slide βj over βJi0

using an arc of γi0 ;
denote the resulting curve by γj .

The tuple (Σ;α, β, γ) is a relative trisection diagram for X inducing the
given fibration on the boundary.
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Figure A4: Left: A Kirby diagram for the complement of the unknotted
torus in S4. Right: The shaded surface is an embedding of a torus page for
the fibration of T 3.

Figure A5: After sliding, notice that the page has a handle decomposition
induced by the 0-handle, the pair of 1-handles and one 2-handle of the 4-
manifold.

Proof. The decomposition of X will be given as follows: Divide the 2-handles
of X by h2 = h2P ∪ h2r where h2P are the ones used to build P and h2r the
rest of the 2-handles. Define X1 = B4[h1 ∪ h2P ]. We can see Σ as embed-
ded in ∂X1 by stabilizing the standard circular decomposition in ∂X1 as in
Subsection 3.4, say

∂X1 =

(
Cα ∪Σ Cβ

)/(
∂−Cα =id ∂−Cβ

)
.

Define X2 = ηX(Cβ)[h
2
r ] and X3 = X − int(X1 ∪X2). The proof that X =

X1 ∪X2 ∪X3 is indeed a relative trisection is the same as in Theorem 1 of
[7]. �

Example A.2. Figures A4, A5 and A6 describe how to draw a relative
trisection diagram for the complement of an unknotted torus in S4.

Example A.3. Figures A7 and A8 show how to trisect the thickened 3-
torus T 3 × [0, 1] in such a way that on one side the S1-foliation has fiber
S1 × S1 × {pt} and in the other boundary the fiber is S1 × {pt} × S1.
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Figure A6: By resolving the crossings as in Step 4, since we have the same
number of loops of each color, we obtain a relative trisection diagram for X
(left). We get the diagram in the right by a diffeomorphism of the surface.

Figure A7: A Kirby diagram for T 3 × [0, 1] obtained by thickening a Hee-
gaard diagram for the 3-torus. After adding a 1/2-cancelling pair, you
can see two embedded tori (shaded in pink) corresponding to S1-fibers
T12 = S1 × S1 × {pt} × {0} and T13 = S1 × {pt} × S1 × {1}. Notice that
the pages T12 and T13 have handle decompositions induced by the 0-handle,
the 1-handles and some 2-handle of the 4-manifold.

A.2. The monodromy induced on ∂X

In [5], the authors described an algorithm to compute the monodromy of
an open book decomposition induced by a trisection when the diagram has
boundary (b > 0). If the trisection surface is closed, the trisection will induce
a fibration over S1 and the monodromy can also be computed following a
suitable modification of the original algorithm. We now describe the algo-
rithm in general. The key idea is to take properly embedded 1-manifolds in
the trisection surface that cut a page into a disk and traverse the boundary
of the trisection using the correct handle slides.

Theorem A.4 (Adaptation from of Theorem 5 of [5]). A relative tri-
section diagram encodes an open book decomposition or a fibration over S1
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Figure A8: After tubing the two tori, we draw a link diagram for the rest of
the 2-handles in a genus two surface. By resolving the crossings as in Step
4, we obtain a diagram with fewer γ-curves (green). We perform Step 5 in
order to find γ3 (brown). This final result is a relative trisection diagram for
T 3 × [0, 1] with S1-fibers on its boundary given by T12 = S1 × S1 × {pt} ×
{0} and T13 = S1 × {pt} × S1 × {1}.

on ∂X with page given by Σα, the surface resulting from Σ by compressing
along the α curves, and monodromy µ : Σα → Σα determined as follows:

1) Choose an ordered collection of properly embedded arcs or9 simple
closed curves a on Σ, disjoint from α and such that the corresponding
1-manifolds in Σα cut Σα into a disk10.

2) There exists a collection of properly embedded 1-manifolds a1 and
simple closed curves β′ in Σ such that (α, a1) is handle slide equivalent
to (α, a), β′ is handle slide equivalent to β, and a1 and β′ are disjoint.
We claim that in this step we do not need to slide α curves over α
curves, only a 1-manifolds over α curves and β curves over β curves.
Choose such an a1 and β′.

3) There exists a collection of properly embedded 1-manifolds a2 and
simple closed curves γ′ in Σ such that (β′, a2) is handle slide equivalent
to (β′, a1), γ

′ is handle slide equivalent to γ, and a2 and γ′ are disjoint.
Again we claim that we do not need to slide β′ curves over β′ curves.
Choose such an a2 and γ′.

9We could have both arcs and curves simultaneously.
10As many disks as boundary components of X.
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Figure A9: Left: The outer pair of curves (yellow and pink) correspond to
the 1-manifolds a = a1 disjoint from the α (red) and β (blue) loops. Right:
After switching to the β, γ (green) pair, we need to slide a1 over β to get
1-manifolds disjoint from γ, we call those a2.

4) There exists a collection of properly embedded 1-manifolds a3 and
simple closed curves α′ in Σ such that (γ′, a3) is handle slide equivalent
to (γ′, a2), α

′ is handle slide equivalent to α, and a3 and α′ are disjoint.
Again we claim that we do not need to slide γ′ curves over γ′ curves.
Choose such an a3 and α′.

5) The pair (α′, a3) is handle slide equivalent to (α, a∗) for some col-
lection of 1-manifolds. Choose such an a∗. Note that now a and a∗
are both disjoint from α and thus we can compare the corresponding
1-manifolds in Σα.

6) The monodromy µ is the unique map (up to isotopy) such that

µ(ϕα(a)) = ϕα(a∗),

respecting the ordering of the 1-manifolds.

Proof. The proof is the same as in Theorem 5 on [5]. The only observation is
that the proof of Lemma 13 of [5], a key lemma for this result, does not apply
when Σα is closed. This problem can be solved by considering the annulus
a× [−1, 1] for any loop in P instead of the disk in the proof of Lemma 13.
The proof then works. �

Example A.5. Figures A9, A10 and A11 show how to run the algorithm
for the monodromy in the concrete case of the trisection of the complement
of the unknotted torus in S4.
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Figure A10: After isotopy of a2 and drawing now the pair (γ, α), we slide
a2 over γ to get 1-manifolds disjoint from α, we call those a3 = a∗.

Figure A11: The orientation preserving monodromy is defined in the torus
obtained by compressing along the α loops and its determined by a �→ a∗.
Notice that in this case we obtained the identity map, as expected.
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