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We consider the nonlinear damped KdV-BBM equation on the
torus. We shows the global existence of the solution, as well as its
convergence in time towards an analytical function. This analytic-
ity property allows the application of unique continuation results
to show that the limit function is a constant.
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1. Introduction

In the literature we can find several models of partial differential equations to
describe the movement of water in shallow depths following a unidirectional
propagation, see for instance [4], [5] and [10]. In this work, we study the
stabilization for the damped nonlinear KdV-BBM equation

(1) ∂tu+ ∂xu− ∂xxtu+ ∂xxxu− ∂x(a(x)∂x)u+ u∂xu = 0,

where a, the damping, is non negative. This equation mixes the KdV equa-
tion ∂tu+ ∂xxxu+ u∂xu = 0, with the BBM equation ∂tu+ ∂xu− ∂xxtu+
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u∂xu = 0. To our knowledge the KdV-BBM equation was treated for the
first time as a system in [6] to study its properties. This equation has been
recently considered in [3], [12] and [25] from numerical analysis point of view.
Stabilization was not considered for KdV-BBM equation but was considered
for KdV in [2] and [23], and for BBM equation in [1] and [30].

The particularity of the KdV- BBM equation, is that it admits a nonlo-
cal unbounded operator of order 1, that introduces some difficulties in the
analysis. Our main result is a stabilization property for the solutions of (1)
on the torus. The principal theorem is the following.

Theorem 1. For all u0 ∈ H1(T), there exists a unique solution u = u(t, x)
of (1) global in time such that

lim
t→+∞

u(t, ·) =
1

2π

∫

T

u0(x)dx, in H1(T).

Now we give the outline of the proof. In Section 2, we show the existence
of the solution of the linear problem. We obtain the exponential decay result
on the semigroup by an estimation of the resolvent. This estimate comes from
semiclassical measures and the technic was used for the stability of the wave
equation. This method can be found for the wave equation, see [8], [9], [15],
[14], [24], [26] and [29].

In Section 3, from the fixed point theorem we prove local existence and
the uniqueness for the nonlinear problem. By an a priori estimate on the
energy, we deduce global existence for the nonlinear problem.

In Section 4, from energy decay dynamical system technics, we prove first
that solution converges to a bounded solution for all t in R. Second, from
result of [16] we prove that this particular solution is analytic in time. This
allows to apply uniqueness results (see [20], [28] and [31]) and we deduce
that this particular solution is in fact a constant. This gives Theorem 1.

The result of unique continuation which we will arrive at in Section 4 is
therefore a result which says that if the solution is a constant on an open
set, then it is constant over the whole domain. The unique continuation
gives stabilization at the end in the sense that some solutions will goes to
a constant as t goes to infinity. This technique can be found in [22] where
the authors consider the wave equation. They show that they can found an
analytical solution in time and then use an unique continuation result to
prove the stabilization.

In Section 5, we give a quick deduction that the approach we made
on KdV-BBM is applicable for the equation of BBM in a particular case.
More precisely we say that the unique continuation conjecture that Rosier
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has stated in [30] is true with a dissipator a which depends on time. This
type of dissipator was used in [11] to show controllability results for the
Boussinesq equation.

According to our knowledge, the rate of decay of the energy of the KdV-
BBM nonlinear problem solution is still an open question.

2. Linear equation: global existence and uniqueness

We consider the linear KdV-BBM equation posed on a periodic domain T

(2)

{
∂tu+ ∂xu− ∂xxtu+ ∂xxxu− ∂x(a(x)∂x)u = 0, x ∈ T, t > 0,
u(·, 0) = u0 ∈ H1(T), x ∈ T,

where a ≥ 0 is assumed to be a bounded function in C∞(T) such that {a >
0} ≠ ∅.

We start this first part by studying the linear equation and showing the
existence of solutions with the Lumer-Phillips theorem.

2.1. Linear equation

We define for s ∈ R the Sobolev spaces

Hs(T) =

{
u =

∑

n∈Z

une
inx : T −→ C /

∑

n∈Z

(
1 + n2

)s |un|2 <∞
}
,

equipped by the inner product ⟨ · , · ⟩s : (u, v) 7−→
∑

n∈Z

(
1 + n2

)s
unvn,

where un and vn are the Fourier coefficients of u and v respectively. We
note ⟨ · , · ⟩ = ⟨ · , · ⟩1 .

We define the unbounded operator (A,D(A)) on H1(T) by D(A) =
H2(T) and

Au = −(1− ∂xx)
−1(∂xu+ ∂xxxu− ∂x(a(x)∂x)u)).

Theorem 2. A is the infinitesimal generator of a C0-group {S(t)}t∈R on
H1(T).

Proof. We first prove that A -considered as operator on H2(T) with values
in H1(T)- is a Fredholm operator of index 0 then we use Lumer-Phillips
theorem.
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Let δ > 0. A can be written as sum of A0 and B with

A0 = −(1− ∂xx)
−1(∂x + ∂xxx + δ)

and

B = −(1− ∂xx)
−1(−∂x(a(x)∂x)− δ).

Note that if u(x, t) =
∑

n∈Z

un(t)e
inx, then A0u =

∑

n∈Z

−in+ in3 − δ

1 + n2
un(t)e

inx.

The operator A0 is bijective from H2(T) to H1(T). It follows that A0 is a
Fredholm operator of index zero. The operator B is bounded from H2(T) to
itself, and then, it is compact from H2(T) to H1(T). This implies A0 +B =
A is a Fredholm operator of index zero.

Note that D(A) = H2(T) is dense in H1(T). For µ ∈ R and u ∈ H2(T),
we have

(3)
⟨(A+ iµ)u, u⟩ = ((A+ iµ)u, (1− ∂xx)u)

= −(∂xu, u) + (∂xxu, ∂xu)− (a∂xu, ∂xu) + iµ
∥∥u
∥∥2
H1

The quantity (∂xu, u) is pure imaginary since

Re(∂xu, u) =
1

2

∫

T

∂xuu+ u∂xudx =
1

2
((∂xu, u) + (u, ∂xu)) = 0.

By the same way we show that Re(∂xxxu, u) = 0. Then

(4) Re ⟨(A+ iµ)u, u⟩ = −
∫

T

a |∂xu|2 dx ≤ 0.

So A is dissipative.
Now it suffices to prove that A− λ is injective for some λ > 0. Let u ∈ H2(T)
such that Au− λu = 0. We have

0 = Re ⟨Au− λu, u⟩ = −
∫

T

a |∂xu|2 dx− λ
∥∥u
∥∥2
H1

≥
(
−
∥∥a
∥∥
L∞

− λ
) ∥∥u

∥∥2
H1
.

This give us that A− λ is injective.
Since A is Fredholm of index 0, and u 7−→ λu is an operator compact from
H2(T) in H1(T), then A− λ is also Fredholm of index 0, since it is injective,
it is therefore surjective. Thus, the operator A generates a C0-semigroup
{S+(t)}t≥0 of contraction by Lumer-Phillips theorem.
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The operator −A generates a C0-semigroup {S−(t)}t≥0. Indeed, let u ∈
H2(T). For λ > 1 +

∥∥a
∥∥2
L∞(T)

we have

(5) ⟨(−A− λ)u, u⟩ = (∂xxxu+ ∂xu− ∂x(a∂x)u− λ(1− ∂xx)u, u).

Thus

(6) Re ⟨(−A− λ)u, u⟩ =
∫

T

a|∂xu|H1(T) − λ
∥∥u
∥∥2
H1(T)

≤ 0.

By the same way as the previous proof, we show that the operator A+ λ is
surjective. This proves that −A− λ generates a contraction semigroup that
we denote by {S̃−(t)}t≥0. The map S− : t 7−→ eλtS̃−(t) defines a semigroup
with infinitesimal generator −A. Using a result in [27], we know that if A
and −A are infinitesimal generators of C0 semigroups S+ and S−, then A is
the generator of a C0-group {S(t)}t∈R given by

S(t) =

{
S+(t), if t ≥ 0
S−(−t), if t ≤ 0,

which complete the proof. □

We finish the first subsection by giving this remark.

Remark 1. For u solution of (2), we have that ∥u(t)∥2H1(T) is nonincreas-
ing. Indeed

d

dt

(
1

2

∥∥u(t)
∥∥2
H1

)
= (−∂xu− ∂xxxu+ ∂x(a∂x)u, u)L2(7)

+ (u,−∂xu− ∂xxxu+ ∂x(a∂x)u)L2

= −2

∫

T

a(x) |∂xu(t, x)|2 dx ≤ 0.

2.2. Exponential stability

The goal of this subsection is to prove the exponential stability of {S(t)}t≥0.
More precisely, we will prove the following result

Theorem 3. There exists δ > 0 and M > 0 such that

(8) |||S(t)|||L(H1(T)) ≤Me−δt, ∀t ≥ 0.

We will use the following result.
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Theorem 4. Let H be a Hilbert space, and A : D(A) ⊂ H −→ H a gener-
ator infinitesimal of a semigroup {T (t)}t≥0. Assume that

1) There exist c1 > 0 such that |||T (t)|||L(H) ≤ c1, ∀t ≥ 0,

2) A+ iµ is inversible for all µ in R,

3) There exist c2 > 0 such that
∣∣∣∣∣∣(A+ iµ)−1

∣∣∣∣∣∣
L(H)

≤ c2 for all µ in R.

Then, there exist M > 0 and c > 0 such that

(9) |||T (t)|||L(H) ≤Me−ct, ∀t ≥ 0.

See [21, Theorem 3] for more details.
We cannot apply this theorem to A since it is not injective, the second

assumption is not verified when µ = 0. For that, we introduce the closed
subspace of H1(T)

Ḣ1(T) =
{
u ∈ H1(T) / (u, 1)L2(T) = 0

}
.

We equip Ḣ1(T) and H2(T) ∩ Ḣ1(T) with the norms of H1(T) of H2(T)
respectively.

Note that Au ∈ Ḣ1(T) for u ∈ H1(T). If u(t, x) =
∑

k∈Z

uk(t)eikx ∈ H1(T),

we can write u(t, x) = u0(t) + u̇(t, x), with u̇ ∈ Ḣ1(T). It is easily checked
that if ∂tu = Au, then u0(t) is independent of t since

(
∂tu

0(t), 1
)
L2(T)

+ (∂tu̇(t, x), 1)L2(T)︸ ︷︷ ︸
=0

= (Au(t, x), 1)L2(T)︸ ︷︷ ︸
=0

.

The space Ḣ1(T) is then invariant by {S(t)}t≥0, then it is also a semi-

group of contraction on Ḣ1(T). We thus define Ȧ with D(Ȧ) = H2(T) ∩
Ḣ1(T) and Ȧu = Au for u ∈ D(Ȧ). The operator Ȧ is injective, indeed,
for u ∈ Ḣ1(T) such that Ȧu = 0, we can adapt the proof of Theorem 2
to obtain ∂xu = 0 on T. As u ∈ Ḣ1(T), then u = 0. Furthermore, Ȧ :
H2(T) ∩ Ḣ1(T) −→ Ḣ1(T) is a Fredholm operator of index 0, so it is bi-
jective. Then we have the second assumption of Theorem 4 for all µ ∈ R.
Using bounded inverse theorem, A−1 is continuous. The third assumption
of Theorem 4 is thus checked for µ = 0.

We define now the resolvent of Ȧ by R(λ)f = u̇, where u̇ is the solution
of (Ȧ− λ)u̇ = f. Let us show an estimate of the resolvent.
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Proposition 1. There exists c > 0 such that for all f ∈ Ḣ1(T) we have

∀ µ ∈ R, ∥u̇(t)∥H1(T) ≤ c ∥f∥H1(T) ,

where u̇ is solution of (Ȧ+ iµ)u̇ = f .

Proof. Without loss of generality, we may consider from now on the op-
erator A in H1(T) to simplify the notation instead of Ȧ in Ḣ1(T). If we
prove that there exist µ0 such that for all µ > µ0,

∣∣∣∣∣∣(A+ iµ)−1
∣∣∣∣∣∣

L(H1)
≤

c1, then since µ 7−→ (A+ iµ)−1 is continuous from R to L(Ḣ1) we have∣∣∣∣∣∣(A+ iµ)−1
∣∣∣∣∣∣

L(H1)
≤ c2 for all µ ∈ R. Note that we already know by an

argument of symmetry that R(iµ)f = R(−iµ)f for f ∈ Ḣ1(T). So it is suf-
ficient to prove the result for µ > µ0.

We will prove by contradiction the resolvente estimate. Assume that

(10) ∀ k ∈ N, ∃ fk ∈ H1(T), ∃ µk ≥ k /
∥∥∥uk

∥∥∥
H1(T)

> k
∥∥∥fk

∥∥∥
H1(T)

,

where uk is solution of (A+ iµk)u
k = fk. We can assume that

∥∥uk
∥∥
H1(T)

= 1

and
(
fk
)
k∈N

−→ 0 in H1(T), when k −→ +∞.
The resolvent equation is

(11) (1− ∂xx)
−1
(
∂xxxu

k + ∂xu
k − ∂x(a∂x)u

k
)
+ iµku

k = fk,

which can be written for all n ∈ Z with Fourier coefficients as

(12)
1

1 + n2
(
−in3 + in

)
ukn − ãkn + iµku

k
n = fkn ,

where uk =
∑

n∈Z

ukne
inx, fk =

∑

n∈Z

fkne
inx, a =

∑

n∈Z

ane
inx and

ãkn =
{
(1− ∂xx)

−1
(
∂x(a∂xu

k)
)}

n

=
in

1 + n2
(a∂xu

k)n =
−n

1 + n2

∑

j∈Z

aj(n− j)ukn−j .

We have

1

1 + n2
(
−in3 + in

)
+ iµk = i(−n+ µk) +

2in

1 + n2
.
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From (12) we obtain

(13) ukn =
−2n

(−n+ µk)(1 + n2)
ukn +

ãkn
i(−n+ µk)

+
fkn

i(−n+ µk)
.

Let δ > 0. We consider first the frequencies n such that |n− µk| ≥ δµk,. Let

us estimate each term of (13). Since
1

|n− µk|
≤ 1

δµk
, we have

∥∥∥∥∥∥

∑

|n−µk|≥δµk

−2n

(−n+ µk)(1 + n2)
ukne

inx

∥∥∥∥∥∥

2

H1

(14)

=
∑

|n−µk|≥δµk

4(1 + n2)

(−n+ µk)2
n2

(1 + n2)2

∣∣∣ukn
∣∣∣
2

≤ 4

(δµk)2

∑

|n−µk|≥δµk

(1 + n2)
∣∣∣ukn
∣∣∣
2

≤ 4

(δµk)2

∥∥∥uk
∥∥∥
2

H1(T)
=

4

(δµk)2
.

The operator (1− ∂xx)
−1 (∂x(a∂x)) is bounded on H1(T), we deduce∑

n∈Z

(1 + n2)
∣∣∣ãkn
∣∣∣
2
≤ c. Thus

∥∥∥∥∥∥

∑

|n−µk|≥δµk

ãkn
i(−n+ µk)

einx

∥∥∥∥∥∥

2

H1(T)

(15)

=
∑

|n−µk|≥δµk

1

(−n+ µk)2
(1 + n2)

∣∣∣ãkn
∣∣∣
2

≤ 1

(δµk)2

∑

n∈N

(1 + n2)
∣∣∣ãkn
∣∣∣
2
≤ c

(δµk)2
.

We have also
∥∥∥∥∥∥

∑

|n−µk|≥δµk

fkn
i(−n+ µk)

einx

∥∥∥∥∥∥

2

H1(T)

(16)

=
∑

|n−µk|≥δµk

(1 + n2)

(−n+ µk)2

∣∣∣fkn
∣∣∣
2
≤ c

(δµk)2
,
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since f → 0 in H1(T). Combining, (13), (14), (15) and (16), we obtain

(17)
∑

|n−µk|≥δµk

(1 + n2)
∣∣∣ukn
∣∣∣
2
≤ C

(δµk)2
−→ 0, when k → ∞.

For the part where n is of the order of µk, we introduce a smooth fonction
Ψ such that 0 ≤ Ψ ≤ 1 and

(18) Ψ(s) =

{
1, if |s− 1| ≤ δ
0, if |s− 1| ≥ 2δ

Let h =
1

µk
. The operator Ψ(−ih∂x) is defined by Ψ(−ih∂x)uk =

∑

n∈Z

Ψ(hn)ukne
inx. Note that Ψ(hn) ̸= 0 for n ∈ [(1− δ)µk, (1 + δ)µk]. We

write uk = (uk −Ψuk) + Ψuk. Since Ψ(hn) = 1 if n ∈ [(1− δ)µk, (1 + δ)µk],
we have

∥∥∥uk −Ψ(−ih∂x)uk
∥∥∥
2

H1

=
∑

n∈Z

(1 + n2)(1−Ψ(hn))2
∣∣∣ukn
∣∣∣
2

(19)

≤ 2
∑

|n−µk|≥δµk

(1 + n2)
∣∣∣ukn
∣∣∣
2
≤ 2C

(δµk)2
.

For µk large enough, we can assume that
∥∥Ψ(−ih∂x)uk

∥∥
H1(T)

≥ 1

2
.

Now let vk =
Ψ(−ih∂x)uk

∥Ψ(−ih∂x)uk∥L2(T)

and we have

(1− ∂xx)
−1 (∂xxx + ∂x − ∂x(a∂x)) v

k + iµkv
k(20)

=
Ψ(−ih∂x)fk

∥Ψ(−ih∂x)uk∥L2(T)

+ (1− ∂xx)
−1

(
∂x [Ψ(−ih∂x), a]

∂xu
k

∥Ψ(−ih∂x)uk∥L2(T)

)
.

We can check easily that

(21)
∥∥∥Ψ(−ih∂x)uk

∥∥∥
L2(T)

≈ h
∥∥∥Ψ(−ih∂x)uk

∥∥∥
H1(T)

≈ h.
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The term
Ψ(−ih∂x)fk

∥Ψ(−ih∂x)uk∥L2(T)

tends towards 0 in L2(T) since

(22)

∥∥Ψ(−ih∂x)fk
∥∥
L2(T)

∥Ψ(−ih∂x)uk∥L2(T)

≈
h
∥∥fk

∥∥
H1(T)

∥Ψ(−ih∂x)uk∥L2(T)

≈
∥∥∥fk

∥∥∥
H1(T)

−→ 0.

We apply h3(1− ∂xx) to (20), we obtain

(h∂x)
3 vk + h2 (h∂x) v

k − h (h∂x) (a (h∂x)) v
k − i (h∂x)

2 vk + ih2vk(23)

=
h3(1− ∂xx)

∥Ψ(−ih∂x)uk∥L2(T)

Ψ(−ih∂x)fk

+
h (h∂x)

∥Ψ(−ih∂x)uk∥L2(T)

[Ψ(−ih∂x), a] (h∂x)uk.

We will show now with the two following lemmas that we have
∥∥∥∥

h3(1− ∂xx)

∥Ψ(−ih∂x)uk∥L2

Ψ(−ih∂x)fk(24)

+
h (h∂x)

∥Ψ(−ih∂x)uk∥L2

[Ψ(−ih∂x), a] (h∂x)uk
∥∥∥∥
L2

= o(h).

We denote by D = −i∂x.

Lemma 1. There exist c > 0 such that

(25)

∥∥∥∥∥
h3(1− ∂xx)

∥Ψ(−ih∂x)uk∥L2(T)

Ψ(−ih∂x)fk
∥∥∥∥∥
L2(T)

≤ ch
∥∥∥fk

∥∥∥
H1(T)

.

Proof. Let Ψ̃ : s 7→ −s2Ψ(s). From (21) we have
∥∥∥∥

h3(1− ∂xx)

∥Ψ(−ih∂x)uk∥L2

Ψ(−ih∂x)fk
∥∥∥∥
L2

≲
∥∥∥
(
h2 − h2∂xx

)
Ψ(−ih∂x)fk

∥∥∥
L2

≤ h2
∥∥∥Ψ(−ih∂x)fk

∥∥∥
L2(T)

+
∥∥∥Ψ̃(hD)fk

∥∥∥
L2(T)

≤ h2
∥∥∥fk

∥∥∥
L2(T)

+ h
∥∥∥Ψ̃(hD)fk

∥∥∥
H1(T)

≤ ch
∥∥∥fk

∥∥∥
H1(T)

.

□



✐

✐

“4-Jellouli” — 2023/5/2 — 1:18 — page 1711 — #11
✐

✐

✐

✐

✐

✐

Stabilization for KdV-BBM 1711

Lemma 2. There exist c > 0 such that for z ∈ L2(T)

∥[Ψ(−ih∂x), a] z∥H1(T) ≤ c
∥∥z
∥∥
L2(T)

.

The proof is given in Annex.
We deduce from Lemma 2 taking z = ∂xu

k (∈ L2(T)) that

∥∥∥∥∥
h3

∥Ψ(−ih∂x)uk∥L2(T)

∂x [Ψ(−ih∂x), a] ∂xuk
∥∥∥∥∥
L2(T)

(26)

≤ ch2
∥∥∥∂xuk

∥∥∥
L2(T)

≤ ch2.

Combining (25) and (26), we get (24). Furthermore

(27)
∥∥∥ih2vk

∥∥∥
L2(T)

= o(h), and
∥∥∥h2(h∂x)vk

∥∥∥
L2(T)

= o(h),

since
∥∥vk
∥∥
L2(T)

= 1.

We give also the following lemma

Lemma 3. There exist c > 0 such that

(28)
∥∥∥(h∂x) (a (h∂x)) vk

∥∥∥
L2(T)

≤ c.

Proof. We recall that

Ψ(hn) =

{
1, if |hn− 1| ≤ δ
0, if |hn− 1| ≥ 2δ.

We write (h∂x) (a (h∂x)) = a(h∂x)
2 + [h∂x, ah∂x] = a(h∂x)

2 + ha′(h∂x).
Since a is C∞ and hnΨ(nh) ≤ 1, we can estimate these two terms by
wrinting for j = 1, 2

∥∥∥(h∂x)jvk
∥∥∥
2

L2(T)
≤
∑

n∈Z

h2j−2n2jψ2(hn)(ukn)
2

≤ c
∑

n∈Z

n2(ukn)
2 ≤ c

∥∥∥uk
∥∥∥
2

H1(T)
≤ c.

And the proof is complete. □
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We can write
∥∥h (h∂x) (a (h∂x)) vk

∥∥
L2(T)

= O(h). Now (23) becomes

(29) (hD)3vk − (hD)2vk = hgk,

where (gk)k∈N is a bounded sequence of functions in L2(T). We can now
give the theorem of existence of semiclassical measure, which is a classical
theorem and may be found in [7, Theorem 2] or [13, Proposition 3.1].

Definition 1. Let u(x) =
∑

j∈Z

uje
ijx ∈ L2(T) and b(x, ξ) =

∑

j∈Z

bj(ξ)e
ijx ∈

C∞
0 (T× R) such that b is 2π-periodic on x and

bj(ξ) =

∫

T

b(x, ξ)e−ijxdx.

Then the semi-classical pseudo-differential operator of b is defined by

(30) Oph(b)u =
1

2π

∫

R

eixξb(x, hξ)û(ξ)dξ =
1

2π

∑

j,l∈Z

uj(x)bl−j(hj)e
ilx.

By an analogous calculation that in [18], we show that Oph(b) is well defined.
And by applying [18, Lemma 6.4] and [18, Proposition 6.5] we have that
Oph(b) is a bounded operator in L2(T). See also [32, Section 5.3.1].

Theorem 5. Let (hk)k be a sequence of reals which converges to 0 and
(vhk) a bounded sequence in L2(T) which converges weakly to 0. There exists
a subsequence from (vhk)-which we called also (vhk)- and a non negative
Radon measure ν on T× R such that for every b ∈ C∞

0 (T× R;C)

lim
hk→0

(
b(x, hkD)vhk , vhk

)

L2(T)
=

∫

T×R

b(x, ξ)dν(x, ξ).

ν is called the semiclassical measure associated to the sequence (vhk).

It is not difficult to prove that the sequence
(
vhk

)
converges weakly to

0. Before we apply Theorem 5, we give some definitions

Remark 2. We can prove that the mesure ν is bounded using G̊arding
inequality, more precisely

(31)

∫

T×R

dν(x, ξ) ≤ 1.
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Let us study where the measure ν is supported.

Proposition 2. We have

(32) ν(x, ξ) = ν̃(x)⊗ δξ=1.

Proof. We multiply the equation (29) by a function b ∈ C∞
0 (T× R;C)

b(x, hD)
(
(hD)3 − (hD)2

)
vk = hb(x, hD)gk = O(h).

Note that the symbol of b(x, hD)
(
(hD)3 − (hD)2

)
is b(x, ξ)

(
ξ3 − ξ2

)
∈

C∞
0 (T× R;C). According to Theorem 5, we have on the one hand

(
b(x, hD)

(
(hD)3 − (hD)2

)
vk, vk

)

L2(T)
−→

∫

T×R

b(x, ξ)
(
ξ3 − ξ2

)
dν(x, ξ),

and on the other hand

(33)
(
O(h), vk

)

L2(T)
−→ 0.

Then

(34)

∫

T×R

b(x, ξ)
(
ξ3 − ξ2

)
dν(x, ξ) = 0.

Now We want to show that

supp(ν) ⊂ T× {ξ = 1} .

Let b ∈ C∞
0 (R;C) independent of x and χ ∈ C∞(R) such that

χ(ξ) =

{
1, if |ξ| ≤ δ
0, if |ξ| ≥ 2δ,

where the constant δ is the same one used in (18).
We want to prove that

(35)

∫

T×R

b(ξ)(1− ξ)dν(x, ξ) = 0.

We write b = b1 + b2 with b1 = χb and b2 = (1− χ)b. Clearly

(36) supp(b1) ⊂ {R \ supp(Ψ)} .
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On the one hand

(37)
(
(1− hD)b1(hD)vk, vk

)

L2

=

(1− hD) b1(hD)Ψ(hD)︸ ︷︷ ︸

=0

uk

∥Ψ(hD)uk∥ ,Ψ(hD)
uk

∥Ψ(hD)uk∥




L2

= 0.

From Theorem 5 we have

(38)

∫

T×R

(1− ξ)b1(ξ)dν(x, ξ) = 0,

for every b1 such that (36).
On the other hand
(39)∫

T×R

b2(ξ)(1− ξ)dν(x, ξ) =

∫

T×R

(1− χ)b(ξ)(1− ξ)dν(x, ξ)

=

∫

T×R

(1− χ)b(ξ)

ξ2
(ξ3 − ξ2)dν(x, ξ) = 0,

from (34).
This give us (35) for every b ∈ C∞

0 (R;C). Then (1− ξ)ν = 0 and hence
we obtain (32). □

Proposition 3. The measure ν ≡ 0 everywhere.

Proof. We first show that ν is an uniform measure on {ξ = 1}, i.e. ν(x, ξ) =
ν̃ ⊗ δξ=1, that is ν̃ does not depend on x. We start by giving the following
lemma.

Lemma 4. Let a1 and a2 be two symbols in S, then

(40) [Oph(a1),Oph(a2)] =
h

i
Oph ({a1, a2}) + h2O(1).

See [32, Theorem 4.12] for a proof.
We come back to the equation (23). From (24) and (27) we have

(41) (hD)3vk − (hD)2vk + ih(hD)
(
a(x)(hD)vk

)
= o(h),

where o(h) is a function going to 0 in L2(T) when h goes to 0.
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We first prove that ν = 0 on {a > 0}. Let b ∈ C∞
0 (T× R;R) such that

b(x, ξ) = b(ξ). Since b is real and does not depend on x, we know from [32,
Theorem 4.1] that the operator b(hD) is self adjoint, and the operator hD
is also self adjoint. Taking the imaginary part of the inner product of (41)
with b(hD)vk we get

hIm
(
ib(hD)(hD)

(
a(x)(hD)vk

)
, vk
)

L2(T)
= Im

(
o(h), vk

)

L2(T)
.

Thus

Im

(
ib(hD)(hD)

(
a(x)(hD)vk

)
, vk
)

L2(T)
−→ 0.

By Theorem 5, we know that

(
b(hD)(hD)

(
a(x)(hD)vk

)
, vk
)

L2(T)
−→

∫

T×R

a(x)ξ2b(ξ)dν(x, ξ) = 0.

That means ν = 0 in {a > 0}. Now let b = b(x, ξ) ∈ C∞
0 (T× R;R), P =

(hD)3 − (hD)2 + ih(hD) (a(x)(hD)), and p = ξ3 − ξ2 its principal symbol.
We have

(
(Pb(x, hD)− b(x, hD)P )vk, vk

)(42)

=
(
b(x, hD)vk, P ∗vk

)
−
(
b(x, hD)Pvk, vk

)

=
(
b(x, hD)vk,

(
(hD)3 − (hD)2 − ih(hD) (a(x)(hD))

)
vk
)

−
(
b(x, hD)Pvk, vk

)

=
(
b(x, hD)vk,

(
(hD)3 − (hD)2 + ih(hD) (a(x)(hD))

)
vk
)

−
(
b(x, hD)vk, 2ih(hD) (a(x)(hD)) vk

)
−
(
b(x, hD)Pvk, vk

)
.

On the one hand

1

h

(
(Pb(x, hD)− b(x, hD)P )uk, uk

)
=

1

i

(
Oph ({p, b})uk, uk

)
+ o(1),
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according to (40), and converges to
1

i

∫

T×R

{p, b} dν(x, ξ) by Theorem 5. On

the other hand

(43)
1

h

(
b(x, hD)Puk, uk

)

=
1

h


b(x, hD)

(
(hD)3 − (hD)2 + ih(hD) (a(x)(hD))

)
uk

︸ ︷︷ ︸
=o(h)

, uk


 −→ 0.

The term

1

h

(
b(x, hD)uk, 2ih(hD) (a(x)(hD))uk

)
−→ −2i

∫

T×R

a(x)ξ2b(x, ξ)dν(x, ξ).

Then

(44)
1

i

∫

T×R

{p, b} dν(x, ξ) = 2i

∫

T×R

a(x)ξ2b(x, ξ)dν(x, ξ) = 0.

Now we have

0 =

∫
{p, b} dν = ⟨ν,Hpb⟩ = −⟨Hpν, b⟩(45)

= −⟨∂ξp∂xν + ∂xp∂ξν, b⟩ =
〈
(3ξ2 − 2ξ)∂xν, b

〉
.

This is true for every b. Thus (3ξ2 − 2ξ)∂xν = 0. Note that such a choice of
b is sufficient to write (44) thanks to the positivity of the measure ν. Since
ν is supported in {ξ = 1} and (3ξ2 − 2ξ)|ξ=1 = 1, we get ∂xν = 0. So, ν̃(x)
does not depend of x. Since ν = 0 on the support on a, we deduce that ν ≡ 0
everywhere. □

To finish we verify at the same time that ν ̸≡ 0. For that, we recall that

vkh =
Ψ(hD)ukh∥∥Ψ(hD)ukh

∥∥
L2(T)

. Let Θ be a function in C∞ such that 0 ≤ Θ ≤ 1 and

(46) Θ(s) =

{
1, if |s− 1| ≤ 2δ
0, if |s− 1| ≥ 3δ.

Note that ΘΨ = Ψ. On the one hand

lim
h→0

(
Oph(Θ)vkh, v

k
h

)

L2(T)
=

∫

T×R

Θ(ξ)dν(x, ξ),
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and on the other hand

(
Oph(Θ)vkh, v

k
h

)

L2(T)
=

1∥∥Ψ(hD)ukh
∥∥
L2

(
Oph(Ψ)ukh, v

k
h

)

L2(T)
=
∥∥∥vkh
∥∥∥
2

L2(T)
= 1.

Thus

∫

T×R

Θ(ξ)dν(x, ξ) = 1. This means that ν cannot be identically 0. This

is absurd, so the assumption (10) is false.
We can now deduce our result for Ȧ . From the above, we have

∀µ ≥ µ0, ∀f ∈ H1(T), ∃u ∈ D(A) / (A+ iµ)u = f,

and there exist c > 0 wich is independent on µ such that ∥u(t)∥H1(T) ≤
c ∥f∥H1(T) . In particular, if f ∈ Ḣ1(T), then u ∈ Ḣ1(T). □

Using Theorem 4, we get (8). We finish this subsection by showing the
exponential stability in H2(T), which will be useful later.

Lemma 5. There exist M, δ > 0 such that for all t ≥ 0 we have

(47) |||S(t)|||L(Ḣ2) ≤Me−δt.

Proof. Let u(t) ∈ H2(T) ∩ Ḣ1(T) and t ≥ 0. We have

∥S(t)u∥H2(T) ≃ ∥AS(t)u∥H1(T) + ∥S(t)u∥H1(T)

= ∥S(t)Au∥H1(T) + ∥S(t)u∥H1(T)

≤Me−δt ∥Au∥H1(T) +Me−δt
∥∥u
∥∥
H1(T)

≤Me−δt
∥∥u
∥∥
H2(T)

.

□

3. Nonlinear equation: global existence and uniqueness

We consider now the nonlinear equation

(48)

{
∂tu+ ∂xu− ∂xxtu+ ∂xxxu− ∂x(a(x)∂xu) + u∂xu = 0, x ∈ T,
u(., 0) = u0 ∈ H1(T), x ∈ T.

We show in this paragraph that this equation admits a unique solution
defined over all R. The principal theorem of this subsection is the following
result.
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Theorem 6. Let R > 0. There is a unique solution of (48) that exists on
R. Moreover, for T > 0, the map

H1(T) −→ C
(
[−T, T ], Ḣ1(T)

)

u0 7−→ u,

where u is the solution of the nonlinear problem with the initial data u0, is
Lipschitz on BḢ1(T)(0, R).

The first equation of (48) is equivalent to ∂tu = Au− (1− ∂xx)
−1u∂xu.

The local existence is a consequence of the Picard fixed point theorem. Let
R > 0 and 0 < T ≤ 1. We define

BR,T =

{
u ∈ C

(
[−T, T ], Ḣ1(T)

)
/ sup

s∈[−T,T ]
∥u(s)∥H1(T) ≤ R

}
.

We equip C
(
[−T, T ], Ḣ1(T)

)
with the distance

d(u, v) = sup
s∈[−T,T ]

∥u(s)− v(s)∥H1(T) .

The space
(
C
(
[−T, T ], Ḣ1(T)

)
, d
)

is a complete metric space. For u0 ∈
Ḣ1(T) and t ∈ [−T, T ], we introduce

Φ : C
(
[−T, T ], Ḣ1(T)

)
−→ C

(
[−T, T ], Ḣ1(T)

)

u 7−→ S(t)u0 −
∫ t

0
S(t− s)(1− ∂xx)

−1u(s)∂xu(s)ds.

It is clear that Φ(u) ∈ C
(
[−T, T ], Ḣ1(T)

)
when u ∈ C

(
[−T, T ], Ḣ1(T)

)
⊂

C
(
[−T, T ], L∞(T)

)
since ∂xu ∈ C

(
[−T, T ], L2(T)

)
, then

u∂xu ∈ C
(
[−T, T ], L2(T)

)
.

Which implies (1− ∂xx)
−1u∂xu ∈ C

(
[−T, T ], H2(T) ∩ Ḣ1(T)

)
. So the

quantities S(t)u0 and S(t− s)(1− ∂xx)
−1u∂xu ∈ C

(
[−T, T ], Ḣ1(T)

)
.
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Lemma 6. We have

∃ C0 > 0 / ∀M > 0, ∃ R, T > 0 / RT < C0,

∀ ∥u0∥H1(T) ≤M,Φ : BR,T −→ BR,T

is a contraction.

Proof. It is easy to show that for every g ∈ C
(
[−T, T ], L2(T)

)
we have for

every t ∈ [−T, T ]
∥∥∥∥
∫ t

0
S(t− s)(1− ∂xx)

−1g(s)ds

∥∥∥∥
H1(T)

≤ cTeδ sup
s∈[−T,T ]

∥g(s)∥L2(T) .

Let u, v ∈ BR,T . We have

Φ(u)(x, t)− Φ(v)(x, t)

= −
∫ t

0
S(t− s)(1− ∂xx)

−1 (u(s)∂xu(s)− v(s)∂xv(s)) ds

= −
∫ t

0
S(t− s)(1− ∂xx)

−1 {(u(s)− v(s)) ∂xu(s)

+ (∂xu(s)− ∂xv(s)) v(s)} ds.

As Ḣ1(T) ⊂ L∞(T) continuously, we have

∥Φ(u)(t)− Φ(v)(t)∥H1(T)(49)

≤ cTeδ sup
s∈[−T,T ]

(
∥u(s)− v(s)∥L∞(T) ∥∂xu(s)∥L2(T)

+ ∥∂xu(s)− ∂xv(s)∥L2(T) ∥v(s)∥L∞(T)

)

≤ cTeδ sup
s∈[−T,T ]

(
∥u(s)− v(s)∥H1(T) ∥∂xu(s)∥L2(T)

+ ∥∂xu(s)− ∂xv(s)∥L2(T) ∥v(s)∥H1(T)

)

≤ 2cTReδ sup
s∈[−T,T ]

∥u(s)− v(s)∥H1(T)

= 2cTReδd(u, v).

Taking the sup on t we get

d(Φ(u),Φ(v)) ≤ 2cTReδd(u, v).
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So, for T ≤ min

{
e−δ

4cR
, 1

}
, Φ is a contraction.

Let us now show that if u ∈ BR,T then Φ(u) ∈ BR,T . From (49) and
taking v = 0 we obtain

|∥Φ(u)(t)∥H1 − ∥Φ(0)(t)∥H1 | ≤ ∥Φ(u)(t)− Φ(0)(t)∥H1

≤ 2cTReδ sup
s∈[−T,T ]

∥u(s)∥H1 .

Let M > 0 and u0 ∈ H1(T) be such that ∥u0∥H1(T) ≤M . We can write

(50) ∥Φ(u)(t)∥H1(T) ≤ eδ ∥u0∥H1(T) + 2cTR2eδ ≤
(
M + 2cTR2

)
eδ

Choosing R ≥ 4Meδ +
e−δ

4c
we get ∥Φ(u)(t)∥H1(T) < R. Since R >

e−c

4c
, this

estimate is valid when T ≤ e−δ

4cR
, and the proof is complete. □

Before showing the global existence, we give the following result of the semi-
group.

Proposition 4. There exists c > 0 which depends only on the function a(x)
such that the solution u of the nonlinear problem which exists on ]− T, T [
verifies

(51) ∥u(t)∥H1(T) ≤ ∥u0∥H1(T) e
δ|t|, ∀t ∈]− T, T [.

Proof. Let t ∈]− T, 0[, we write

∥u(t)∥2H1(T) − ∥u(0)∥2H1(T) =

∫ t

0
∂t ∥u(σ)∥2H1(T) dσ

= −4

∫ t

0

∫

T

a(x) |∂xu(σ)|2 dxdσ

≤ 4
∥∥a
∥∥
L∞(T)

∫ 0

t

∥u(σ)∥2H1(T) dσ.

Then

∥u(t)∥2H1(T) ≤ c

∫ 0

t

∥u(σ)∥2H1(T) dσ + ∥u(0)∥2H1(T) .

Using Gronwall inquality

∥u(t)∥2H1(T) ≤ ∥u(0)∥2H1(T) e
−ct, ∀t ∈]− T, 0[.
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We can repeat the same arguments for t ∈ [0, T [. This was to be demon-
strated. □

We can now prove Theorem 6.

Proof. Let u and v be two solutions of (48) admitting the same initial data.
The function w = u− v verifies

∂tw + ∂xw − ∂xxtw + ∂xxxw − ∂x(a(x)∂x)w + w∂xu+ v∂xw = 0.

We know that

w(t) =

∫ t

0
S(t− s)(1− ∂xx)

−1 (w(s)∂xu(s) + v(s)∂xw(s)) ds.

According to (51) we can deduce that ∥∂xu∥L2(T) ≤ c1 and ∥v(s)∥L2(T) ≤ c2.
It follows for t ≥ 0

∥w(t)∥H1(T)

=

∥∥∥∥
∫ t

0
S(t− s)(1− ∂xx)

−1 (w(s)∂xu(s) + v(s)∂xw(s)) ds

∥∥∥∥
H1(T)

≤
∫ t

0
max{c1, c2} ∥w(s)∥H1(T) ds.

By Gronwall’s inequality, we obtain ∥w(t)∥H1(T) = 0. We can do the same
calculus for t ≤ 0, so that we have uniqueness.

To prove that the solution is global, We recall that for the local existence

of the solution, by taking R and T such that RT ≤ e−δ

4c
, we found a solution

which exists on [0, T ].
Now let T ∗ = sup{t ≥ 0 / u exists on [0, t]} and 0 < T1 < T ∗.
Suppose that T ∗ <∞. From Proposition 4, if ∥u(T1)∥H1(T) ≤

∥u0∥H1(T) e
δT1 = R1, then we have a solution which exists on [T1, T ] as soon

as (T − T1)R1 ≤
e−δ

4c
. That means

T ≤ e−δ

4cR1
+ T1 =

e−δ

4c ∥u0∥H1 eδT1

+ T1 = f(T1).

It is clear that f(T ∗) > T ∗, since f is continuous, there exists T < T ∗ such
that f(T ) > T ∗. This means that the solution starting from T1 will exist
beyond T ∗, which is absurd. This implies T ∗ = +∞.
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The same argument can be repeat for t ≤ 0.
Once we know that the solution of the nonlinear problem exists on all

R, we can repeat the same proof as that of Proposition 4 with all T > 0 to
write

(52) ∥u(t)∥H1(T) ≤ ∥u0∥H1(T) e
c|t|, ∀t ∈ R,

where u is the solution of the nonlinear problem which exists on all R. Now
we finish the proof by proving that the map u0 7−→ u is locally Lipschitz

continuous from H2(T) ∩ Ḣ1(T) to C
(
[−T, T ], Ḣ1(T)

)
. Let u and v be two

solutions of the nonlinear problem with initial data u0 and v0 respectively,
and T > 0. We have ∀t ∈ [−T, T ],

u(t)− v(t) = S(t)(u0 − v0)

−
∫ t

0
S(t− s) (1− ∂xx)

−1 (u(s)∂xu(s)− v(s)∂xv(s))︸ ︷︷ ︸
=(Fu−Fv)(s)

ds.

But

∥(Fu− Fv)(s)∥H1(53)

= ∥((u(s)− v(s))∂xu(s)− (∂xu(s)− ∂xv(s))v(s))∥L2

≤ c
(
∥u(s)− v(s)∥L∞ ∥∂xu(s)∥L2

+ ∥∂xu(s)− ∂xv(s)∥L2 ∥v(s)∥L∞

)

≤ c (∥u(s)∥H1 + ∥v(s)∥H1) ∥u(s)− v(s)∥H1 .

Then there exists c > 0 which depend on T such that

∥u(t)− v(t)∥H1 ≤ c ∥u0 − v0∥H1(54)

+ c

∣∣∣∣
∫ t

0
(∥u(s)∥H1 + ∥v(s)∥H1) ∥u(s)− v(s)∥H1 ds

∣∣∣∣
≤ c ∥u0 − v0∥H1

+ c (∥u0∥H1 + ∥v0∥H1)

∣∣∣∣
∫ t

0
∥u(s)− v(s)∥H1 ds

∣∣∣∣ .

By Gronwall inequality

(55) ∥u(t)− v(t)∥H1(T) ≤ C ∥u0 − v0∥H1(T) ,

with C = ceδT(∥u0∥H1+∥v0∥H1). □
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4. Proof of main theorem

We give in this section a proof of Theorem 1.

4.1. Convergence of the solutions

We start by introducing a function called u∞, which is a limit in a certain
way of the solution given in the following theorem. The advantage of u∞ is
that it is an analytic function in time, this property will be used later to
show that u∞ is a constant.

Theorem 7. Let (tn)n be a nondecreasing sequence of times which goes to
+∞, and u0 a real valued initial data in Ḣ1(T) with u the corresponding
solution of (48). Then, there exists a subsequence (tφ(n))n and an analytic
function in time u∞ such that

(56) ∀T > 0, lim
n→+∞

u(tφ(n) + ·) = u∞(·) in C0
(
[−T, T ], Ḣ1(T)

)
.

We can easily prove the convergence of u(tφ(n) + ·) towards a function
u∞(·). We start by giving this remark.

Remark 3. If u0 real valued, the corresponding solution u of (48) is
bounded for t ≥ 0. Moreover

(57) ∥u(t)∥H1(T) ≤ ∥u0∥H1(T) , ∀t ≥ 0.

Indeed, note that u is real when u0 is real. We recall that the norm || · ||2
H1(T)

of the solution of the linear problem is nonincreasing. Since Re(u∂xu, u) = 0,
the same calculus as in remark 1 gives us that ∥u(t)∥H1(T) is nonincreasing
where u(t) is the solution of nonlinear problem.

Now let (tn)n be a sequence which goes to +∞, according to Duhamel’s
formula

u(tn) = S(tn)u(0)−
∫ tn

0
S(s)(1− ∂xx)

−1u(tn − s)∂xu(tn − s)ds.

When tn → +∞, the term S(tn)u(0) goes to 0 from (8).

Since u ∈ L∞
(
[0,+∞[, Ḣ1(T)

)
⊂ L∞ ([0,+∞[×T), and ∂xu ∈

L∞
(
[0,+∞[, L2(T)

)
, then u∂xu ∈ L∞

(
[0,+∞[, L2(T)

)
. Which implies
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(1− ∂xx)
−1u∂xu ∈ L∞

(
[0,+∞[, H2(T) ∩ Ḣ1(T)

)
. From (47) we have thus

∥∥∥∥
∫ tn

0
S(s)(1− ∂xx)

−1u(tn − s)∂xu(tn − s)ds

∥∥∥∥
H2

≤ c

∫ tn

0
|||S(s)|||L(Ḣ2)ds

≤ c

∫ +∞

0
e−δsds <∞.

The sequence

(∫ tn

0
S(s)(1− ∂xx)

−1u(tn − s)∂xu(tn − s)ds

)

n

is uniformly

bounded in H2(T), and then, it converges weakly in H2(T) up to a subse-
quence (ϕn)n and so, strongly in H1(T) to u∞.

Now let
{
S̃(t)

}

t∈R
be the nonlinear semigroup, in other words u(t) = S̃(t)u0.

On the one hand, for s ∈ R we have

S̃(s)u(tφn
) = S̃ (tφn

+ s)u0 = u(tφn
+ s).

On the other hand, we use the continuity property of u seen in Theorem 6
to write

lim
n→+∞

S̃(s)u(tφn
) = S̃(s)u∞ = u∞(s).

This give us the limit (56).

Remark 4. The function u∞ given by Theorem 7 will be now considered
as initial data. We will write it down u∞(0), and we write down u∞ the
corresponding solution.

Now let us prove the analyticity of u∞. To do that we shall apply the
following theorem, see [16, Theorem 2.20] with assumptions (H3mod) and
(H5).

Theorem 8. Let Y be a complex Banach space. Let Pn ∈ L(Y ) be a se-
quence of continuous linear maps and let Qn = Id− Pn. Let A : D(A) → Y
be the generator of a continuous semigroup {etA}t≥0 and let G ∈ C1(Y ). We
assume that V is a complete mild solution in Y of

(58) V ′(t) = AV (t) +G(V (t)), t ∈ R.

We further assume that

1) {V (t), t ∈ R} is contained in a compact set K of Y.
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2) For any y ∈ Y , (Pny)n converges to y when n→ +∞ and (Pn) and
(Qn)n are sequences of L(Y ) bounded by K0.

3) The operator A splits in A = A1 +B1 where B1 is bounded and A1

commutes with Pn.

4) There exists M,λ > 0 such that
∣∣∣∣∣∣eAt

∣∣∣∣∣∣
L(Y )

≤Me−ct and∣∣∣∣∣∣e(A1+QnBB∗)t
∣∣∣∣∣∣

L(QnY,Y )
≤Me−ct for all t ≥ 0.

5) G is analytic in the ball BY (0, r), where r is such that r ≥
4 supt∈R ∥V (t)∥Y .

6) {DG(V (t))Z / t ∈ R, ∥Z∥Y ≤ 1} is relatively compact set of Y .

Then, the solution V (t) is analytic from t ∈ R into Y .

We use this theorem taking A : u 7→ −(1− ∂xx)
−1(∂xu+ ∂xxxu−

∂x(a(x)∂x)u) and G : u 7→ −(1− ∂xx)
−1(u∂xu). Note that u∞ verifies the

same equation as u. We deduce from this the existence of u∞ on all R as
well as the first part of the assumption 4.

We check the rest of the assumptions.

Proposition 5. Let u∞(0) be the function obtained by Theorem 7 and
u∞(t) the corresponding solution. Then there exists c > 0 such that

(59) sup
t∈R

∥u∞(t)∥H1(T) ≤ c.

Proof. Let t ∈ R and (tφ(n))n the subequence given by Theorem 7. Us-
ing Proposition 4, there exists N1 > 0 be such that for all n ≥ N1 we
have

∥∥u∞(t)− u(tφ(n) + t)
∥∥
H1

≤ 1. On the other hand, there exist N2 > 0
such that for n ≥ N2 we have tφ(n) + t > 0. We deduce from (52) that for
n ≥ N1 +N2

∥u∞(t)∥H1 ≤
∥∥u∞(t)− u(tφ(n) + t)

∥∥
H1

+
∥∥u(tφ(n) + t)

∥∥
H1

≤ 1 + ∥u(0)∥H1 ≤ c.

It follows the estimate (59). □

Proposition 6. Let u∞(0) be the function obtained by Theorem 7 and
u∞(t) the corresponding solution. Then there exist c > 0 such that

(60) sup
t∈R

∥u∞(t)∥H2(T) ≤ c.
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Proof. Let t ∈ R, n ∈ N and v a solution of the nonlinear problem such that
v(·) = u∞(· + t− n). We can write

v(σ) = S(σ)v(0)−
∫ σ

0
S(σ − s)(1− ∂xx)

−1v(s)∂xv(s)ds.

Note that v(n− t) = u∞(0). Thus, we can use a simple change of variables
to get

u∞(t) = S(n)u∞(t− n)(61)

+

∫ n

0
S(τ)(1− ∂xx)

−1u∞(t− τ)∂xu∞(t− τ)dτ.

We know that ∥S(n)u∞(t− n)∥H1(T) ≤ ce−δn ∥u∞(t− n)∥H1(T) ≤ Ce−δn.
Then, when n goes to +∞, (61) becomes

u∞(t) =

∫ +∞

0
S(τ)(1− ∂xx)

−1u∞(t− τ)∂xu∞(t− τ)dτ.

Since the operator u 7−→ (1− ∂xx)
−1u∂xu is bounded from Ḣ1(T) into

H2(T) ∩ Ḣ1(T), using Lemma 5 and Proposition 5 we obtain

∥u∞(t)∥H2(T) ≤ c

∫ +∞

0
e−δτ ∥u∞(t− τ)∥2H1(T) dτ ≤ c

∫ +∞

0
e−δτdτ ≤ C

{u∞(t), t ∈ R} is then a bounded set of H2(T) ∩ Ḣ1(T), and consequently
it is a relatively compact set of Ḣ1(T). □

We deduce that u∞ satisfies the first assumption of Theorem 8 with K =
{u∞(t), t ∈ R}.

We define (Pn)n and (Qn)n for u =
∑

k∈Z∗

uke
ikx ∈ Ḣ1(T) with

Pn(u) =
∑

|k|≤n

uke
ikx and Qn(u) =

∑

|k|>n

uke
ikx.

Clearly ∥Pn∥L(H1,H1) ≤ 1 and ∥Qn∥L(H1,H1) ≤ 1, as well as (Pn(u))n con-

verges towards u for all u ∈ Ḣ1(T).
We denote by A1 = −(1− ∂xx)

−1 (∂x + ∂xxx) and B = (1−
∂xx)

−1∂xa
1

2 (1− ∂xx)
1

2 . It is clear too that A1 commutes with Pn. The
assumption 2 and 3 of Theorem 8 are verified.
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We can easily check that the adjoint of B in H1(T) is given by

B∗ = −(1− ∂xx)
−1

2 a
1

2∂x. Furthermore, BB∗ = −(1− ∂xx)
−1∂xa∂x. We can

write A = A1 +BB∗. The operator BB∗ is nonnegative and (BB∗u, u)H1 =∫

T

a(x)|∂xu(t, x)|2dx. We will now prove the following result.

Theorem 9. There exists M > 0 and c > 0 be such that for every t ≥ 0
and for every n ∈ N

(62)
∣∣∣
∣∣∣
∣∣∣e(A1+QnBB∗)t

∣∣∣
∣∣∣
∣∣∣
L(QnH1,H1)

≤Me−ct.

Let us start by giving an abstract result following the same approach
as [17]. We consider a complex Hilbert space H, A1 an unbounded skew-
adjoint, m-dissipative linear operator on H and B a bounded linear operator
such as BB∗ ≥ 0.

We also consider these two equations

(63) φ′(t) +A1φ(t) = 0,

and

(64) y′(t) +A1y(t) +BB∗y(t) = 0.

Theorem 10. The following properties are equivalent.

1) There exists T0 > 0 and c > 0 such that every solution φ of (63) sat-
isfies

(65) ∥φ(0)∥2H ≤ c

∫ T0

0
∥B∗φ(s)∥2H ds.

2) There exists T1 > 0 and δ > 0 such that every solution y of (64) sat-
isfies

(66) ∀y0 ∈ D(A1), ∀t ≥ T1, ∥y(t)∥H = ∥S(t)y0∥H ≤ e−δt ∥y0∥H ,

where {S(t)}t≥0 is the semigroup generated by A1 +BB∗.

The proof is given in Annex.
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Proposition 7. Let u ∈ Ḣ1(T), and let v be a solution of

{
∂tv = (A1 +QnBB

∗) v
v(0) = Qnu

and w a solution of

{
∂tw = Qn (A1 +BB∗)Qnw
w(0) = Qnu.

Then v = w.

Proof. Let z = Qnw. We have

∂tz = Qn∂tw = Qn (Qn(A1 +BB∗)Qnw) = Qn (A1 +BB∗)Qnz.

Since z(0) = w(0), by uniqueness w = z = Qnw, and we have

∂tw = Qn (A1 +BB∗)Qnw = QnA1Qnw +QnBB
∗Qnw(67)

= A1QnQnw +QnBB
∗Qnw = (A1 +QnBB

∗)w

Then w = v. □

We can now prove Theorem 9.

Proof. According to Proposition 7, it suffices to show that we have
an exponential decrease for the semigroup associated with the operator
Qn (A1 +BB∗)Qn. For this, we will use Theorem 10. So we must prove
that

(68) ∥φ(0)∥2H1 ≤ c1

∫ T0

0
∥QnB

∗φ(s)∥2H1 ds,

where φ is solution of

{
φ′(t) = QnA1Qnφ(t)
φ(0) = Qnφ(0).

We consider the problem

{
ψ′(t) = A1ψ(t)
ψ(0) = Qnφ(0).
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From (9) and Theorem 10, ψ satisfies

∥ψ(0)∥2H1 ≤ c2

∫ T0

0
∥B∗ψ(s)∥2H1 ds.

Note that the constant c2 depends only on the operator A1. So the estimate
is uniform in n. Since Qn commutes with A1, we can take ψ = Qnφ. Thus
we have (68) and then (62). □

The two last assumptions of Theorem 8 are satisfied with the following
proposition.

Proposition 8. The map G is holomorphic from Ḣ1(T) to itself. Moreover,
the set{DG(u∞(t))h / t ∈ R, ∥h∥Ḣ1(T) ≤ 1} is a bounded set in Ḣ2(T).

The proof is given in Annex.
All the assymptions of Theorem 8 are verified, the solution u∞ of the

nonlinear problem is an analytical function.

4.2. Unique continuation

We will show in this last part that u∞ is constant for all (x, t) ∈ T× R.

Proposition 9. There exists c∗ ≥ 0 such that for all (x, t) ∈ T× R,

u∞(x, t) = c∗.

Let −2π < α < β < 0 be two real numbers such that ]α, β[⊂ {a > 0}.
We first give the following proposition.

Proposition 10. There exists c∗ ≥ 0 such that for all (x, t) ∈]α, β[×R,

u∞(x, t) = c∗.

Proof. Let u be a solution of the non linear problem. From Remark 3,
∥u(t)∥2H1(T) is nonincreasing to a constant c ≥ 0, and we have with the no-
tation of Theorem 7

lim
n→+∞

∥u(tn + t)− u∞(t)∥H1(T) −→ 0, ∀ t ∈ R,

so ∥u∞(t)∥2H1(T) = c for all t ∈ R. Now

∥u∞(t)∥2H1(T) − ∥u∞(0)∥2H1(T) = −2

∫ t

0
a(x) |∂xu∞(x, σ)|2 dσ, ∀ t ∈ R.
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Then
∫ t

0
a(x) |∂xu∞(x, σ)|2 dσ = 0, ∀ t ∈ R.

This implies that u∞(x, t) is a constant on x for x ∈ ]α, β[.
Now, since u∞ satisfies

(1− ∂xx)∂tu∞ + ∂xxxu∞ + ∂xu∞ + u∞∂xu∞ = 0,

and ∂xu∞ = 0, we deduce that we have also ∂tu∞ = 0. □

The function v = u∞ − c∗ verifies the equation

(69)





(1− ∂xx)∂tv + ∂xxxv + (1 + u∞)∂xv = 0, (x, t) ∈ T× R

v(x, 0) = v0 ∈ H1(T),
v(x, t) = 0, (x, t) ∈ ]α, β[×R.

Let P (x, ∂x, t, ∂t) = ∂xxx − ∂xx∂t + ∂t + w(t, x)∂x, where w = 1 + u∞. The
principal symbol is given by p(x, t, ξ, τ) = ξ2(ξ − τ).

Let x∗ ∈]α, β[. We denote by

ψ : (x, t) 7−→ (x− x∗)2 − t2,

and

Γ = {(x, t, ξ, 0) / x ∈ T, t, ξ ∈ R} .

We recall the following definition (see [31, Definition 1.2])

Definition 2. (Pseudo-convex surface) Let P be a differential operator of
ordre m, with a principal symbol p, S a level set of a smooth function ψ,
and (x0, t0) ∈ S such that ∇ψ(x0, t0) ̸= 0. We say that S is strongly pseudo-
convex in (x0, t0) with respect to P on Γ if

1)

Re{p, {p, ψ}}(x0, t0, ξ, 0) > 0,

on {(x0, t0, ξ, 0) ∈ Γ / p(x0, t0, ξ, 0) = {p, ψ}(x0, t0, ξ, 0) = 0, with ξ ̸=
0},
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2)

1

γi

{
p(x, t, ξ − iγψ′

x, τ − iγψ′
t), p(x, t, ξ + iγψ′

x, τ + iγψ′
t)
}
(x0, t0, ξ, 0)

> c(ξ2 + γ2)m−1

on {(x0, t0, ξ, 0) ∈ Γ/ p(x0, t0, ξ + iγψ′
x, iγψ

′
t)

= {p(x, t, ξ + iγψ′
x, τ + iγψ′

t), ψ}(x0, t0, ξ, 0) = 0, with γ > 0}.

We will use this theorem given in [31, Theorem 2]

Theorem 11. Let K be an open set of Rn and P a differential operator of
ordre m such that

1) The principal symbol of P is real and whose coefficients are indepen-
dent of t and assumed to be in C1(T),

2) The coefficients of lower order terms of P are analytic from I ⊂ R into
L∞(T),

Let (x0, t0) ∈ T× R and ψ a smooth function such that ∇ψ(x0, t0) ̸= 0. As-
sume that the level surface {ψ(x, t) = ψ(x0, t0)} is strongly pseudo-convex
in (x0, t0) with respect to P on Γ. Then there exists an open neighbourhood
V of (x0, t0) such that if u is solution of P (x,D)u = 0 in K and u = 0 in
{ψ > ψ(x0, t0)}, then u = 0 in V.

Clearly P verifies the first assumption of the theorem. The second as-
sumption is also verified due to Proposition 5 and Theorem 7.

We will show now that the level surfaces of the function ψ are strongly
pseudo-convex on Γ. We give the following figure.
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Proposition 11. Let λ1 = ψ(α+ 2π, 0) = (α+ 2π − x∗)2. The level sur-
faces {ψ = λ} for λ ∈]0, λ1] are strongly pseudo-convex with respect to P
on Γ.

Proof. We will show that the sets

{(x0, t0, ξ, 0) ∈ Γ / p(x0, t0, ξ, 0) = {p, ψ}(x0, t0, ξ, 0) = 0, with ξ ̸= 0},

and

{(x0, t0, ξ, 0) ∈ Γ / p(x0, t0, ξ + iγψ′
x, iγψ

′
t)

= {p(x, t, ξ + iγψ′
x, τ + iγψ′

t), ψ}(x0, t0, ξ, 0) = 0, with γ > 0}

are empty. For the first set, we already notice that the case p(x0, t0, ξ, 0) =
ξ3 = 0 give necessarily ξ = 0, which is impossible. For the second one, we
have γ > 0, then p(x0, t0, ξ + iγψ′

x, iγψ
′
t) = (ξ + 2iγ(x− x∗))2(ξ + 2iγ(t+

x− x∗)) is equal to 0 when ξ = 0 and x = x∗, or when ξ = 0 and t+ x− x∗ =



✐

✐

“4-Jellouli” — 2023/5/2 — 1:18 — page 1733 — #33
✐

✐

✐

✐

✐

✐

Stabilization for KdV-BBM 1733

0. The first case is impossible since x = x∗ means that ψ = −t2 < 0, but we
want that the surfaces {ψ = λ} are stongly pseudo-convex for λ ∈]0, λ1].
For the same reason, the second one is also impossible since t+ x− x∗ = 0
correspond for all t ∈ R to {ψ = 0}. □

The assumptions of Theorem 11 are satisfied. So we can use it to show the
following result.

Theorem 12. Let T be the triangle of vertices {(x∗, 0); (x∗ + 2π, 2π); (x∗ +
2π,−2π)}, then the function v is identically zero on T .

The proof is given in Annex.

Remark 5. The constant λ1 is chosen so that
(
{ψ ≥ λ1} ∩ T

)
⊂
(
{a >

0} × R
)
. So combinning this with the last line of equation (69), we have

clearly that v = 0 on {ψ ≥ λ1} ∩ T .

The proof of Proposition 9 is easy now.

Proof. We conclude from the preceding result that v is equal to zero ev-
erywhere since v = 0 on ]x∗, x∗ + 2π]× {t = 0}, and then, the function v0
in (69) is equal to 0. Thus we obtain v(x, t) = u∞(x, t)− c∗ = 0 for all
(x, t) ∈ T× R. □

Remark 6. Note that [20, Theorem 28.3.4] is not applicable here since the
level sufaces of ψ are not strongly pseudo-convex with respect to P in the
sense of the theorem. Indeed, by a simple calculus we can prove that the
assumption

Re {p, {p, ψ}} (x0, t0, ξ, τ) > 0,

in the definition of pseudo-convexity in [20] is not verified on the set

{
(ξ, τ) ̸= (0, 0) ∈ R2 / p(x0, t0, ξ, τ) =

〈
p′(ξ,τ)(x0, t0, ξ, τ), ψ

′
(x,t)(x0, t0)

〉
= 0
}
,

since the choice ξ = 0 and τ ̸= 0 vanish the two quantities〈
p′(ξ,τ)(x0, t0, ξ, τ), ψ

′
(x,t)(x0, t0)

〉
, p(x0, t0, ξ, τ) and vanish also the term

Re {p, {p, ψ}}.

We give finally a proof of Theorem 1.
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Proof. Let u =
∑

k∈Z

uk(t)eikx be the solution of the nonlinear problem. Com-

bining Theorem 7 and Proposition 9 we can write for all T > 0

lim
n→+∞

sup
s∈[−T,T ]

∥u(tn + s)− c∗∥H1(T) = 0.

Thus

lim
n→+∞

sup
s∈[−T,T ]

(
(
u0(tn + s)− c∗

)2
+
∑

k∈Z∗

(1 + k2)
(
uk(tn + s)

)2
) 1

2

= 0.

We already know that u0(tn + s) is constant in time, in particular u0(tn +

s) = u0(0), and since the term
∑

k∈Z∗

(1 + k2)
(
uk(tn + s)

)2
goes to 0, we

deduce that c∗ = u0(0). We finish by proving that lim
t→+∞

u(t, ·) = c∗. Sup-

pose that there exists (sn)n a sequence of times which goes to +∞ and
∥u(sn)− c∗∥H1(T) ≥ ϵ, for some ϵ > 0. From Theorem 7, there exists a sub-

sequence (sφ(n))n such that lim
n→+∞

∥∥u(sφ(n))− c∗
∥∥
H1(T)

= 0, which is ab-

surd. □

5. A remark on the BBM equation

We consider this BBM equation

(70)

{
∂tv + ∂xv − ∂xxtv − ∂x(a(x+ ct)∂x)v + v∂xv = 0, x ∈ T, t > 0,

v(·, 0) = v0, x ∈ T,

where c > 0 and a ≥ 0 is assumed to be a bounded function in C∞(T) such
that {a > 0} ≠ ∅.

We can prove the result of stabilization by following the same approach
in the preceding paragraphs. After a change of variables we can write the
equation under the form

∂tv − c∂xxxv − ∂xxtv + (c+ 1)∂xv − ∂x(a(x)∂x)v + v∂xv = 0.

We prove that if v is the solution of the linear equation then

d

dt

(
1

2
∥v(t)∥2H1

)
= −2

∫

T

a(x) |∂xv(t, x)|2 dx ≤ 0.
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Except that there are different constants that appear in the equation com-
pared to what we did previously, the results are essentially the same, and
we give the following theorem.

Theorem 13. For all v0 ∈ H1(T), there exists a unique solution v = v(t, x)
of (70) global in time such that

lim
t→+∞

v(t, ·) =
1

2π

∫

T

v0(x)dx, in H1(T).

6. Annex

Proof. (of Lemma 2) Note that if [Ψ(−ih∂x), a]uk =
∑

n∈Z

γkne
inx, then

γkn = Ψ(hn)
∑

j∈Z

an−ju
k
j −

∑

j∈Z

an−jΨ(hj)ukj =
∑

j∈Z

an−j (Ψ(hn)−Ψ(hj))ukj .

We want to prove that
(71)

∑

n∈Z

(
1 + n2

)
|γn|2 =

∑

n∈Z

(
1 + n2

)


∑

j∈Z

an−j |Ψ(hn)−Ψ(hj)| |zj |




2

≤ c
∑

n∈Z

|zn|2 .

The constant δ is the one used in (18).
We write Z2 = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4 ∪ Γ5, where

Γ1 =
{
(n, j) ∈ Z

2 ; n ≤ 0 and |hj − 1| ≤ 2δ
}
,

Γ2 =
{
(n, j) ∈ Z

2 ; 0 ≤ hn ≤ 1− 3δ and |hj − 1| ≤ 2δ
}
,

Γ3 =
{
(n, j) ∈ Z

2 ; hn ≥ 1 + 3δ and |hj − 1| ≤ 2δ
}
,

Γ4 =
{
(n, j) ∈ Z

2 ; |hn− 1| ≤ 3δ
}
,

and

Γ5 =
{
(n, j) ∈ Z

2 ; |hn− 1| ≥ 3δ and |hj − 1| ≥ 2δ
}
.
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In Γ1, we have Ψ(hn) = 0 and |n− j| = |n|+ j. We know also that for all σ

we have |an| ≤
1

(1 + |n|)σ . Thus

√
1 + n2|γn| ≤ c

∑

j∈Z

√
1 + n2

1 + |n|+ j︸ ︷︷ ︸
≤c

1

(1 + |n− j|)σ−1
|Ψ(hj)|︸ ︷︷ ︸

≤1

|zj |

≤ c



∑

j∈Z

1

(1 + |n− j|)σ−1




1

2



∑

j∈Z

1

(1 + |n− j|)σ−1
|zj |2




1

2

≤ c



∑

j∈Z

1

(1 + |n− j|)σ−1
|zj |2




1

2

.

Then
∑

n∈Z

(
1 + n2

)
|γn|2 ≤ c

∑

j∈Z

|zj |2
∑

n∈Z

1

(1 + |n− j|)σ−1
.

The term
∑

n∈Z

1

(1 + |n− j|)σ−1
converges and it does not depend on j.

We deduce the estimate (71) on Γ1.

In Γ2, Ψ(hn) = 0, and we have

h+ |hn− hj| ≥ h+ |hn− 1| − |hj − 1| ≥ h+ 3δ − 2δ ≥ δ.

It follows that
1

1 + |n− j| ≤ ch, thus

√
1 + n2|γn| ≤ c

∑

j∈Z

h
√
1 + n2

(1 + |n− j|)σ−1
|zj | .

Since in Γ2 we have hn ≤ 1− 3δ, the term h
√
1 + n2 is bounded inde-

pendently of n. We obtain with the same Hölder inequality as in Γ1 the
estimate (71).

In Γ3, Ψ(hn) = 0 and we have also

h+ |hn− hj| ≥ h+ hn− hj ≥ h+ 1 + 3δ − (2δ + 1) ≥ δ.



✐

✐

“4-Jellouli” — 2023/5/2 — 1:18 — page 1737 — #37
✐

✐

✐

✐

✐

✐

Stabilization for KdV-BBM 1737

So

(72)
1

1 + |n− j| ≲ h.

Furthermore

(73) n ≲ |n− j|+ |j| ≲ |n− j|+ 1

h
.

By multiplying (72) and (73) we get

n

1 + |n− j| ≲ h|n− j|+ 1.

Hence we estimate

√
1 + n2|γn| ≲

∑

j∈Z

h|n− j|+ 1

(1 + |n− j|)σ−1
|zj | ≲

∑

j∈Z

1

(1 + |n− j|)σ−2
|zj | ,

and we use again Hölder inequality as in Γ1 to obtain (71).

In Γ4, we use the mean value theorem to write

|Ψ(hn)−Ψ(hj)| ≤ ch |n− j| .

Then

√
1 + n2|γn| ≤ c

∑

j∈Z

|n− j|
(1 + |n− j|)σ |zj | ≤ c

∑

j∈Z

1

(1 + |n− j|)σ−1
|zj | .

As in Γ2, we obtain (71).

In Γ5, we have Ψ(hn) = Ψ(hj) = 0. The result follows directly. □

Proof. (of Theorem 10) We suppose (65). Let y(t) = S(t)y0 be a solution of

(64) and E(t) =
1

2
∥y(t)∥2H .

We have for every t ≥ 0

(
y′(t), y(t)

)
H
+ (A1y(t), y(t))H = − (BB∗y(t), y(t))H .

Since A1 is skew-adjoint, we obtain

(74) E′(t) = −∥B∗y(t)∥2H ≤ 0.
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Thus E is nonincreasing. Now let T = kT0, where k is to be chosen further,
by integrating (74) between 0 and T we get

1

2
∥y(T )∥2H − 1

2
∥y(0)∥2H = −

∫ T

0
∥B∗y(s)∥2H ds.

Then

(75)

∫ T

0
∥B∗y(s)∥2H ds ≤ E(0).

This implies that there exists p ∈ {0, ..., k − 1} such that

(76)

∫ (p+1)T0

pT0

∥B∗y(s)∥2H ds ≤ 1

k
E(0).

Let v be the solution of

(77)

{
v′(t) +A1v(t) = 0
v(pT0) = y(pT0).

The function w = y − v satisfy w′(t) +A1w(t) = −BB∗y(t), and w(pT0) =
0. Thus

w(t) = −
∫ t

pT0

V (t− s)BB∗y(s)ds,

where {V (t)}t≥0 is the semigroup generated by A1, which is a semigroup of
contractions by the Hille-Yosida Theorem.

We set M = ∥B∥L(H). For t ∈ [pT0, (p+ 1)T0] we have

∥w(t)∥H ≤M

∫ (p+1)T0

pT0

∥B∗y(s)∥H ds(78)

≤M
√
T0

(∫ (p+1)T0

pT0

∥B∗y(s)∥2H ds

) 1

2

≤M

√
T0E(0)

k
.

It follows

(79)

∫ (p+1)T0

pT0

∥B∗w(s)∥2H ds ≤M2

∫ (p+1)T0

pT0

∥w(s)∥2H ds ≤M4T 2
0

E(0)

k
.

As we have

∥B∗v(t)∥2H = ∥B∗y(t)−B∗w(t)∥2H ≤ 2
(
∥B∗y(t)∥2H + ∥B∗w(t)∥2H

)
,
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combinning (76) and (79) we get

(80)

∫ (p+1)T0

pT0

∥B∗v(s)∥2H ds ≤ 2(1 +M4T 2
0 )
E(0)

k
.

Since v verifies (77), we have from (65) and (80)

2E(pT0) = ∥v(pT0)∥2H ≤ 2c(1 +M4T 2
0 )
E(0)

k
.

Since E is nonincreasing, then E(kT0) ≤ c(1 +M4T 2
0 )
E(0)

k
. So, for k >

4c(1 +M4T 2
0 ) and T = kT0 we obtain ∥y(T )∥H ≤ 1

2
∥y0∥H , and it is classi-

cal that this implies (66).
Reciprocally, suppose that we have (66). Since E decreases towards 0,

we can find T0 > 0 such that every solution y of (64) verifies

(81)

∫ T0

0
∥B∗y(s)∥2H ds = E(0)− E(T0) >

1

2
E(0) =

1

4
∥y0∥2H .

Now let φ be a solution of (63) and y a solution of (64) with the initial data
φ(0) = y(0). The function z = y − φ verifies z′(t) +A1z +BB∗z = −BB∗φ.
Then

z(t) = −
∫ t

0
S(t− s)BB∗φ(s)ds.

For all t ∈ [0, T0] we have

(82) ∥z(t)∥2H ≤ c

∫ T0

0
∥B∗φ(s)∥2H ds

Since ∥B∗y(s)∥H ≤ ∥B∗φ(s)∥H + ∥B∗z(s)∥H , using (82) and the fact that
B∗ is bounded

∫ T0

0
∥B∗y(s)∥2H ds ≤ c

∫ T0

0
∥B∗φ(s)∥2H ds.

From (81), we get (65). □
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Proof. (of Proposition 8) We recall that for u ∈ Ḣ1(T), G(u) = −(1−
∂xx)

−1(u∂xu). We know that G(u) ∈ Ḣ1(T) since

(G(u), 1)L2 = −
(
(1− ∂xx)

−1(u∂xu), 1
)
L2

= −1

2

(
(1− ∂x)

−1∂x
(
u2
)
, 1
)
L2

= 0.

We give the following definition of a holomorphic function on a Banach
space. See [19] for more details.

Definition 3. Let X and Y be complex Banach spaces and let D be an open
subset of X. A function G : D −→ Y is holomorphic if for each u ∈ D, there
exists a continuous complex-linear mapping DG(u) : X −→ Y such that

(83) lim
h−→0

∥G(u+ h)−G(u)−DG(u)h∥Y
∥h∥X

= 0.

Let u and h be two functions in Ḣ1(T). We have

G(u+ h) = −(1− ∂xx)
−1((u+ h)∂x(u+ h))

= G(u)− (1− ∂xx)
−1(u∂xh+ h∂xu) +G(h)

The map DG(u) : h −→ −(1− ∂xx)
−1(u∂xh+ h∂xu) is linear and continu-

ous, indeed

(84)

∥DG(u)h∥H1(T) ≤ ∥DG(u)h∥H2(T)

≤
∥∥u
∥∥
L∞(T)

∥h∥H1(T) + ∥h∥L∞(T) ∥∂xu∥L2(T)

≤ 2
∥∥u
∥∥
H1(T)

∥h∥H1(T) .

Furthermore

∥G(u+ h)−G(u)−DG(u)h∥H1 = ∥G(h)∥H1 ≤ ∥h∥L∞ ∥∂xh∥L2 ≤ ∥h∥2H1 .

We have then (83). Now let u∞ be the solution of the nonlinear problem
with the initial data u∞(0), and h ∈ Ḣ1(T) such that ∥h∥H1(T) ≤ 1. We know

that u∞ ∈ L∞
(
R, Ḣ1(T)

)
from Proposition 5. Estimation (84) shows that

{DG(u∞(t))h / t ∈ R, ∥h∥Ḣ1(T) ≤ 1} is a bounded set in Ḣ2(T).

Thanks to the compact injection Ḣ2(T) →֒ Ḣ1(T), we deduce the as-
sumption 6 of Theorem 8. □
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Proof. (of Theorem 12) Let

λ0 = inf
{
λ ∈

]
0, (2π)2

[
/ v(x, t) = 0, ∀(x, t) ∈ {ψ > λ} ∩ T

}
.

It is sufficient to prove that λ0 = 0. Assume that λ0 > 0.
We know that v = 0 on {ψ ≥ λ1} ∩ T from Remark 5. By applying Theo-

rem 11 to each point (x, t) ∈ {ψ = λ0} ∩ T =: T0, there exists an open neigh-
borhood B(x, t) of (x, t) such that v = 0 on B(x, t).

So, if T0 ⊂
⋃

(xi,ti)∈T0

B(xi, ti), there exists B(x1, t1), ..., B(xp, tp) by a com-

pactness argument such that T0 ⊂
p⋃

i=1

B(xi, ti).

We will show that there exists λ ∈ [0, λ0[ such that {ψ = λ} ∩ T ⊂
p⋃

i=1

B(xi, ti).

Suppose that for all n ∈ N∗,

{
ψ = λ0 −

1

n

}
∩ T ̸⊂

p⋃

i=1

B(xi, ti).

Let (yn, sn) ∈
{
ψ = λ0 −

1

n

}
∩ T . We know that for all n ∈ N∗

(yn, sn) ∈ supp(v). Since

{
ψ = λ0 −

1

n

}
∩ T is a compact set, there exists

(yϕ(n), sϕ(n)) a subsequence of (yn, sn) such that yϕ(n) → y and sϕ(n) → s.
This give us that ψ(y, s) = λ0. Hence, there exists i ∈ {1, .., p} such that
(y, s) ∈ B(xi, ti). So for n large enough, we have (yϕ(n), sϕ(n)) ∈ B(xi, ti),
and then, (yϕ(n), sϕ(n)) /∈ supp(v), which reach a contradiction. We deduce
that λ0 = 0 and then v = 0 on T . □
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Les éditions de l’école polytechnique (2014).

[19] L. A. Harris, Fixed Point Theorems for Infinite Dimensional Holomor-
phic Functions, J. Korean Math. Soc. 41, No. 1 (2004) 175–192.

[20] L. Hörmander, The Analysis of Linear PD Operators. IV, Fourier Inte-
gral Operators, Springer (1985).

[21] F. Huang, Caracteristic conditions for exponential stability of linear
dynamical systems in Hilbert spaces, Ann. of Diff. Eqs. 1 (1) (1985)
43–56.

[22] R. Joly and C. Laurent, Stabilization for the semilinear wave equation
with geometric control condition, Analysis & PDE, Mathematical Sci-
ences Publishers 6 (5) (2013) 1089–1119.

[23] C. Laurent, L. Rosier, and Z. B-Y, Control and stabilization of the
Korteweg-de Vries equation on a periodic domain., Comm. Partial Dif-
ferential Equations 35, no. 4 (2010) 707–744.

[24] G. Lebeau, Equation des ondes amorties., Séminaire Équations aux
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