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Continuous time soliton resolution for

two-bubble equivariant wave maps

Jacek Jendrej and Andrew Lawrie

We consider the energy-critical wave maps equation R
1+2 → S

2 in
the equivariant case. We prove that if a wave map decomposes,
along a sequence of times, into a superposition of at most two
rescaled harmonic maps (bubbles) and radiation, then such a de-
composition holds for continuous time. We deduce, as a conse-
quence of sequential soliton resolution results of Côte [5], and Jia
and Kenig [25], that any topologically trivial equivariant wave map
with energy less than four times the energy of the bubble asymp-
totically decomposes into (at most two) bubbles and radiation.

1. Introduction

1.1. Setting of the problem

This paper concerns wave maps from the Minkowski space R1+2
t,x into the two-

sphere S2, with k-equivariant symmetry. These are formal critical points of
the Lagrangian action,

(1.1) L (Ψ) =
1

2

∫∫

R
1+2

t,x

(
−|∂tΨ(t, x)|2 + |∇Ψ(t, x)|2

)
dx dt,

restricted to the class of maps Ψ : R1+2
t,x → S2 ⊂ R3 that take the form,

(1.2)
Ψ(t, reiθ) = (sinψ(t, r) cos kθ, sinψ(t, r) sin kθ, cosψ(t, r)) ∈ S

2 ⊂ R
3,

for some fixed k ∈ {1, 2, . . .}. Here ψ is the colatitude measured from the
north pole of the sphere, the metric on S2 is given by ds2 = dψ2 + sin2 ψ dω2,
and (r, θ) are polar coordinates on R2.

Wave maps are called nonlinear σ-models in the high energy physics lit-
erature, see for example [19, 32]. They are a canonical example of a geometric
wave equation as they generalize the free scalar wave equation to the geomet-
ric setting of manifold-valued maps. The 2d case we consider is of particular
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interest, since the static solutions given by finite energy harmonic maps are
amongst the simplest examples of topological solitons; other examples in-
clude kinks in scalar field equations, vortices in Ginzburg-Landau equations,
magnetic monopoles, Skyrmions, and Yang-Mills instantons; see [32]. Wave
maps under k-equivariant symmetry possess intriguing features from the
point of view of nonlinear dynamics, for example, bubbling harmonic maps,
multi-soliton solutions, etc., in the relatively simple setting of a geometri-
cally natural scalar semilinear wave equation.

The Cauchy problem for k-equivariant wave maps is given by

(1.3)
∂2t ψ − ∂2rψ −

1

r
∂rψ + k2

sin 2ψ

2r2
= 0,

(ψ(T0), ∂tψ(T0)) = (ψ0, ψ̇0), T0 ∈ R.

The conserved energy is

(1.4) E(ψ(t)) := 2π

∫ ∞

0

1

2

(
(∂tψ)

2 + (∂rψ)
2 + k2

sin2 ψ

r2

)
r dr,

where we have used bold font to denote the vector ψ(t) := (ψ(t), ∂tψ(t)).
We will write pairs of functions as φ = (ϕ, ϕ̇), noting that the notation ϕ̇
will not, in general, refer to a time derivative of ϕ but rather just to the
second component of φ. With this notation (1.3) can be rephrased as the
Hamiltonian system

(1.5) ∂tψ(t) = J ◦DE(ψ(t)), ψ(T0) = ψ0,

where

(1.6)

J =

(
0 1
−1 0

)
,

DE(ψ(t)) =

(
−∂2rψ(t)− r−1∂rψ(t) +

1
2k

2r−2 sin(2ψ(t))
∂tψ(t)

)
.

We remark that both (1.5) and (1.4) are invariant under the scaling

(1.7) (ψ(t, r), ∂tψ(t, r)) 7→
(
ψ(t/λ, r/λ), λ−1∂tψ(t/λ, r/λ)

)
, λ > 0,

which makes this problem energy-critical.
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For ψ0 : (0,∞) → R, we denote

(1.8) Ep(ψ0) = 2π

∫ ∞

0

1

2

(
(∂rψ)

2 + k2
sin2 ψ

r2

)
r dr

the potential part of the energy (1.4). It is easy to check that any k-
equivariant state ψ0 of finite potential energy must satisfy limr→0 ψ0(r) = ℓπ
and limr→∞ ψ0(r) = mπ for some ℓ,m ∈ Z, which splits the set of states of
finite potential energy into disjoint classes, which we denote Hℓ,m. These
classes are related to the topological degree of the full map Ψ(t) : R2 → S2:
if m− ℓ is even and ψ0 ∈ Hℓ,m, then the corresponding map Ψ is topologi-
cally trivial, whereas for odd m− ℓ we obtain maps of degree k.

The sets Hℓ,m are affine spaces, parallel to the linear space H := H0,0,
which we equip with the norm

(1.9) ∥ψ0∥
2
H :=

∫ ∞

0

(
(∂rψ0(r))

2 + k2
ψ0(r)

2

r2

)
r dr.

We denote L2 := L2(rdr) and Eℓ,m := Hℓ,m × L2 the set of finite energy
initial data corresponding to the class Hl,m. It is natural to consider the
Cauchy problem (1.3) within a fixed class Eℓ,m. The set E := E0,0 is a linear
space, which comes with the norm

∥ψ0∥
2
E := ∥ψ0∥

2
H + ∥ψ̇0∥

2
L2(1.10)

=

∫ ∞

0

(
(∂rψ0(r))

2 + k2
ψ0(r)

2

r2

)
r dr +

∫ ∞

0
ψ̇0(r)

2 r dr.

The unique (up to scaling and sign change, and adding a multiple of π)
k-equivariant harmonic map is given explicitly by

(1.11) Q(r) := 2 arctan(rk).

The function Q, and its rescaled versions Qλ(r) := Q(λ−1r) for λ > 0, are
minimizers of Ep within the class H0,1. On can compute that Ep(Qλ) = 4πk.
We denote Qλ := (Qλ, 0) the initial data yielding the stationary solution
of (1.3), ψ(t) = Qλ.

Linearizing (1.3) around ψ = 0 leads to the equation

(1.12) ∂2t ψl + L0ψl = 0, where L0 := −∂2r − r−1∂r + k2r−2.
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We say a solution ψ of (1.3) scatters in the energy space in the positive time
direction if there exists a solution ψl(t) ∈ E to (1.12) such that

∥ψ(t)−ψl(t)∥E → 0 as t→ ∞.(1.13)

1.2. Sub-threshold theorems, bubbling and soliton resolution

The regularity theory for k-equivariant wave maps is well understood,
see [2, 3, 40–42], and recent research has been focused on the nonlinear
dynamics of solutions with large energy. A guiding principle is called the soli-
ton resolution conjecture, which asserts that every finite energy k-equivariant
wave map asymptotically decouples into a superposition of finitely many har-
monic maps (bubbles) with dynamically separating scaling parameters plus
a term capturing the linear radiation. There has been substantial progress
towards this conjecture over the last twenty years.

Struwe’s sequential characterization of singular wave maps [45] can be
viewed as a first step in the direction of soliton resolution. He proved that
any wave map that blows up in finite time converges locally along a well cho-
sen sequence of times and a well chosen sequence of scales to a non-constant
harmonic map. Struwe’s bubbling theorem has an immediate consequence
for the regularity theory: every wave map with energy less than that of the
ground state harmonic map must be globally regular. Since only topolog-
ically trivial wave maps, and more specifically those in the class Eℓ,ℓ, can
scatter, one is led to the following formulation of the threshold theorem
proved in [6] using the Kenig-Merle road map [26, 27]: every wave map
ψ ∈ Eℓ,ℓ with E(ψ) < 2E(Q) must scatter in both time directions. That the
threshold is 2E(Q) rather than E(Q) reflects the fact that any k-equivariant
element of Eℓ,ℓ that develops a bubble must use a least another quantum of
energy E(Q) to connect back to ℓπ; see [31, 43] for generalizations of these
results outside equivariant symmetry.

Using similar logic, a natural threshold in the class E0,1 is E < 3E(Q)
since this is the maximal energy level allowing for at most one bubble
to form. It was proved in [6, 7], using ideas from Duyckaerts, Kenig, and
Merle [12–15], that continuous soliton resolution does hold in this regime.
For every global-in-forward-time 1-equivariant wave map ψ ∈ E0,1 with
E(ψ) < 3E(Q) one can find a continuous function λ(t) ≪ t and a finite
energy linear wave ψ∗

l so that ψ(t) satisfies,

ψ(t) = Qλ(t) +ψ
∗
l(t) + oE(1) as t→ ∞.(1.14)
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For wave maps in the same class that blow up at a finite time T+ an analo-
gous decomposition holds with λ(t) = o(T+ − t); see [9] for a related theorem
for general wave maps with energy slightly above the ground state. Côte [5]
generalized this result to allow for an arbitrary number of bubbles, but at
the cost of only establishing the decomposition along a well chosen sequence
of times. Later, Jia and Kenig [25] generalized the result from [5] to k = 2-
equivariant wave maps using some different techniques, and we note that a
minor technical observation can be used to generalize such sequential decom-
positions to all equivariance classes; see Remark 1.2. Since we will use these
results, we state them precisely. Before giving the theorem, we introduce the
notation

(1.15)

∥ψ0∥
2
E(r≤ρ) = ∥(ψ0, ψ̇0)∥

2
E(r≤ρ)

:=

∫ ρ

0

(
ψ̇0(r)

2 + (∂rψ0(r))
2 + k2

ψ0(r)
2

r2

)
r dr,

∥ψ0∥
2
E(r≥ρ) = ∥(ψ0, ψ̇0)∥

2
E(r≥ρ)

:=

∫ ∞

ρ

(
ψ̇0(r)

2 + (∂rψ0(r))
2 + k2

ψ0(r)
2

r2

)
r dr.

Theorem 1.1 (Sequential soliton resolution). [5–7, 25] Fix any k ∈ N,
ℓ,m ∈ Z and let ψ(t) ∈ Eℓ,m be a finite energy solution to (1.3) on its maxi-
mal forward interval of existence, I+ = [0, T+). Then, there exists a sequence
of times tn → T+, an integer N ∈ {0, 1, 2, . . . }, and sequences of scales
0 < λn,1 ≪ λn,2 ≪ · · · ≪ λn,N , and signs ιn,1, . . . , ιn,N ∈ {−1, 1}N with the
following properties:

(Finite time blow up) Assume T+ <∞. Then there exists p ∈ Z and
ψ∗

0 ∈ Ep,m, called the radiation, such that φ(t) := ψ(t)−ψ∗
0 satisfies

(1.16) lim
t→T+

∥φ(t)∥E(r≥T0−t) = 0,

The scale λn,N satisfies, λn,N ≪ T+ − tn and ψ(tn) satisfies,

∥ψ(tn)−ψ
∗
0 − (mπ, 0)−

N∑

j=1

ιn,j(Qλn,j
− (π, 0))∥E → 0 as n→ ∞.

(1.17)

(Global solution) Assume T+ = ∞. There exists a solution ψ∗
l :

R → E of (1.12) and an increasing function A : [0,∞) → [0,∞) such that
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limt→∞A(t) = ∞, and φ(t) := ψ(t)−ψ∗
l(t) satisfies

(1.18) lim
t→∞

∥φ(t)− (mπ, 0)∥E(r≥t−A(t)) = 0, lim
t→∞

∥ψ∗
l(t)∥E(r≤t−A(t)) = 0

The scale λn,N satisfies, λn,N ≪ tn and ψ(tn) satisfies,

∥ψ(tn)−ψ
∗
l(tn)− (mπ, 0)−

N∑

j=1

ιn,j(Qλn,j
− (π, 0))∥E → 0 as n→ ∞.

(1.19)

Remark 1.2. The proof of Theorem 1.1 was carried out in full detail in [5,
25] only in the cases k = 1, 2. The missing technical ingredient in their proofs
is the observation that an L3

tL
6
x-type Strichartz estimate (see (2.1) for the

precise norm) holds for the linearization of k-equivariant wave maps equation
for every k ≥ 1 using the estimates proved by Planchon, Stalker, Tahvildar-
Zadeh [36] for the radially symmetric wave equation with inverse square
potential; see [23, Section 2.2] for a more detailed explanation. With this
observation, the arguments in [5] generalize to any odd k and the arguments
in [25] generalize to all k. For the statements in the theorem about the
radiation terms ψ∗

0 and ψ∗
l see [5, Propositions 5.1 and 5.2].

In this paper we will address the question of how to refine such sequential
decompositions to ones that hold continuously in time when the sequential
decomposition has at most two bubbles. Recently, a remarkable preprint by
Duyckaerts, Kenig, Martel, and Merle [10] completely resolved this question
(i.e. for an arbitrary number of bubbles) for the equivariance class k = 1 and
for the related 4d critical focusing NLW in the radial case; see also [11, 16–
18] for a complete resolution of this question for the critical radial focusing
NLW in odd dimensions. We emphasize that the proof given in this paper is
distinct and independent of the arguments in [10, 11, 16–18]. In particular,
we do not make use of “channels of energy” estimates.

1.3. Statement of the results

We prove continuous time soliton resolution for a class of initial data not
covered in [5–7, 10, 25].

Theorem 1. Fix k ∈ {1, 2, 3, . . . }. Let ψ0 ∈ E such that E(ψ0) < 4E(Q) =
16kπ, and let ψ : [0, T+) → E be the corresponding solution of (1.3). One of
the following alternatives holds:
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(i) (Scattering) T+ = ∞ and ψ(t) scatters as t→ ∞,

(ii) (One-bubble blow-up) T+ <∞, and there exist λ : [0, T+) → (0,∞),
ψ∗

0 ∈ E0,1 and ι ∈ {−1, 1} such that λ(t) ≪ T+ − t as t→ T+ and

(1.20) lim
t→T+

∥∥ψ(t)− ι
(
Qλ(t) −ψ

∗
0

)∥∥
E
= 0.

(iii) (Two-bubble blow-up) T+ <∞, and there exist λ, µ : [0, T+) → (0,∞),
ψ∗

0 ∈ E and ι ∈ {−1, 1} such that λ(t) ≪ µ(t) ≪ T+ − t as t→ T+ and

(1.21) lim
t→T+

∥∥ψ(t)− ι
(
Qλ(t) −Qµ(t) +ψ

∗
0

)∥∥
E
= 0.

(iv) (Global two-bubble) T+ = ∞, and there exist λ, µ : [0,∞) → (0,∞), a
solution ψ∗

l : [0,∞) → E of (1.12) and ι ∈ {−1, 1} such that λ(t) ≪
µ(t) ≪ t as t→ ∞ and

(1.22) lim
t→∞

∥∥ψ(t)− ι
(
Qλ(t) −Qµ(t) +ψ

∗
l(t)

)∥∥
E
= 0.

The theorem stated above will easily follow from the sequential soliton
resolution of Côte [5], and Jia and Kenig [25], once we prove the following
result, which is our main contribution.

Theorem 2. Fix k ∈ {1, 2, 3, . . .}, m ∈ {0, 1, . . .}, and let ψ : [0, T+) →
E0,m be a solution of (1.3).

1. (Blow-up case.) Assume T+ <∞, there exists ψ∗
0 ∈ E0,m, and a se-

quence tn → T+ such that λn ≪ µn ≪ T+ − tn and

(1.23) lim
n→∞

∥∥ψ(tn)− ι
(
Qλn

−Qµn
+ψ∗

0

)∥∥
E
= 0.

Then there exist continuous functions λ, µ : [T0, T+) → (0,∞) such
that λ(t) ≪ µ(t) ≪ T+ − t as t→ T+ and

(1.24) lim
t→T+

∥∥ψ(t)− ι
(
Qλ(t) −Qµ(t) +ψ

∗
0

)∥∥
E
= 0.

2. (Global case.) Assume T+ = ∞, there exists ψ∗
l : [0,∞) → E a solution

of (1.12), and a sequence tn → ∞ such that λn ≪ µn ≪ tn and

(1.25) lim
n→∞

∥∥ψ(tn)− ι
(
Qλn

−Qµn
+ψ∗

l(tn)
)∥∥

E
= 0.
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Then there exist continuous functions λ, µ : [T0,∞) → (0,∞) such that
λ(t) ≪ µ(t) ≪ t as t→ ∞ and

(1.26) lim
t→∞

∥∥ψ(t)− ι
(
Qλ(t) −Qµ(t) +ψ

∗
l(t)

)∥∥
E
= 0.

1.4. Comments on the results

While the soliton resolution conjecture itself is a qualitative description of
the dynamics, it is of central importance to understand which configurations
of bubbles and radiation are actually realized by solutions in either the fi-
nite time singularity or global-in-time case. Finite-time blow up wave maps
with one concentrating bubble were first constructed in a series of influen-
tial works by Krieger, Schlag, Tataru [30], Rodnianski, Sterbenz [38], and
Raphaël, Rodnianski [37], with the latter work yielding a stable blow-up
regime; see also the recent works [28, 29] for stability properties of the so-
lutions from [30], as well as [24] for a classification of blowup solutions with
a given radiation profile, and [34, 35] for constructions of various types of
solutions with one bubble in infinite time. While these solutions are all con-
structed within the class E0,1, the examples that blow up in finite time can
be smoothly truncated outside the light cone to yield solutions in E blowing
up in finite time with one bubble, thus the scenario (ii) in Theorem 1 is
realized.

The first examples of wave maps with two bubbles were constructed by
the first author in [20] in equivariance classes k ≥ 2. The solutions in [20]
take the form

ψ(t) = Qλ(t) −Qµ(t) + oE(1) as t→ ∞(1.27)

with λ(t) → 0 and µ(t) → 1 as t→ ∞. The radiation term ψ∗
l = 0 and thus

the solution has threshold energy, i.e., E(ψ) = 2E(Q). No such example is
known to exist for k = 1.

In [23] the authors classified the dynamics of every k-equivariant wave
map with energy E = 2E(Q) = 8kπ in both time directions, showing, for
example, that every such wave map must scatter in at least one time direc-
tion. Rodriguez [39] proved an analogous result in the case k = 1 including
a construction of a threshold wave map blowing up in finite time in one
direction and scattering in the other. The collision analysis in these papers
will play a key role in the proof of Theorem 2; see Section 1.5. Recently the
authors proved that the 2-bubble solution constructed in [20] is unique and
of regularity H2 for classes k ≥ 4; see [21, 22].
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Côte [5] observed that a result analogous to Theorem 2 holds, both in
the blow-up case and in the global case, if both bubbles have the same sign.
In fact, Côte’s result allows an arbitrary number of bubbles, all having the
same sign. However, it is worth noting that existence of solutions developing
more than one bubble of the same sign is unknown.

In the setting of Theorem 2, we know that, at least in the global case, the
set of the initial data satisfying the assumptions is non-empty, as it contains
the two-bubble solution constructed in [20]. Of course, we expect this set to
be much bigger. Whether the set of initial data satisfying the assumptions
of the blow-up case in Theorem 2 is non-empty, is unclear to us. Also, in
the case k = 1, we do not know if there exist any solutions satisfying the
assumptions of Theorem 2.

A natural question is whether our strategy could lead to a proof of soli-
ton resolution for any number of bubbles. While we believe that studying
threshold N -bubble solutions for N ≥ 3 is an interesting topic in itself, cur-
rently it is unknown if this can lead to a proof of soliton resolution in the
general case.

Remark 1.3. To be precise, the paper [20] provided a construction for the
radial Yang-Mills equation, which is very similar to equivariant wave maps
with k = 2.

1.5. Comments on the proofs

The following result follows from [6, Theorem 1.1], [23, Theorem 1.6] and
[39, Theorem 1.6].

Theorem 1.4. Let k ∈ {1, 2, . . .}.

1. If ψ is a solution of (1.3) with initial data ψ0 ∈ E and energy E(ψ) <
2E(Q) = 8kπ, then ψ scatters to a linear wave in both time directions.

2. If ψ is a solution of (1.3) with initial data ψ0 ∈ E and energy E(ψ) =
2E(Q) = 8kπ, then ψ scatters to a linear wave in at least one time
direction.

Settling the threshold case E(ψ) = 8kπ is essential for our proof of con-
tinuous time soliton resolution of two-bubble wave maps. Indeed, one imme-
diate enemy, when one attempts to deduce continuous time soliton resolution
from sequential soliton resolution, is the possibility of elastic collisions. If
colliding solitons could recover their shape after a collision, then one could
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potentially encounter the following scenario: the solution approaches a multi-
soliton configuration for a sequence of times, but in between infinitely many
collisions take place, so that there is no soliton resolution in continuous time.
The threshold case in Theorem 1.4 shows in particular that two bubbles can-
not collide in an elastic manner.

Transforming the intuition described above into a proof might not be
immediate, see for example the recent preprints [16–18]. In our case, how-
ever, we know that threshold two-bubbles not only collide in an inelastic
way, but scatter in one time direction. As we demonstrate, this very strong
information makes the proof of continuous time soliton resolution almost
immediate.

We stress as well that our proofs crucially use the observation from the
earlier works cited above that the radiation part of the solution is extracted
for continuous time, and not only for a sequence. We further comment on
this issue at the beginning of Section 3 below.

2. Preliminaries

2.1. Profile decomposition

Our proof is based on the nonlinear profile decomposition method due to
Bahouri and Gérard [1], and Merle and Vega [33]. For the presentation of this
theory in the setting of the equivariant wave maps for arbitrary k, see [23,
Section 2.3]. Here, we only state the relevant results.

For a time interval I and ψ : I × (0,∞) → R, we define the Strichartz
norm

(2.1) ∥ψ∥S(I) :=

(∫

I

(∫ ∞

0

ψ(t, r)6

r3
dr

) 1

2

) 1

3

.

If I = R, we write S instead of S(R). It is worth noting that a solution ψ
of (1.3) scatters for positive times if and only if ∥ψ∥S([T0,∞)) <∞; see [36]
for the relevant Strichartz estimates, [23, Section 2.2] for a review of the
local Cauchy theory for (1.3) using the S norm, and e.g., Strauss’s book [44]
for the if and only if statement about scattering.

We also introduce the following notation for the scale change: if ϕ ∈
Hℓ,m, then ϕλ(r) := ϕ(r/λ) for all λ > 0; if φ = (ϕ, ϕ̇) ∈ Eℓ,m, then φλ(r) :=
(ϕ(r/λ), λ−1ϕ(r/λ)).
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Definition 2.1. We say that a bounded sequence (ψn) ⊂ E has a profile de-
composition with profiles U j

0 ∈ E and displacements (λjn, t
j
n) if the following

conditions are satisfied:

1) if j ̸= j′, then limn→∞
λj
n

λ
j′

n

+ λj′

n

λ
j
n

+ |tj
′

n −tjn|

λ
j
n

= ∞,

2) if wJ
n,0 is the remainder term defined by

(2.2) ψn =

J∑

j=1

U
j
l (−t

j
n/λ

j
n)λj

n
+wJ

n,0,

then

(2.3) lim
J→∞

lim sup
n→∞

∥wJ
n,l∥S = 0,

where U j
l : R → E and wJ

n,l : R → E are the solutions of (1.12) such

that U j
l (0) = U0 and wJ

n,l(0) = w
J
n,0.

Lemma 2.2 (Linear Profile Decomposition). Every bounded sequence
(ψn) ⊂ E has a subsequence which has a profile decomposition. □

Without loss of generality, upon taking subsequences and modifying the
profiles, one can assume that for all j one of the following holds: tjn = 0 for
all n, limn→∞ tjn/λ

j
n = ∞, limn→∞ tjn/λ

j
n = −∞. The nonlinear profile U j

associated with the profile U j
0 is a solution of (1.3) defined by the condition

(2.4) lim
n→∞

∥U j(−tjn/λ
j
n)−U

j
n,l(−t

j
n/λ

j
n)∥E = 0.

Lemma 2.3 (Nonlinear Profile Decomposition). Let ψn,0 ∈ E be a
bounded sequence with a profile decomposition, and let U j be the associated
nonlinear profiles, with the maximal forward time of existence T+(U

j). The
following “Pythagorean formula” holds:

(2.5) lim
J→∞

lim sup
n→∞

∣∣∣E(ψn,0)−

J∑

j=1

E(U j)− ∥wJ
n,0∥

2
E

∣∣∣ = 0.

Furthermore, let sn ∈ (0,∞) be any sequence such that for all j and n
(2.6)
sn − tjn

λjn
< T+(U

j), lim sup
n→∞

∥U j∥S(Ij
n)
<∞, where Ijn :=

[
−
tjn

λjn
,
sn − tjn

λjn

]
.
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Let ψn(t) denote the solution of (1.3) with initial data ψn(0) = ψn,0. Then
for n large enough ψn(t) exists on the interval s ∈ [0, sn] and satisfies,

(2.7) lim sup
n→∞

∥ψn∥S([0,sn]) <∞.

Moreover, the following nonlinear profile decomposition holds for all s ∈
[0, sn],

(2.8) ψn(s) =

J∑

j=1

U j
(s− tjn

λjn

)

λ
j
n

+wJ
n,l(s) + g

J
n(s)

with wJ
n,l(t) as in Definition 2.1 and

(2.9) lim
J→∞

lim sup
n→∞

(
∥gJn∥S([0,sn]) + ∥gJn∥L∞([0,sn];E)

)
= 0.

The analogous statement holds for sequences sn ∈ (−∞, 0). □

2.2. Bubbles and two-bubbles

In this section, we state a few useful facts about states ψ0 ∈ E which are
close to a two-bubble.

First, we recall the following variational characterization of Q in H0,1

from [4], which amounts to the coercivity of the energy functional near Q.

Lemma 2.4. [4, Proposition 2.3] For any ϵ > 0 there exists δ > 0 such
that if ψ0 ∈ H0,1 and Ep(ψ0) ≤ 4kπ + δ, then there exists λ > 0 such that
∥ψ0 −Qλ∥H ≤ ϵ. □

Next, we consider two-bubble configurations.

Definition 2.5. Given a map ψ0 ∈ E , we define its proximity d+(ψ0) to a
positive pure 2-bubble and its proximity d−(ψ0) to a negative pure 2-bubble
by

(2.10) d±(ψ0) := inf
λ,µ>0

(
∥ψ0 ∓ (Qλ −Qµ)∥

2
E + (λ/µ)k

)
.

We also set

(2.11) d(ψ0) := min(d+(ψ0),d−(ψ0)).
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Lemma 2.6. For any ϵ > 0 there exists δ > 0 such that if ψ0 ∈ E, E(ψ0) ≤
8kπ + δ and ∥ψ0∥E ≥ δ−1, then d(ψ0) ≤ ϵ.

Proof. The result follows from the proof of Lemma 2.13 in [23], with minor
modifications left to the Reader. □

Remark 2.7. The hypothesis of Theorem 2 yields a sequence of times
tn → T+ for which d(ψ(tn)) → 0 as n→ ∞. We will show, using Lemma 2.6,
that if the hypothesis of Theorem 2 hold then we must have d(ψ(t)) → 0
as t→ T+. Given this, the existence of continuous (in fact C1) functions
λ(t), µ(t) as in the statement of Theorem 2 is standard; see for example [23,
Lemma 3.1].

3. Proofs of the theorems

Our proof of Theorem 2 uses the observation from [5–7] that the sequen-
tial decomposition provides one profile which is independent of the time
sequence: ψ∗

0 in the blow-up case and ψ∗
l in the global case. In the paper

[5], only the cases k = 1 and k = 2 were considered, but the proofs are valid
for general k, using the Strichartz estimates from [36]; see also Section 5.1
of [6] and Section 3.2 of [7] for related arguments.

In the global case, we will also need the following fact.

Lemma 3.1. Let tn be an increasing sequence such that limn→∞ tn = ∞,
and let ρn be a sequence such that limn→∞(tn − ρn) = ∞.

1. If φl : R → E is a solution of (1.12), then limn→∞ ∥φl(tn)∥E(r≤ρn) =
0.

2. Let φ0,n ∈ E be a bounded sequence of initial data such that

(3.1) lim
n→∞

∥φ0,n∥E(r≥ρn) = 0.

Let φn,l be the solution of (1.12) corresponding to the initial data
φn,l(tn) = φ0,n. Then φn,l(0)⇀ 0 as n→ ∞.

Proof. The first claim is a well-known property of the linear wave equation,
see for example [8, Proposition 4].

Regarding the second claim, it is sufficient to prove that every sub-
sequence of φn,l(0) has a subsequence weakly converging to 0. By weak
compactness, we only need to show that φn,l(0)⇀ φ0 implies φ0 = 0.
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Let φn,l(0) = φ0 + φ̃0,n, and let φ̃n,l be the solution of (1.12) corre-

sponding to the initial data φ̃n,l(0) = φ̃0,n. Let φl be the solution of (1.12)

for the initial data φl(0) = φ0, so that φn,l(t) = φl(t) + φ̃n,l(t) for all t ≥ 0.
It is easy to see that (1.12) defines a unitary group in E , hence

⟨φl(tn),φ0,n − φl(tn)⟩E = ⟨φl(tn), φ̃n,l(tn)⟩E(3.2)

= ⟨φ0, φ̃0,n⟩E → 0, as n→ ∞,

where ⟨·, ·⟩ denotes the inner product in E .
By the first part of the lemma, we have ∥φl(tn)∥E(r≤ρn) → 0, which yields

(3.3) ⟨φl(tn),φ0,n⟩E → 0,

and we obtain ∥φ0∥
2
E = ⟨φl(tn),φl(tn)⟩E → 0. □

Proof of Theorem 2. In the proof, we use several times the following fact. If
φn,ψn are sequences such that E(φn), E(ψn) are bounded, and ρn ∈ (0,∞)
is a sequence such that

(3.4) lim
n→∞

∥φn∥E(r≤ρn) = 0, lim
n→∞

∥ψn∥E(r≥ρn) = 0,

then

(3.5) lim
n→∞

(
E(φn +ψn)− E(φn)− E(ψn)

)
= 0.

The blow-up case. We first prove that it can be assumed without loss
of generality that m = 0, so that ψ∗

0 ∈ E .

To see this, consider the solution ψ̃ of (1.3) corresponding to the initial
data ψ̃(T0) = χψ(T0), where χ is a smooth cut-off function such that χ(r) =
1 if r ≤ 1

2 and χ(r) = 0 if r ≥ 1, and T+ − 1
8 < T0 < T+. By finite speed

of propagation, ψ̃(t, r) = ψ(t, r) for all t ∈ [T0, T+) and r ≤ 3/8 (since an
equivariant wave map can only blow up at r = 0, it is clear that ψ̃ does not
blow up until time T+). Let ψ̃

∗
0 ∈ E be given by Theorem 1.1, so that φ̃(t) :=

ψ̃(t)− ψ̃∗
0 satisfies (1.16). It follows that ψ̃∗

0(r) = ψ
∗
0(r) if r ≤ 3

8 , implying

φ̃(t, r) = φ(t, r) if r ≤ 3
8 . Thus, for any sequence sn → T+, d±(φ(sn)) → 0 if

and only if d±(φ̃(sn)) → 0. We deduce that (sequential or continuous-time)
soliton resolution holds for ψ if and only if it holds for ψ̃.
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We thus assume m = 0. Let ψ∗
0 ∈ E be given by Theorem 1.1. We de-

compose

(3.6) ψ(t) = φ(t) +ψ∗
0.

We have limn→∞E(φ(tn)) = 8kπ, thus E(ψ∗
0) = E(ψ)− 8kπ. Since

(3.7) lim
t→T+

∥φ(t)∥E(r≥T+−t) = 0, lim
t→T+

∥ψ∗
0∥E(r≤T+−t) = 0,

we obtain limt→T+

(
E(φ(t) +ψ∗

0)− E(φ(t))− E(ψ∗
0)
)
= 0, in other words

(3.8) lim
t→T+

E(φ(t)) = 8kπ.

Suppose there exists a sequence τn → T+ such that supn ∥φ(τn)∥E <∞.
Upon extracting a subsequence, we can assume without loss of generality
that the sequence φ(τn) has a profile decomposition. For j ∈ {1, 2, . . .}, let
U j be the nonlinear profiles, with the corresponding parameters λjn, t

j
n. Let

U0 be the solution of (1.3) with the initial data U0(0) = ψ∗
0, t

0
n = 0, λ0n = 1.

Since φ(τn)⇀ 0 as n→ ∞, see Theorem 1.1, the sequence ψ(τn) has a pro-
file decomposition with profiles U j , j ∈ {0, 1, 2, . . .}, and parameters λjn, t

j
n.

Thanks to the Pythagorean formula (2.5), either there is just one non-
zero profile of energy 8kπ and wJ

n,L = w1
n,L → 0 in E for all J ≥ 1, or all the

profiles scatter in both time directions.
Case 1. All the profiles U j scatter in both time directions. Fix any 0 < T <
T+(U

0). The assumptions of Lemma 2.3 are satisfied with sn = T , which
implies that ψ exists on the time interval [τn, τn + T ] for all n large enough.
This is in contradiction with the fact that φ blows up at t = T+.
Case 2. There is just one profile U1, and wJ

n,l = 0 for J ≥ 1. By tak-
ing a subsequence and adjusting U1, we can assume that limn→∞ t1n/λ

1
n ∈

{−∞,∞}, or t1n = 0 for all n.
Case 2.1. We either have limn→∞ t1n/λ

1
n = −∞, or t1n = 0 for all n and U1

scatters in the forward time direction. In this situation, the same argument
as in Case 1 yields a contradiction.
Case 2.2. We either have limn→∞ t1n/λ

1
n = ∞, or t1n = 0 for all n and U1

scatters in the backward time direction.
Let ψn(t) := ψ(τn + t). The assumptions of Lemma 2.3 are satisfied with

sn = −∞. For tm fixed and n large enough so that tm < τn, we obtain

(3.9) ψ(tm) = ψn(−(τn − tm)) = U1
(−(τn − tm)− t1n

λ1n

)
+ψ∗

0 + hn,
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with limn→∞ ∥hn∥E = 0. Since U1 scatters in the backward time direction,
there exists ϵ > 0 such that d(U1(t)) ≥ 2ϵ for all t ≤ 0. Taking n→ ∞
in (3.9), we obtain

(3.10) d(ψ(tm)−ψ∗
0) ≥ ϵ.

This is true for all m, with ϵ independent of m, in contradiction with the
assumptions of Theorem 2.

Thus, we have proved that limt→T+
∥φ(t)∥E = ∞. By Lemma 2.6, φ(t)

converges to a two-bubble in continuous time; see Remark 2.7.
The global case. The proof is completely analogous. We decompose

(3.11) ψ(t) = φ(t) +ψ∗
l(t).

and we claim that

lim
t→∞

E(φ(t)) = 8kπ.(3.12)

To see this, note that the limits

(3.13)

lim
n→∞

E(φ(tn)) = 8kπ,

lim
n→∞

∥φ(tn)∥E(r≥tn−A(tn)) = 0,

lim
t→∞

∥ψ∗
l(t)∥E(r≤t−A(t)) = 0

imply that

lim
n→∞

E(ψ∗
l(tn)) = E(ψ)− 8kπ.

Next, let ψ∗(t) ∈ E denote the solution to (1.3) that scatters to ψ∗
l(t), i.e.,

∥ψ∗(t)−ψ∗
l(t)∥E → 0 as t→ ∞,(3.14)

which, together with the previous displayed equation implies that
E(ψ∗) = E(ψ)− 8kπ. Now define φ̃(t) by ψ(t) = φ̃(t) +ψ∗(t). Since
limt→∞ ∥ψ∗(t)∥E(r≤t−A(t)) = 0 and limt→∞ ∥φ̃(t)∥E(r≥t−A(t)) = 0, we obtain

limt→∞

(
E(φ̃(t) +ψ∗(t))− E(φ̃(t))− E(ψ∗)

)
= 0, or in other words

(3.15) lim
t→∞

E(φ(t)) = lim
t→∞

E(φ̃(t)) = E(ψ)− E(ψ∗) = 8kπ,

proving (3.12).
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Suppose there exists a sequence τn → ∞ such that supn ∥φ(τn)∥E <∞.
Upon extracting a subsequence, there exists a profile decomposition of the
sequence φ(τn). For j ∈ {1, 2, . . .}, let U j be the nonlinear profiles, with the
corresponding parameters λjn, t

j
n. Set U0

l := ψ∗
l , t

0
n = τn, λ

0
n = 1. In order

to check that U0
l is a profile, we need to verify that Vn,l(0)⇀ 0, where Vn,l

is the solution of (1.12) corresponding to the initial data Vn,l(τn) = φ(τn).
By Theorem 1.1, ∥φ(τn)∥E(r≥τn−A(τn)) → 0. Thus Lemma 3.1, applied with
ρn := τn −A(τn), implies the claim.

Let U0 be the corresponding nonlinear profile, so that the se-
quence ψ(τn) has a profile decomposition with nonlinear profiles U j , j ∈
{0, 1, 2, . . .}, and parameters λjn, t

j
n.

Either there is just one profile of energy 8kπReceived: 08 Mar 2021
Accepted: 1 Jun 2021 and wJ

n,l = w
1
n,l → 0 in E for all J ≥ 1, or all the

profiles scatter in both time directions.
Case 1. All the nonlinear profiles U j scatter in both time directions. Since
the nonlinear profile U0 scatters as t→ ∞, Lemma 2.3 yields a contradiction
with the fact that φ does not scatter as t→ ∞.
Case 2. There is just one profile U1, and wJ

n,l = 0 for J ≥ 1. By tak-
ing a subsequence and adjusting U1, we can assume that limn→∞ t1n/λ

1
n ∈

{−∞,∞}, or t1n = 0 for all n.
Case 2.1. We either have limn→∞ t1n/λ

1
n = −∞, or t1n = 0 for all n and U1

scatters in the forward time direction. In this situation, the same argument
as in Case 1 yields a contradiction.
Case 2.2. We either have limn→∞ t1n/λ

1
n = ∞, or t1n = 0 for all n and U1

scatters in the backward time direction.
Let ψn(t) := ψ(τn + t). The assumptions of Lemma 2.3 are satisfied with

sn = −∞. For tm fixed and n large enough so that tm < τn, we obtain

(3.16) ψ(tm) = ψn(−(τn − tm)) = U1
(−(τn − tm)− t1n

λ1n

)
+ψ∗

l(tm) + hn,

with limn→∞ ∥hn∥E = 0. Since U1 scatters in the backward time direction,
there exists ϵ > 0 such that d(U1(t)) ≥ 2ϵ for all t ≤ 0. Taking n→ ∞
in (3.16), we obtain

(3.17) d(ψ(tm)−ψ∗
l(tm)) ≥ ϵ.

This is true for all m, with ϵ independent of m, in contradiction with the
assumptions of Theorem 2.

Thus, we have proved that limt→T+
∥φ(t)∥E = ∞. By Lemma 2.6, φ(t)

converges to a two-bubble in continuous time. □
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Proof of Theorem 1. The energy constraint implies that we have N ≤ 2 in
Theorem 1.1. If N ̸= 2, then [5, Corollary 1.4] yields the result (we note that
proof of [5, Corollary 1.4] in the cases N = 0, 1 immediately generalizes to
k ≥ 2). If N = 2, then the assumptions of our Theorem 2 are satisfied. □
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