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Endpoint ℓ
r improving estimates for

prime averages

Michael T. Lacey, Hamed Mousavi, and Yaghoub Rahimi

Let Λ denote von Mangoldt’s function, and consider the averages

ANf(x) =
1

N

∑

1≤n≤N

f(x− n)Λ(n).

We prove sharp ℓp-improving for these averages, and sparse bounds
for the maximal function. The simplest inequality is that for sets
F,G ⊂ [0, N ] there holds

N−1⟨AN1F ,1G⟩ ≪
|F | · |G|
N2

(
Log

|F | · |G|
N2

)t

,

where t = 2, or assuming the Generalized Riemann Hypothesis,
t = 1. The corresponding sparse bound is proved for the maximal
function supN AN1F . The inequalities for t = 1 are sharp. The
proof depends upon the Circle Method, and an interpolation argu-
ment of Bourgain.

1. Introduction

We consider discrete averages over the prime integers. The averages are
weighted by the von Mangoldt function.

ANf(x) =
1

N

∑

1≤n≤N

f(x− n)Λ(n)

Λ(n) =

{
log(p) n = pa, p prime

0 Otherwise.

Our interest is in scale free ℓr improving estimates for these averages. The
question presents itself in different forms.
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For an interval I in the integers and function f : I → C, set

⟨f⟩I,r =
[
|I|−1

∑

x∈I
|f(x)|r

]1/r
.

If r = 1, we will suppress the index in the notation. And, set Log x = 1 +
|log x|, for x > 0.

The kind of estimate we are interested in takes the the following form,
in the simplest instance. What is the ‘smallest’ function ψ : [0, 1] → [1,∞)
so that for all integers N and indicator functions f, g : I → {0, 1}, there
holds

N−1⟨ANf, g⟩ ≤ ⟨f⟩I⟨g⟩Iψ(⟨f⟩I⟨g⟩I).

That is, the right hand side is independent of N , making it scale-free. We
specified that f, g be indicator functions as that is sometimes the sharp form
of the inequality. Of course it is interesting for arbitrary functions, but the
bound above is not homogeneous, so not the most natural estimate in that
case.

The points of interest in these two results arises from, on the one hand,
the distinguished role of the prime integers. And, on the other, endpoint
results are significant interest in Harmonic Analysis, as the techniques which
apply are the sharpest possible. In this instance, the sharp methods depend
very much on the prime numbers.

For the primes, we expect that the Riemann Hypothesis to be relevant.
We state unconditional results, and those that depend upon the Generalized
Riemann Hypothesis (GRH). Note that according to GRH all zeroes in the
critical strip 0 < Re(s) < 1 of an arbitrary L−function L(f, s) are on the
critical line Re(s) = 1

2 . Under GRH, the primes are equitably distributed
mod q, with very good error bounds. Namely,

(1.1) ψ(x, q, a) =
∑

n<x
n≡a (mod q)

Λ(n) =
x

ϕ(q)
+O(x

1

2 log2(q)).

Theorem 1.2. There is a constant C so that this holds. For integers N >
30, and interval I of length N , the following inequality holds for all functions

f = 1F and g = 1G with F,G ⊂ I

N−1⟨ANf, g⟩ ≤ C⟨f⟩I⟨g⟩I ×
{
Log(⟨f⟩I⟨g⟩I) assuming GRH

(Log(⟨f⟩I⟨g⟩I))t
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The inequality assuming GRH is sharp, as can be seen by taking f to be
the indicator of the primes, and g = 10. It is also desirable to have a form
of the inequality above that holds for the maximal function

A∗f = sup
N

|ANf |.

Our second main theorem is sparse bound for A∗. The definition of a sparse
bound is postponed to Definition 5.4. Remarkably, the inequality takes the
same general form, although we consider a substantially larger operator.

Theorem 1.3. For functions f = 1F and g = 1G, for finite sets F,G ⊂ Z,

there is a sparse collection of intervals S so that we have

⟨A∗f, g⟩ ≲
∑

I∈S
⟨f⟩I⟨g⟩I(Log⟨f⟩I⟨g⟩I)t|I|,

where we can take t = 1 under GRH, and otherwise we take t = 2.

The sparse bound is very strong, implying weighted inequalities for the
maximal operator A∗. These inequalities could be further quantified, but
we do not detail those consequences, as they are essentially known. See [6].
One way to see that the sparse bound is stronger is these inequalities are a
corollary.

Corollary 1.4. The maximal operator A∗ satisfies these inequalities, where

t = 1 under GRH, and t = 2 otherwise. First, a sparse bound with ℓp norms.

For all 1 < p < 2, there holds

(1.5) ⟨A∗1F ,1G⟩ ≲ (p− 1)−t sup
S

∑

I∈S
⟨1F ⟩I,p⟨1G⟩I,p|I|.

Second, the restricted weak-type inequalities

(1.6) sup
0<λ<1

λ

(Log λ)t
|{A∗1F > λ}| ≲ |F |.

Third, the weak-type inequality below holds for finitely supported non-

negative functions f on Z

(1.7) sup
λ>0

λ|{A∗f > λ}| ≲ ∥f∥ℓ(log ℓ)t(log log ℓ)

where the last norm is defined in §6.



✐

✐

“6-Lacey” — 2023/5/4 — 15:47 — page 1770 — #4
✐

✐

✐

✐

✐

✐

1770 M. T. Lacey, H. Mousavi, and Y. Rahimi

This subject is an outgrowth of Bourgain’s fundamental work on arith-
metic ergodic theorems [1, 3]. These inequalities proved therein focused on
the diagonal case, principally ℓp to ℓp estimates for maximal functions. Bour-
gain’s work has been very influential, with a very rich and sophisticated
theory devoted to the diagonal estimates. We point to [12,19], and very re-
cently [22, 24]. The subject is very rich, and the reader should consult the
references in these papers.

Shortly after Bourgain’s first results, Wierdl [27] studied the primes,
and the simpler form of the Circle method in that case allowed him to
prove diagonal inequalities for all p > 1, which was a novel result at that
time. The result was revisited by Mirek and Trojan [20]. The unconditional
version of the endpoint result (1.6) above is the main result of Trojan [25].
The approach of this paper differs in some important aspects from the one
in [25]. (The low/high decomposition is dramatically different, to point to
the single largest difference.)

The subject of sparse bounds originated in harmonic analysis, with a
detailed set of applications in the survey [21], with a wide set of references
therein. The paper [4] initiated the study of sparse bounds in the discrete
setting. While the result in that paper of an ‘ϵ improvement’ nature, for
averages it turns out there are very good results available, as was first es-
tablished for the discrete sphere in [10,14]. There is a rich theory here, with
a range of inequalities for the Magyar-Stein-Wainger [17] maximal function
in [15]. Nearly sharp results for certain polynomial averages are established
in [5,9], and a surprisingly good estimate for arbitrary polynomials is in [7].
The latter result plays an interesting role in the innovative result of Krause,
Mirek and Tao [16].

The ℓp improving property for the primes was investigated in [8], but not
at the endpoint. That paper result established the first weighted estimates
for the averages for the prime numbers. This paper establishes the sharp
results, under GRH. Mirek [18] addresses the diagonal case for Piatetski-
Shapiro primes. It would be interesting to obtain ℓp improving estimates in
this case.

Our proof uses the Circle Method to approximate the Fourier multiplier,
following Bourgain [1]. In the unconditional case, we use Page’s Theorem,
which leads to the appearance of exceptional characters in the Circle method.
Under GRH, there are no exceptional characters, and one can identify, as is
well known, a very good approximation to the multiplier.

The Fourier multiplier is decomposed at the end of §3 in such a way
to fit an interpolation argument of Bourgain [2], also see [11]. We call it
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the High/Low Frequency method. To acheive the endpoint results, this de-
composition has to be carefully phrased. There are two additional features
of this decomposition we found necessary to add in. First, certain difficul-
ties associated with Ramanujan sums are addressed by making a significant
change to a Low Frequency term. The sum defining the Low Frequency term
(3.12) is over all Q-smooth square free denominators. Here, the integer Q can
vary widely, as small as 1 and as large as N1/10, say. (The largest Q-smooth
square denominator will be of the order of eQ.) Second, in the unconditional
case, the exceptional characters are grouped into their own term. As it turns
out, they can be viewed as part of the Low Frequency term. The properties
we need for the High/Low method are detailed in §4. The following sections
are applications of those properties.

2. Notation

We write A≪ B if there is a constant C so that A ≤ CB. In such instances,
the exact nature of the constant is not important.

Let F denote the Fourier transform on R, defined for by

Ff(ξ) =
∫

R

f(x)e−2πixξ dx, f ∈ L1(R).

The Fourier transform on Z is denoted by f̂ , defined by

f̂(ξ) =
∑

n∈Z
f(n)e−2πinξ, f ∈ ℓ1(Z).

Throughout, we denote Aq = {a ∈ Z/qZ : (a, q) = 1}, so that |Aq| =
ϕ(q), the totient function. We have

(2.1)
q

Log Log q
≪ ϕ(q) ≤ q − 1.

It is known that for non-principal charactersχ, we have |G(χ, a)| < q−
1

2 , see
[13, Chapter 3]. In particular, if χ is the principal character, then we get
Ramanujan’s sum

cq(n) := ϕ(q)G(1Aq
, a) =

∑

r∈Aq

e
(ra
q

)
.

Let χq denote the exceptional character. It is a non-trivial quadratic
Dirichlet character modulo q, that is χq takes values −1, 0, 1, and takes the
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value −1 at least once. We also know that χq is primitive, namely that its
period is q. As a matter of convenience, if q does not have an exceptional
character, we will set χq ≡ 0, and βq = 1. These properties are important to
Lemma 4.9.

Page’s Theorem uses the exceptional characters to give an approximation
to the prime counting function. Counting primes in an arithmetic progression
of modulus q, we have

ψ(N ; q, r)− N

ϕ(q)
+
χq(x)

ϕ(q)
β−1
q xβq ≪ Nec

√
logN .(2.2)

3. Approximations of the kernel

Denote the kernel of AN with the same symbol, so that AN (x) =
N−1

∑
n≤N Λ(n)δn(x). It follows that

ÂN (ξ) =
1

N

∑

n≤N

Λ(n)e−2πnξ.

The core of the paper is the approximation to ÂN (ξ), and its further prop-
erties, detailed in the next section.

Set

Mβ
N =

1

Nβ

∑

n≤N

[nβ − (n− 1)β ]δn,
1
2 < β ≤ 1.

We write MN =M1
N when β = 1, which is the standard average. For β < 1,

these are not averaging operators. They are the operators associated to
the exceptional characters. The Fourier transforms are straight forward to
estimate.

Proposition 3.1. We have the estimates

|M̂N (ξ)| ≪ min{1, (N |ξ|)−1},(3.2)

|M̂β
N (ξ)| ≪ (N |ξ|)−1,(3.3)

|M̂β
N (ξ)− β−1Nβ−1| ≪ Nβ |ξ|.
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For integers q and a ∈ Aq,

L̂a,q
N (ξ) = G(1Aq

, a)M̂N (ξ)−G(χq, a)M̂
βq

N (ξ)(3.4)

We state the approximation to the kernel at rational point, with small
denominator.

Lemma 3.5. Assume that |ξ − a
q | ≤ N−1Q for some 1 ≤ a ≤ q ≤ Q and

gcd(a, q) = 1. Then

ÂN (ξ) = L̂a,q
N (ξ − a

q ) +

{
O(QN− 1

2
+ϵ), Assuming GRH

O(Qe−c
√
n), Otherwise

(3.6)

Proof. We proceed under GRH, and return to the unconditional case at the
end of the argument. The key point is that we have the approximation (1.1)
for ψ(N ; q, r). Set α := ξ − a

q . Using Abel summation, we can write

NM̂N (α) = Ne(αN)−
√
Ne(α

√
N)− 2πiα

∫ N

√
N
etα dt+O(

√
N).

Turning to the primes, we separate out the sum below according to residue
classes mod q. Since ξ = a

q + α,

∑

ℓ≤N

e(ξℓ)Λ(ℓ) =
∑

0≤r≤q
gcd(r,q)=1

∑

ℓ≤N
ℓ≡r mod q

e(ξℓ)Λ(ℓ)

=
∑

r∈Aq

e
(
ra
q

) ∑

ℓ≤N
ℓ≡r mod q

e(αℓ)Λ(ℓ).

Examine the inner sum. Using Abel’s summation formula, and the notation
ψ for prime counting function, we have

∑

ℓ≤N
ℓ≡r mod q

e(αℓ)Λ(ℓ) = ψ(N ; q, r)e(αN)− ψ(
√
N ; q, r)e(α

√
N)

− 2πiα

∫ N

√
N
ψ(t; q, r)e(αt)dt+O(

√
N).
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At this point we can use the Generalized Riemann Hypothesis.
From (1.1), it follows that

∑

ℓ≤N
ℓ≡r mod q

e(αℓ)Λ(ℓ)− N

ϕ(q)
M̂N (α)

= (ψ(N ; q, r)− N

ϕ(q)
e(αN))e(αN)

− 2πiα

∫ N

√
N
e(tα)(ψ(t; q, r)− t) dt+O(

√
N)

≪ N
1

2
+ϵ +

Q

N

∫ N

√
N
t

1

2
+ϵdt+O(N

1

2
+ϵ)

≪ QN
1

2
+ϵ.

The proof without GRH uses Page’s Theorem (2.2) in place of (1.1). We
omit the details. □

The previous Lemma approximates ÂN (ξ) near a rational point. We
extend this approximation to the entire circle. This is done with these defi-
nitions.

V̂s,n(ξ) =
∑

a/q∈Rs

G(1Aq
, a)M̂N (ξ − a/q)ηs(ξ − a/q),

Ŵs,n(ξ) =
∑

a/q∈Rs

G(χq, a)M̂
βq

N (ξ − a/q)ηs(ξ − a/q),

Rs = {a/q : a ∈ Aq, 2
s ≤ q < 2s+1},

and R0 = {0}. Further 1[−1/4,1/4] ≤ η ≤ 1[−1/2,1/2], and ηs(ξ) = η(4sξ). In
(3.11), recall that if q is not exceptional, we have χq = 0. Otherwise, χq is
the associated exceptional Dirichlet character. Given integer N = 2n, set

Ñ =

{
ec

√
n/4 where c is as in (3.6)

N1/5 under GRH

Lemma 3.7. Let N = 2n. Write AN = BN + ErrN , where

(3.8) BN =
∑

s : 2s<(Ñ)1/400

Vs,n −Ws,n.

Then, we have ∥ErrNf∥ℓ2 ≪ (Ñ)−1/1000∥f∥ℓ2.



✐

✐

“6-Lacey” — 2023/5/4 — 15:47 — page 1775 — #9
✐

✐

✐

✐

✐

✐

Endpoint ℓr improving estimates for prime averages 1775

Proof. We estimate the ℓ2 norm by Plancherel’s Theorem. That is, we bound

∥ÂN − B̂N∥L∞(T) ≪ (Ñ)−1/1000.

Fix ξ ∈ T, where we will estimate the L∞ norm above. By Dirichlet’s
Theorem, there are relatively prime integers a, q with 0 ≤ a < q ≤ (Ñ)1/5

with

|ξ − a/q| < 1

q2
.

The argument now splits into cases, depending upon the size of q.
Assume that (Ñ)1/400 < q ≤ (Ñ)1/5. This is a situation for which the

classical Vinogradov inequality [26, Chapter 9] was designed. That estimate
is however is not enough for our purposes. Instead we use [13, Thm 13.6] for
the estimate below.

|ÂN (ξ)| ≪ (q−1/2 + (q/N)1/2 +N−1/5) log3N ≪ (Ñ)−1/1000.

So, in this case we should also see that B̂N (ξ) satisfies the same bound. The

function B̂N is a sum over V̂s,n and Ŵs,n. The argument for both is the

same. Suppose that V̂s,n(ξ) ̸= 0. The supporting intervals for ηs(ξ − a/q) for
a/q ∈ Rs are pairwise disjoint. We must have |ξ − a0/q0| < 2−2s for some
a0/q0 ∈ Rs, where 2s < (Ñ)1/400. Then,

|ξ − a0/q0| ≥ |a0/q0 − a/q| − |ξ − a/q| ≥ (qq0)
−1 − q−2 ≥ q−4

0 .

But then by the decay estimate (3.2), we have

|G(1Aq
, a0)M̂N (ξ − a0/q0)| ≪ (Nq−4

0 )−1 ≪ N−1(Ñ)1/100

This estimate is summed over s ≤ (Ñ)1/400 to conclude this case.

Proceed under the assumption that q ≤ N0 = (Ñ)1/400. From
Lemma 3.5, the inequality (3.6) holds.

ÂN (ξ) = L̂a,q
N (ξ − a

q ) +O(N
−1/2
0 )

The Big O term is as is claimed, so we verify that B̂N (ξ)− L̂a,q
N (ξ − a

q ) ≪
N

−1/2
0 .
The analysis depends upon how close ξ is to a/q. Suppose that |ξ −

a/q| < 1
4N

−2
0 . Then a/q is the unique rational b/r with (b, r) = 1 and 0 ≤
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b < r ≤ N0 that meets this criteria. That means that

B̂N (ξ) = L̂a,q
N (ξ − a/q)ηs(ξ − a/q)

where in the last term on the right, 2s ≤ q < 2s+1. By definition ηs(ξ −
a/q) = η(4s(ξ − a/q)), which equals one by assumption on ξ. That completes
this case.

Continuing, suppose that there is no a/q with |ξ − a/q| < N−2
0 . The

point is that we have the decay estimates (3.2) and (3.3) which imply

|M̂N (ξ − a/q)|+ |M̂β
N (ξ − a/q)| ≪ [N(ξ − a/q)]−1 ≪ N2

0

N
≪ N−3/5.

But then, from the definition (3.4), we have

|L̂a,q
N (ξ − a

q )| ≪ N−1/5.

And as well, trivially bounding Gauss sums by 1, we have

|B̂N (ξ)| ≪ n3/5

N
≪ N−1/5,

by just summing over all a/q ∈ Rs, with s < (Ñ)1/400. That completes the
proof. □

The discussion to this point is of a standard nature. We state here
a decomposition of the operator BN defined in (3.8). It encodes our
High/Low/Exceptional decomposition, and requires some care to phrase,
in order to prove our endpoint type results for the prime averages. It de-
pends upon a supplementary parameter Q. This parameter Q will play two
roles, controlling the size and smoothness of denominators. Recall that an
integer q is Q-smooth if all of its prime factors are less than Q. Let SQ be
the collection of square-free Q-smooth integers.

̂
V Q,lo
s,n (ξ) =

∑

a/q∈Rs

q∈SQ

G(1Aq
, a)M̂N (ξ − a/q)ηs(ξ − a/q),(3.9)

̂
V Q,hi
s,n (ξ) =

∑

a/q∈Rs

q ̸∈SQ

G(1Aq
, a)M̂N (ξ − a/q)ηs(ξ − a/q),(3.10)

Ŵs,n(ξ) =
∑

a/q∈Rs

G(χq, a)M̂
βq

N (ξ − a/q)ηs(ξ − a/q),(3.11)
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Define

LoQ,N =
∑

s

V Q,lo
s,n ,(3.12)

HiQ,N =
∑

s : Q≤2s≤(Ñ)1/400

V Q,hi
s,n −Ws,n(3.13)

ExQ,N =
∑

s : 2s≤Q

Ws,n(3.14)

Concerning these definitions, in the Low term (3.12), there is no restriction
on s, but the sum only depends upon the finite number of square-free Q-
smooth numbers in SQ. (Due to (4.8), the non-square free integers will not
contribute to the sum.) The largest integer in SQ will be about eQ, and the
value of Q can be as big as Ñ . In the High term (3.13), there are two parts
associated with the principal and exceptional characters. For the principal
characters, we exclude the square free Q-smooth denominators which are
both larger than Q and less than (Ñ)1/400. These are included in the Low
term. We include all the denominators for the exceptional characters. In the
Exceptional term (3.14), we just impose the restriction on the size of the
denominator to be not more than Q. This will be part of the Low term.

The sum of these three terms well approximates BN .

Proposition 3.15. Let 1 ≤ Q ≤ Ñ . We have the estimate

(3.16) ∥Err′Q,Nf∥ℓ2 ≲ (Ñ)−1/2∥f∥ℓ2 ,

where

(3.17) Err′Q,N = LoQ,N +HiQ,N + ExN +ErrN −BN .

Proof. From (3.8), we see that

Êrr′N (ξ) =
∑

s : 2s>(Ñ)1/400

̂
V Q,lo
s,n (ξ)

Recalling the definition of V Q,lo
s,n from (3.9), it is straight forward to estimate

this last sum in L∞(T), using the Gauss sum estimate G(1Aq
, a) ≪ Log Log q

q .
□
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4. Properties of the high, low and exceptional terms

The further properties of the High, Low and Exceptional terms are given
here, in that order.

4.1. The high terms

We have the ℓ2 estimates for the fixed scale, and and for the supremum over
large scales, for the High term defined in (3.13). Note that the supremum is
larger by a logarithmic factor.

Lemma 4.1. We have the inequalities

∥HiQ,N∥ℓ2→ℓ2 ≲
log logQ

Q
,(4.2)

∥ sup
N>Q2

|HiQ,N f |∥2 ≲
log logQ · logQ

Q
∥f∥ℓ2 .(4.3)

We comment that the insertion of the Q smooth property into the defi-
nition of V Q,hi

s,n in (3.10) is immaterial to this argument.

Proof. Below, we assume that there are no exceptional characters, as a mat-
ter of convenience as the exceptional characters are treated in exactly the
same manner. For the inequality (4.2), we have from the definition of the
High term in (3.13), and (3.10),

∥HiQ,N∥ℓ2→ℓ2 = ∥ĤiQ,N∥L∞(T)

=
∥∥∥

∑

s : Q≤2s≤Ñ

̂
V Q,hi
s,n

∥∥∥
L∞(T)

≤
∑

s : Q≤2s≤Ñ

∥̂V Q,hi
s,n ∥L∞(T)

≤
∑

s : Q≤2s≤Ñ

max
2s≤q<2s+1

max
a∈Aq

|G(1Aq
, a)|

≪
∑

s : Q≤2s≤Ñ

max
2s≤q<2s+1

1

ϕ(q)

≪
∑

s : Q≤2s

log s · 2−s ≪ log logQ

Q
.
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The first line is Plancherel, and the subsequent lines depend upon definitions,
and the fact that the functions below are disjointly supported.

{ηs(· − a/q) : 2s ≤ q < 2s+1, a ∈ Aq}.

Last of all, we use a well known lower bound ϕ(q) ≫ q/ log log q.

For the maximal inequality (4.3), we have an additional logarithmic
term. This is direct consequence of the Bourgain multi-frequency inequality,
stated in Lemma 4.4. We then have

∥ sup
N>Q2

|HiQ,N f |∥ℓ2 ≤
∑

s : Q≤2s

∥∥ sup
N>Q2

|V Q,hi
s,n f |

∥∥
ℓ2

≪
∑

s : Q≤2s

s · max
2s≤q<2s+1

1

ϕ(q)
· ∥f∥ℓ2

≲
logQ · log logQ

Q
∥f∥ℓ2 .

□

Lemma 4.4. Let θ1, . . . , θJ be points in T with minj ̸=k|θj − θk| > 2−2s0+2.

We have the inequality

∥∥∥ sup
N>4s0

∣∣∣
J∑

j=1

F−1
(
f̂

J∑

j=1

M̃N (· − θj)ηs0(· − a/q)
)∣∣∣
∥∥∥
ℓ2
≪ log J · ∥f∥ℓ2 .

This is one of the main results of [3]. It is stated therein with a higher
power of log J . But it is well known that the inequality holds with a single
power of log J . This is discussed in detail in [8].

4.2. The low terms

From the Low terms defined in (3.12), the property is

Lemma 4.5. For a functions f, g supported on interval I of length N = 2n,
we have

(4.6) N−1⟨LoQ,N ∗f, g⟩ ≪ logQ · ⟨f⟩I⟨g⟩I .

The following Möbius Lemma is well known.
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Lemma 4.7. For each q, we have

(4.8)
∑

a∈Aq

G(1Aq
, a)F−1(M̂N · ηs(· − a/q))(x) =

µ(q)

ϕ(q)
cq(−x).

Proof. Compute

∑

a∈Aq

G(1Aq
, a)F−1(M̂N · ηs(· − a/q))(x)

=MN ∗ F−1ηs(x)
∑

a∈Aq

G(1Aq
, a)e(ax/q).

We focus on the last sum above, namely

Sq(x) =
∑

a∈Aq

G(1q, a)e(xa/q)

=
1

ϕ(q)

∑

r∈Aq

∑

a∈Aq

e(a(r + x)/q)

=
1

ϕ(q)

∑

r∈Aq

cq(r + x) =
µ(q)

ϕ(q)
cq(−x).

The last line uses Cohen’s identity. □

The two steps of inserting of the property of being Q smooth in (3.9),
as well as dropping an restriction on s in (3.12), were made for this proof.

Proof of Lemma 4.5. By (4.8), the kernel of the operator LoQ,N is

LoQ,N (x) =MN ∗ F−1ηs(x) · S(−x),

where S(x) =
∑

q∈SQ

µ(q)

ϕ(q)
cq(x).

We establish a pointwise bound ∥S∥ℓ∞ ≪ logQ, which proves the Lemma.
Assume x ̸= 0. We exploit the multiplicative properties of the sum-

mands, as well as the fact that if prime p divides x, we have µp(x)
ϕ(p) cq(x) =

µp(x). Let Q1 be the primes p < Q such that (p, x) = 1, and set Q2 to be
the primes less than Q which are not in Q1.
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The multiplicative aspect of the sums allows us to write

µ(q)

ϕ(q)
cq(−x) =

µ(q1)

ϕ(q1)
cq1(−x) · µ(q2)

where q = q1q2, and all prime factors of qj are in Qj . If Qj is empty, set
qj = 1. Thus, S(x) = S1(x)S2(x), where the two terms are associated with
Q1 and Q2 respectively. We have

S1(x) =
∑

q is Q1 smooth

µ(q)

ϕ(q)
cq(−x)

=
∏

p∈Q1

1 +
µ(p)cp(−x)

ϕ(p)

=
∏

p∈Q1

1 +
1

p− 1
= Ax.

This is so, since µ(p)cp(x) = 1. It is a straight forward consequence of the
Prime Number Theorem that Ax ≪ logQ. Here, and below, we say that q
is Q smooth if all the prime factors of q are in the set of primes Q.

The second term is as below, where d = |Q2|. Here, in the defini-
tion (3.12), there is no restriction on s, hence all the smooth square free
numbers are included. If Q2 = ∅, then S2(x) = 1, otherwise

S2(x) =
∑

q is Q2 smooth

µ(q)

=

d∑

j=1

(
d

j

)
(−1)j

= −1 +

d∑

j=0

(
d

j

)
(−1)j = −1.

If x = 0, then S(0) = S2(x) = −1. That completes the proof. □

4.3. The exceptional term

The Exceptional terms are always of a smaller order than the Low terms.
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Lemma 4.9. Let χ be an exceptional character modulo q. For x ∈ Z,

(4.10)
∣∣∣
∑

a∈Aq

G(χ, a)e(xa/q)
∣∣∣ = q

ϕ(q)

provided (x, q) = 1, otherwise the sum is zero.

Proof. It is also known that exceptional characters are primitive - see [13,
Theorem 5.27]. So the sum is zero if (x, q) > 1. We use the common notation

τ(χ, x) =
∑

a∈Aq

χ(a)e(ax/q)

which is ϕ(q)G(χ, x). Assuming (x, q) = 1,

τ(χ, a) = τ(χ, 1).

This leads immediately to

∑

a∈Aq

τ(χ, a)e(
ax

q
) = τ(χ, 1)

∑

a∈Aq

χ(a)e(−ax
q
)

=
τ(χ)τ(χ, x)

ϕ(q)
=

|τ(χ)|2χ(x)
ϕ(q)

.

It is known that |τ(χ)|2 = q for primitive characters. And the exceptional
character is quadratic, so this completes the proof. □

Lemma 4.11. For a function f supported on interval I of length N = 2n,
we have

(4.12) ⟨ExQ,N ∗f⟩∞ ≪ (log logQ)2 · ⟨f⟩I .

The term on the left is defined in (3.14).

Proof. Following the argument from Lemma 4.5, we have

ExQ,N (x) =
∑

q<Q

∑

a∈Aq

G(χq, a)e(xa/q) ·Mβv

N ∗ F−1ηsq(x).
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Above, 2sq ≤ q < 2sq+1. The interior sum above is estimated in (4.10). Using
the lower bound on the totient function in (2.1), we have

ExQ,N (x)f ≪ log logQ · ⟨f⟩I
∑

q<Q
q exceptional

1.

We know that the exceptional q grow at the rate of a double exponential,
that is for qv being the vth exceptional q, we have qv ≫ CCv

, for some C > 1.
It follows that the sum above is at most log logQ. □

5. Proofs of the fixed scale and sparse bounds

Proof of Theorem 1.2. Let N = 2n, and recall that f = 1F and g = 1G
where F,G ⊂ I, and interval of length N .

Let us address the case in which we do not assume GRH. We always
have the estimate

(5.1) N−1⟨ANf, g⟩ ≲ n · ⟨f⟩I⟨g⟩I .

Hence, if we have ⟨f⟩I⟨g⟩I ≪ e−c
√
n/100, the inequality with a squared log

follows.
We assume that e−c

√
n ≪ ⟨f⟩I⟨g⟩I , and then prove a better estimate.

We turn to the Low/High/Exceptional decomposition in (3.12)–(3.14), for
a choice of integer Q that we will specify. We have

(5.2) AN = LoQ,N +HiQ,N − ExQ,N +ErrN + Err′N

These terms are defined (3.12), (3.13), (3.14), (3.8) and (3.17) respectively.
For the ‘High’ term we have by (4.2),

N−1|⟨HiQ,N f, g⟩| ≲ log logQ

Q
⟨f⟩I,2⟨g⟩I,2

The same inequality holds for both ErrQ,N f and Err′Q,N f by Lemma 3.7
and Proposition 3.15.

Concering the Low term, by (4.6), we have

N−1|⟨LoQ,N f, g⟩| ≲ logQ⟨f⟩I⟨g⟩I

The Exceptional term satisfies the same estimate by (4.12).
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Combining estimates, choose Q to minimize the right hand side, namely

(5.3) N−1⟨ANf, g⟩ ≲
log logQ

Q

[
⟨f⟩I⟨g⟩I

]1/2
+ logQ · ⟨f⟩I⟨g⟩I .

This value of Q is

Q
logQ

log logQ
≃

[
⟨f⟩I⟨g⟩I

]−1/2
.

Since e−c
√
n ≪ ⟨f⟩I⟨g⟩I , this is an allowed choice of Q. And, then, we prove

the desired inequality, but only need a single power of logarithm.

Assuming GRH, from (5.1), we see that the inequality to prove is always
true provided ⟨f⟩I⟨g⟩I < cN−1/4. Assuming this inequality fails, we follow
the same line of reasoning above that leads to (5.3). That value of Q will be
at most N1/4, so the proof will complete, to show the bound with a single
power of the logarithmic term. □

Turning to the sparse bounds, let us begin with the definitions.

Definition 5.4. A collection of intervals S is called sparse if to each in-

terval I ∈ S, there is a set EI ⊂ I so that 4|EI | ≥ |I| and the collection

{EI : I ∈ S} are pairwise disjoint. All intervals will be finite sets of con-

secutive integers in Z.

The form of the sparse bound in Theorem 1.3 strongly suggests that one
use a recursive method of proof. (Which is indeed the common method.)
To formalize it, we start with the notion of a linearized maximal function.
Namely, to bound the maximal function A∗f , it suffices to bound Aτ(x)f(x),
where τ : Z → {2n : n ∈ N} is a function, taken to realize the supremum.
The supremum in the definition of A∗f is always attained if f is finitely
supported.

Definition 5.5. Let I0 an interval, and let f be supported on 3I0. A map

τ : I0 → {1, 2, 4, . . . , |I0|} is said to be admissible if

sup
N≥τ(x)

MNf(x) ≤ 10⟨f⟩3I0,1.

That is, τ is admissible if at all locations x, the averages of f over scales

larger than τ(x) are controlled by the global average of f .
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Lemma 5.6. Let f and τ be as in Definition 5.5. Further assume that f
and g are indicator functions, with g supported on I0. Then, we have

|I0|−1⟨Aτf, g⟩ ≲ ⟨f⟩I0,1⟨g⟩I0,1 · (Log⟨f⟩3I0,1⟨g⟩I0,1)t,

where t = 1 assuming RH, and t = 2 otherwise.

Proof. We restrict τ to take values 1, 2, 4, . . . , 2t, . . . ,. Let |I0| = N0 = 2n0 .
We always have the inequalities

|I0|−1⟨Aτf, g⟩ ≲ n0⟨f⟩I0,1⟨g⟩I0,1
|I0|−1⟨1τ<TAτf, g⟩ ≲ (log T )⟨f⟩I0,1⟨g⟩I0,1.

The top line follows from admissibility.
We begin by not assuming GRH. Then, the conclusion of the Lemma

is immediate if we have (Log⟨f⟩I0,1⟨g⟩I0,1)2 ≫ n0. It is also immediate if
log τ ≪ (Log⟨f⟩I0,1⟨g⟩I0,1)2. We proceed assuming

(5.7) p20 = C(Log⟨f⟩I0,1⟨g⟩I0,1)2 ≤ c0min{n0, log τ},

where 0 < c0 < 1 is sufficiently small.
We use the definitions in (3.12)–(3.14) for a value of Q < ec

√
n0 that we

will specify. We address the High, Low, Exceptional and both Error terms,
as in (5.2). First, the Error terms. The error terms come in the form of ErrN
from Lemma 3.7 and Err′N from (3.16). Both are similar. Concerning the
second error term, From the estimate (3.17) and (5.7), we have by a straight
forward square function argument,

∥ErrQ,τ f∥22 ≤
∑

n : p2
0≤n≤n0

∥ErrQ,2n f∥2ℓ2

≲ ∥f∥2ℓ2
∑

n : p2
0≤n≤n0

e−c
√
n

≲ ∥f∥2ℓ2 · p20e−cp0 ≲ ∥f∥2ℓ2 · ⟨f⟩3I0,1⟨g⟩I0,1.

This provided C in (5.7) is large enough. This is a much smaller estimate
than we need. The second error term in Proposition 3.15 is addressed by the
same square function argument.
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For the High term, apply (4.3) to see that

∥ sup
N>Q2

|HiQ,N f |∥2 ≲
logQ · log logQ

Q
∥f∥ℓ2 .

For the Low term the definition of admissibility and (4.6) that

|I0|−1|⟨LoQ,τ(x) f(x), g⟩ ≪ (logQ)⟨f⟩I⟨g⟩I .

The Exceptional term also satisfies this bound.
We conclude that

|I0|−1⟨Aτf, g⟩ ≲
logQ · log logQ

Q
⟨f⟩I,2⟨g⟩I,2 + logQ · ⟨f⟩I⟨g⟩I .

This is optimized by taking Q so that

Q

log logQ
≃

[
⟨f⟩I⟨g⟩I

]−1/2
.

And this will be an allowed value of Q since (5.7) holds. Again, the resulting
estimate is better by power of the logarithmic term than what is claimed.

Under RH, the proof is very similar, but a wider range of Q’s are allowed.
In particular, only a single power of logarithm is needed. □

6. Proof of Corollary 1.4

The inequality (1.5) follows from the elementary identity that for 0 < x < 1,
we have

x(Log x)t ≪ min
1<p<2

x

(p− 1)t
.

We remark that we do not know an efficient way to pass from the restricted
weak type sparse bound we have established to the similar sparse bounds
for functions. The methods to do this for norm estimates is of course very
well studied.

Proof of (1.6). There is a different inequality that is a natural consequence
of the sparse bound, namely

(6.1) sup
λ
λ

|{A∗1F > λ}|
(Log|{A∗1F > λ}| · |F |−1)

≲ |F |.

Indeed, if (1.6) were to fail, with a sufficiently large constant, it would con-
tradict the inequality above.
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Let |G| > |F |. We show that there is a subset G′ ⊂ G, with 4|G′| ≥ |G|
with

(6.2) ⟨A∗f,1G′⟩ ≪ |F |(Log|F |/|G|)t

This implies (6.1) by taking G = {A∗f > λ}, for 0 < λ < 1.
In the opposite case, take G′ to be

G′ = G \ {Mf > Kρ}, ρ = |F | · |G|−1

where M is the ordinary maximal function. By the usual weak ℓ1 inequality
for M , for K sufficiently large, we have 4|G′| > |G|. Let g = 1G′ . Apply the
sparse bound for A∗ to see that

⟨A∗f, g⟩ ≪
∑

I∈S
⟨f⟩I⟨g⟩I(Log⟨f⟩I⟨g⟩I)t|I|.

We can assume that for all intervals I ∈ S, that we have ⟨g⟩I > 0. That
means that ⟨f⟩I ≤ K|F |/|G|. Turn to a pigeonhole argument. Divide the
collection S into subcollections

⋃
j,k≥0 Sj,k where

Sj,k = {I ∈ S : 2−j−1Kρ < ⟨f⟩I ≤ 2−jKρ, 2−k−1 < ⟨g⟩I ≤ 2−k}.

Then, we have

⟨A∗f, g⟩ ≪
∑

j,k≥0

∑

I∈Sj,k

⟨f⟩I⟨g⟩I(Log⟨f⟩I⟨g⟩I)t|I|

≪ |F | · |G|−1
∑

j,k≥0

2−j−k(j + k + Log ρ)t
∑

I∈Sj,k

|I|

≪ |F | · |G|−1
∑

j,k≥0

2−j−k(j + k + Log ρ)tmin{|G|2j , 2k|G|}

≪ |F |
∑

j,k≥0

2−j−k(j + k + Log ρ)2(j+k)/2 ≪ |F |.

Here, we have used the standard weak-type inequality for the maximal func-
tion, and the basic property of sparseness, namely

∑

I∈S
|I| ≲

∣∣∣
⋃

I∈S
I
∣∣∣.

This completes the proof of (6.2). □
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For the proof of (1.7), we need to recall the definition of the Orlicz norm.
Given f finitely supported on Z, let f∗ : [0,∞) → N be the decreasing
rearrangement of f . That is,

f∗(λ) = |{x ∈ Z : |f(x)| ≥ λ}|.

For a slowly varying function φ : [0,∞) → [0,∞), set

∥f∥ℓφ(ℓ) =
∫ ∞

0
f∗(λ)φ(λ) dλ

≃
∑

j∈Z
2jφ(2j)f∗(2j).

For φ(x) = 1, this is comparable to the usual ℓ1 estimate. For f = 1F , note
that

∥f∥ℓφ(ℓ) =
∫ |F |

0
φ(λ) dλ ≃ |F |φ(|F |)

We are interested in φ(x) = (Log x) · Log Log x)t, for t = 1, 2. The proof of
the orlicz norm estimate (1.7) is below.

Proof of (1.7). This argument goes back to at least [23]. Assume that the
weak-type estimate for indicators (1.6) holds. Let f ∈ ℓ(log ℓ)t(log log ℓ) be
a non-negative function of norm one. Set

Bj = {x : 2j ≤ f(x) < 2j+1},

and set bj = f∗(2j). We have

∑

j≤0

2j1Bj
≤ f ≤ 2

∑

j≤0

2j1Bj
.

And, by logarithmic subadditivity for the weak-type norm, and (1.6),

∥A∗f∥1,∞ ≪
∑

j≤0

log(1− j) · 2j∥A∗1Bj
∥1,∞

≪
∑

j≤0

log(1− j) · 2j |Bj |(log|Bj |)t

≪
∑

j≤0

log(1− j) · jt2j |Bj | ≪ ∥f∥ℓ(log ℓ)t(log log ℓ) = 1.

Above, we appealed to |Bj | ≤ 2−j , for otherwise the norm of f is more than
one. □
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the discrete spherical maximal functions, Pure Appl. Anal. 2 (2020),
no. 1, 75–92.

[16] Ben Krause, Mariusz Mirek, and Terence Tao, Pointwise ergodic theo-

rems for non-conventional bilinear polynomial averages, arXiv e-prints
(August 2020), arXiv:2008.00857.

[17] A. Magyar, E. M. Stein, and S. Wainger,Discrete analogues in harmonic

analysis: spherical averages, Ann. of Math. (2) 155 (2002), no. 1, 189–
208.

[18] Mariusz Mirek, Roth’s theorem in the Piatetski-Shapiro primes, Rev.
Mat. Iberoam. 31 (2015), no. 2, 617–656.

[19] , Square function estimates for discrete Radon transforms, Anal.
PDE 11 (2018), no. 3, 583–608.

[20] Mariusz Mirek and Bartosz Trojan, Cotlar’s ergodic theorem along the

prime numbers, J. Fourier Anal. Appl. 21 (2015), no. 4, 822–848.

[21] Maŕıa Cristina Pereyra, Dyadic harmonic analysis and weighted in-

equalities: the sparse revolution, arXiv e-prints (December 2018),
arXiv:1812.00850.

[22] Lillian B. Pierce, On superorthogonality, arXiv e-prints, arXiv:2007.
10249.



✐

✐

“6-Lacey” — 2023/5/4 — 15:47 — page 1791 — #25
✐

✐

✐

✐

✐

✐

Endpoint ℓr improving estimates for prime averages 1791
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