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Let Σg,n be the orientable genus g surface with n punctures, where
2− 2g − n < 0. Let

ρ : π1(Σg,n) → GLm(C)

be a representation. Suppose that for each finite covering map
f : Σg′,n′ → Σg,n, the orbit of (the isomorphism class of) f∗(ρ) un-
der the mapping class group MCG(Σg′,n′) of Σg′,n′ is finite. Then
we show that ρ has finite image. The result is motivated by the
Grothendieck-Katz p-curvature conjecture, and gives a reformula-
tion of the p-curvature conjecture in terms of isomonodromy.

1. Introduction

1.1. The main result

The goal of this paper is to prove a result on mapping class group actions
on character varieties, motivated by questions from algebraic and arithmetic
geometry.

Our main result may be stated purely topologically. Let Σ be an ori-
entable surface (possibly with finitely many punctures and boundary com-
ponents) with χ(Σ) < 0. Note that the mapping class group MCG(Σ) of Σ
has a natural outer action on π1(Σ), and hence acts on the set of isomor-
phism classes of complex representations of π1(Σ).

Theorem 1.1.1. Let

ρ : π1(Σ) → GLm(C)

be a representation. Suppose that for each finite covering map

f : Σ′ → Σ,
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the orbit of (the isomorphism class of) f∗(ρ) under the mapping class group
MCG(Σ′) is finite. Then ρ has finite image.

We will give a proof of Theorem 1.1.1 in Section 3.2.

Remark 1.1.2. Note that if ρ : π1(Σ) → GLm(C) has finite image, then
its orbit under the mapping class group is finite. In general, the converse is
not true; see e.g. [2, Proposition 1.2] or Example 3.3.1 of this paper. See
also [2, Theorem 1.1] for a result related to our Theorem 1.1.1, where the
mapping class group is replaced by Aut(π1(Σ)).

See also [1] for stronger results in the case of representations into
SL2(C).

As a corollary of our main theorem, we have the following purely group-
theoretic statement:

Corollary 1.1.3. Let

ρ : π1(Σ) → GLm(C)

be a representation. Suppose that for each finite index subgroup G ⊂ π1(Σ),
the orbit of (the isomorphism class) of ρ|G under Out(G) is finite. Then ρ
has finite image.

Remark 1.1.4. Note that the analogue of Corollary 1.1.3 is not true for
general groups. For example, let n > 2 and let

ρstd : SLn(Z) → GLn(C)

be the standard representation. For any G ⊂ SLn(Z) of finite index, the orbit
of ρstd|G under Out(G) is a singleton, by e.g. Margulis super-rigidity — but
of course ρstd has infinite image.

Remark 1.1.5. To clarify ideas, we’ll explain the special case where the
representation ρ has rank m = 1, i.e. is given by a map

ρ : π1(Σ) → C∗.

Such a ρ must factor through the abelianization H1(Σ) of π1(Σ). Choosing
a basis for H1(Σ), we see that the set of such ρ is in bijection with

Hom(H1(Σ), (C
∗)) ∼= (C∗)2g ∼= (C/Z)2g

(the second isomorphism being given by a suitably normalized logarithm).



✐

✐

“7-Litt” — 2023/5/4 — 15:49 — page 1795 — #3
✐

✐

✐

✐

✐

✐

Representations with finite mapping class group orbit 1795

The mapping class group acts through its quotient Sp2g(Z) on (C/Z)2g

in the obvious way. In order that ρ be MCG-finite, the corresponding point
of (C/Z)2g must have finite orbit under the action of Sp2g(Z). One verifies
that the only such points are torsion points, i.e. elements of

(Q/Z)2g.

Hence, if ρ is MCG-finite, then it has finite image.

Theorem 1.1.1 and Corollary 1.1.3 are in fact equivalent in the case that
Σ is a closed surface, as in this case MCG(Σ) has finite index in Out(π1(Σ))
by the Dehn-Nielsen-Baer Theorem. The case of surfaces with punctures
(and possibly boundary components) also admits a purely group-theoretic
reformulation, but we omit it here.

For the rest of the introduction, we explain the motivation for this theo-
rem, arising from the p-curvature conjecture, and its implications for isomon-
odromic deformations of flat vector bundles on algebraic curves.

1.2. The algebro-geometric setting

Let C be smooth proper algebraic curve over the field of complex num-
bers, and let D ⊂ C be a finite set. The Riemann-Hilbert correspondence
is an equivalence of categories between the category of algebraic flat vector
bundles with regular singularities at infinity on C \D, (that is, flat vector
bundles on C \D which extend to objects of the category

MIC(C(logD))

of vector bundles with flat holomorphic connection

(E ,∇ : E → E ⊗ Ω1
C(logD))

on C) and the category LocSys(C \D) of complex local systems on C \D. If
we choose a base-point x ∈ C, then monodromy gives an equivalence of both
categories above with the category RepC(π1(C \D,x)) of representations

ρ : π1(C \D,x) → GLn(C)

of the topological fundamental group of C. Let ρE ,∇ be the representation
associated to a flat vector bundle (E ,∇).
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Consider the relative situation, where we have a family π : C → S of
smooth proper curves over a smooth base S, which we take to be a scheme
over C. Locally for the complex topology, we can choose a section x : S → C,
and (the isomorphism class of) the fundamental group of the fiber is locally
constant on S. If we are given a base-point s0 ∈ S, and a vector bundle with
connection

(E0,∇0 : E0 → E0 ⊗ Ω1
C)

on the fiber C0 = Cs0 , there is a unique (up to canonical isomorphism) ana-
lytic deformation

(E ,∇ : E → E ⊗ Ω1
C/S)

of (Ean
0 ,∇an

0 ) to a relative flat vector bundle on π−1(U), where U ⊂ S is any
contractible analytic open set containing s0, such that (the isomorphism
class of) the corresponding representation ρ of the fundamental group is
constant. Explicitly, as U is contractible, π−1(U) is naturally homotopy
equivalent to C0, so the composition

π1(π
−1(U))

∼
→ π1(C0)

ρE,∇0−→ GL(Ex(s0))

yields a local system on π−1(U), hence an (analytic) flat vector bundle. We
call this the isomonodromic deformation of (E0,∇0). Such isomonodromic
deformations are sometimes referred to as flat sections to the non-abelian
Gauss-Manin connection.

Typically, if S is not simply connected, the isomonodromic deformation
does not extend to all of C/S, even after étale base change. If it does, we
say that (E ,∇) admits an algebraic isomonodromic deformation.

Definition 1.2.1. Let (E ,∇) be a flat vector bundle on a smooth proper
curve C of genus g > 1. Let Cg → Mg be the universal curve over the
Deligne-Mumford moduli stack of genus g curves. We say (following [3])
that (E ,∇) admits a universal algebraic isomonodromic deformation if there
exists an étale U → Mg containing [C] in its image such that (E ,∇) admits
an isomonodromic deformation to U ×Mg

Cg.

By e.g. [3, Theorem A], (E ,∇) admits a universal algebraic isomon-
odromic deformation if and only if the orbit of ρE ,∇ under the mapping
class group of C is finite. (See Section 2.4 of [3] for an extension of these
notions to the case of non-proper curves.)

Thus, using the Riemann existence theorem, Theorem 1.1.1 for surfaces
without boundary admits a purely algebro-geometric statement:
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Theorem 1.2.2. Let C be a curve over C with χ(C) < 0, and let (E ,∇) be
a flat vector bundle on C. Suppose that for all finite étale maps of curves f :
C ′ → C, f∗(E ,∇) admits a universal algebraic isomonodromic deformation.
Then (E ,∇) has finite monodromy.

1.3. The arithmetic setting and the p-curvature conjecture

The authors became interested in isomonodromic deformations by way of
the Grothendieck-Katz p-curvature conjecture [6]. The strategy is based on
an idea of Kisin, and is closely related to work of Papaioannou [9], Shankar
[14], and Patel-Shankar-Whang [11]. Given a vector bundle with connection
(E ,∇) on a curve C over an arbitrary field, we say that (E ,∇) admits a full
set of algebraic sections if there exist some curve C ′ and finite map C ′ → C
such that the pullback of (E ,∇) to C ′ is spanned as an OC′-module by flat
global sections.

Let K be a finitely-generated field of characteristic zero, and take C and
(E ,∇) as above. We can spread this picture out to some integral domain
R ⊂ K with Frac(R) = K, and reduce modulo any maximal ideal m of R.
Let (Cm,Em,∇m) denote the base change of the spreading-out of (C,E ,∇)
to R/m.

Conjecture 1.3.1 (The p-curvature conjecture, Grothendieck-
-Katz). In order that (E ,∇) admit a full set of algebraic sections, it is
necessary and sufficient that (Em,∇m) admit a full set of algebraic sections
for all m in a non-empty open subset of Spec(R).

Note that the hypothesis is independent of the chosen spreading-out,
and that necessity above is clear. See [6] for a discussion of Conjecture 1.3.1,
and a proof in the case (E ,∇) arises from the de Rham cohomology of a
family of varieties over C, endowed with the Gauss-Manin connection.

The authors’ main motivation for this paper is the observation that the
hypothesis of the p-curvature conjecture (namely that (Em,∇m) admit a full
set of algebraic sections for all m in a non-empty open subset of Spec(R))
is stable under pullback. In particular, Theorem 1.2.2 suggests the follow-
ing reformulation of the p-curvature conjecture, in terms of the so-called
non-abelian Gauss-Manin connection (i.e. isomonodromic deformation). Let
C,K,E ,∇ be as above. Choose an embedding K →֒ C.

Conjecture 1.3.2. If (Em,∇m) admit a full set of algebraic sections for
all m in a non-empty open subset of Spec(R), then the flat vector bundle
(E ,∇)C on CC admits a universal algebraic isomonodromic deformation.
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Conjectures 1.3.1 and 1.3.2 are equivalent by Theorem 1.2.2, and the
well-known fact that the p-curvature conjecture may be reduced to the case
of smooth proper curves of genus at least 2.

Remark 1.3.3. Let X /OK,S be a smooth proper curve over the ring of
S-integers of a number field K, and let (E ,∇) be an arithmetic DX /OK,S

-
module on X (this condition is a priori much stronger than the hypotheses
of the p-curvature conjecture). Then one can use the main result of [14] to
see that the analogue of Conjecture 1.3.2 for such (E ,∇) implies finiteness
of monodromy.

Remark 1.3.4. To connect our work to the p-curvature conjecture, one
would like to know something about the behavior of p-curvature under
isomonodromic deformation. Unfortunately, it seems very difficult to say
anything concrete here. For instance, one might like to say that the condition
of vanishing p-curvature is preserved under isomonodromic deformation. But
it’s not clear how to make sense of this statement, since isomonodromic de-
formations don’t in general exist integrally.

1.4. Plan of the proof of Theorem 1.1.1

The argument is a proof by induction on the dimension of the representation.
Roughly speaking, if there is some γ ∈ π1(C) such that ρ(γ) is not of finite
order, we pass to a finite cover, make γ a simple closed curve, and cut along
γ. After cutting, we show that the representation ρ becomes reducible, so
we can reduce the problem to a lower-dimensional case (on the cut surface).
If there is no such γ, we conclude by Lemma 3.1.3.

1.5. Questions

Our proof of Theorem 1.1.1 is geometric; Corollary 1.1.3 suggests that one
might look for a purely group-theoretic proof. More generally, one might ask
for an intrinsic characterization of those groups for which the analogue of
Corollary 1.1.3 holds true.

Definition 1.5.1 (Locally Extended Residually Finite (LERF)). A
group G is said to be Locally Extended Residually Finite (LERF) if for ev-
ery finitely-generated subgroup H ⊂ G, H is closed in the profinite topology
on G.
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Question 1.5.2. Suppose G is finitely-generated and LERF. Let

ρ : G → GLn(C)

be a representation such that for each finite-index subgroup H ⊂ G, the orbit
of the isomorphism class of ρ|H under Out(H) is finite. Does ρ necessarily
have finite image?

Note that Scott shows that surface groups are LERF [13]; this fact is
crucially used in the proof of Theorem 1.1.1.

The next question was suggested to us by Junho Peter Whang; it asks
whether, when the genus is large compared to the rank, we can eliminate
the finite covers Σ′ from the statement of Theorem 1.1.1. A positive answer
for SL2 is given by [1].

Question 1.5.3. Suppose m is a positive integer. Is the following statement
true for all Σ of sufficiently large genus: For any representation

ρ : π1(Σ) → GLm(C),

if the orbit of (the isomorphism class of) f∗(ρ) under the mapping class
group MCG(Σ) is finite, then ρ has finite image?

Finally, we propose two variants on our main theorem; we suspect both
are true, and could be proven by similar methods, but we have not verified
either.

Question 1.5.4. Does the statement of Theorem 1.1.1 remain true, if Σ′

is instead allowed to range over all branched covers of Σ of degree 2?

Question 1.5.5. (Junho Peter Whang) Suppose

ρ : π1(Σ) → GLm(C)

is an absolutely irreducible representation, such that for each finite covering
map

f : Σ′ → Σ,

the orbit of (the isomorphism class of) f∗(ρ) under the mapping class group
MCG(Σ′) has compact closure in the character variety classifying conjugacy
classes of maps π1(Σ

′) → GLm(C). Must ρ be unitarizable? (See [15] for the
definition and properties of character variety.)
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2. MCG-finiteness

2.1. Definitions

Let Σ be an orientable surface, possibly with boundary/punctures; let p ∈ Σ
be a point. Let MCG(Σ) be the mapping class group of Σ. (See [5, Sec-
tion 2.1] for a discussion of mapping class groups. In particular, recall that
an element of MCG(Σ) must fix ∂Σ point-wise, but may permute punc-
tures.)

The natural map

MCG(Σ) → Out(π1(Σ, p))

induces an action of MCG(Σ) on the set of isomorphism classes of repre-
sentations of π1(Σ, p), as we now explain.

We say that two representations

ρ1, ρ2 : π1(Σ, p) → GLr(C)

are isomorphic if there is some g ∈ GLr(C) such that ρ2 = gρ1g
−1.

Any mapping class in MCG(Σ) has a representative T : Σ → Σ that
fixes the basepoint p. Then T gives an automorphism π1(T ) of π1(Σ); we
denote by T ∗ρ the representation of π1(Σ) obtained by precomposing ρ with
π1(T ). If T

′ is another representative of the same mapping class, also fixing
p, then T ′ and T agree up to an inner automorphism of π1(T ), so (T ′)∗ρ is
isomorphic (i.e. conjugate) to T ∗ρ.

Definition 2.1.1. Say a representation

ρ : π1(Σ, p) → GLr(C)

is MCG-finite if the orbit of its isomorphism class under the action of
MCG(Σ) is finite.

Say ρ is universally MCG-finite if, for any finite covering map Σ′ → Σ,
its pullback to Σ′ is MCG-finite.

Remark 2.1.2. One way to produce MCG-finite representations is as fol-
lows. Let Σ be a closed orientable surface, p ∈ Σ a point, and consider the
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Birman exact sequence

1 → π1(Σ, p) → MCG(Σ \ p) → MCG(Σ) → 1.

Then if ρ : MCG(Σ \ p) → GLm(C) is any representation, ρ|π1(Σ,p) is MCG-
finite, by the normality of π1(Σ, p) in MCG(Σ \ p). See Example 3.3.1 for an
example of a representation ρ of MCG(Σ \ p) such that ρ|π1(Σ,p) has infinite
image.

Our goal in this paper is to show that universally MCG-finite represen-
tations have finite image.

In order to prove this result, we will need a refined notion of universal
MCG-finiteness for surfaces obtained by cutting a given surface along special
collections of simple closed curves.

Definition 2.1.3. Let Σ be an orientable surface, possibly with bound-
ary/punctures. Let γ1, · · · , γr be disjoint simple closed curves on Σ. We say
that {γ1, · · · , γr} are not jointly separating if Σ \

⋃
i γi is connected.

Figure 1: The surfaces Σ and Σcut.

Suppose Σ is an orientable surface and {γ1, · · · , γr} is a collection of
disjoint curves in Σ. Then we define Σcut(γ1, · · · , γr) to be the surface with
with boundary obtained by removing an ϵ-neighborhood of

⋃
i γi from Σ.

Definition 2.1.4. Let Σ be an orientable surface, possibly with bound-
ary/punctures. Let (γ1, · · · , γr) be a collection of simple closed curves in
Σ which are not jointly separating, with r ≥ 0. Then a representation

ρ : π1(Σcut(γ1, · · · , γr)) → GLm(C)

is universally MCG-finite relative to Σ if for each finite covering space f :
Σ′ → Σ, and each connected component X of Σ′

cut(f
−1(γ1), · · · , f

−1(γr)),
the representation ρ|π1(X) is MCG-finite.

We will in fact prove a version of Theorem 1.1.1 in the relative setting:
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Theorem 2.1.5. Let Σ be an orientable surface, possibly with bound-
ary/punctures. Let (γ1, · · · , γr) be a collection of simple closed curves in Σ
which are not jointly separating. Suppose that χ(Σcut(γ1, · · · , γr)) < 0 and
let

ρ : π1(Σcut(γ1, · · · , γr)) → GLm(C)

be a representation which is universally MCG-finite relative to Σ. Then ρss

has finite image.

Here ρss is the semi-simplification of ρ.
Theorem 1.1.1 will follow from Theorem 2.1.5 by Lemma 2.2.6; the mod-

ified statement of Theorem 2.1.5 is more amenable to geometric construc-
tions, e.g. to cutting the surface in question.

It is not clear to us whether semi-simplification is necessary in Theo-
rem 2.1.5.

Question 2.1.6. Let Σ be an orientable surface, possibly with bound-
ary/punctures. Let (γ1, · · · , γr) be a collection of simple closed curves in Σ
which are not jointly separating. Suppose that χ(Σcut(γ1, · · · , γr)) < 0 and
let

ρ : π1(Σcut(γ1, · · · , γr)) → GLm(C)

be a representation which is universally MCG-finite relative to Σ. Does ρ
necessarily have finite image?

2.2. Basic properties of MCG-finiteness

Lemma 2.2.1. The following hold:

• The semi-simplification of an MCG-finite representation is MCG-
finite.

• Any sub-quotient of the semi-simplification of an MCG-finite repre-
sentation is MCG-finite.

• Let Σ be an orientable surface, possibly with boundary/punctures. Let
(γ1, · · · , γr) be a collection of simple closed curves in Σ which are
not jointly separating. Then any sub-quotient of the semi-simplification
of a representation of π1(Σcut(γ1, · · · , γr)) which is universally MCG-
finite relative to Σ is universally MCG-finite relative to Σ.
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Proof. The first statement follows from the fact that for representations
V,W , we have V ss ≃ W ss if V ≃ W ; thus, if the mapping class group orbit
of V is finite, then the same is true of V ss.

To see the second statement, take V an MCG-finite representation and
W a sub-quotient of V ss. Then for any T ∈ MCG(Σ), we know that T ∗W
is a sub-quotient of T ∗V ss. The set of sub-quotients of {T ∗V ss}m∈Z is finite
by MCG-finiteness; hence there are only finitely many possibilities for T ∗W ,
as desired.

The third claim is proved in exactly the same way. □

Next we will see that the property of universal MCG-finiteness is pre-
served when we cut Σ along a non-separating simple curve γ.

Lemma 2.2.2. Let Σ be an orientable surface, possibly with boundary, and
let (γ1, · · · , γr, · · · , γs) be a collection of disjoint simple closed curves on Σ
which are not jointly separating. Suppose ρ : π1(Σcut(γ1, · · · , γr)) → GL(V )
is universally MCG-finite relative to Σ (or, if r = 0, that ρ is universally
MCG-finite). Then the restriction ρ|Σcut(γ1,··· ,γs) is universally MCG-finite
relative to Σ.

Proof. This is immediate from the definitions. Indeed, let f : Σ′ →
Σ be any finite covering map, and let X be a component of
Σ′
cut(f

−1(γ1), · · · , f
−1(γs)). Then any mapping class onX extends to a map-

ping class on Σ′ (recall that mapping classes on surface with boundary must
fix the boundary, by definition). The result follows. □

Next we’ll work out a concrete consequence of MCG-finiteness. Suppose
ρ is MCG-finite, and let γ be a simple closed curve on Σ, not passing through
the base-point p. Consider the Dehn twist Tγ . MCG-finiteness implies that
for some m > 0, there is an isomorphism

(1) (Tm
γ )∗ρ ∼= ρ.

The explicit geometric construction of the Dehn twist Tγ gives a bona
fide automorphism (not just an outer automorphism) of π1(Σ, p). Hence,
there is a preferred choice of isomorphism between the underlying vector
spaces of (Tm

γ )∗ρ and ρ; we’ll use this isomorphism without comment in
what follows.

The data of the isomorphism (1) is the same as that of a linear map
g : V

∼
→ V , intertwining the actions of π1(Σ, p) via (Tm

γ )∗ρ and ρ — we call
g an “intertwining operator.” Thus we have shown:
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Lemma 2.2.3. Suppose ρ is MCG-finite and γ is a simple closed curve on
C. Then there exist a positive integer m and an automorphism g of V such
that, for every δ ∈ π1(Σ, p), we have

ρ(Tm
γ δ) = gρ(δ)g−1.

Note that if ρ is simple, the intertwining operator g above is unique up
to scaling, by Schur’s lemma.

Definition 2.2.4. Let (Σ, p) be an orientable surface, possibly with bound-
ary/punctures. We denote by H1(Σ) = H1(Σ,Z) the homology of Σ with
integral coefficients.

Let H1(Σ) denote the quotient of H1(Σ) by the span of classes of bound-
ary components and loops around punctures.

We say that γ ∈ π1(Σ, p) is nontrivial modulo boundary (in H1(Σ)) if
the class of γ in H1(Σ) is non-trivial.

Remark 2.2.5. Note that H1(Σ) is naturally identified with the first ho-
mology of the compact orientable surface without boundary obtained by filling
in the punctures of Σ and gluing caps onto the boundary components of Σ. In
particular, H1(Σ) has a well-defined intersection product ⟨−,−⟩; we abuse
notation and denote the induced product on H1(Σ) (which is in general no
longer non-degenerate) via ⟨−,−⟩ as well.

We now show that the property of having finite image is preserved under
extensions of universally MCG-finite representations.

Lemma 2.2.6. Suppose χ(Σ) < 0, and ρ : π1(Σ) → GL(V ) fits in an exact
sequence of representations

0 → ρ1 → ρ → ρ2 → 0,

where ρ1 and ρ2 have finite image, and suppose ρ itself is universally MCG-
finite. Then ρ has finite image.

Proof. Let V1 be the vector space underlying ρ1 and V2 = V/V1 the vector
space underlying ρ2. By passing to a finite cover of Σ, we may assume ρ1
and ρ2 are in fact trivial.

The representation ρ : π1(Σ, p) → GL(V ) factors through the group

AutV1,V2
(V )

of automorphisms g of V fixing V1 and acting trivially on both V1 and V2.
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Given f ∈ Hom(V2, V1), let f̄ : V → V be the composition

V ↠ V2
f
→ V1 →֒ V.

It is a standard fact from linear algebra that the map f 7→ f̄ + Id is an
isomorphism

Hom(V2, V1) ∼= AutV1,V2
(V ).

Hence the representation ρ has abelian image, so it factors through a
homomorphism

σΣ : H1(Σ) → Hom(V2, V1).

The same remains true if we pull back to any finite cover Σ′ → Σ, and the
resulting diagram

σΣ′ : H1(Σ
′) //

��

Hom(V2, V1)

=

��

σΣ : H1(Σ) // Hom(V2, V1)

commutes.
It suffices to show that σΣ is identically zero. Assume for a contradiction

that σΣ ̸= 0. Then it is possible to produce a cover Σ′ and two classes γ1, γ2 ∈
H1(Σ

′) such that

• σΣ′(γ1) ̸= 0

• σΣ′(γ2) = 0

• γ1 and γ2 have intersection number ⟨γ1, γ2⟩ = i ̸= 0.

• γ1 is represented by a simple closed loop.

To see this, we first choose some nontrivial cover Σ′ of Σ so that
genus(Σ′) > genus(Σ) (using that χ(Σ) < 0), and let γ2 be a class in H1(Σ

′),
nontrivial modulo boundary, and in the kernel of the H1(Σ

′) → H1(Σ).
Then, we choose a simple closed loop γ1 in Σ′ whose class in H1(Σ

′) sat-
isfies: σΣ′(γ1) ̸= 0 and ⟨γ1, γ2⟩ ≠ 0. This is possible as the set of γ failing one
of these conditions is a union of two proper linear subspaces of H1(Σ

′), and
thus does not contain every primitive element in H1(Σ

′); but any primitive
element is represented by a simple closed loop by e.g. [5, Proposition 6.2].
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Now apply Lemma 2.2.3 to the Dehn twist Tγ1
. We find some m such

that

(Tm
γ1
)∗ρ ∼= ρ

and hence

(Tm
γ1
)∗σΣ′ = σΣ′ .

On the other hand, we have

σΣ′(γ2) = 0

and

(Tm
γ1
)∗σΣ′(γ2) = σΣ′(γ2γ

im
1 ) = σΣ′(γim1 ) ̸= 0,

so the two representations (Tm
γ1
)∗ρ and ρ cannot be isomorphic. This is our

desired contradiction. □

Remark 2.2.7. We do not know if an analogue of Lemma 2.2.6 holds in
the relative setting.

3. Proof of Theorems 1.1.1 and 2.1.5

Before proceeding to the proof of Theorem 1.1.1, we record a few useful
lemmas.

3.1. Some useful lemmas

First, we prove some variants on a lemma that appears in [16] (Proposition
2.5).

Recall that a matrix is called quasi-unipotent if some power of it is
unipotent.

Lemma 3.1.1. Let ρ : G → GL(V ) be a representation of a finitely-
generated group on a complex vector space. Suppose that for every g ∈ G,
the transformation ρ(s) is quasi-unipotent. Then the semisimplification ρss

has finite image.

Proof. First, suppose ρ is simple, so ρ(G) spans the algebra End(V ) as a
C-vector space, by Burnside’s Theorem [4, Theorem 27.4]. Let g1, . . . , gn2
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be elements in G such that {ρ(gi)} forming a basis for End(V ), and let
e1, . . . , en2 be the dual basis under the trace pairing. For g ∈ G, we have

ρ(g) =
∑

i

Tr(ρ(gi)
−1ρ(g))ei.

By the proof of [16, Lemma 2.4], Tr(g) takes on only finitely many values
as g ranges over all elements of G. We conclude that ρ(G) is finite.

The general result follows immediately from the simple case. □

Lemma 3.1.2. Let G be a finitely-generated group, and H ⊆ G a subgroup
of finite index. Suppose ρ : G → GL(V ) is a representation such that (ρ|H)ss

has finite image. Then ρss also has finite image.

Proof. We know that ρ(g) is quasi-unipotent for g ∈ H. Now let g ∈ G be
arbitrary; there exists some n > 0 such that gn ∈ H. Since ρ(g)n is quasi-
unipotent, ρ(g) itself is as well. We conclude by Lemma 3.1.1 that ρss has
finite image. □

Lemma 3.1.3. Let (Σ, p) be a pointed orientable surface (possibly with
punctures or boundary), and let ρ : π1(Σ, p) → GL(V ) be a simple represen-
tation of π1(Σ, p) on a complex vector space. (Here simple means that V has
no proper nontrivial ρ-stable subspace W .)

Assume that Σ has genus at least 1. Suppose that, for every γ ∈ π1(Σ, p)
nontrivial modulo boundary in H1(Σ) (Def. 2.2.4), ρ(γ) is quasi-unipotent.
Then ρ has finite image.

Proof. Let G = π1(Σ, p).
Since ρ is simple, ρ(G) spans the algebra End(V ) as a C-vector space. Let

g1, . . . , gn2 be elements in G such that {ρ(gi)} forming a basis for End(V ),
and let e1, . . . , en2 be the dual basis under the trace pairing. For g ∈ G, we
have

ρ(g) =
∑

i

Tr(ρ(gi)
−1ρ(g))ei.

Let Γ ⊂ G be the subset consisting of those elements γ ∈ G such that
g−1
i γ is non-trivial mod boundary for all i.

By the proof of [16, Lemma 2.4], Tr(γ) takes on only finitely many values
as γ ranges over all elements of π1(Σ, p) nontrivial modulo boundary in H1.
Thus there is a finite subset G0 ⊆ EndV such that, if γ is contained in Γ,
then in fact ρ(γ) ∈ G0.
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Now we claim that any γ can be written as a product γ = γ1γ2, with in
γ1, γ2 ∈ Γ. Let ḡj be the image of gj in H1(C). It is enough to show that any
h ∈ H1(Σ) can be written as h = h1 + h2, where hj − ḡi has non-zero image
in H1(Σ) for all i, j. But now we may choose h1 to be any element of H1(Σ)
whose image in H1(Σ) is not equal to that of ḡi or h− ḡi for any i, and set
h2 = h− h1.

We conclude that ρ(G) ⊆ G0G0, so ρ(G) is finite. □

Corollary 3.1.4. Let (Σ, p) be a pointed orientable surface (possibly with
punctures or boundary), and let ρ : π1(Σ, p) → GL(V ) be any representation
of π1(Σ, p) on a complex vector space.

Assume that Σ has genus at least 1. Suppose that, for every γ ∈ π1(Σ, p)
nontrivial modulo boundary in H1(Σ), ρ(γ) is quasi-unipotent. Then the
semi-simplification ρss of ρ has finite image.

Proof. Immediate from Lemma 3.1.3. □

Not every class γ ∈ π1(Σ, p) can be represented by a simple curve (i.e.
a curve with no self-intersection). But any γ becomes a simple curve after
pullback to a cover.

The result we need is a simple application of a theorem of Scott [13,
Theorem 3.3]. Scott’s theorem allows one to find covers such that a given
curve lifts to a simple closed curve; we observe that one may do so while
keeping it disjoint from a collection of other curves. (A detailed exposition
of Scott’s proof may be found in [12].)

Lemma 3.1.5. Let (Σ, p) be a pointed orientable surface with χ(Σ) < 0,
and γ1, . . . , γr simple closed curves on Σ, not passing through p and not
jointly separating. Suppose γ ∈ π1(Σ, p) is represented by a closed curve that
is disjoint from γ1, . . . , γr.

Then there exists a finite cover f : (Σ′, p′) → (Σ, p) such that the sub-
group π1(Σ

′, p′) ⊆ π1(Σ, p) contains γ, and the class γ ∈ π1(Σ
′, p′) is repre-

sented by a simple closed curve, disjoint from the curves f−1(γi).

Proof. Scott’s theorem ([13, Theorem 3.3]) shows that there is some
f : (Σ′, p′) → (Σ, p) such that γ ∈ π1(Σ

′, p′) is represented by a simple closed
curve in Σ′. We need to show that γ may be taken to avoid the curves
f−1(γi).

We can put a hyperbolic metric on Σ′ in such a way that each γi is a
geodesic. The universal cover Σ̃ of Σ′ is a convex region in the hyperbolic
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plane H, bounded by lines. (If Σ – hence Σ′ – has no boundary components,
then the universal cover is all of H. See [12, end of §5].)

The curves γi lift to lines in Σ̃ ⊆ H; let L be the union of these lines,
and let X be the connected component of p in Σ̃− L. Again, X is a convex
region in H, bounded by a union of lines.

The fundamental group of Σ′ acts on the universal cover Σ̃ by deck
transformations, which extend to translations of H. Let g be the translation
of H corresponding to γ. Since γ is represented by a curve in Σ that avoids
the curves γi, we find that gnp′ ∈ X for all n ∈ Z. The translation g acts on
∂H with two fixed points g±∞p′. By a limiting argument, both these fixed
points lie in ∂X, so the geodesic ℓ between them lies in X.

Now ℓ descends to a curve isotopic to γ in Σ′; this is again a simple
closed curve by [5, Proposition 1.6], and it avoids the curves f−1(γi) by
construction. □

Finally, we observe:

Lemma 3.1.6. Let V be a complex vector space, and let g ∈ GL(V ) be an
element not equal to a scalar matrix. Then there exists a nontrivial proper
subspace W ⊂ V such that, if h ∈ GL(V ) commutes with g, then h stabi-
lizes W .

Proof. Take W to be any nontrivial eigenspace for any eigenvalue of g. □

3.2. Proof of the main theorem

We may now proceed with the proof of our main result. First we prove the
result for relatively universally MCG-finite representations.

Proof of Theorem 2.1.5. For the reader’s convenience, we briefly recall the
theorem we are trying to prove. Namely, let Σ be an orientable surface, pos-
sibly with boundary/punctures, and let γ1, . . . , γr be disjoint simple closed
curves on Σ, not jointly separating. Let p ∈ Σcut(γ1, · · · , γr) be a point.
Suppose π1(Σcut(γ1, · · · , γr), p) is nonabelian, and we have a representation

ρ : π1(Σcut(γ1, · · · , γr), p) → GL(V )

that is universally MCG-finite relative to Σ. Then we wish to show that the
semi-simplification ρss of ρ has finite image.

Write Σcut = Σcut(γ1, · · · , γr). We will proceed by induction on the rank
of ρ.
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By Lemma 3.1.2, there is no harm in passing to a finite cover of Σ. Hence
we may assume that Σcut is of genus at least 2.

Let S ⊆ π1(Σcut, p) be the set of elements that are nontrivial modulo
boundary in H1(Σcut). We will show that for γ ∈ S, ρ(γ) is quasi-unipotent.

Fix γ ∈ S. Pulling back to a further finite cover Σ′ of Σ, we may assume
by Lemma 3.1.5 that γ is isotopic to a simple closed curve γr+1, such that
γ1, . . . , γr+1 are not jointly separating in Σ (as γ is non-trivial mod boundary
in Σcut).

By Lemma 2.2.3, there exist a positive integer m and an automorphism
g of V such that, for every δ ∈ π1(Σcut, p), we have

ρ(Tm
γr+1

δ) = gρ(δ)g−1.

First, assume g is a scalar matrix. Then we have

ρ(Tm
γr+1

δ) = ρ(δ)

for all δ. Taking δ a curve in Σcut which meets γr+1 exactly once, and is
transverse to γr+1 at that point (possible because γr+1 is non-separating),
we have

ρ(δ)ρ(γr+1)
m = ρ(δγmr+1) = ρ(Tm

γr+1
δ) = ρ(δ)

and we find that

ρ(γr+1)
m = 1,

as desired. In particular, if dim(V ) = 1, g is always a scalar matrix, and so
we may conclude the base case of the induction.

Now, assume g is not a scalar matrix. Let Σ′
cut be the surface obtained

from Σcut by cutting along γr+1, with base-point p not on one of the bound-
ary components coming from γr+1. Since γr+1 is a non-separating closed
curve, and Σcut has genus at least 2, Σ

′
cut is again a surface with nonabelian

π1, and our local system on Σcut pulls back to a local system on Σ′
cut.

The representation

ρ|π1(Σ′
cut,p) : π1(Σ

′
cut, p) → GL(V )

factors through the centralizer of g, as π1(Σ
′
cut, p) is generated by a loop

isotopic to γr+1 and by loops in Σ not intersecting γr+1. By Lemma 3.1.6,
there is thus a non-trivial proper subspace W ⊂ V which is stable under this
representation.

By Lemma 2.2.2, ρ|π1(Σ′
cut,p) is universally MCG-finite relative to Σ′.

Hence by Lemma 2.2.1,W ss and (V/W )ss are universally MCG-finite relative
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to Σ′ and thus by the inductive hypothesis, the representations on W ss and
(V/W )ss have finite image. Thus ρ(γr+1) is quasi-unipotent.

Now we conclude the result by Corollary 3.1.4. □

We now deduce the main result of the paper.

Proof of Theorem 1.1.1. By Theorem 2.1.5, ρss has finite image. Now we
may conclude by Lemma 2.2.6, by induction on the number of components
in the composition series for ρ. □

3.3. An example: the Parshin representation

In the course of proving Theorem 1.1.1, we also prove the following inter-
mediate result.

Suppose

ρ : π1(Σ, p) → GL(V )

is MCG-finite, and γ is some simple closed non-separating curve in Σ. Let
Σcut be the surface obtained by cutting Σ along γ. Take m such that

(Tm
γ )∗ρ ∼= ρ,

and let

g : V → V

be an intertwining operator such that

ρ(Tm
γ δ) = gρ(δ)g−1.

Then for any δ disjoint from γ, ρ(δ) must commute with g. In particular,
if g is not a scalar matrix, then the restriction of ρ to Σcut is reducible.

As an example, we’ll see what this looks like for ρ the Parshin representa-
tion. The idea goes back to Kodaira and Parshin [10, Appendix]; an explicit
construction with the properties we describe is given in [8, Section 7].

Example 3.3.1. Let Σ = C be a complex algebraic curve of genus at least
2, and let p be a point of C. There are finitely many isomorphism classes
of degree-3 covers Y i

p of C, branched at p and nowhere else, and having
Galois group S3. There is an algebraic family π : Y → C whose fiber over
any point p ∈ C(C) is the disjoint union of the curves Y i

p . Let Y → C ′ → C
be the Stein factorization of π. The cohomology of this family R1π∗(CY )
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gives a local system on C; the corresponding representation ρ is exactly the
monodromy representation of π1(C) on the cohomology of a fiber.

First, note that ρ is MCG-finite, as by construction it extends to a rep-
resentation of MCG(C \ {p}) (see Remark 2.1.2).

Next, note that ρ is virtually reducible: on a finite-index subgroup of
π1(C) (namely, π1(C

′)), it splits up as a direct sum of the H1(Y i
p ). Each

H1(Y i
p ) is virtually irreducible; this follows from the big monodromy result

[8, Lemma 4.3]. In particular, ρ has infinite image; it is thus not universally
MCG-finite.

Now fix a simple closed curve γ on C, not passing through p, and take m
sufficiently divisible. Then γm lifts to a disjoint union of simple closed curves
on each cover Y i

p . Thus Tm
γ acts unipotently, as a product of commuting

Dehn twists.
The corresponding g is also unipotent: it’s given by the action of a Dehn

twist about γ, as an element of MCG(C).
Let Vi be the subspace of H1 dual to the subspace of H1 spanned by the

components of the lift of γm to Y i
p . Then

∑
i Vi (the direct sum of the Vi) is

a g-stable subspace of ρ|π1(Σcut).
In particular, we see that ρ|π1(Σcut) is reducible, as expected.

3.4. An example from topological quantum field theory

Unlike universally MCG-finite representations, MCG-finite representations
can be quite interesting.

Example 3.4.1. In [7, Thm. 1.1], Koberda and Santharoubane construct
representations ρ of π1(Σ) with the following properties:

• ρ has infinite image.

• ρ(γ) has finite order, for any simple closed curve γ.

• ρ is MCG-fixed ([7, §1.2]).

This example is particularly relevant to the strategy outlined in the
introduction for proving the p-curvature conjecture; it shows that it does
not suffice to study the monodromy of simple closed loops in a surface.
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3.5. An example: a unipotent, MCG-finite representation

We conclude with an example philosophically relevant to Question 2.1.6.
Namely, for every surface Σ with χ(Σ) < 0, we observe that there exist non-
trivial unipotent representations of the fundamental group of Σ which are
stable under the action of the mapping class group of Σ.

Example 3.5.1. Let Σ be a surface with χ(Σ) < 0, and let p ∈ Σ be a
point, so that π1(Σ, p) is non-abelian. Let Q[π1(Σ, p)] be the group algebra
of Σ and I ⊂ Q[π1(Σ, p)] the augmentation ideal. Then we claim that for
any n > 1, the representation of π1(Σ, p) on Vn := Q[π1(Σ, p)]/I

n induced
by the action of π1(Σ) on itself by conjugation is non-trivial, unipotent, and
fixed by the action of the mapping class group.

Indeed, direct computation shows that these representations are non-
trivial; they are unipotent as for each i, the action of π1(Σ) on I i/I i+1 is
trivial. Finally, these representations are MCG-finite (indeed, they are fixed
by MCG(Σ)) by Remark 2.1.2, as each Vn is naturally a representation of
MCG(Σ \ p).
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