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Kodaira dimension and zeros of

holomorphic one-forms, revisited

Mads Bach Villadsen

We give a new proof that every holomorphic one-form on a smooth
complex projective variety of general type must vanish at some
point, first proven by Popa and Schnell using generic vanishing
theorems for Hodge modules. Our proof relies on Simpson’s results
on the relation between rank one Higgs bundles and local systems
of one-dimensional complex vector spaces, and the structure of the
cohomology jump loci in their moduli spaces.

1. Introduction

In [5], Popa and Schnell showed that any holomorphic one-form on a smooth
projective variety of general type must vanish at some point, a conjecture
of Hacon-Kovács and Luo-Zhang [2, 4]. Wei [10] later gave a slightly simpli-
fied argument (as well as a generalization to log-one-forms). Both proofs use
the decomposition theorem and various vanishing theorems for Hodge mod-
ules. We give a new approach using only classical Hodge theory, namely the
rank one case of Simpson’s correspondence between Higgs bundles and local
systems, and his results on the structure of cohomology jump loci of local
systems. Our approach should thus be much more accessible than either of
the two previous proofs.

As in [5], we will prove the following more precise result.

Theorem 1.1 ([5, Theorem 2.1]). Let X be a smooth complex projective

variety and f : X → A a morphism to an abelian variety. If

H0(X,ω⊗d
X ⊗ f∗L−1) ̸= 0

for some d ≥ 1 and some ample line bundle L on A, then for every holo-

morphic one-form ω on A, the pullback f∗ω vanishes at some point of X.
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The following conjecture of Luo and Zhang [4] follows as in [5]. For
varieties of general type, this shows that every holomorphic one-form must
vanish at some point.

Corollary 1.2 ([5, Conjecture 1.2]). Let X be a smooth complex pro-

jective variety and W ⊆ H0(X,Ω1
X) be a linear subspace such that every

element of W \ {0} is everywhere non-vanishing. Then dimW ≤ dimX −
κ(X).

Our proof of Theorem 1.1 goes as follows. Let V = H0(A,Ω1
A) and

Zf = {(x, ω) ∈ X × V | f∗ω(TxX) = 0}.

The goal is to show that the restriction of the projection p2 : X × V → V to
Zf is surjective.

We borrow the idea in [5], going back to work of Viehweg-Zuo [9], of
constructing two separate sheaves on V . The first is an ambient sheaf coming
from a cyclic cover of X, which we will show to be locally free. The second
is a non-zero subsheaf coming from X and supported on p2(Zf ). As the
subsheaf is necessarily torsion free, it must have support equal to V , hence
p2(Zf ) = V as desired.

Let us outline the argument for why the ambient sheaf is locally free.
After base change by an isogeny of A, we can assume that (ωX ⊗

f∗L−1)⊗d has a non-zero section s. Let Y be a resolution of singularities
of the associated degree d cyclic cover of X branched along s, and consider
the composition h : Y → A.

The ambient sheaf is a higher direct image of a complex of sheaves
on Y × V , and the fibres of the complex over points in V are Dolbeault
complexes of certain Higgs bundles on Y . Using Simpson’s results [7, 8]
relating Higgs bundles to local systems and analyzing cohomology jump loci
in the moduli space of local systems, we show that the hypercohomology
groups of these Dolbeault complexes have constant dimension over V . This
gives the result by Grauert’s theorem on locally free direct images.

2. The proof

Fix a smooth projective variety X over the complex numbers and a mor-
phism f : X → A to an abelian variety throughout. Let V = H0(A,Ω1

A) be
the vector space of holomorphic one-forms on A, and let S = SymV ∗ be
the graded coordinate ring of the vector space V . For an integer i, let S•+i
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denote S as a graded module over itself, with grading shifted by i, and let
CX,• be the complex of graded OX ⊗ S-modules given by

OX ⊗ S•−g → Ω1
X ⊗ S•−g+1 → · · · → Ωn

X ⊗ S•−g+n,

in degrees −n to 0, where n = dimX, g = dimA, and the differential is
induced by the map OX ⊗ V → Ω1

X given by φ⊗ ω 7→ φf∗ω. In a basis
ω1, . . . , ωg of V with dual basis s1, . . . , sg of S1, the differential is given
by

θ ⊗ s 7→

g∑

i=1

(θ ∧ f∗ωi)⊗ sis.

We denote the associated complex of vector bundles on X × V by CX .

Lemma 2.1 ([5, Lemma 14.1]). The support of CX is equal to

Zf = {(x, ω) ∈ X × V | f∗ω(TxX) = 0}.

For α ∈ Pic0(A), let Cα
X = CX ⊗ p∗1f

∗α and Cα
X,• = CX,• ⊗ f∗α, where

p1 is the projection X × V → X. The sheaves Rip2∗C
α
X on V are then sup-

ported on p2(Zf ) for all i; recall that we are trying to show that p2(Zf ) = V .
We will show that these sheaves are locally free for general α in Proposi-
tion 2.2 below. As we will see, the fibres of Cα

X over V are related to certain
Higgs bundles on X.

Recall that a Higgs bundle on X is a vector bundle E together with a
morphism of coherent sheaves θ : E → Ω1

X ⊗ E, the Higgs field, satisfying
θ ∧ θ = 0. Given a Higgs bundle, we get a holomorphic Dolbeault complex

E
θ∧
−→ E ⊗ Ω1

X → · · · → E ⊗ Ωn
X .

Simpson’s non-abelian Hodge theorem [7] associates to each Higgs bun-
dle (E, θ) (satisfying some conditions on stability and Chern classes) a local
system C(E,θ) of complex vector spaces, and shows that Dolbeault cohomol-
ogy

Hk
Dol(X,E, θ) = Hk(X,E

θ∧
−→ E ⊗ Ω1

X → · · · → E ⊗ Ωn
X),

the hypercohomology of the Dolbeault complex, is isomorphic to the coho-
mology of C(E,θ).
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We will only need the rank one case; see also the lecture notes [6, Lectures
17-18] for a concrete treatment of this case, and the associated Hodge theory.

In the rank one case, a Higgs bundle is just a line bundle together with
a holomorphic one-form. The stability condition in Simpson’s theorem is
always satisfied for line bundles, and the condition on Chern classes is simply
that the first Chern class vanishes in H2(X,C); let Picτ (X) be the space
of line bundles satisfying this condition. Let then MDol(X) = Picτ (X)×
H0(X,Ω1

X), and let MB(X) denote the moduli space of local systems of one-
dimensional complex vector spaces on X. Then Simpson’s correspondence,
mapping a rank one Higgs bundle to the associated local system, takes the
form of a real analytic isomorphism MDol(X) ∼= MB(X).

For each k and m, consider the cohomology jump loci

Σk
m(X) = {L ∈ MB(X) | dimHk(X,L) ≥ m}

Σk
m(X)Dol = {(E, θ) ∈ MDol(X) | dimHk

Dol(X,E, θ) ≥ m}

of local systems and Dolbeault cohomology of Higgs bundles. These loci get
mapped to each other under Simpson’s correspondence.

Using this relationship, Simpson [8] proves that every irreducible com-
ponent of these loci is a linear subvariety or, in his terminology, a translate
of a triple torus (in fact a torsion translate, though we will not need that).
A triple torus is a closed, connected, algebraic subgroup N of MB(X) such
that the corresponding subgroup of MDol(X) (which we will also refer to as
a linear subvariety) is also algebraic (this is equivalent to the usual defini-
tion, involving also the de Rham moduli space, by [8, Lemma 2.1]). A linear
subvariety is thus a subset of MB(X) of the form

{L ⊗N | N ∈ N}

where N is a triple torus and L ∈ MB(X) a local system.
Simpson [8, Lemma 2.1] shows that a triple torus is of the form g∗MB(T )

for a map g : X → T to an abelian variety, where g∗ : MB(T ) → MB(X) de-
notes pullback of local systems. It follows that a linear subvariety inMDol(X)
is a translate of a subset of the form g∗ Pic0(T )× g∗H0(T,Ω1

T ) for g : X → T

a morphism to an abelian variety. In particular, a linear subvariety is either
the entire moduli space, or maps to a proper subvariety of Pic0(X) under
the projection MDol(X) → Pic0(X) that forgets the Higgs field.

The following proposition is the main new ingredient in the proof. Note
that this proposition is valid for an arbitrary morphism f : X → A, not just
those that satisfy the hypotheses of Theorem 1.1.
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Proposition 2.2. For general α ∈ Pic0(A), the higher direct image sheaves

Rip2∗C
α
X are locally free on V for all i.

Proof. We will show that for general α, the dimensions of the hypercoho-
mology H i(X × {v}, Cα

X |X×{v}) of C
α
X on fibres of p2 are constant in v. The

result follows by a version of Grauert’s theorem on locally free direct images
for complexes of sheaves [1, Proposition 7.8.4]

Note that for any fibre X × {v} of p2 for v ∈ V , the restriction of Cα
X to

the fibre is the Dolbeault complex

f∗α
∧f∗v
−−−→ f∗α⊗ Ω1

X → · · · → f∗α⊗ Ωn
X .

of the Higgs bundle (f∗α, f∗v). The Dolbeault cohomology of these Higgs
bundles is governed by the cohomology jump loci Σk

m(X)Dol, of which only
finitely many are nonempty by algebraicity. Each irreducible component of
the nonempty ones is a linear subvariety, so it suffices to show that for
each linear subvariety S of MDol(X), the set {α} × f∗V is either entirely
contained in S or entirely disjoint from it, for general α.

Let then φ = f∗ : MDol(A) → MDol(X), and suppose S ⊂ MDol(X) is a
linear subvariety. We observe that if N is a triple torus, then the connected
component of φ−1(N) is again a triple torus; it follows that φ−1(S) is either
empty, or a finite union of linear subvarieties. If φ−1(S) = MDol(A) then
{α} × f∗V ⊂ S for any α ∈ Pic0(A). If S is a proper subset of MDol(A), it
suffices to take α to be outside the image of φ−1(S) in Pic0(A) under the
projection MDol(A) → Pic0(A). □

If we could show that one of the sheaves Rip2∗C
α
X were nontrivial on V ,

under the hypotheses of Theorem 1.1, we would now be done. Unfortunately
we cannot, but instead we make use of a covering construction as in [5].

Lemma 2.3 ([5, Lemma 11.1]). Suppose ω⊗d
X ⊗ f∗L−1 has a nonzero sec-

tion for some d and some ample line bundle L on A. For an isogeny φ : A′ →
A, define f ′ : X ′ → A′ by base change of f . For an appropriately chosen φ,

there exists an ample line bundle L′ on A′ such that (ωX′ ⊗ f ′∗L′−1)⊗d has

a nonzero section.

Assume now the hypotheses of Theorem 1.1. Note that zero loci of one-
forms are not affected by étale covers, so if we can prove the theorem for
f ′ : X ′ → A′, then the desired conclusion also follows for f : X → A.

In particular, replacing f by this f ′, we can now assume without loss of
generality that B⊗d has a nonzero section s for B = ωX ⊗ f∗L−1. Let Y be
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a resolution of singularities of the d-fold cyclic cover π : Xd → X ramified
along Z(s), giving us the following maps:

Y Xd X

A

φ

h

π

f

By construction, Xd = Spec
⊕d−1

i=0 B−i, so π∗π
∗B =

⊕d−2
i=−1B

−i. This
has a section in the i = 0 term, and the corresponding section of π∗B gives
a morphism φ∗B−1 → OY , an isomorphism away from Z(s). Together with
pullback of forms, this gives injective morphisms φ∗(B−1 ⊗ Ωk

X) → Ωk
Y . As

OX → φ∗OY is injective, the corresponding morphisms

B−1 ⊗ Ωk
X → φ∗Ω

k
Y

on X are also injective.
Note that we get a complex CY,• of graded OY ⊗ S-modules using the

morphism h : Y → A, constructed in the same way that CX,• was con-
structed starting from f above Lemma 2.1.

We give a slightly modified version of [5, Lemma 13.1].

Lemma 2.4. The morphisms above induce a morphism of complexes of

graded OX ⊗ S-modules

B−1 ⊗ CX,• → Rφ∗CY,•

Proof. The morphisms φ∗(B−1 ⊗ Ωk
X) → Ωk

Y commute with the differentials
on Y , giving

φ∗(B−1 ⊗ CX,•) → CY,•

Using the projection formula and the morphism OX → Rφ∗OY , pushing
forward to X gives the desired composition

B−1 ⊗ CX,• → (B−1 ⊗ CX,•)⊗
L Rφ∗OY → Rφ∗CY,•

□
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Proof of Theorem 1.1. We must show that Zf surjects onto V under the
projection p2 : X × V → V .

Let α ∈ Pic0(A) be a general element. Then Lemma 2.4 gives, after twist-
ing by f∗α and pushing forward to V , a morphism Rp2∗(p

∗
1B

−1 ⊗ Cα
X) →

Rp∗2C
α
Y where p1 : X × V → X is the first projection, and p2, by abuse of

notation, is used for both of the projections X × V → V and Y × V → V .
Let F be the image of the induced map R0p2∗(p

∗
1B

−1 ⊗ Cα
X) → R0p2∗C

α
Y .

As α is general, each Rip2∗C
α
Y is locally free by Proposition 2.2. In par-

ticular F is torsion free. Since CX is supported on Zf , F is supported on
p2(Zf ), so it suffices to show that F is non-zero.

Let k = g − n. Then CX,k = ωX and CY,k = ωY , and the morphism
B−1 ⊗ CX,k → Rφ∗CY,k from Lemma 2.4 is just the morphism of sheaves
f∗L = B−1 ⊗ ωX → φ∗ωY constructed before the lemma. Indeed Rφ∗ωY =
φ∗ωY since φ is generically finite, by results of Kollár [3].

After twisting by α, the morphism B−1 ⊗ Cα
X,k → Rφ∗C

α
Y,k thus gets

identified with f∗(L⊗ α) → φ∗ωY ⊗ f∗α. For the graded S-module F• =
H0(V,F ), it follows that Fk

∼= H0(X, f∗(L⊗ α)) since the pushforward to
V preserves injectivity. But f∗(L⊗ α) has non-zero sections; otherwise all
sections of its pushforward f∗OX ⊗ L⊗ α to A would vanish, which would
imply that X is contained in a general translate of a hyperplane section of
A, a contradiction. Thus F is non-zero. □
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