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Motivated by a question of Hansen and Li, we show that a smooth
and proper rigid analytic space X with projective reduction sat-
isfies Hodge symmetry in the following situations: (1) the base
non-archimedean field K is of residue characteristic zero, (2) K is
p-adic and X has good ordinary reduction, (3) K is p-adic and X
has “combinatorial reduction.” We also reprove a version of their
result, Hodge symmetry for H1, without the use of moduli spaces
of semistable sheaves. All of this relies on cases of Kato’s log hard
Lefschetz conjecture, which we prove for H1 and for log schemes
of “combinatorial type.”
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2 Piotr Achinger

1. Introduction

It is one of the basic consequences of Hodge theory that a compact Kähler
manifold X satisfies Hodge symmetry, i.e.

hi,j(X) = hj,i(X) for all i, j ≥ 0.

Here hi,j denotes the dimension of the Dolbeault cohomology group
Hj(X,Ωi

X), where Ωi
X is the i-th sheaf of holomorphic differential forms

on X. As a consequence, the analogous statement holds for algebraic differ-
ential forms on smooth projective (or only proper) algebraic varieties over
a field of characteristic zero. In fact, one can avoid Hodge theory and prove
the latter fact using only algebraic methods, by means of Deligne’s proof
of the hard Lefschetz theorem and the Hodge–Tate decomposition in p-adic
Hodge theory (see [10, I.4.4]).

This well-known link between hard Lefschetz and Hodge symmetry is
very simple. For a smooth projective variety X over C, the isomorphisms
induced by the Lefschetz operator

Lr : Hn−r
dR (X) ∼−→ Hn+r

dR (X)

are strictly compatible with the Hodge filtrations with appropriate shifts
(i.e., inducing an isomorphism Fili ∼−→ Fili+r). This yields for i + j = n− r,
n = dimX:

dimHj(X,Ωi
X) = dim grjHn−r

dR (X)

= dim grj+rHn+r
dR (X) = dimHr+j(X,Ωn−j

X ),

and by Serre duality, the right hand side equals dimH i(X,Ωj
X).

The recent years have seen a surge of interest in understanding to what
extent the results in complex analytic geometry can be imported to rigid
analytic geometry over some non-archimedean field K [34]. If we regard
smooth proper rigid spaces as non-archimedean analogs of compact complex
manifolds, then what should be the analog of the Kähler condition? The
answer has been recently suggested by Li [23], who studied the class of
rigid spaces with projective reduction, i.e. admitting a formal model whose
special fiber is projective. The following result of Hansen and Li confirmed
this expectation.

Theorem 0 ([13, Theorem 1.2]). Let X be a smooth proper rigid space
over a p-adic field K. Assume that X has a formal model X over OK whose
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Hodge symmetry for rigid varieties via log hard Lefschetz 3

special fiber is projective. Then

h1,0(X) = h0,1(X).

Hansen and Li asked [13, Question 1.3] (also [34, Conjecture 2.4])
whether under the same assumptions one has hi,j(X) = hj,i(X) for all
i, j ≥ 0. It turns out that the answer is negative in general, but actually
depends on some arithmetic properties of the reduction type. In this paper
we prove that it holds in the following situation:

Theorem 1 (Cases of Hodge symmetry). Let K be a complete dis-
cretely valued field of characteristic zero with ring of integers OK and perfect
residue field k. Let X be a smooth proper rigid space over K admitting a
semistable model X over OK whose special fiber Y = X0 is projective. Then
hi,j(X) = hj,i(X) for i, j ≥ 0 under one of the following conditions:

(a) If k has characteristic zero (Theorem 5.4).

(b) If k has characteristic p > 0 and X has good ordinary reduction (The-
orem 6.10(a)).

(c) If i + j = 1 or i + j = 2 dimX − 1, (almost) recovering Theorem 0
(Theorem 6.10(b)).

(d) If arbitrary intersections of irreducible components of Y have torsion-
free crystalline cohomology and admit projective liftings to character-
istic zero whose cohomology is generated by algebraic cycles and such
that the relative Hodge cohomology is torsion-free (Theorem 6.10(c)).

On the other hand, in [30], Petrov constructs a stunning counterexample
to the general question. It is obtained as the generic fiber of a quotient of
a carefully chosen formal abelian variety over Zp by a finite cyclic group
action, and violates Hodge symmetry in degree 3.

Case (d) of the above theorem encompasses varieties with “totally degen-
erate” or “combinatorial” reduction one often encounters in the context of
mirror symmetry, e.g. ones where the special fiber Y is a union of toric vari-
eties glued along toric subvarieties (see Example 6.12). It could be worthwile
to come up with examples of such X which are not deformation equivalent
to a projective variety.

The proofs of the above results rely on forms of the log hard Lefschetz
theorem applied to the log special fiber of a semistable model of the rigid
variety X. Let k again be a perfect field and let Y be a strictly semistable
log scheme over k (Definition 2.1) purely of dimension n. Let H∗(Y ) denote
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4 Piotr Achinger

either log Betti cohomology H∗(Ỹlog,Q) (if k = C) , log ℓ-adic cohomology
H∗

log-ét(Ys̄,Qℓ), or log crystalline cohomology H∗
log-cris(Y/W (k))[1/p] (if k

has characteristic p > 0), see §2.2. If L is an ample line bundle on Y , then
cup product with powers of the logarithmic variant of its first Chern class
c1(L) ∈ H2(Y ) yields maps

(1.1) Lr : Hn−r(Y ) → Hn+r(Y )(r).

Kato’s log hard Lefschetz conjecture [27, Conjecture 9.5] states that (1.1) is
an isomorphism for all r ≥ 0.

If k = C and H∗ is log Betti cohomology, then the log hard Lefschetz
conjecture is a theorem due to Nakkajima [27, Theorem 9.14], based on M.
Saito’s work on the monodromy filtration [32, 4.2.2]. This in turn implies log
Hodge symmetry for Y [27, Corollary 9.15]. Using the base change results of
[17], one can then deduce that if Y is the special fiber of a semistable formal
scheme X over OK = C[[t]], then the rigid generic fiber X = XK satisfies
Hodge symmetry, proving (a).

Suppose from now on that K is p-adic and let H∗(Y ) denote log crys-
talline cohomology H∗

log-cris(Y/W (k))[1/p]. Assertions (b)–(d) rely on the
following observation.

Theorem 2 (Log hard Lefschetz implies symmetry). Let X be a
smooth proper rigid analytic space over K. Suppose that there exists a strictly
semistable formal model X of X over OK whose log special fiber Y = Xk

admits an ample line bundle for which the log hard Lefschetz theorem holds
in log crystalline cohomology in degree q = n− r where n = dimX. Then:

(a) (Proposition 6.1) The Frobenius slopes α0 ≤ . . . ≤ αs (s =
dimHq(Y ) − 1) on Hq(Y ) satisfy the symmetry

αs−k = q − αk.

(b) (Proposition 6.3) The Hodge numbers hi,j(X) with i + j = q satisfy
the relation

∑

i+j=q

(i− j) · hi,j(X) = 0.

In particular, if q ≤ 2 or if Y is ordinary, then hi,j(X) = hj,i(X) for i + j =
q (see Corollary 6.9).

The proof is relatively standard: log hard Lefschetz combined with
Poincaré duality imply that the F -isocrystal Hq(Y ) admits an isomorphism
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Hodge symmetry for rigid varieties via log hard Lefschetz 5

Hq(Y ) ∼−→ Hq(Y )∨(−q), proving (a). Assertion (b) then follows from the
Hyodo–Kato isomorphism

Hq(Y ) ⊗K ∼−→ Hq
dR(X/K)

and the fact that Hq(Y ) endowed with the Hodge filtration on Hq(Y ) ⊗
K ≃ Hq

dR(X/K) is a weakly admissible filtered (φ,N)-module [6], and in
particular the endpoints of the Hodge and Newton polygons coincide. Then
the q ≤ 2 case follows directly from (b), and for the last assertion, ordinarity
of Y implies that the Newton polygon of Hq(Y ) equals the Hodge polygon
of Hq

dR(X/K), so the slope symmetry (a) gives Hodge symmetry. (A similar
observation has been used in the context of Hodge symmetry for Hodge–Witt
varieties in characteristic p by Joshi [19] based on [7], see Remark 6.11.)

Since hard Lefschetz (no log) holds for crystalline cohomology, we have
thus obtained Theorem 1(b). The remaining (c) and (d) rely on the following
cases of log hard Lefschetz.

Theorem 3 (Cases of log hard Lefschetz). Let Y be a strictly
semistable log scheme over k, purely of dimension n. The log hard Lefschetz
conjecture holds in the following situations.

(a) For q = n− r = 1 (Theorem 3.6).

(b) If the cohomology of every intersection of irreducible components of Y
is generated by algebraic cycles and if the Hodge standard conjecture
is satisfied for these intersections. (Corollary 4.3).

Result (a) has been obtained previously by T. Kajiwara [27, p. 167],
though the proof has never appeared. The proofs rely on the arguments of
M. Saito [32, 33], Rapoport–Zink [31], and T. Ito [18] in the context of the
weight-monodromy conjecture/theorem.

The proof of Theorem 0 relied on the earlier work of Li [23], inge-
niously bringing the moduli spaces of semistable sheaves into the argument.
Our proof of Hodge symmetry for H1, though slightly weaker (we need a
semistable model, and it is not clear if one can use alterations to reduce to
this case), completely circumvents this aspect of their proof, and is more
“motivic” in a sense.

The above results motivate the following question, a non-archimedean
analog of the search for restrictions on the homotopy type of a Kähler man-
ifold. In [1], the author together with M. Talpo have constructed a homo-
topy type Ψrig(X) associated to a smooth rigid analytic space X over C((t)).
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6 Piotr Achinger

What are the restrictions on Ψrig(X) for X with projective reduction? (E.g.
Theorem 1(a) shows that the odd degree cohomology has even dimension.)

The paper is organized as follows. Sections 2–4 are devoted to log hard
Lefschetz: in §2, we formulate the conjecture and review the closely related
weight spectral sequence, in §3, we prove it for H1, and in §4 for log varieties
of combinatorial type. Then, in §5, we prove Hodge symmetry for rigid spaces
with projective reduction in equal characteristic zero. In the final §6, we deal
with the p-adic case.

2. Log hard Lefschetz and the weight spectral sequence

Until the end of this paper, we fix a perfect field k.

2.1. Strictly semistable log schemes

We denote by s = Spec(k → N) the standard log point over k. We use the
notation Y for the underlying scheme of a log scheme Y . We refer to Ogus’
book [28] for notation and terminology regarding log schemes.

Definition 2.1. A strictly semistable log scheme over k is a log scheme Y
over s locally admitting a chart of the form 1 7→ (1, . . . , 1) : N → Nr and
such that the irreducible components of Y are smooth over k.

In other words, the underlying scheme Y Zariski locally admits an étale
morphism Y → Spec k[x1, . . . , xr]/(x1 · . . . · xr) and the log structure of Y is
obtained by pull-back from the log structure on the standard semistable
scheme Spec k[x1, . . . , xr, t]/(x1 · . . . · xr − t) induced by the open subset
{t ̸= 0}. Thus, if X is a strictly semistable (formal) scheme over a com-
plete discrete valuation ring O with residue field k, then the special fiber
Y = Xk endowed with the natural log structure is a strictly semistable log
scheme. Such log schemes are also called SNCL varieties in [27]. See also [28,
III 1.8].

In the following, we will denote the irreducible components of Y by
Y1, . . . , Ys and for I ⊆ {1, . . . , s}, we write YI =

⋂

i∈I Yi (Y∅ = Y by conven-
tion). Note that if Y is everywhere of dimension n, then each YI with I ̸= ∅
is either empty or everywhere of dimension n + 1 − |I|. Finally, for k ≥ 1
we denote by Y (k) the disjoint union of all YI with |I| = k. The natural
map ak : Y (k) → Y identifies Y (k) with the normalization of

⋃

|I|=k YI . The

schemes Y (•+1) naturally form a semi-simplicial scheme, and the maps a•+1

provide an augmentation to Y .
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Hodge symmetry for rigid varieties via log hard Lefschetz 7

2.2. Logarithmic cohomology theories

We now briefly introduce the three cohomology theories for proper and
strictly semistable log schemes over k: log Betti, log crystalline, and log
ℓ-adic cohomology. We refer e.g. to [27, I §2] for details.

Over k = C, one has the Kato–Nakayama space Ylog [28, V], functorially
attached to any fs log scheme over k. Moreover, we have slog ≃ S1. For Y
strictly semistable over k, we define Ỹlog to be the pull-back of Ylog → slog
along the universal covering exp(2πiz) : R → S1. The log Betti cohomol-
ogy groups H∗(Ỹlog,Q) are endowed with a unipotent action of π1(S

1) ≃ Z
and enjoy the familiar properties of Betti cohomology, for example admit a
natural isomorphism H∗(Ỹlog,Q) ⊗C ≃ H∗(Y,Ω•

Y/s).

Suppose that k has characteristic p > 0. Hyodo and Kato [14] associate
to Y the log crystalline cohomology groups H i

log-cris(Y/W (k)), endowed
with the crystalline Frobenius φ and the monodromy operator N satisfy-
ing Nφ = pφN . We will mostly work with the associated (φ,N)-module
H i

log-cris(Y/W (k))[1/p] over K0 = W (k)[1/p].
Finally, in any characteristic one has the ℓ-adic cohomology groups

H i
log-ét(Ys̄,Qℓ) (with ℓ an auxiliary prime invertible in k). We will not use

them in what follows.
If Y is smooth (equivalently, Y → s is strict), each of these cohomology

theories agrees with the corresponding classical cohomology (Betti, crys-
talline, ℓ-adic) of Y . If F = H0(Y ) is the coefficient field, then F (1) :=
H2(P1)∨ is one-dimensional over F , and can be used to define the Tate
twist. Even though Tate twists and weights are not used in this paper, to
avoid obscurity we shall keep track of them. If L is a line bundle on Y , then
in each of the above cohomology theories there is a naturally defined first
Chern class c1(L) ∈ H2(Y )(1).

2.3. Line bundles and log hard Lefschetz

Pick as H∗ one of the cohomology theories in §2.2. Let Y be a proper strictly
semistable log scheme over k and let L be a line bundle on Y , and let
c1(L) ∈ H2(Y )(1) be its first Chern class. Suppose that Y is proper and
geometrically connected of dimension n. For 0 ≤ r ≤ n, cup product with
c1(L)r defines a map

(2.1) Lr : Hn−r(Y ) → Hn+r(Y )(r).
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8 Piotr Achinger

Conjecture 2.2 (Log hard Lefschetz conjecture). If L is ample, then
(2.1) is an isomorphism for all 0 ≤ r ≤ n.

We say that the log hard Lefschetz holds for L in degree q if (2.1) is an
isomorphism with q = n− r.

2.4. The weight spectral sequence

Let k be an algebraically closed field and let H∗ be one of the cohomology
theories listed in §2.2. The restriction of H∗ to smooth proper schemes is
then a Weil cohomology theory satisfying the hard Lefschetz theorem.

The weight spectral sequence expresses the logarithmic cohomology
H∗(Y ) of a proper strictly semistable log scheme Y over k in terms of the
“classical” cohomology H∗(Y (k)). It has been constructed for Betti coho-
mology (over k = C) by Steenbrink [11, 35, 36], for ℓ-adic étale cohomology
by Rapoport and Zink [31], and for crystalline cohomology by Mokrane [24]
(see also [27]). It has the form

Ea,b
1 =

⊕

k≥max(a,0)

H2(a−k)+b(Y (2k−a+1))(a− k) ⇒ Ha+b(Y ),

where the differentials da,b1 : Ea,b
1 → Ea+1,b

1 are as in the paragraph below.
The spectral sequence degenerates at the E2-page by [25, (2.1)] (ℓ-adic),
[26, 3.6] (crystalline), [11] (Betti), see the review in [27, §2].

To describe the differentials da,b1 , we shall consider the maps

ρ : H i(Y (k)) → H i(Y (k+1))

induced by the alternating sum of the inclusion maps and

τ : H i(Y (k)) → H i+2(Y (k−1))(1)

induced by the Gysin homomorphisms, cf. [18, §5]. These induce maps

ρ : Ea,b
1 → Ea+1,b

1 (increasing the index k by 1)

τ : Ea,b
1 → Ea+1,b

1 (preserving the degree k).

Then da,b1 = ρ + τ . We shall need the following relations: ρ2 = 0, τ2 = 0,
ρτ + τρ = 0.
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Hodge symmetry for rigid varieties via log hard Lefschetz 9

We denote by N the natural maps N : Ea,b
1 → Ea+2,b−2

1 (−1) increasing
the index k by 2, which are either zero or identity on the summands. They
commute with the operators ρ, τ , and d1, and hence induce maps

N : Ea,b
2 → Ea+2,b−2

2 (−1)

. The weight-monodromy conjecture for Y is the statement that the maps

N r : E−r,w+r
2 → Er,w−r

2 (−r)

are isomorphisms. It is false for general Y [27, §6], but it is expected to hold if
Y is projective or if Y is the special fiber of a proper semistable scheme over
a complete discrete valuation ring. We shall prove, in Proposition 3.5 below,
that if Y is projective, then the above statement holds with r = w = 1.

We fix an ample line bundle L on Y and denote by

L : H∗(Y (k)) → H∗+2(Y (k))(1)

the Lefschetz operators, i.e. the cup product with c1(L). They commute
with the maps ρ, τ , and N and hence induce a degree (0, 2) map Ea,b

∗ →
Ea,b+2

∗ (1) which commutes with N . Thanks to the E2-degeneration, the log
hard Lefschetz conjecture (Conjecture 2.2) holds for (Y,L) if and only if the
maps

(2.2) Lr : En−b−r,b
2 → En−b+r,b

2 (r)

are isomorphisms.
The hard Lefschetz theorem for H∗ restricted to smooth projective

schemes implies that the pairing

⟨, ⟩ : Hq(X(k)) ×Hq(X(k)) → F (n + 1 − k − q), ⟨x, y⟩ = Ln+1−k−qx · y

is non-degenerate. Further, the maps ρ and τ are adjoint up to sign in the
following sense. For x ∈ Hq(X(k)), y ∈ Hq′(X(k−1)), q + q′ = 2s:

Ln−k+1−sx · ρy = ±Ln−k+1−sτx · y,

and similarly for x ∈ Hq(X(k)), y ∈ Hq′(X(k+1)), q + q′ = 2s:

Ln−k−sx · τy = ±Ln−k−sρx · y,
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10 Piotr Achinger

see [18, (5.1)].1 We will frequently make use of these relations.
Using the Hodge-theoretic argument [33, 4.2.2], Nakkajima has obtained:

Theorem 2.3 ([27, Theorem 9.14]). The log hard Lefschetz conjecture
holds if k = C for each of the cohomology theories listed in §2.2.

3. Log hard Lefschetz and weight-monodromy for H1

In this section, we shall prove the log hard Lefschetz theorem for H1. For
this, we will need to show that the weight–monodromy conjecture holds
for H1. Both of these results have been obtained earlier by T. Kajiwara
(unpublished, cf. [27, p. 167]). We let H∗ be one of the cohomology theories
listed in §2.2.

The proof of the case of weight–monodromy is a rather straightforward
adaptation of the arguments of Ito [18, §5], which are themselves based on
[32, §4]; we can do this without the strong assumptions in op. cit. because as
a consequence of the Hodge index theorem, the Hodge standard conjecture
holds for divisors.

For the log hard Lefschetz, we will also need the fact that the Lefschetz
operator Ln−1 : H1 → H2n−1(n− 1) on the cohomology of a smooth projec-
tive variety of dimension n is “motivic,” i.e. induced by a polarization of
the Albanese variety. This follows from the argument given by Kleiman [22,
2A9.5].

In the following, we fix a strictly semistable log scheme Y over k, which
is purely of dimension n, and an ample line bundle L on Y . We continue us-
ing the notation of §2.4, in particular we use heavily the pairing ⟨, ⟩ on
the cohomology groups H∗(Y (k)) induced by L and the maps ρ and τ .
We denote by P q(Y (k)) the primitive cohomology of Y (k), i.e. the kernel
of Ln−k+1−q+1 : Hq(Y (k)) → H2(n−k+1)−q+2(Y (k))(n− k + 1 − q + 1).

Lemma 3.1. The restrictions of ⟨, ⟩ on H0(Y (k)) to

im(ρ : H0(Y (k−1)) → H0(Y (k)))

and to ker(ρ : H0(Y (k)) → H0(Y (k+1)) are non-degenerate for all k.

1We do not specify the signs (depending on n, k, q, q′) because we will not need
their exact values. See [27, §4] for a careful elaboration of the signs involved in the
definition of τ , ρ, and da,b

1
.
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Proof. For any scheme Z, we write H0(Z,Q) = Qπ0(Z). The commutative
diagram

H0(Y (k−1),Q)
ρQ //

��

H0(Y (k),Q)
ρQ //

��

H0(Y (k+1),Q)

��
H0(Y (k−1))

ρ // H0(Y (k))
ρ // H0(Y (k+1))

provides natural Q-structures for the F -vector spaces in the bottom row. It
therefore suffices to show that the induced pairing on H0(Y (k),Q) is non-
degenerate when restricted to ker(ρQ) and im(ρQ). But, if Z is a connected
component of Y (k), and χZ ∈ H0(Y (k),Q) is its characteristic function, then
⟨χZ , χZ⟩ equals the top intersection number c1(L|Z)n+1−k, which is positive
since L is ample. Since such elements χZ provide a basis of H0(Y (k),Q), the
pairing ⟨, ⟩ on this space is thus positive definite. Therefore its restriction to
any subspace remains non-degenerate. □

Lemma 3.2 (cf. [18, Lemma 5.5]). The restriction of ⟨, ⟩ on H2(Y (1))
to

im
(

τ : H0(Y (2))(−1) → H2(Y (1))
)

∩ P 2(Y (1))

is non-degenerate.

Proof. We have the following commutative square

H0(Y (2),Q)
τQ //

��

NS(Y (1)) ⊗Q

��
H0(Y (2)) τ

// H2(Y (1))(1),

where H0(Y (2),Q) = Qπ0(Y (2)). Here, the top map τQ is defined as the Gysin
map for cycles. The vertical maps are compatible with the natural pair-
ings ⟨, ⟩ induced by the fixed line bundle L. Since ⟨, ⟩ is non-degenerate on
NS(Y (1)) ⊗Q by the Hodge index theorem and hyperplane Lefschetz, the
right vertical map induces an injection

NS(Y (1)) ⊗ F →֒ H2(Y (1))(1).

It follows that ker(τQ) ⊗ F → ker(τ) is an isomorphism. In other words, we
have shown that the natural Q-structure on H0(Y (2)) induces a Q-structure
on im(τ).
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It now suffices to show that the pairing in the top right corner remains
non-degenerate when restricted to im(τQ) ∩ (P 2

Q) where P 2
Q is the preimage

in NS(Y (1)) ⊗Q of P 2(Y (1)). Note again that im(τQ) ∩ P 2
Q is a Q-structure

for im(τ) ∩ P 2(Y (1)).
But, again by the Hodge index theorem, ⟨, ⟩ is definite on P 2

Q, and hence
so is its restriction to im(τQ). □

Lemma 3.3 (cf. [18, Lemma 5.6]). The image of the composition

τρ : H0(Y (1))(−1) → H0(Y (2))(−1) → H2(Y (1))

is the orthogonal complement to im(τ) ∩ P 2(Y (1)) inside im(τ).

Proof. Given Lemmas 3.1 and 3.2, it suffices to quote the proof of the first
assertion of [18, Lemma 5.6] and [18, Lemma 5.7] with i = 0 and k = 1.
Indeed, using Ito’s notation, we have

im(ρ : H0(Y (1)) → H0(Y (2))) = Im0ρ
(1)
0 , Im0τ

(2)
0 = im(τ) ∩ P 2(Y (1)),

and Im1τ
(2)
0 = im(τ)/(im(τ) ∩ P 2(Y (1))). The argument in the proof of [18,

Lemma 5.6] shows that τ : im(ρ) → im(τ)/(im(τ) ∩ P 2(Y (1)) is injective. It
is then also bijective by [18, Lemma 5.4]. Finally, we check that im(τρ) is
orthogonal to the entire im(τ). If x = τρz and y = τw, then

⟨y, x⟩ = Ln−2y · x = Ln−2τw · τρz = ±Ln−2w · ρτρz = 0.

We conclude by Lemma 3.2. □

Lemma 3.4 (cf. [18, Lemma 5.1]). In the following sequence of maps

H0(Y (1))(−1)
ρ

−−→ H0(Y (2))(−1)
τ

−−→ H2(Y (1))
ρ

−−→ H2(Y (2))

one has ker(τ) ∩ im(ρ) = 0 ⊆ H0(Y (2))(−1) and ker(ρ) ∩ im(τ) = im(τρ) ⊆
H2(Y (1)).

Proof. Let 0 ̸= x ∈ ker(τ) ∩ im(ρ) ⊆ H0(Y (2))(−1). Since ⟨, ⟩ is non-
degenerate on im(ρ) ⊆ H0(Y (2))(−1) by Lemma 3.1, there exists a z ∈
H0(Y (1))(−1) such that ⟨x, ρy⟩ ≠ 0, but

⟨x, ρy⟩ = Ln−1x · ρz = ±Ln−1τx · z = 0,

contradiction. Thus ker(τ) ∩ im(ρ) = 0.
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Let now 0 ̸= x ∈ ker(ρ) ∩ im(τ) ⊆ H2(Y (1)). By Lemma 3.3(b), it suf-
fices to show that x is orthogonal to every element in im(τ) ∩ P 2(Y (1)). In
fact, we have ⟨x, y⟩ = 0 for every y ∈ im(τ), for if y = τz then

⟨x, y⟩ = ⟨x, τz⟩ = Ln−2x · τz = ±Ln−2ρx · z = 0.

□

Proposition 3.5 (Weight–monodromy conjecture for H1(Y )). The
identity on H0(Y (2)) induces an isomorphism

N : ker
(

(τ + ρ) : H0(Y (2)) → H2(Y (1))(1) ⊕H0(Y (3))
)

∼−→
ker(ρ : H0(Y (2)) → H0(Y (3)))

im(ρ : H0(Y (1)) → H0(Y (2)))
.

Proof. We first show injectivity. Let x ∈ H0(Y (2)) with τx = 0 and ρx = 0,
and suppose that x = ρy. By the first assertion of Lemma 3.4 applied to
x ∈ im ρ ∩ ker τ , we have x = 0.

For the surjectivity, suppose that x ∈ H0(Y (2)) with ρx = 0. Apply
the second assertion of Lemma 3.4 to τx ∈ H2(Y (1))(1), obtaining a z ∈
H0(Y (1)) such that τx = τρz. Let y = x− ρz, so τy = 0 and x = y + ρz
shows that x is congruent modulo im ρ to an element of ker τ . □

Theorem 3.6. Let Y be a proper strictly semistable log scheme over k.
Then for every ample line bundle L on Y , the log hard Lefschetz conjecture
holds for H1(Y ).

Proof. Let n = dimY . Ignoring Tate twists for simplicity, the maps ℓ = Ln−1

induce isomorphisms on the relevant entries of the E1 page of the weight
spectral sequence for Y as follows:

H2n−r(Y (3)) // H2n−2(Y (2)) // H2n(Y (1)) 0

H2n−3(Y (2)) // H2n−1(Y (1)) 0

H2n−2(Y (1)) ⊕H2n−4(Y (3)) // H2n−2(Y (2)) 0

· · · · · ·

0 H0(Y (2))

∼ℓ

II

// H2(Y (1)) ⊕H0(Y (3))

0 H1(Y (1)) //

∼ℓ

II

H1(Y (2))

0 H0(Y (1)) // H0(Y (2))

∼ℓ

II

// H0(Y (3))
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The spectral sequence degenerates on the E2 page. We need to show that
the three maps ℓ induce isomorphisms on the E2 page:

ℓ0 :
ker(H0(Y (2)) → H0(Y (3)))

im(H0(Y (1)) → H0(Y (2)))

−→ cok
(

H2n−2(Y (1)) ⊕H2n−4(Y (3)) → H2n−2(Y (2))
)

ℓ1 : ker
(

H1(Y (1)) → H1(Y (2))
)

−→ cok
(

H2n−3(Y (2)) → H2n−1(Y (1))
)

,

ℓ2 : ker
(

H0(Y (2)) → H2(Y (1)) ⊕H0(Y (3))
)

−→ ker(H2n−2(Y (2))→H2n(Y (1)))
im(H2n−2(Y (3))→H2n−2(Y (2)))

We shall first prove that the map ℓ2 is injective. Say y ∈ H0(Y (2))
satisfies ρy = 0 and τy = 0, and suppose that Ln−1y = τz for some z ∈
H2n−4(Y (3)). If y ̸= 0, then by Lemma 3.1 there exists a t ∈ H0(Y (2)) such
that ρt = 0 and ⟨t, y⟩ ≠ 0. But

⟨t, y⟩ = t · Ln−1y = t · τz = ±ρt · z = 0,

a contradiction.
Proposition 3.5 implies that in the commutative square

ker(H2n−2(Y (2))→H2n(Y (1)))
im(H2n−4(Y (3))→H2n−2(Y (2)))

∼

N
// cok(H2n−2(Y (1))⊕H2n−4(Y (3))→H2n−2(Y (2)))

ker(H0(Y (2))→H2(Y (1))⊕H0(Y (3)))
∼

N
//

ℓ2

OO

ker(H0(Y (2))→H0(Y (3)))
im(H0(Y (1))→H0(Y (2)))

ℓ0

OO

the horizontal maps are isomorphisms. Moreover, by Poincaré duality, the
opposite corners are dual to each other, and therefore all four vector spaces
have the same dimension. Since ℓ0 is injective, it is thus an isomorphism,
which implies that ℓ2 is an isomorphism as well.

Finally, we deal with ℓ1. The proof is directly inspired by [31, Satz 2.13].
Let A = Alb(Y (1)) and B = Alb(Y (2)). The simplicial maps

d0, d1 : Y (2) → Y (1)

induce a map ρ = d0 − d1 : B → A. Let C be its cokernel. Then the source
ker

(

H1(Y (1)) → H1(Y (2))
)

of ℓ1 is identified with

ker
(

ρ∗ : H1(A) → H1(B)
)

= H1(C),
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and similarly the target of ℓ1 is

cok((ρ∨)∗ : H1(B∨) → H1(A∨)) = H1(C∨).

By Lemma 3.7 below, the map ℓ : H1(A) → H1(A∨) is, up to replacing L

with a multiple, induced by an isogeny Ψ: A∨ → A. Therefore ℓ1, interpreted
as a map H1(C) → H1(C∨), is induced by the composition

C∨ → A∨ → A → C.

This composition is an isogeny and hence ℓ1 is an isomorphism. □

Lemma 3.7. Let X be smooth and projective over k, with an ample line
bundle L. Let n = dimX. Let A be the Albanese variety of X and let A∨

be its dual, naturally identified with the Picard variety Pic0(X)red of X.
Then, after replacing L with L

m for some m ≥ 1, there exists an isogeny
ΨL : A∨ → A making the following square commute

H1(X)
Ln−1

∼
// H2n−1(X)(n− 1)

≃
��

H1(A)

≃

OO

Ψ∗

L

// H1(A∨).

Proof. We may assume that L is very ample. Let i : Y →֒ X be a smooth one-
dimensional linear section of X. Let J = Alb(Y ) = Pic0(Y ). By [22, 2A9.5]
we have a commutative diagram

H1(X)

i∗ $$

Ln−1

∼
// H2n−1(X)(n− 1)

≃
��

H1(A)

≃

OO

Alb(i)∗ $$

H1(Y )

i∗

77

H1(A∨)

H1(J)

Pic(i)∗

77

We conclude that we can take for Ψ the composition

A∨ = Pic0(X)red
Pic0red(i)−−−−−→ Pic0(Y ) = J = Alb(Y )

Alb(i)
−−−−→ Alb(X) = A. □
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Finally, let us remark that [27, Proposition 9.10] shows that conversely,
the log Hard Lefschetz conjecture for H1(Y ) implies the weight monodromy
conjecture for H1(Y ).

4. Log hard Lefschetz for varieties of combinatorial type

4.1. Saito–Ito structures

Consider a bigraded vector space V =
⊕

i,j∈Z V i,j over Q endowed with
commuting operators N (of bidegree (2, 0)), L (of bidegree (0, 2)), and d (of
bidegree (1, 1)) satisfying d2 = 0. We assume that

N i : V −i,j → V i,j and Lj : V i,−j → V i,j

are isomorphisms for i, j ≥ 0. Further, we fix an integer n ≥ 0 and assume
that

V i,j = 0 if i + j + n is odd.

Suppose moreover that V is endowed with a pairing ⟨, ⟩ such that V i,j

and V i′,j′ are orthogonal unless i + i′ = 0 = j + j′ and inducing a perfect
pairing betwen V i,j and V −i,−j . We assume that ⟨, ⟩ satisfies the relations

⟨x, y⟩ = ⟨y, x⟩, ⟨□x, y⟩ = ⟨x,□y⟩ for □ ∈ {N,L, d}

for homogenous elements x, y ∈ V .
We also make the following positivity assumption: set

0V
−i,−j = kerN i+1 ∩ kerLj+1 ⊆ V −i,−j for i, j ≥ 0.

Then the pairing

⟨−, N iLj−⟩ on 0V
−i,−j × 0V

−i,−j

is postive (resp. negative) definite if (n− i− j)/2 is even (resp. odd).
If we regard each V i,j as a pure Hodge structure of weight i + j + n

purely of type ((i + j + n)/2, (i + j + n)/2), then V ⊗C becomes a polar-
ized differential bigraded module of type H–L (Hodge–Lefschetz) of weight
n as defined in [32, 4.2.1]. To indicate the (implicit) use of such structures in
[18] and their origin in [32], we will call such objects V = (V,N,L, d, ⟨, ⟩, n)
Saito–Ito structure (of weight n).

We can then apply [32, 4.2.2] to obtain the following result.
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Theorem 4.1. Let V be a Saito–Ito structure of weight n, and set H(V ) =
ker d/ im d. Then N , L descend to H(V ), the pairing ⟨, ⟩ induces a pairing
on H(V ). Endowed with those and with zero differential d, H(V ) is again a
Saito–Ito structure of weight n.

4.2. Algebraic cycles

Let Z be a smooth and proper variety over k and let H∗ be a Weil cohomol-
ogy theory. We denote by Ci(Z) the Q-vector space of codimension i cycles
on Z, by

clZ : Ci(Z) → H2i(Z)(i)

the cycle class map, by Ai(Z) ⊆ H2i(Z)(i) its image, and finally by Ci
num(Z)

the quotient by Ci(Z) by the group of cycles numerically equivalent to zero,
i.e. pairing trivially with the entire Cn−i(Z) where n = dimZ. We say that
H∗(Z) is generated by algebraic cycles if H i(Z) = 0 for i odd and if Ai(Z)
generates H2i(Z)(i) as a vector space over F = H0(pt) for all i. If this
is the case, then homological and numerical equivalence on Z agree, i.e.
Ai(Z) ∼−→ Ci

num(Z), and moreover Ai(Z) ⊗ F ∼−→ H2i(Z)(i) [22, Proposi-
tion 3.6].

The Hodge standard conjecture is the statement that, for an ample line
bundle L on Z, the restriction of the induced pairing ⟨, ⟩ on H2i(Z)(i) to the
primitive algebraic classes P 2i(Z)(i) ∩Ai(Z) is positive definite for i even
and negative definite for i odd [22, §3].

4.3. Varieties of combinatorial type

Consider now a strictly semistable log scheme Y over k, purely of dimension
n, endowed with an ample line bundle L. We fix a cohomology theory H∗

as in §2.4. Suppose that each connected component Z of every Y (k) satisfies
the following two conditions:

(A) H∗(Z) is generated by algebraic cycles,

(B) Z endowed with L|Z satisfies the Hodge standard conjecture.

Consider the bigraded Q-vector space

V =
⊕

i,j∈Z

V i,j , V i,j =

{

⊕

k≥max(i,0)A
i−k+n−i+j

2 (Y (2k−i+1)) n− i + j even

0 n− i + j odd.
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By (A), this is a Q-structure for the E1-page of the weight spectral sequence
for Y :

V i,j ⊗ F ∼−→ Ei,n−i+j
1

(

n− i + j

2

)

.

The maps N , L, and d on the E1-page are rational with respect to this
Q-structure and induce familiar operators on V , defined exactly as in the
recipe in (2.4). Consequently, ker d/ im d on V is similarly a Q-structure for
the E2-page, with a Tate twist as above.

Moreover, the intersection pairing between V −i,−j and V i,j is perfect,
since it is perfect after tensoring with F by Poincaré duality for H∗. This
yields a pairing ⟨, ⟩ on V .

Proposition 4.2. In the above situation, V is a Saito–Ito structure of
weight n.

Proof. Everything except the positivity assumption is clear. For the remain-
ing statement, it suffices to note that for i, j ≥ 0 with i + j − n even,

0V
−i,−j = kerN i+1 ∩ kerLj+1 ⊆ V −i,−j

is identified with Pn−i−j(Y (i+1))(n−i−j
2 ) ∩A∗(Y (i+1)), with the pairing

⟨−, N iLj−⟩ identified with the pairing ⟨−, Lj−⟩ (note dimY i+1 = n−
i), as by the Hodge standard conjecture (B), the latter pairing is
(−1)(n−i−j)/2-definite. □

Combining Proposition 4.2 with Theorem 4.1, we obtain.

Corollary 4.3. For Y and L satisfying (A) and (B), the log hard Lefschetz
conjecture and the weight-monodromy conjecture hold for Y .

Remark 4.4. The second assertion has been obtained by Ito [18, Propo-
sition 5.1]. He proved [18, §4] that if Y is a certain special fiber of a model
of a rigid variety X uniformized by the Drinfeld upper half space, then the
assumptions (A) and (B) are satisfied. This is not interesting from our point
of view since such an X is projective.

5. Hodge symmetry in equal characteristic zero

In this section, we let k be a field of characteristic zero.
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Proposition 5.1 ([17, Theorem 7.1 and Corollary 7.2]). Let f:X → S
be a proper, log smooth, and exact morphism of fs log schemes over k, and
suppose that each stalk of MS/O

×
S is a free monoid. Then the relative log

Hodge cohomology sheaves

Rjf∗Ω
i
X/S

are locally free, with formation commuting with base change along every
morphism S′ → S of fs log schemes, for all i, j ≥ 0.

Corollary 5.2. Let O ≃ k[[t]] be a complete discrete valuation ring with
residue field k, and let X be a semistable formal scheme over O, endowed with
the standard log structure. Then the relative log Hodge cohomology groups
Hj(X,Ωi

X/O) are free O-modules of finite rank, with formation commuting
with the base change to Spec k.

Proof. Apply Proposition 5.1 to the base change Xn of X to Sn =
SpecO/(tn+1) for all n (note that the resulting map is automatically ex-
act). □

Theorem 5.3 (Log Hodge symmetry over C, [27, Corollary 9.15]).
Let Y be a strictly semistable log variety over k such that Y is projective.
Then

hi,j(Y ) = hj,i(Y ) for all i, j ≥ 0,

where hi,j(Y ) = dimHj(Y,Ωi
Y/s) are the dimensions of the log Hodge coho-

mology groups.

Proof. For the reader’s convenience, we recall the proof. We may assume
that k = C and that Y is purely of dimension n. The log Betti cohomology
H∗(Y ), endowed with W• = the abutment filtration of the weight spectral
sequence and Fil• = the Hodge filtration on H∗(Y ) ⊗C ≃ H∗(Y,Ω•

Y/s) is a

mixed Hodge structure. This result appeared originally in [36], though as
pointed out in [27, p. 84], the constructions there are not obviously inde-
pendent of local choices, and the correct structure has been constructed in
[11]. For an ample line bundle L on Y , the isomorphism from Theorem 2.3

Lr : Hn−r(Y ) ∼−→ Hn+r(Y )(r)

is a map of mixed Hodge structures, and hence strictly compatible with the
Hodge filtrations. By [17], the spectral sequence

Ei,j
1 = Hj(Y,Ωi

Y/s) ⇒ H i+j(Y,Ω•
Y/s) ≃ H i+j(Y ) ⊗C
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degenerates at E1. Combining these, we obtain for i + j = n− r an isomor-
phism

Lr : Hj(Y,Ωi
Y/s) = grjHn−r

dR (Y/s) ∼−→ grj+rHn+r
dR (Y/s) = Hr+j(Y,Ωn−j

Y/s ).

By log Serre duality [38, (2.21)], the latter is dual to H i(Y,Ωj
Y/s). □

Theorem 5.4. Let X be a smooth and proper rigid space over a complete
discretely valued field K ≃ k((t)) with residue field k of characteristic zero,
admitting a formal model X over OK ≃ k[[t]] whose special fiber Y = Xk is
projective. Then

hi,j(X) = hj,i(X) for all i, j ≥ 0.

Proof. By resolution of singularities, after replacing K with a finite extension
K ′ = k((s)), sm = t, we can assume that X admits a proper and semistable
model over OK whose special fiber is projective. Indeed, if X is any proper
flat model of X whose special fiber Xk is projective, resolution of singularities
produces an admissible blow-up π : X̃ → X with X̃ regular and X̃0 a divisor
with simple normal crossings. Since π is a projective morphism, so is the
map on special fibers π0 : X̃0 → X0, and hence X̃0 is projective. Let m be
the lowest common multiple of the multiplicities of the components of X̃0, let
K ′ = k((s)), sm = t, and let X̃′ = X̃⊗OK

OK′ . Note that the special fiber of
X̃′ is the reduced closed subscheme of X̃0 ⊗OK

OK′ and hence is projective.
Now X̃′ may no longer be regular, but standard arguments (toric resolution
of singularities) show that the minimal resolution X → X̃′ is semistable over
OK′ , and X0 is projective for the same reason as before.

Let thus f : X → Spf OK be a proper semistable model of X over OK

whose special fiber Y = X0 is projective. We endow Spf OK and X with
the standard log structures, and s = Spec k and Y with the induced log
structures. This makes the map f : X → Spf OK log smooth and Y into a
strictly semistable log scheme over k. Let

H i,j = Hj(X,Ωi
X/OK

) = Rjf∗Ω
i
X/OK

be the relative logarithmic Hodge cohomology groups. By Corollary 5.2, the
H i,j are free OK-modules of finite rank, whose formation commutes with
base change. Since we have rankH i,j = dimK Hj(X,Ωi

X), to prove Hodge
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symmetry for X it suffices to show the equalities

dimCH i,j ⊗OK
k = dimCHj,i ⊗OK

k.

By the base change property, we have

H i,j ⊗OK
k = Hj(Y,Ωi

Y/s).

Therefore Hodge symmetry for X is equivalent to log Hodge symmetry for
Y = X0, which holds by Theorem 5.3. □

6. Hodge symmetry in the p-adic situation

In this section, we assume that k has characteristic p > 0 and denote by H∗

the log crystalline cohomology H∗
log-cris(−/W (k))[1/p]. It is a vector space

over K0 = W (k)[1/p] endowed with a Frobenius-linear isomorphism φ.

Proposition 6.1 (Log hard Lefschetz implies slope symmetry). Let
Y be a strictly semistable log scheme over k such that Y is proper and ge-
ometrically connected. Let 0 ≤ q ≤ n = dimY and let L be an ample line
bundle on Y . Let α0 ≤ . . . ≤ αs (s = dimHq(Y ) − 1) be the slopes of Frobe-
nius on Hq(Y ). If the log hard Lefschetz conjecture holds for L in degree q,
then these slopes satisfy

αs−k = q − αk.

Proof. Since the Frobenius on H2(Y ) multiplies c1(L) ∈ H2(Y ) by p and
the fundamental class in H2n(Y ) by pn, the Lefschetz operator induces a
Frobenius-equivariant map

Ln−q : Hq(Y ) → H2n−q(Y )(n− q) = Hom(Hq(Y ), H2n(Y ))(n− q)

= Hq(Y )∨(−q),

where (−)(r) means crystalline Tate twist i.e. replacing the Frobenius φ with
p−rφ. The slopes of Hq(Y )∨ are −αs ≤ . . . ≤ −α0, and hence the slopes of
the target are q − αs ≤ . . . ≤ q − α0. Since Ln−q is an isomorphism, we have
αs−k = q − αk. □

Remark 6.2. Let Y be a smooth and proper variety over a finite field k.
By looking at the characteristic polynomial on Frobenius on the cohomology
of Y , Suh [37] has proved that the slopes of Frobenius on Hq(Y ) satisfy the
assertion of Proposition 6.1, even if Y is not projective.
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Indeed, if k = Fpe and β is an eigenvalue of φe on Hq(Y ), then it is an
algebraic integer such that

ββ̄ = |β|2 = peq,

and hence peq/β = β̄ is an eigenvalue as well. The slopes αk equal the p-adic
valuations of such roots β multiplied by 1/e, and hence their multiset is
closed under α 7→ q − α. (This observation appeared earlier in [7, VI §3].)

In particular, if K is a finite extension of Qp, then Theorem 6.10(a) below
holds without the assumption that Y is projective. We thank Alexander
Petrov for this remark.

For the next result, we need to recall some p-adic Hodge theory [9]. The
K0-vector space Hq(Y ) = Hq

log-cris(Y/W (k))[1/p] come equipped, in addi-
tion to the Frobenius φ, with a nilpotent operator N satisfying Nφ = pφN .
Further, the Hyodo–Kato isomorphism [14, Theorem 5.1] (see [26, §7] for a
corrected construction, and [3, 1.16.2] for the formal case), depending on a
choice of a uniformizer of OK

Hq
log-cris(Y/W (k))[1/p] ⊗K0

K ∼−→ Hq
dR(X/K)

endows Hq(Y ) ⊗K with a decreasing separated and exhaustive filtration
Fil•, obtained from the Hodge filtration on de Rham cohomology of X. The
data (φ,N,Fil•) makes Hq(Y ) into a filtered (φ,N)-module [9, §4.3.2].

For a filtered (φ,N)-module D = (D,φ,N,Fil•), one defines

tN (D) =
∑

α∈Q

(dimK0
Dα) · α and tH(D) =

∑

i∈Z

(dimK FiliD/Fili+1D) · i,

where Dα ⊆ D is the part of slope α ∈ Q. We say that D is weakly admissible
[9, §4.4.1] if tN (D) = tH(D) and tN (D′) ≥ tH(D′) for every subobject D′ ⊆
D. It is a consequence of p-adic Hodge theory ([6] in the case of formal
schemes) that Hq(Y ) is weakly admissible.

Proposition 6.3. Let X be a strictly semistable proper formal scheme over
OK of relative dimension n. Let Y = Xk be its special fiber, endowed with
the natural log structure, and let X = XK be its rigid analytic generic fiber.
Let 0 ≤ q ≤ n, and suppose that Y admits an ample line bundle L for which
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the log hard Lefschetz holds in degree q. Then

∑

i+j=q

(i− j) · hi,j(X) = 0.

In particular, if q ≤ 2 or q ≥ 2n− 2, then

hi,j(X) = hj,i(X) for i + j = q.

Proof. The weak admissibility of Hq(Y ) equipped with ϕ, N , and Fil• im-
plies that, if α0 ≤ . . . ≤ αs−1 are the Frobenius slopes on Hq(Y ), then

∑

i+j=q

hi,j(X) · i = tH(Hq(Y )) = tN (Hq(Y )) =

s−1
∑

k=0

αk.

By Proposition 6.1, this equals
∑

(q − αk) = q · dimHq(Y ) −
∑

αk. But

q · dimHq(Y ) −
s−1
∑

k=0

αk = q
∑

i+j=q

hi,j(Y ) −
∑

i+j=q

hi,j(Y ) · i

=
∑

i+j=q

hi,j(Y ) · (q − i) =
∑

i+j=q

hi,j(X) · j.

□

Definition 6.4 ([16, Definition 1.4]). Let Y be a strictly semistable log
scheme over k such that Y is proper. We denote by BΩj

Y/s ⊆ Ωj
Y/s the sheaf

of exact differential forms. We say that Y is ordinary if

H i(Y,BΩj
Y/s) = 0 for all i, j ≥ 0.

For Y is smooth, this is equivalent to the usual definition [5, §7].

Lemma 6.5 ([16, Proposition 1.5]). Let Y be as in Definition 6.4. If Y
is ordinary, then the F -crystals

Hq
log-cris(Y/W (k))/tors.

are ordinary, i.e. have the same Newton and Hodge polygon, for all q ≥ 0.
The converse holds if Hq

log-cris(Y/W (k)) is torsion-free for all q ≥ 0.

Lemma 6.6 ([16, Proposition 1.6]). Let Y be a strictly semistable log
scheme over k such that Y is proper, and let Y (k) be as defined in §2.1. If
Y (k) are ordinary for all k ≥ 1, then so is Y .
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Proposition 6.7. Let X be a proper and semistable formal scheme over
OK with rigid generic fiber X = XK and log special fiber Y = Xk. Consider
the following conditions.

(a) Y is ordinary.

(b) Hq
dR(X/K), endowed with the structure of a weakly admissible filtered

(φ,N)-module, is ordinary in the sense of [29] for all q ≥ 0, i.e. the
Hodge polygon of Hq

dR(X/K) equals the Newton polygon for Hq(Y ).

(c) The p-adic Galois representations Hq(X ̂K
,Qp) are ordinary in the sense

of [29], i.e. are iterated extensions of powers of the cyclotomic character.

Then (a)⇒(b)⇔(c). Moreover, (b)⇒(a) if H∗
log-cris(Y/W (k)) is torsion-free

and the Hodge cohomology groups Hj(X,Ωi
X/OK

) are free OK-modules for
all i, j ≥ 0.

Proof. Assume (a). By [16, Corollaire 2.6], the Hodge filtration Fil• on
Hq

dR(X/K) and the slope filtration U• on Hq(Y ) = Hq
log-cris(Y/W (k))[1/p]

are opposite in the sense that

(Ui−1 ⊗W (k)[1/p] K) ⊕ Fili = Hq
dR(X/K)

holds for all i, q ≥ 0. This implies (b).
The equivalence of (b) and (c) follows from the semistable comparison

theorem [6] and from [29, Théorème 1.5].
For the final assertion, we observe that if Hodge cohomology is free,

then the Hodge polygon of Hq
dR(X) equals the Hodge polygon defined by

the Hodge numbers of Y . Since the crystalline cohomology is torsion-free,
we can apply [16, Proposition 1.6 (a)(iv)] to conclude. □

Example 6.8 (Supersingular Enriques surfaces). The following well-
known example serves as a warning that some additional assumptions for
the final assertion (b)⇒(a) in Proposition 6.7 are necessary.

Suppose p = 2 and let Y be a supersingular Enriques surface over k.
Then Y admits a smooth lifting X over a ramified extension of W (k) [8,
Theorem 0.8]. If X is the generic fiber, then H∗

dR(XK/K) is generated by
algebraic cycles. Consequently, hi,j(X) vanishes for i ̸= j and the cohomol-
ogy of X is ordinary in the sense of Proposition 6.7(b). However, Y is not
ordinary, has torsion in H2

cris and H3
cris, and the Hodge numbers of Y differ

from those of X [15, II 7.3].
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Corollary 6.9. In the context of Proposition 6.3, suppose that the log spe-
cial fiber Y is ordinary. Then

hi,j(X) = hj,i(X) for i, j ≥ 0.

Proof. By Proposition 6.7, the Hodge number hi,j(X) equals the multiplicity
of i as a Frobenius slope on H i+j(Y ). We conclude by Proposition 6.1. □

Combining the above results with the established cases of log hard Lef-
schetz, we obtain the following unconditional result.

Theorem 6.10. Let X be a proper and semistable formal scheme over OK

with rigid generic fiber X = XK and log special fiber Y = Xk which is pro-
jective. Then:

(a) If X is smooth over OK and Y is ordinary, then hi,j(X) = hj,i(X) for
i, j ≥ 0.

(b) h1,0(X) = h0,1(X) and hn−1,n(X) = hn,n−1(X) where n = dimX.

(c) If every connected component Z of some Y (k) has torsion-free crystalline
cohomology and admits a smooth projective lifting Z over OK such whose
cohomology is generated by algebraic cycles and such that the Hodge
cohomology groups H i(Z,Ωj

Z/OK
) are free OK-modules for i, j ≥ 0, then

hi,j(X) = hj,i(X) for i, j ≥ 0.

Proof. (a) Since in this case log hard Lefschetz amounts to the usual hard
Lefschetz theorem [21], the statement follows from Proposition 6.9.

(b) The first equality follows from Theorem 3.6 and Proposition 6.3. The
second follows from the first by Serre duality [39].

(c) In light of Corollary 6.9, Proposition 6.6, and Corollary 4.3, it suffices
to prove that every component Z of some Y (k) satisfies the following three
conditions (see §4.2 for the terminology regarding (A) and (B)):

(A) The crystalline cohomology H∗(Z) is generated by algebraic cycles,

(B) The Hodge standard conjecture holds for Z,

(C) Z is ordinary.

We may assume that k is algebraically closed. Let Z be a smooth projective
lifting of Z over OK such that the geometric generic fiber W = ZK has
cohomology generated by algebraic cycles. Since W lives in characteristic
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zero, it does not matter which cohomology theory we choose, and we prefer
to use de Rham cohomology. We have specialization maps Ai(W ) → Ai(Z)
(see [12, 20.3.5]) fitting inside a commutative diagram

Ai(W )

��

// Ai(Z)

��
H i

dR(W/K) H i
cris(Z/W (k))[1/p]oo

which after making everything K-linear becomes

Ai(W ) ⊗Q K //

��

Ai(Z) ⊗Q K

��
H i

dR(W/K) H i
cris(Z/W (k)) ⊗W (k) K.oo

Here, the left map is an isomorphism by assumption and the bottom map is
an isomorphism by Berthelot–Ogus. Therefore the right map is surjective,
showing (A). A posteriori, all maps above are isomorphisms (see §4.2).

Using this with i = 1, we see that a multiple of a given ample line bundle
L lifts to W . Since W is in characteristic zero, the Hodge standard conjecture
holds for that lift of a multiple of L, but since A∗(W ) ≃ A∗(Z), the Hodge
standard conjecture holds for Z, proving (B).

Finally, since algebraic cohomology classes are of type (i, i), the assump-
tion on W also shows that hi,j(W ) = 0 for i ̸= j. Therefore the Hodge poly-
gon for H i

dR(W/K) is a single segment, and hence it coincides with the
Newton polygon of H i(Z). By the final assertion of Proposition 6.7, Z is
ordinary, showing (C). □

Remark 6.11. In [19], based on the symmetry of slope numbers [7, VI
§3], Joshi shows that Hodge symmetry holds for a smooth and proper Y
over k with degenerate Hodge spectral sequence and torsion-free crystalline
cohomology which is Hodge–Witt (i.e. all Hj(Y,WΩi

Y ) finitely generated).
The Hodge–Witt property is weaker than ordinarity, and it is plausible that
in Theorem 6.10(a) one can replace ordinary by Hodge–Witt.

Example 6.12 (Cellular varieties). Though the assumptions of Theo-
rem 6.10(c) may look a bit discouraging, they are satisfied in many situa-
tions of geometric interest. Recall that a smooth proper variety Z is cellular
if it admits a stratification Z =

∐

α∈I Zα where each Zα is isomorphic to
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some affine space Anα

k . If Ik ⊆ I (0 ≤ k ≤ dimZ) denotes the set of strata
of codimension k, then the cycle classes of the closures Zα (α ∈ Ik) give an
isomorphism

CHk(Z) =
⊕

α∈Ik

Z · [Zα] (see [20, Lemma 3.3]).

One can upgrade it to a decomposition of Chow motives

M(Z) =

n
⊕

k=0

CHk(Z) ⊗ Z(k)[2k], [20, Corollary 3.5].

Consequently, for each of the cohomology theories

H∗ ∈ {ℓ-adic, crystalline, de Rham, Hodge, Hodge–Witt}

one has a decomposition

H∗(Z) =

n
⊕

k=0

CHk(Z) ⊗H0(pt)[2k],

see [2, Corollary 2.8]. In particular, the crystalline cohomology of Z is
torsion-free and Z is ordinary.

Suppose now that Z admits a cellular lift Z over OK , i.e. a smooth lifting
together with a stratification Z =

∐

i∈I Zα where Zα ≃ Anα

OK
with (Zα)k =

Zα. Then the above assertions (of course, with the exception of crystalline
and Hodge–Witt cohomology) hold for the geometric generic fiber W = ZK .
This implies in particular that Hj(Z,Ωi

Z/OK
) are free.

Well-known examples of varieties admitting a cellular decomposition in-
clude toric varieties, rational homogeneous spaces, or more generally every
smooth projective variety admitting an algebraic torus action with finitely
many fixed points [4].
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