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In this short note, we compute higher extension groups for all ir-

reducible representations and deduce the multiplicity formula for

finite length representations in triple product case.

1. Introduction

Let F be a p-adic field. Let L/F be a cubic étale extension and D/F be a
quaternion algebra. Let G = ResL/FD

× and H = D×. Note that the inter-
section of the center ZG of G with H is ZH = Gm. Denote by Rep(F×\G(F ))
the category of smooth F×\G(F )-representations.

In this short note, we prove that the higher Ext groups vanish

ExtiF×\H(F )(π,C) = 0, i > 0.

for any generic π ∈ Rep(F×\G(F )). Combining with results from the local
trace formula approach, we obtain a multiplicity formula for any irreducible
π ∈ Rep(F×\G(F )).

To state the result, we introduce more notations. For any irreducible
π ∈ Rep(F×\G(F )), consider its geometric multiplicity

mgeo(π) =
∑

T∈T

|W (H,T )|−1

∫

F×\T (F )
cπ(t)D

H(t)dt

where

• the support T = T (G,H) is a set of tori in H. If D is split, T consists
of F× and the nonsplit maximal tori in H. If D is non-split, T consists
of the nonsplit maximal tori in H.

• W (H,T ) = NH(T )/ZH(T ).

• cπ is the regularized character on the semi-simple locus of G(F ) (See
[12, Definition 2.5]).

• DH(t) = | det(1− ad(t))|h/ht
| is the Weyl discriminant on the semi-

simple locus of H(F ).
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• the measure dt is normalized so that the volume Vol(F×\T (F ), dt) = 1.

Via the local trace formula approach, Wan proves the following multi-
plicity formula for tempered representations:

Theorem 1.1 (Wan [11], C.2 and C.3). For any irreducible tempered
π ∈ Rep(F×\G(F )),

m(π) := dimCHomH(F )(π,C) = mgeo(π).

Remark 1.2. In fact, the above multiplicity formula holds for generic rep-
resentations combining the result of Prasad [8, 9] (See [11, Remark C. 2.3]).

In general, it is conjectured in [10, Conjecture 7.1] (for the Gan-Gross-
Prasad models) and [12, Conjecture 7.6] (for all spherical pairs) that the
multiplicity formula should hold for all π ∈ Rep(F×\G(F )) of finite length
with the multiplicity m(π) replaced by the Euler-Poincaré number

EPF×\H(F )(π,C) :=
∑

i≥0

(−1)i dimC ExtiF×\H(F )(π,C).

Philosophically, such multiplicity formula can be viewed as a kind of
Riemann-Roch theorem (See [10, Remark 7.2]).

Example 1.3. Assume D is split and L = E ⊕ F where E/F is a quadratic
field extension. Let π = π1 ⊠ π2 ∈ Rep(F×\G(F )) with

• π1 = I
GL2(E)
B(E) χ1 ⊠ χ2 ∈ Rep(F×\GL2(E)) being the normalized

parabolic induction for characters χ1, χ2 : E× → C× such that
χ1χ2|F× = 1;

• π2 = C ∈ Rep(F×\GL2(F )) being the trivial representation.

Then

HomF×\H(F )(π,C) = HomF×\GL2(F )(π1,C).

Set χ′ := χ1χ2 where − denotes the Galois conjugation with respect to E/F .
It is known that (see e.g. [6, Theorem 5.2]) m(π) ≤ 1 and the equality holds
if and only if χ1|F× = χ2|F× = 1 or χ′ = 1.

On the other hand, by a property of the regularized characters of
parabolic inductions [12, Proposition 2.7]

mgeo(π) =
1

2

∫

F×\E×

cπ(t)D
H(t)dt =

1

2

∫

F×\E×

(χ′(t) + χ′(t̄))dt.

In particular, mgeo(π) ≤ 1 and the equality holds if and only if χ′ = 1.
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Therefore, in the case χ′ ̸= 1 and χ1|F× = χ2|F× = 1,

m(π) ̸= mgeo(π).

This is compatible with Theorem 1.1 since π2 (hence π) is neither generic
nor tempered.

The following is the main result of this paper.

Theorem 1.4. For any irreducible π ∈ Rep(F×\G(F )), generic if D is
split,

ExtiF×\H(F )(π,C) = 0, i ≥ 1.

Moreover, for any π ∈ Rep(F×\G(F )) of finite length, the multiplicity for-
mula holds

EPF×\H(F )(π,C) = mgeo(π).

Remark 1.5. Previously,

• The vanishing result is known for the Whittaker model: if G is a con-
nected quasi-split reductive group over F , B = TN a Borel subgroup
of G, ψ a generic character on N(F ), then for any irreducible represen-
tation π ∈ Rep(G(F )) and any i ≥ 1, by [10, Proposition 2.8]

ExtiN(F )(π, ψ
−1) ∼= ExtiG(F )

(

i
G(F )
N(F )ψ, π

∨
)

∼= Exti1(πN,ψ,C) = 0.

For the Gan-Gan-Prasad models of general linear groups, the vanishing
result is due to Chan-Savin [5].

• The only known cases of [12, Conjecture 7.6] are the group case [10,
Proposition 2.1(4)], the Whittaker models [12, Section 8.1], and the
Gan-Gross-Prasad models for general linear groups ([10, Theorem 4.2]
and note that in this case the support T = T (G,H) of mgeo is {1}).

We explain the proof of Theorem 1.4. In fact, it is known that
ExtiF×\H(F )(π,C) = 0 for any π when i ≥ 2 (see [10, Proposition 2.9], also

Proposition 2.1(1) below) and Ext1F×\H(F )(π,C) = 0 if π is supercuspidal
(see [3, Theorem 5.4.1], also Proposition 2.1(1) below). The proof of the
vanishing result is reduced to showing that Ext1F×\H(F )(π,C) = 0 for non-
supercuspidal π. For this, we apply standard tools: the geometric lemma of
Bernstein-Zelevinsky and the Schneider-Stuhler duality ([7, Theorem 2], see
also Theorem 2.2 below). Once the vanishing results are available, the multi-
plicity formula for finite length representations is deduced from the tempered
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version (Theorem 1.1) by noting both sides are additive and constant in an
unramified twisting family.

In fact, we compute ExtiF×\H(F )(π,C) for all irreducible π ∈

Rep(F×\G(F )) and all i. The results for L = E ⊕ F together with the
Schneider-Stuhler duality implies the following complete classification of ir-
reducible GL2(F )-subrepresentations of irreducible GL2(E)-representations,
which is analogous to [7, Proposition 9.1] for the case L = F ⊕ F ⊕ F (in
fact, there is an extra central character condition in [7, Proposition 9.1]:
π = π1 ⊠ π2 ⊠ π3 with π3 having trivial central character. This condition is
dropped here).

Proposition 1.6. Assume L = E ⊕ F and D is split. For π = π1 ⊠ π2 ∈
Rep(F×\G(F )) irreducible, π∨2 is a GL2(F )-subrepresentation of π1 if and
only if

• π1 = ξ ◦ det and π2 = ξ−1|F× ◦ det; or

• π∨2 is supercuspidal, and appears as a quotient of π1|GL2(F ); or

• π2 = StF ⊗ ξ, π1 = I
GL2(E)
B(E) χ1 ⊠ χ2 such that ξχ1|F× = ξχ2|F× = 1 and

ξEχ
′ ̸= 1. Here ξE = ξ ◦NE/F , χ′ = χ1χ2 and StF is the Steinberg rep-

resentation for GL2(F ).

2. The proof

For any reductive group Γ over F and any center character ω : ZΓ(F )→ C×,
let Rep(Γ(F ), ω) denote the full subcategory of Rep(Γ(F )) consisting of ob-
jects on which ZΓ(F ) acts by ω. For any objects π, π′ ∈ Rep(Γ(F ), ω) ⊂
Rep(Γ(F )), let ExtiRep(Γ(F ),ω)(π, π

′) (resp. ExtiΓ(F )(π, π
′)) be the i-th exten-

sion group in the category Rep(Γ(F ), ω) (resp. Rep(Γ(F ))). Let Γ′(F ) be a
closed subgroup of the p-adic group Γ(F ) with modulus character δΓ′ . Note

that when Γ′ is reductive, δΓ′ is trivial. Denote by I
Γ(F )
Γ′(F ) (resp. i

Γ(F )
Γ′(F )) the

normalized (resp. compact) induction. Note that for any σ ∈ Rep(Γ′(F )),

(i
Γ(F )
Γ′(F )σ)

∨ = I
Γ(F )
Γ′(F )σ

∨ where −∨ stands for smooth dual in the proper cat-

egory. Moreover if Γ′ =MN is a parabolic subgroup with Levi factor M ,
denote by JN the normalized Jacquet functor for Γ′.

We record some basic properties of Ext-groups which are frequently used
in the following.

Proposition 2.1. We have the following results for the Ext-groups.
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1) For any irreducible π ∈ Rep(Γ(F )), smooth π′ ∈ Rep(Γ(F )) and any
i > split rank of ZΓ

ExtiΓ(F )(π, π
′) ∼= ExtiΓ(F )(π

′, π) = 0.

If π is supercuspidal with central character ω, then π is both projective
and injective in Rep(Γ(F ), ω). In particular, for any i ≥ 1

ExtiRep(Γ(F ),ω)(π, π
′) ∼= ExtiRep(Γ(F ),ω)(π

′, π) = 0.

2) For any π ∈ Rep(Γ(F ), ω), σ ∈ Rep(Γ(F ), ω−1) and any i ≥ 0

ExtiZΓ(F )\Γ(F )(π ⊗ σ,C)
∼= ExtiRep(Γ(F ),ω)(π, σ

∨) ∼= ExtiRep(Γ(F ),ω−1)(σ, π
∨).

3) The restriction functor Rep(Γ(F ))→ Rep(Γ′(F )) sends projective ob-

jects to projective objects, the normalized induction functor I
Γ(F )
Γ′(F ) :

Rep(Γ′(F ))→ Rep(Γ(F )) sends injective objects to injective objects.
Moreover, for any σ ∈ Rep(Γ′(F )), π ∈ Rep(Γ(F )) and any i ≥ 0

ExtiΓ(F )

(

π, I
Γ(F )
Γ′(F )σ

)

∼= ExtiΓ′(F )

(

π, σ ⊗ δ
1/2
Γ′

)

.

When Γ′ =MN is a parabolic subgroup with Levi factor M , the normal-
ized Jacquet functor JN : Rep(Γ(F ))→ Rep(M(F )) sends projective
objects to projective objects. For any σ ∈ Rep(M(F )) and any i ≥ 0

ExtiΓ(F )

(

π, I
Γ(F )
Γ′(F )σ

)

∼= ExtiM(F )(JN (π), σ).

Proof. The property of supercuspidal representations can be found in [3,
Theorem 5.4.1]. Other results are summarized in [10, Section 2]. □

For any π ∈ Rep(Γ(F ), ω) irreducible, let d(π) (resp. d′(π)) be the split
rank of ZM (resp. ZM ∩ [Γ,Γ]), where M is any Levi subgroup carrying the
cuspidal support of π. The key ingredient for computing higher Ext groups
is the following Schneider-Stuhler duality theorem.

Theorem 2.2 (Theorem 1,2 in [7]). Let π ∈ Rep(Γ(F ), ω) be any irre-
ducible representation and D(π) be the Aubert-Zelevinsky involution of π.
Then

• for any π′ ∈ Rep(Γ(F )), ExtiΓ(F )(π, π
′) = 0 for i > d(π) and for 0 ≤

i ≤ d(π), there is a non-degenerate pairing

ExtiΓ(F )(π, π
′)× Ext

d(π)−i
Γ(F ) (π′, D(π))→ Ext

d(π)
Γ(F )(π,D(π)) ∼= C,
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• for any π′ ∈ Rep(Γ(F ), ω), ExtiRep(Γ(F ),ω)(π, π
′) = 0 for i > d′(π) and

for 0 ≤ i ≤ d′(π), there is a non-degenerate pairing

ExtiRep(Γ(F ),ω)(π, π
′)× Ext

d′(π)−i
Rep(Γ(F ),ω)(π

′, D(π))

→ Ext
d′(π)
Rep(Γ(F ),ω)(π,D(π)) ∼= C.

Remark 2.3. In general, the non-degeneracy means that if π′ = lim
−→n

π′n is
the inductive limit of finite generated Γ(F )-submodules π′n, then

ExtiΓ(F )(π, π
′) = lim
−→
n

ExtiΓ(F )(π, π
′
n),

ExtiΓ(F )(π
′, D(π)) = lim

←−
n

ExtiΓ(F )(π
′
n, D(π))

is the inductive limit (resp. projective limit) of finite dimensional C-spaces
and the pairing is direct limit of perfect pairings on these finite dimensional
spaces.

In the triple product case, the result of Aizenbud-Sayag [1] guarantees
all the Ext-groups below are finite dimensional and the non-degeneracy has
the usual meaning.

In the following, we shall concentrate on the triple product case.
The case D non-split is straightforward.

Proposition 2.4. Assume D is non-split. Then for any π ∈ Rep(F×\G(F ))
irreducible,

ExtiF×\H(F )(π,C) = 0, i > 0.

Proof. Note that ZH\H is anisotropic. Then by Proposition 2.1 (1), C is
injective and the statement follows. □

To deal with the D split case, we need to consider the following Waldspurger
toric case.

Lemma 2.5. Assume D is split. Let K ⊂ D be an étale quadratic F -algebra
and embed F× into D×(F )×K× diagonally. Then for any generic irreducible
π ∈ Rep(F×\(D×(F )×K×)

)

,

ExtiF×\K×(π,C) = 0, i ≥ 1.

Proof. Assume π = σ ⊠ ξ with σ ∈ Rep(D×(F )) and ξ ∈ Rep(K×). If K/F
is a field extension, then ExtiF×\K×(σ ⊠ ξ,C) = 0 for i ≥ 1 by Proposition 2.1
(1).
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If K = F ⊕ F , ExtiF×\K×(σ ⊠ ξ,C) = 0 for i ≥ 2 by Proposition 2.1 (1).

For i = 1, one can apply Theorem 2.2 to C ∈ Rep(F×\K×), where d(C) = 1
and D(C) = C. One has

dimC Ext1F×\K×(σ ⊠ ξ,C) = dimCHomF×\K×(C, σ ⊠ ξ)

= dimCHomK×(ξ−1, σ).

Identify K× with the split torus T (F ) and let K(σ) be the Kirillov model of
σ. Write ξ = ξ1 ⊠ ξ2. Then by [2, Proposition 4.7.2],

HomT (F )(ξ
−1,K(σ)|T )

= {ϕ ∈ K(σ) | ϕ(ax) = ξ−1
1 (a)ϕ(x) for any a ∈ F×} = 0.

□

Assume D is split. By Proposition 2.1(1), ExtiF×\H(F )(π,C) = 0 for i ≥

2. In the following, we compute Ext1F×\H(F )(π,C) case by case. Let T ⊂
B ⊂ GL2 be the diagonal torus and the group of upper triangular matrices
respectively, StF be the Steinberg representation for GL2(F ) and | · |F be the
norm character on F×.

Proposition 2.6. Assume D is split and L/F is a cubic field extension.
Then for π ∈ Rep(F×\G(F )) irreducible, Ext1F×\H(F )(π,C) = 0.

Proof. By Proposition 2.1 (1,3)(the modulus character of H is trivial), when
π is supercuspidal,

Ext1F×\H(F )(π,C) = Ext1F×\G(F )(π, I
G(F )
H(F )C) = 0.

If π is one-dimensional, then by Theorem 2.2 for C ∈ Rep(F×\H(F )),
where D(C) = StF and d(C) = C,

dimC Ext1F×\H(F )(π,C) = dimCHomH(F )(StF , π) = 0.

Note that when π is a special series, then π →֒ I
GL2(L)
B(L) χ1 ⊠ χ2

with χ1χ
−1
2 = | · |L. Thus it suffices to show that for π = I

GL2(L)
B(L) χ ∈

Rep(F×\G(F )) where χ = χ1 ⊠ χ2 with χ1χ
−1
2 ̸= | · |

−1
L ,

Ext1F×\H(F )(π,C) = 0.

By the geometric lemma (see [9, Section 6.1]), there exists an exact sequence
of F×\H(F )-representations

0→ i
H(F )
F× C→ π → I

H(F )
B(F ) χδB → 0
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where δB is the modulus character of B(F ). The short exact sequence induces
a long exact sequence

0→ HomF×\H(F )(I
H(F )
B(F ) χδB,C)→ HomF×\H(F )(π,C)

→ HomF×\H(F )(i
H(F )
F× C,C)→ Ext1F×\H(F )(I

H(F )
B(F ) χδB,C)

→ Ext1F×\H(F )(π,C)→ Ext1F×\H(F )(i
H(F )
F× C,C)→ 0.

By Proposition 2.1(2,3),

HomF×\H(F )(i
H(F )
F× C,C) = C, Ext1F×\H(F )(i

H(F )
F× C,C) = 0.

Note that

• if π is reducible, I
H(F )
B(F ) χδB is irreducible;

• if π is irreducible, we may assume I
H(F )
B(F ) χδB is irreducible by replacing

χ by χw, the twisting of χ by w =

(

0 1
1 0

)

, if necessary.

Thus

HomF×\H(F )(I
H(F )
B(F ) χδB,C) = 0.

Moreover by Theorem 2.2 for C ∈ Rep(F×\H(F )), where D(C) = StF and
d(C) = 1,

dimC Ext1F×\H(F )(I
H(F )
B(F ) χδB,C) = dimCHomF×\H(F )(StF , I

H(F )
B(F ) χδB) = 0.

Consequently, HomH(F )(π,C) = C and Ext1F×\H(F )(π,C) = 0. □

Proposition 2.7. Assume D is split and L = E ⊕ F . For π = π1 ⊠ π2 ∈
Rep(F×\G(F )) irreducible, dimC Ext1F×\H(F )(π,C) ≤ 1 with the equality
holds if and only if

• π2 = ξ ◦ det, π1 = I
GL2(E)
B(E) χ1 ⊠ χ2 such that χ1|F×ξ = χ2|F×ξ = 1 and

ξEχ
′ ̸= 1 (See Proposition 1.6 for the notations ξE and χ′); or

• π1 = ξ ◦ det and π2 = StF ⊗ ξ
−1|F× .

Proof. Denote by ω−1 the central character of π2. Then by Proposition 2.1
(2)

ExtiF×\H(F )(π,C)
∼= ExtiRep(H(F ),ω)(π1, π

∨
2 )

and if π1 or π2 is supercuspidal, Ext1F×\H(F )(π,C) = 0.

40



✐

✐

“2-Fan” — 2023/5/30 — 13:53 — page 41 — #9
✐

✐

✐

✐

✐

✐

When π1 is one-dimensional, by Theorem 2.2 for C ∈ Rep(F×\H(F )),
where D(C) = StF and d(C) = 1,

dimC Ext1F×\H(F )(π,C) = dimCHomH(F )(StF , π) ≤ 1

with the equality holds if and only if π1 = ξ ◦ det and π2 = StF ⊗ ξ
−1|F× .

Note that when π1 is a special series, π →֒ I
GL2(E)
B(E) χ1 ⊠ χ2 with χ1χ

−1
2 =

| · |E . Thus it suffices to consider π1 = I
GL2(E)
B(E) χ for χ = χ1 ⊠ χ2 where

χ1χ
−1
2 ̸= | · |

−1
E . By the geometric lemma (See [9, Section 4.1]), there is an

exact sequence of H(F )-representations

0→ i
H(F )
E× χ′ → π1 → I

H(F )
B(F ) χδ

1/2
B → 0.

By Proposition 2.1(2,3) and Lemma 2.5,

HomH(F )(i
GL2(F )
E× χ′, π∨2 )

∼= HomE×(π2 ⊗ χ
′,C);

Ext1Rep(H(F ),ω)(i
GL2(F )
E× χ′, π∨2 )

∼= Ext1F×\E×(π2 ⊗ χ
′,C) = 0;

ExtiRep(H(F ),ω)(I
GL2(F )
B(F ) χδ

1/2
B , π∨2 )

∼= ExtiRep(T (F ),ω−1)(JN (π2), δ
−1/2
B χ−1)

∼= ExtiF×\T (F )(JN (π2)⊗ δ
1/2
B χ,C).

Then by Theorem 2.2 for C ∈ Rep(F×\T (F )), where D(C) = C and
d(C) = 1,

dimC Ext1Rep(H(F ),ω)(I
GL2(F )
B(F ) χδ

1/2
B , π∨2 )

= dimCHomH(F )(I
GL2(F )
B(F ) χδ

1/2
B , π∨2 ) ≤ 1

with the equality holds if and only if δ
−1/2
B χ−1|T (F ) is a Jordan factor of

JN (π2). By the long exact sequence

0→ HomH(F )(I
H(F )
B(F ) χδ

1/2
B , π∨2 )→ HomH(F )(π1, π

∨
2 )

→ HomH(F )(i
H(F )
E× χ′, π∨2 )→ Ext1Rep(H(F ),ω)(I

H(F )
B(F ) χδ

1/2
B , π∨2 )

→ Ext1Rep(H(F ),ω)(π1, π
∨
2 )→ Ext1Rep(H(F ),ω)(i

H(F )
E× χ′, π∨2 )→ 0,

one has that

(i) EPF×\H(F )(π,C) = dimCHomE×(π2 ⊗ χ
′,C) ≤ 1
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(ii) unless δ
−1/2
B χ−1|T (F ) is a Jordan factor of JN (π2), Ext

1
F×\H(F )(π,C) =

0,

(iii) if HomE×(π2 ⊗ χ
′,C) = 0,

dimC Ext1F×\H(F )(π,C) = dimC Ext1Rep(H(F ),ω)(I
H(F )
B(F ) χδ

1/2
B , π∨2 ).

If δ
−1/2
B χ−1|T (F ) is a Jordan factor of JN (π2) and π1 = I

GL2(E)
B(E) χ sits in

the exact sequence

0→ StE ⊗ µ→ π1 → µ→ 0,

one has π2 = I
GL2(F )
B(F ) χ−1δ

−1/2
B is irreducible. Then by Saito-Tunnell,

EPF×\H(F )(π,C) = 1 and hence

dimCHomH(F )(StE ⊗ µ, π
∨
2 ) = dimC Ext1Rep(H(F ),ω)(StE ⊗ µ, π

∨
2 ) + 1.

Note that

dimCHomH(F )(StE ⊗ µ, π
∨
2 ) = dimCHomF×\H(F )(StE ⊗ µ⊗ π2,C) ≤ 1.

one deduce Ext1F×\H(F )(StE ⊗ µ⊗ π2,C) = 0 and hence Ext1F×\H(F )(π,C) =
0 from the induced long exact sequence.

Assume π1 = I
GL2(E)
B(E) χ is irreducible. If χ1|F× ̸= χ2|F× , then up to replac-

ing χ by χw, one can make δ
−1/2
B χ−1|T (F ) different from the Jordan Holder

factors of JN (π2). Then Ext1F×\H(F )(π,C) = 0 by (ii).

Now assume moreover ξ−1 = χ1|F× = χ2|F× . Then δ
−1/2
B χ−1|T (F ) is a

Jordan factor of JN (π2) if and only if π2 = ξ ◦ det or StF ⊗ ξ. In the case
π2 = StF ⊗ ξ,

• if EPF×\H(F )(π,C) = 1, then

Ext1F×\H(F )(π,C) = 0

since dimCHomH(F )(π,C) ≤ 1;

• if EPF×\H(F )(π,C) = dimCHomE×(π2 ⊗ χ
′,C) = 0, then by Theo-

rem 2.2 for StF ∈ Rep(F×\H(F )), where D(StF ) = C and d(StF ) = 1,

dimC Ext1F×\H(F )(π,C) = dimC Ext1F×\H(F )(I
H(F )
B(F ) χδ

1/2
B ⊗ ξ, StF )

= dimCHomF×\H(F )(C, I
GL2(F )
B(F ) δ

1/2
B ) = 0.

In the case π2 = ξ ◦ det, we shall give the criterion for
Ext1F×\H(F )(π,C) = C via studying EPF×\H(F )(π,C). By the above
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(i), EPF×\H(F )(π,C) = dimCHomE×(π2 ⊗ χ
′,C) ≤ 1, where the equality

holds if and only if ξEχ
′ = 1.

If EPF×\H(F )(π,C) = 1, as the second term in the long exact sequence
has multiplicity ≤ 1, we must have Ext1F×\H(F )(π,C) = 0.

If EPF×\H(F )(π,C) = 0, then as the last term in the last exact sequence
vanishes, we must have

dimCHomE×(π2 ⊗ χ
′,C) = 0,

dimC Ext1F×\H(F )(π,C) = dimCHomH(F )(I
H(F )
B(F ) χδ

1/2
B , π∨2 ).

It is then easy to see that dimC Ext1F×\H(F )(π,C) = 1 if and only if χ|F×ξ = 1

and ξEχ
′ ̸= 1. □

One can deduce Proposition 1.6 immediately from Proposition 2.7.

Proof of Proposition 1.6. Denote the central character of π2 by ω−1. By The-
orem 2.2,

• when π2 is supercuspidal, by Proposition 2.1 (1),

HomH(F )(π
∨
2 , π1)

∼= HomH(F )(π1, π
∨
2 );

• when π2 is non-supercuspidal, d(π2) = 1 and

dimCHomH(F )(π
∨
2 , π1) = dimC Ext1Rep(H(F ),ω)(π1, D(π∨2 ))

= dimC Ext1F×\H(F )(π1 ⊗D(π2),C).

Since D(ξ ◦ det) = StF ⊗ ξ and D(StF ⊗ ξ) = ξ ◦ det, the statement follows
from Proposition 2.7 immediately. □

Proposition 2.8. Assume D is split and L = F ⊕ F ⊕ F . For
π = π1 ⊠ π2 ⊠ π3 ∈ Rep(F×\G(F )) with πi ∈ Rep(GL2(F )) irreducible,
dimC Ext1F×\H(F )(π,C) ≤ 1 with the equality holds if and only if up to
reordering and twisting,

• π1 = StF and π2 = π3 = C, or

• π1 = π∨2 are principal series and π3 = C.

Proof. Denote the central character of π3 by ω−1. Then by Proposition 2.1
(i) (ii)

Ext1F×\H(F )(π,C)
∼= Ext1Rep(H(F ),ω)(π1 ⊗ π2, π

∨
3 )

and if π3 is supercuspidal, Ext1F×\H(F )(π,C) = 0. In the following, we assume
none of πi is supercuspidal.
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If π3 is one dimensional, which we may assume to be C by twisting, then

Ext1F×\H(F )(π,C)
∼= Ext1Rep(H(F ),ω1)

(π1, π
∨
2 )

where ω1 is the central character of π1. Then by Theorem 2.2 for π∨2 ,

dimC Ext1F×\H(F )(π,C) ≤ 1

with the equality holds if and only if up to reordering and twisting,

• π1 = StF and π2 = C,

• π1 = π∨2 are principal series.

If π1, π2 are special series, which we assume to be StF by twisting, and π3
is generic, then by [8, Lemma 5.4], there exists an exact sequence of GL2(F )-
representations

0→ StF → i
GL2(F )
T (F ) C→ π1 ⊗ π2 → 0,

which induces the long exact sequence

0→ HomF×\H(F )(π1 ⊗ π2, π
∨
3 )→ HomF×\H(F )(i

H(F )
T (F )C, π

∨
3 )

→ HomF×\H(F )(StF , π
∨
3 )→ Ext1F×\H(F )(π1 ⊗ π2, π

∨
3 )

→ Ext1F×\H(F )(i
H(F )
T (F )C, π

∨
3 )→ Ext1F×\H(F ))(StF , π

∨
3 )→ 0.

By Lemma 2.5,

Ext1F×\H(F )(i
H(F )
T (F )C, π

∨
3 ) = 0, HomF×\H(F )(i

H(F )
T (F )C, π

∨
3 ) = C.

Thus

• when π3 = StF , HomH(F )(π,C) = 0 by [8, Theorem 1.2] and hence
Ext1F×\H(F )(π,C) = 0,

• when π3 ̸= StF , Ext1F×\H(F )(π|H ,C) = HomF×\H(F )(StF , π
∨
3 ) = 0.

If π1 = I
GL2(F )
B(F ) ξ1, π2 = I

GL2(F )
B(F ) ξ2 and π3 is generic. Then by the geo-

metric lemma (see [8, Section 5]), there is an exact sequence of GL2(F )-
representations

0→ i
GL2(F )
T (F ) (ξ1ξ

w
2 )→ π1 ⊗ π2 → I

GL2(F )
B(F ) (ξ1ξ2δ

1/2)→ 0,
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which leads to a long exact sequence

0→ HomH(F )(I
GL2(F )
B(F ) (ξ1ξ2δ

1/2
B ), π∨3 )→ HomH(F )(π1 ⊗ π2, π

∨
3 )

→ HomH(F )(i
GL2(F )
T (F ) (ξ1ξ

w
2 ), π

∨
3 )→ Ext1Rep(H(F ),ω)(I

GL2(F )
B(F ) (ξ1ξ2δ

1/2
B ), π∨3 )

→ Ext1Rep(H(F ),ω)(π1 ⊗ π2, π
∨
3 )→ Ext1Rep(H(F ),ω)(i

GL2(F )
T (F ) (ξ1ξ

w
2 ), π

∨
3 )→ 0.

By Proposition 2.1 (2)(3),

ExtiRep(H(F ),ω)(i
GL2(F )
T (F ) (ξ1ξ

w
2 ), π

∨
3 ) = ExtiF×\T (F )(π3 ⊗ ξ1ξ

w
2 ,C).

Moreover by Theorem 2.2 for π∨3 ∈ Rep(F×\H(F ), ω), where d(π∨3 ) = 1,

dimC Ext1Rep(H(F ),ω)(I
GL2(F )
B(F ) (ξ1ξ2δ

1/2
B ), π∨3 )

= dimCHomH(F )(I
GL2(F )
B(F ) (ξ1ξ2δ

1/2
B ), π∨3 ).

Then by Lemma 2.5, one has

dimC Ext1Rep(H(F ),ω)(π1 ⊗ π2, π
∨
3 ) = dimCHomF×\H(F )(π,C)

− dimCHomF×\T (F )(π3 ⊗ ξ1ξ
w
2 ,C)

= dimCHomF×\H(F )(π,C)− 1 ≥ 0.

Since dimCHomH(F )(π|H ,C) ≤ 1, one has

Ext1F×\H(F )(π,C) = Ext1Rep(H(F ),ω)(π1 ⊗ π2, π
∨
3 ) = 0.

Interchanging the roles of πi, the statement follows. □

Immediately, we deduce the following corollary, which slightly generalizes [7,
Proposition 9.1] (by dropping the central character condition).

Corollary 2.9. Let π = ⊠
3
i=1πi ∈ Rep(F×\G(F )) be an irreducible smooth

representation. Then π∨3 is a GL2(F )-subrepresentation of π1 ⊗ π2 if and only
if

• π∨3 is supercuspidal, and appears as a quotient of π1 ⊗ π2;

• π∨3 = StF ⊗ ξ and π1 = π∨2 ⊗ ξ is a principal series;

• π1 or π2 is one-dimensional and π∨3
∼= π1 ⊗ π2.

Proof. Denote the central character of π3 by ω−1. By Theorem 2.2 and Propo-
sition 2.1 (2),
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• when π3 is supercuspidal,

HomH(F )(π
∨
3 , π1 ⊗ π2) = HomH(F )(π1 ⊗ π2, π

∨
2 ),

• when π3 is non-supercuspidal,

HomH(F )(π
∨
3 , π1 ⊗ π2) = Ext1F×\H(F )(π1 ⊗ π2 ⊗D(π3),C).

Then the statement follows immediately from Proposition 2.8. □

Proof of Theorem 1.4. The vanishing of higher Ext-groups for generic rep-
resentations is proved in Propositions 2.6, 2.7, 2.8. In particular, for π ∈
Rep(F×\G(F )) tempered,

m(π) = EPF×\H(F )(π,C).

Hence, by the multiplicity formula for tempered representations (Theo-
rem 1.1),

EPF×\H(F )(π,C) = m(π) = mgeo(π).

For any Levi subgroup M of G, denote by Tmp(F×\M(F )) the set of

tempered representations on F×\M(F ) and ̂F×\M(F )
un

the set of unram-
ified characters on F×\M(F ). Consider the subcategory Rep0(F×\G(F ))
of Rep(F×\G(F )) consisting of IGP (σ ⊗ χ) where P =MN is a parabolic

subgroup of G, σ ∈ Tmp(F×\M(F )) and χ ∈ ̂F×\M(F )
un

. We have the fol-
lowing two lemmas.

Lemma 2.10. The Grothendieck group of the abelian sub-category of
finite length representations in Rep(F×\G(F )) can be generated by
Rep0(F×\G(F )).

Proof. For any character ω : F× → C×, set Rep0(D×(F ), ω) :=
Rep(D×(F ), ω) ∩ Rep0(D×(F )). Then by the classification of irreducible
D×(F )-representations, for any irreducible π ∈ Rep(D×(F ), ω), there exists
π0 ∈ Rep0(D×(F ), ω) such that the semisimplification of π0 is the direct
sum of π and another irreducible representation in Rep0(D×, ω). The lemma
follows from this fact. □

Lemma 2.11. Fix σ ∈ Tmp(F×\M(F )) for some Levi M of G and con-
sider the unramified twisting family πχ = IGP σ ⊗ χ ∈ Rep0(F×\G(F )) with
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χ ∈ ̂F×\M(F )
un

. For any T ∈ T , the function

χ 7→ cπχ
|T

is constant. In particular, the geometric multiplicity is constant for an un-
ramified twisting family in the sense that the function

χ 7→ mgeo(πχ)

is constant.

Proof. We have the following fact on the regularized character of a parabolic
induction [12, Proposition 2.7]. Let π = IGP σ be a finite length G(F )-
representation induced from P =MN . Then for any semi-simple x ∈ G(F )

DG(x)1/2cπ(x) =
∑

y∈XM (x)

DM (y)1/2cσ(y)

where XM (x) is the set of representatives for M(F )-conjugacy classes of
elements in M(F ) that are G(F )-conjugated to x.

Let T ∈ T . If XM (t) is empty for any t ∈ T (F ), cπχ
|T = 0 for any χ.

Assume there exists t ∈ T (F ) such that XM (t) is nonempty, or equivalently,
there is an embedding of T into M . This happens exactly when

• M = G;

• L = E ⊕ F , T = E× and M = AE ×D
× where AE is the diagonal

torus of GL2,E . In this case,

XM (t) =

{((

t 0
0 t̄

)

, t

)

,

((

t̄ 0
0 t

)

, t

)}

.

To show the constancy of cπχ
|T for any unramified character χ on M(F ), it

is enough to prove that

F×\T (F ) ⊂
(

F×\M
)0

=
⋂

µ∈Rat(F×\M)

ker |µ|

where Rat (F×\M) is the group of rational characters on M . As F×\T is
anisotropic, Rat(F×\T ) = 0 so that for any µ ∈ Rat (F×\M), µ(t) = 1 for
any t ∈ T . □

Now, as the both sides of the multiplicity formula is additive, by (1), we
only need to consider representations in Rep0(F×\G(F )), that is, unrami-
fied twists of tempered representations. By (2), the geometric multiplicity
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is constant for an unramified twisting family. Meanwhile, it is known that
the Euler-Poincaré number is constant for an unramified twisting family (see
[1, Theorem E(4)] or [4, Proposition 3.18] for a more general situation).
Therefore, the multiplicity formula for tempered representations implies the
formula for any irreducible representation. □

Remark 2.12. In fact, the constancy of the geometric multiplicity holds
in general. It can be proved similarly as the above special case Lemma 2.11
(Note that in general, any torus T in the support T (G,H) satisfies T/ZG,H
is anisotropic. See [12, Definition 4.3].)
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